

Invited by Carbon Recycling Fund Institute, Tokyo, Japan

Presentation of DLR's capabilities regarding techno-economic and ecological assessment of

- Sustainable aviation fuels (SAF)
- Decarbonization examples for transport, chemicals, power

AGENDA

- Introducing DLR Dep. Energy System Integration (TT-ESI) and Techno-Economic Assessment (TEA)
- Motivation and Approach
- Assessment Insight
- Assessment results
- Partner search

DLR Dep. Energy System Integration (TT-ESI) develops:

- Fuel cell powertrains and integrated electrolysis systems for sustainable fuels
- In order to reduce carbon intensity of hard-to-abate transport in general (aviation in particular).

DLR Dep. Energy System Integration (TT-ESI) is led by Dr. Asif Ansar, containing groups for

- Fuel cell powertrain development for aircraft applications (GSY, HH)
- Large scale fuel cell powertrain demonstration and scale up (FES)
- Low temp. electrolyzer development and implementation (NTE)
- High temp. electrolyzer and fuel cells development and implementation (HTE)
- Techno-economic and ecological assessment

- One example of ESI's approach is the electrolyser development and integration: from system concepting and testing individual stacks and modules to large scale systems and integration
- Research and Development of Solid Oxide Cell (SOC) systems
 - Process engineering for bringing electrolysis (EC) and fuel cell (FC) systems into the multi MW range applications
 - Linking large experiments with process system modelling
 - From concept KPIs to operation strategies
- SOEC-System in construction
 - Customized, transportable 40 feet sea container
 - 10 kW_{el} power input for electrolyzer
 - 90 electrolyte supported cells with 30 per stack
 - 8 to 25 bar operation pressure
 - Direct coupling to a Fischer-Tropsch synthesis unit
 - Offshore experiments to be performed in 2025

The following slides will address:

- Why is a rigorous assessment of decarbonisation concepts necessary?
- What should be discovered?
- How to compare different technologies?
- What accuracy is required? How to achieve sufficient confidence?

Temperature data show: climate change is undeniable

- No question about climate change root cause
 anthropogenic greenhouse gas emissions
 Power / industry / ground transportation / residential / aviation+shipping GHG emission contribution: 13.7 / 10.4 / 6.7 / 3.3 / 1.3 Gt_{CO2} in 2023!
- Global Carbon budget until 1.5 degree exceeded by 2031²
- Immediate action required no time to wait IEA¹: "Ramping up renewables, improving energy efficiency, cutting methane emissions and increasing electrification with technologies available today deliver more than 80% of the emissions reductions needed by 2030."

Meaningful action under growing pressure? → reasonable decision making required

¹ <u>https://www.iea.org/reports/net-zero-roadmap-a-global-pathway-to-keep-the-15-0c-goal-in-</u>

reach ² https://globalcarbonbudget.org/carbonbudget/

- GHG emission reduction efforts to be assessed
 - Bring global CO₂ emissions from 35.8 Gt in 2023¹ to Net-Zero in 2050
 - 2023 emissions depleted 13.3% of the remaining post-2020 budget to avoid 1.5 °C (300 Gt CO₂), remaining 143 Gt CO₂ potentially exhausted within 3.6 years.
 - Introduce multiple measures on all sectors, all regions
 - Understand the scale of each measure
 - Understand the impact of each measure
- Provide transparent and standardized assessment of each measures scale/impact
 - Support policy makers for efficient regulation
 - Support technology development to improve climate change mitigation

¹ Liu, Z., Deng, Z., Davis, S.J. et al. Global carbon emissions in 2023. Nat Rev Earth Environ 5, 253–254 (2024). https://doi.org/10.1038/s43017-024-00532-2

Standardized Techno-Economic and Life Cycle Assessment @ DLR provides reliable knowledge about multiple decarbonization measures in sectors like power generation, basic industry and transport.

- Technical assessment includes rigorous process simulation of experimentally validated units and processes
- Economic assessment follows standard chemical engineering cost estimation rules and procedures
- Ecological assessment quantifies each environmental impact compared to fossil alternative

The "Techno Economic Process Evaluation Tool" (TEPET)

- · Was adapted from best-practice chemical engineering methodology
- Meets AACE class 3-4 methodology, with a predicted accuracy of +/- 30 %
- Uses year specific annual CEPCI Index
- Includes an automated interface for simulation control, seamless integration of data flows, exergy analysis, heating networks, ...
- LCA conforms to ISO 14040 and 14044 using current ecoinvent database
- Most recent LCA knowledge is adapted
- Allows sensitivity studies for each process parameter and boundary condistion
- Can be extended using learning curves, economy of scale, ...

- TEPET uses rigorous process simulation results
 - Stream data provide material and energy flows
 - Equipment data provide cost and performance
- CAPEX derives from connecting equipment dimensions with generalized equipment cost data
- OPEX derives from connecting stream data with material cost data
- Net production cost derive from CAPEX and OPEX

- Life Cycle Inventory (LCI) derives from connecting equipment dimensions and stream data with life cycle inventory datasets of commercial database, partially extended with external information
- Life Cycle Impact Assessment (LCIA) performed with Brightway2 (open source software) for each environmental impact category

A first example to search for the production of sustainable aviation fuels (SAF) is the Power-to-Liquid process (PtL)

- CO₂ can be derived from industrial sources like cement factories or from direct air capture (DAC)
- Hydrogen is produced by water electrolysis, the power should be from renewable sources like wind or PV
- In a reverse water-gas-shift reaction CO₂ is converted with hydrogen to CO, H₂O is an unavoidable by-product
- The Fischer-Tropsch synthesis is a well-known reaction converting synthesis gas (CO+H₂) into liquid hydrocarbons, that will later be upgraded into aviation fuels

SAF can be produced via biomass gasification in a Biomass-to-Liquid process (BtL)

- Biomass can be converted into synthesis gas (CO+H₂) at high temperatures using oxygen and/or steam
- In a water-gas shift reaction CO is converted into CO₂, in order to achieve the right syngas composition
- In the following reformer, tars and methane are converted into CO, CO₂ and H₂, increasing the syngas amount and the right syngas composition for the synthesis
- The Fischer-Tropsch synthesis converts synthesis gas (CO+H₂) into liquid hydrocarbons, that will later be upgraded into aviation fuels

A third option to produce SAF is the Power&Biomass-to-Liquid process (PBtL)

- Biomass is converted into synthesis gas (CO+H₂) at high temperatures using oxygen and/or steam
- Hydrogen is produced by water electrolysis, the power should be from renewable sources like wind or PV
- In the syngas reformer hydrogen is added in order to achieve the right syngas composition
- The Fischer-Tropsch synthesis converts synthesis gas (CO+H₂) into liquid hydrocarbons, that will later be upgraded into aviation fuels

- Regarding the goal of terminating CO₂ emissions from aviation : 1.0 Gt in 2019¹
- Simplified comparison of stochiometric heat losses
 - PtL penalty: H₂O production
 - BtL penalty: CO₂ production
 - PBtL penalty: reduced H₂O production
 - HEFA penalty: least H₂O production for deoxygenation and chain partition consider feedstock limitation

¹ https://ourworldindata.org/global-aviation-emissions

Technical assessment starts with rigorous process simulation

- Ensuring correct representation of the process
- Optimal by-product and heat integration
- Result: carbon / hydrogen / energy efficiency
- Exergetic analysis

- Rigorous process simulation provides complete mass and energy balance
 - Trace material and energy flow through a complex value chain, across various plants/sectors/industries
 - Optimal heat integration via TEPET
 - Determine yields, efficiency, losses
- Example: biofuels production from woody biomass and straw gasification, reforming and gas cleaning, Fischer-Tropsch synthesis (COMSYN EU project)
- Steam cycle can utilize waste heat for power generation

- Standard chemical engineering cost estimation
 - Fixed capital investment (FCI) costs consist of equipment costs (EC) and further capital requirements in the construction phase.
 - Database consisting of cost functions for main chemical process equipment as well as for fuel synthesis equipment included in TEPET based on data from scientific reference literature
 - Chemical Engineering Plant Cost Index (CEPCI) to account for inflation and temporal cost variations of equipment
 - Results: CAPEX, OPEX, Net Production Cost
- Sensitivity of each process parameter on production costs
- Search for cost improvements, potential operation sweet spots
 - Comparing different process designs
 - → Identifying the ideal process configuration at given boundary conditions
- Accuracy of chemical process cost estimation is expected to be ±30% according to class three/four of the classification system of AACE (Association for the Advancement of Cost Engineering)^[1]

^[1] Association of the Advancement of Cost Engineering. Cost estimate classification system - as applied in engineering, procurement, and construction for the process industries. Morgantown: AACE International; 2011.

- Economic assessment example: Net production cost (NPC) based on electricity cost and plant size for three different process routes.
- The results show beneficial SAF production options

- In order to determine the environmental impact of renewables integration compared to state-of-the-art fossil based processes
- Committed to reduce greenhouse gas (GHG) emissions
- Environmental impact analysis

- LCA provides all environmental impacts of alternative production routes compared to fossil reference
 - Local impacts might outweigh global warming benefits
- Example: biofuels production from lignin liquefaction, hydropyrolysis plus hydrodeoxygenation (HDO) (ABC-Salt EU project)
 - Comparison with fossil kerosene shows impact categories with clear reduction, neglectable impact and increased environmental impact

Following are examples of techno-economic and environmental assessment for different decarbonization options

- Tackling scientific and industrially relevant questions.
- Applying the assessment methodology to processes in the fields of
 - Power supply
 - Transportation
 - Aviation
 - Basic chemicals
 - Renewable energy imports

- Goal: Termination of 15.2 Gt CO₂ emissions from global coal power plants in 2022¹ (iea.org: 15.5 Gt from coal in 2022²)
- Integration of high shares of RE into power systems operations, providing flexibility
- Reuse of steam cycle, auxiliaries to convert fluctuating wind and solar power into demand-driven base-load power
- Search for individual solution for each of 7.000+ global coal power plants
- → To be included into Japans Green Transformation Policy, "GX Policy"?
- → Technology option to help Japans international decarbonization initiative focusing on Southeast Asia: the "Asia Zero Emission Community" (ERIA's Technology List)?
- → Support for Japan/Asia to set coal power phaseout dates?

¹ <u>https://ourworldindata.org/emissions-by-fuel</u>

² https://www.iea.org/reports/co2-emissions-in-2022

- Goal: Termination of 11.9 Gt/a CO₂ emissions from oil consumption in 2022¹ (iea.org: 11.2 Gt from oil in 2022²)
- Refinery transition towards sustainability requires new feedstocks /processes / product portfolio
- Increased pressure
 - Regulation
 - Customer base
- Search for individual solution for each refinery

¹ <u>https://ourworldindata.org/emissions-by-fuel</u>

² https://www.iea.org/reports/co2-emissions-in-2022

- Goal: Termination of 1.0 Gt/a CO₂ emissions from aviation in 2019¹ (last year before Corona), full rebound is expected soon
- Maximize SAF production from renewables
 - Adding hydrogen from renewable power increases carbon efficiency of SAF production
 - Local availability of renewable electricity, water and biogenic carbon required

¹ https://ourworldindata.org/global-aviation-emissions

Example: Avera	ge PBtL	plant for	r European	SAF	V
Key economic Assump	otions				
Investment costs:			Ave	age plant size	
AEL-Electrolyzer		M€/MW [1]	→ 900	MW _e Electrolyzer	
Fischer-Tropsch SBCR:	5.9	k€/m ^{3[2]}	→ 400	kt/a SAF	
Selexol:	5.5	5 k€/kmol _{CO2} /l	n ^[3]		
Fluidized bed gasifier:	0.5	5 M€/(kg _{dry bior}	_{nass} /s) ^[4] → 400	MW _{th} gasifier	
Raw materials and utility	costs				
Selexol:	4.4	l €/kg ^[5]			
FT catalyst:	33	8 €/kg ^[6]			
General economic assum	ptions:				
Year:	2020		Plant lifetime:	20 years	
Full load hours:	8,100 h/a		Interest rate:	7 %	

- In order to safe 1.0 Gt CO₂ emissions from aviation in 2019¹, 300+ Mt/a SAF production are required globally
- PBtL enables to maximize SAF production from renewables in Europe (about 60 Mt/a expected in 2030)
 - Unutilized woody biomass could be harvested in a sustainable forestry
 - Adding hydrogen from renewable power increases carbon efficiency of SAF production
 - Local availability of renewable electricity, water and biogenic carbon required

Base case definition for market roll-out:

- All process equipment of PBtL concept is commercially available
- Plant size depend on biomass transport options

- PBtL cost distribution across Europe for one single plant configuration/size
- Local net production cost (NPC) depend mainly on electricity and biomass price

- PBtL abatement cost distribution across Europe for one single plant configuration/size
- GHG footprint of PBtL SAF depend on electricity emissions

CCU to produce carbon neutral container glass (biggest GWP contributor in glass ind.)

- Termination of 9.2 Gt CO₂ emissions from industry in 2022¹, glass industry only minor part of GHG emissions compared to steel and cement production
- Glass industry faces the challenge of continuous 24/7 production while requested to shift to renewable fuels
- Process design of CCU-based SNG and methanol available, equipment performance and costs of state of the art technology are listed:

Reference function (EC _{i,ref})	EC _{ref}	Currency	sizing _{ref}	Unit	n
Compressor	3 035	\$	1	kW _{el}	0.68
Methanation reactor	57 794	\$	14 000	m³/h	0.52
PEM electrolysis	957	€	1	kW _{el}	1
Wet scrubber (limestone)	13 061	k\$	14	MW _{th}	0.72
Membrane PMP	9.76	m\$	525.6	kmol/h	0.6
Polynomial function (EC _{ipoly})	е	f	g	Sizingunit	Currency
Shell & tube HEX*	0	201.29	3853.3	Heat transfer area [m ²]	\$
Flash drum	-2.21	369.75	805.42	Length & diameter [m]	\$

- Compared to fossil fuel Energy supply costs: Factor 5, glass supply cost: Factor 2
- Applicable to multiple industry decarbonization options using CCU

¹ https://ourworldindata.org/emissions-by-fuel

- Comparison of renewable energy transport options from Australia to Japan
 - Hydrogen liquefaction costly
 - Liquid organic hydrogen carriers (LOHC) have dehydrogenation costs in Japan
 - Production cost of renewable hydrogen are still dominant
- · Cheaper renewable electricity abroad brings transport options into focus
 - Reliability of supply chains
 - Cost competitiveness compared to domestic RE production
 - GHG footprint in producing countries
- See: Raab, M., Maier, S., Dietrich, R.-U. (2021) Comparative techno-economic assessment of a large-scale hydrogen transport via liquid transport media. International Journal of Hydrogen Energy. Vol. 46 (21) 11956-11968, doi: 10.1016/j.ijhydene.2020.12.213

- Comparison of renewable energy transport options from Namibia to Germany
 - Hydrogen liquefaction costly
- Hydrogen derivates might provide higher user benefits
 - Energy import cost benefit for LOHC
 - Ammonia seems attractive, if used for urea/fertilizer
 - Demand expectations versus cost differences
- See: Dietrich, R.-U. et al (2024) Large-scale transport of renewable energy via hydrogen and derivates, in Encyclopedia of Electrochemical Power Sources, 2nd Edition - September 2, 2024, Editor: Jürgen Garche, Elsevier, Hardback ISBN: 9780323960229, eBook ISBN: 9780323958226, https://shop.elsevier.com/books/encyclopedia-of-electrochemical-powersources/garche/978-0-323-96022-9

- DLR's techno-economic and ecological assessment can provide transparent and standardized assessment of each measures scale/impact
 - Support policy makers for efficient regulation
 - Support technology development to improve climate change mitigation
 - Support demonstration, deployment, market ramp-up
- Towards decarbonization of aviation, transport, chemicals and power generation

	DLR.de Slide 32 Dietrich, et. al 2024-05-27 TEA Introduction to CRFI, Tokyo	,
	Outlook	
	 Climate change mitigation is urgent on a global scale GHG emission reduction required from 35.8 Gt/a to ZERO 	
	 Developed countries need to provide technical solutions, international regulations need to ensure its commercial viability Japan, Germany and others can be demonstrators, large emitters have to adapt 	
2	 Techno-economical and ecological assessment can provide transparent, technology-agnostic guidance Choosing preferred technologies and locations R&D demand and optimization potential Purposeful regulation DLR standard is globally applicable → 	
32	Standardizing commit process evaluations	

DLR is able to provide assessment support regarding

- What are urgent measures for climate change mitigation?
 - High impact, low cost?
- What technology is available short-term?
- Further development/improvement needs

Japanese – German cooperation can address different fields

- New fuels, new processes, new feedstocks, new locations
- Joint technology development, demonstration, deployment, market ramp-up

Japanese – German cooperation example: EU collaboration project funding

- Targeted topic: LC-SC3-RES-25-2020 International cooperation with Japan for Research and Innovation on advanced biofuels and alternative renewable fuels https://ec.europa.eu/info/funding-tenders/opportunities/portal/screen/opportunities/topic-details/lc-sc3-res-25-2020
- Project coordinator: University of Lille (FR)
- To develop disruptive catalytic strategies for the conversion of CO₂ and lignocellulosic feedstocks into alternative renewable jet-fuel.
- Exploit two emerging concepts at the catalyst and process integration scale: hybrid catalysis ((electro)-chemo- and bio-catalysts) and biorefineries.
- Proposal rejection letter: the score obtained does not suffice (Total score: 13.00) Criterion 1 – Excellence: Score: 4.00 (max. 5.00) Criterion 2 – Impact: Score: 4.00 (max. 5.00)

Criterion 3 - Quality and efficiency of the implementation Score: 5.00 (max. 5.00)

- MIRAIFuels intended to develop disruptive catalytic strategies
 - Conversion of CO₂ into methanol via formate* and formaldehyde using three enzymes (F_{ate}DH, F_{ald}DH, ADH) at ambient pressure and temperature
 - Improved stabilization of enzymes via encapsulation into beads, supporting the enzymes on mesoporous materials or phosphates
 - Design and prototype a lab-scale reactor that may maximize the conversion of CO₂ into methanol and/or acetic acid
 - Acetic acid and methanol usage as co-substrates for yielding triglycerides
 - Combining cell wall-degrading enzymes with chemo-catalysts for depolymerization of lignocelluloses into fermentable sugars
 - Develop a batch reactor for lignocelluloses conversion to triglycerides
 - Develop a hybrid catalysis process for the triglycerides conversion into hydrocarbons.
 - Develop an innovative biorefinery concept with optimal integration of different process units to maximize energetic efficiency and biocarbon usage of a bio-jet fuel production pathway.

* Formate (IUPAC name: methanoate) is the conjugate base of formic acid. Formate is an anion (HCO_2^-) or its derivatives such as ester of formic acid.

何事も始めるのに遅すぎるということはない。 Nanigotomo hajimeru no ni ososugiru to iu koto wa nai;