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A B S T R A C T

A view factor is a fundamental parameter for evaluating radiative heat transfer between two surfaces. View
factors for various geometries have been investigated in the past studies. However, the view factors of a
spheroid and an ellipse are known only for limited configurations. In this study, the analytical view factor
expressions of an ellipse and a spheroid from a plate element are derived. The spheroid view factor solution
applies to a plate element with any position and orientation, and the ellipse solution is valid when the plate
element is on the perpendicular axis through the ellipse center. The derived analytical solutions are validated
against the numerical results for various configurations, showing deviations of less than 0.0001 for all cases.
1. Introduction

For evaluating radiative heat transfer between two surfaces, one
of the difficulties is to specify how much energy leaves one surface
and arrives at the other surface. Under the assumption of the diffuse
surfaces, a view factor is the geometric parameter that characterizes
this process. View factors for various types of geometries have been
investigated in the past studies, and Howell and Mengüç compiled the
collection of analytical view factor solutions [1,2].

Analytical view factor expressions for sphere-related geometries ex-
ist for various configurations. Investigations on the sphere view factors
from standard geometries, such as a plate element, a disk, a rectangle,
a sphere and a cylinder, can be found in the series of studies performed
by Chung, Naraghi, and Sabet [3–5]. Also, the view factor of a part of a
sphere from the plate element has been investigated in the past [6,7].
In the study of Naraghi and Chung [4,8], the view factors of various
types of axi-symmetric body from a disk and a sphere were examined.
For spheroids, the view factor is partially expressed in the analytical
form, but the other part contains unsolved integral terms. Cabeza-
Lainez and Pulido-Arcas studied the view factor between the internal
surface of a spheroid and a disk, considering the reciprocal relation of
the view factor [9]. However, for the external surface of a spheroid, the
analytical expression is not available.

The view factor of a spheroid is expected to be useful as the general-
ization of the sphere view factor. One of the possible application areas
of the spheroid view factor is the thermal radiation hazard assessment
from industrial fires, such as fireballs and jet flames. In the study of
Blankenhagel et al. [10], the fireball shape is observed using infrared
cameras, and the equivalent sphere diameter is evaluated based on
volume. In this way, the fireball shape is simplified as a sphere and the
radiative heat flux from the fireball is estimated based on the sphere
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view factor. For the evaluation of the jet fire, the shape of the flame
is often modeled by a cylinder, a cone, a spheroid, and combination of
these shapes [11–15]. Also, in the study of flame under microgravity,
the ellipsoidal shape is considered for modeling the flame [16], and for
evaluating the experimental test results [17,18].

Another application can be found in the thermal radiation modeling
of plants. In the study of Colaizzi et al. [19,20], crop rows are modeled
as elliptical hedgerows, and the view factor of the crop canopy from
above is used to evaluate the radiation reflected from the vegetated
surface. Similarly, in the study by Zhang et al. [21], tree canopies are
modeled as the spheroidal shapes to numerically evaluate the radiative
heat exchange between the trees and the adjacent wall.

In the field of aerospace engineering, one application example is the
radiative heat transfer analysis of aerostats [22,23]. In these studies,
the aerostat is modeled as a spheroid, and the view factor between
the aerostat surface and the ground is numerically evaluated. Other
application possibilities can be found in the thermal analysis for space
missions. For the thermophysical modeling of the smaller body in the
65803 Didymos system, the geometry is modeled as a ellipsoid and the
radiative heat exchange with the primary body is numerically evaluated
by using the view factor [24]. Also, for the general spacecraft thermal
modeling, spheroidal and ellipsoidal surface is used to construct the
spacecraft geometry and perform numerical analysis [25].

In this study, the analytical formulas of the spheroid view factor
from a plate element are studied. As the projected shape of a spheroid
is an ellipse, the ellipse view factor from a plate element is derived first.
Subsequently, the spheroid view factor is derived by using the ellipse
view factor with necessary parameter transformations.
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Fig. 1. Ellipse view factor from a plate element.

2. View factor of an ellipse

Before deriving the analytical view factor of a spheroid, we first
discuss the ellipse view factor from a plate element. For a circular
disk, the view factor from the differential surface is known for general
position and orientation [26,27]. However, for an ellipse, the analytical
expression is available only for special cases [28,29]. Considering the
later application for calculating the spheroid view factor, the discussion
focuses on ellipse view factor from a plate element, which is placed on
the normal line passing through the ellipse center.

Fig. 1 illustrates the configuration of the ellipse and the plate
element. We assume that the plate element is located at the origin with
an arbitrary orientation, and the ellipse is expressed as

𝑥2

𝑎2
+
𝑦2

𝑏2
= 1, and 𝑧 = ℎ. (1)

here 𝑎 and 𝑏 are the semi-major and semi-minor axes, respectively.
he orientation of the plate element (𝑙, 𝑚, 𝑛) is described by using the
ngular parameters 𝜃 and 𝜑.

𝑙
𝑚
𝑛

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

sin 𝜃 cos𝜑
sin 𝜃 sin𝜑

cos 𝜃

⎤

⎥

⎥

⎦

. (2)

he extended surface of the plate element is given by

sin 𝜃 cos𝜑 + 𝑦 sin 𝜃 sin𝜑 + 𝑧 cos 𝜃 = 0. (3)

he intersection of this surface with 𝑧 = ℎ is described as a line on
= ℎ surface.

= −
cos𝜑
sin𝜑

𝑥 − ℎ cos 𝜃
sin 𝜃 sin𝜑

. (4)

ubstituting Eq. (4) into the ellipse equation Eq. (1), we obtain

𝑥2

𝑎2
+ 1
𝑏2

(

cos𝜑
sin𝜑

𝑥 + ℎ cos 𝜃
sin 𝜃 sin𝜑

)2
= 1. (5)

The discriminant of the quadratic equation Eq. (5) shall be zero, when
the line is tangent to the ellipse. From this condition, the extended
surface of the plate element is tangent to the ellipse when the following
equation is satisfied.

tan2 𝜃 = ℎ2

𝑏2 sin2 𝜑 + 𝑎2 cos2 𝜑
. (6)

Thus, depending on the value of 𝜃, the visibility of the ellipse from the
late element is classified into three cases.

ase 1, complete ellipse ∶ 0 ≤ 𝜃 ≤ 𝜃tan, (7)

ase 2, partial ellipse ∶ 𝜃tan < 𝜃 < 𝜋 − 𝜃tan, (8)

ase 3, no ellipse ∶ 𝜋 − 𝜃tan ≤ 𝜃 ≤ 𝜋, (9)

here 𝜃tan = arctan ℎ
√

2 2 2 2
. (10)
2

𝑏 sin 𝜑 + 𝑎 cos 𝜑 p
In general, the view factor can be calculated by using the contour
integral [30]. For calculating the ellipse view factor from a plate
element, the contour integral is performed around the visible part of
the ellipse.

𝐹ellipse = 𝑙 ∫
𝑧𝑑𝑦 − 𝑦𝑑𝑧

2𝜋𝑆2
+ 𝑚∫

𝑥𝑑𝑧 − 𝑧𝑑𝑥
2𝜋𝑆2

+ 𝑛∫
𝑦𝑑𝑥 − 𝑥𝑑𝑦

2𝜋𝑆2
, (11)

where 𝑆 is the distance between the plate element and the integration
line. For cases where the complete ellipse is visible, the line integration
shall be performed along the complete ellipse edge. On the other
hand, when the ellipse is partially visible, the line integration shall be
performed partially along the ellipse edge, and along the intersection
line of the ellipse surface and the extended surface of the plate element.

2.1. Case 1: complete ellipse

By using the angular parameter 𝛼, the edge of the ellipse can be
escribed by

⎡

⎢

⎢

⎣

𝑥
𝑦
𝑧

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

𝑎 cos 𝛼
𝑏 sin 𝛼
ℎ

⎤

⎥

⎥

⎦

. (12)

𝑑
𝑑𝛼

⎡

⎢

⎢

⎣

𝑥
𝑦
𝑧

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

−𝑎 sin 𝛼
𝑏 cos 𝛼

0

⎤

⎥

⎥

⎦

. (13)

he distance between the plate element and the ellipse arc is described
y

2 = 𝑎2 cos2 𝛼 + 𝑏2 sin2 𝛼 + ℎ2. (14)

y substituting the parametric ellipse equations Eqs. (12)–(14) to the
iew factor equation Eq. (11), the line integration formula along the
llipse arc can be obtained.

arc =
𝑙ℎ𝑏

2𝜋(𝑎2 + ℎ2) ∫
cos 𝛼 𝑑𝛼

1 − 𝑎2−𝑏2
𝑎2+ℎ2 sin

2 𝛼

+ 𝑚ℎ𝑎
2𝜋(𝑎2 + ℎ2) ∫

sin 𝛼 𝑑𝛼

1 − 𝑎2−𝑏2
𝑎2+ℎ2 sin

2 𝛼

− 𝑛𝑎𝑏
2𝜋(𝑎2 + ℎ2) ∫

𝑑𝛼

1 − 𝑎2−𝑏2
𝑎2+ℎ2 sin

2 𝛼
. (15)

Assuming 𝑎 > 𝑏, each integration can be performed analytically.
Executing this integration from 𝛼0 to 𝛼1, the analytical result is given
by

𝐿arc =
𝑙ℎ𝑏

2𝜋(𝑎2 + ℎ2)

[

tanh−1(𝑐 sin 𝛼)
𝑐

]𝛼1

𝛼0
+ 𝑚ℎ𝑎

2𝜋(𝑎2 + ℎ2)

×

[

− 1

𝑐
√

1 − 𝑐2

{

arctan

(

𝑐 − tan 𝛼
2

√

1 − 𝑐2

)

+ arctan

(

𝑐 + tan 𝛼
2

√

1 − 𝑐2

)}]𝛼1

𝛼0

− 𝑛𝑎𝑏
2𝜋(𝑎2 + ℎ2)

[

arctan(
√

1 − 𝑐2 tan 𝛼)
√

1 − 𝑐2

]𝛼1

𝛼0

, (16)

where 𝑐 =
√

𝑎2 − 𝑏2
𝑎2 + ℎ2

. (17)

When the complete ellipse is visible from the plate element, the
line integration shall be performed along the complete ellipse edge, for
example 𝛼0 = 𝜋, 𝛼1 = −𝜋. In this case, the view factor is expressed in
the simple analytical form.

𝐹complete ellipse =
𝑎𝑏 cos 𝜃

√

(𝑎2 + ℎ2)(𝑏2 + ℎ2)
. (18)

his results is consistent with the result for 𝜃 = 0 case, which is
resented in the past literatures [28,29].
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2.2. Case 2: partial ellipse

When the ellipse is partially visible from the plate element, the
integration along the intersection line is required as well. The two
intersection points between the ellipse edge and the extended plate
element are specified by solving the following three equations.

𝑧 = ℎ, (19)
𝑥2

𝑎2
+
𝑦2

𝑏2
= 1, (20)

sin 𝜃 cos𝜑 + 𝑦 sin 𝜃 sin𝜑 + 𝑧 cos 𝜃 = 0. (21)

or 𝜑 = 0 or 𝜑 = 𝜋
2 , the intersection points are

= 0 ∶ 𝑥 = −ℎ cos 𝜃
sin 𝜃

, 𝑦 = ± 𝑏
𝑎

√

𝑎2 − 𝑥2, (22)

= 𝜋
2
∶ 𝑦 = −ℎ cos 𝜃

sin 𝜃
, 𝑥 = ±𝑎

𝑏

√

𝑏2 − 𝑦2. (23)

or the other cases, the intersection points are calculated as

= −
cos𝜑
sin𝜑

𝑥 − ℎ cos 𝜃
sin 𝜃 sin𝜑

, (24)

= −𝐵 ±
√

𝐵2 − 𝐴𝐶
𝐴

, (25)

here

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝐴 = 1
𝑎2

+ cos2 𝜑
𝑏2 sin2 𝜑

,

𝐵 = ℎ
𝑏2

cos 𝜃 cos𝜑
sin 𝜃 sin2 𝜑

,

𝐶 = ℎ2 cos2 𝜃
sin2 𝜃 sin2 𝜑

− 1.

(26)

n the following discussion, the acquired two intersection points are
enoted as (𝑥0, 𝑦0, ℎ) and (𝑥1, 𝑦1, ℎ), where 𝑥0 ≤ 𝑥1. The corresponding
ngular parameters are specified by

0 = arctan(𝑎𝑦0, 𝑏𝑥0), (27)

1 = arctan(𝑎𝑦1, 𝑏𝑥1). (28)

ow, the line from (𝑥1, 𝑦1, ℎ) to (𝑥0, 𝑦0, ℎ) is expressed as

⎡

⎢

⎢

⎣

𝑥
𝑦
𝑧

⎤

⎥

⎥

⎦

= 𝛽
⎡

⎢

⎢

⎣

𝑥0 − 𝑥1
𝑦0 − 𝑦1

0

⎤

⎥

⎥

⎦

+
⎡

⎢

⎢

⎣

𝑥1
𝑦1
ℎ

⎤

⎥

⎥

⎦

, (29)

𝑑
𝑑𝛽

⎡

⎢

⎢

⎣

𝑥
𝑦
𝑧

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

𝑥0 − 𝑥1
𝑦0 − 𝑦1

0

⎤

⎥

⎥

⎦

. (30)

In this case, the distance between the plate element and the integration
line is described by

𝑆2 =
{

𝛽(𝑥0 − 𝑥1) + 𝑥1
}2 +

{

𝛽(𝑦0 − 𝑦1) + 𝑦1
}2 + ℎ2 (31)

By substituting Eqs. (29)–(31) to the view factor equation Eq. (11), the
line integration formula along the intersection line can be obtained.

𝐿intersect =
1
2𝜋 ∫

1

0

𝑁 𝑑𝛽
𝐾𝛽2 + 2𝐿𝛽 +𝑀

, (32)

where

𝐾 = (𝑥0 − 𝑥1)2 + (𝑦0 − 𝑦1)2, (33)

𝐿 = (𝑥0 − 𝑥1)𝑥1 + (𝑦0 − 𝑦1)𝑦1, (34)

𝑀 = 𝑥21 + 𝑦
2
1 + ℎ

2, (35)

𝑁 = 𝑙ℎ(𝑦0 − 𝑦1) − 𝑚ℎ(𝑥0 − 𝑥1) + 𝑛(𝑦1𝑥0 − 𝑥1𝑦0). (36)

The solution of this integral is obtained as the following analytical form.

𝐿intersect =
𝑁

2𝜋
√

−𝐿2 +𝐾𝑀

{

arctan

(

𝐾 + 𝐿
√

−𝐿2 +𝐾𝑀

)

−arctan

(

𝐿
√

−𝐿2 +𝐾𝑀

)}

. (37)
3

Fig. 2. Spheroid view factor from a plate element.

Therefore, the view factor of the partially visible ellipse is calculated
by

𝐹partial ellipse = 𝐿arc + 𝐿intersect . (38)

3. View factor of a spheroid

In this section, we derive the analytical expression of the spheroid
view factor from a plate element. Instead of performing the area or line
integration on the spheroid surface, the projected shape of the spheroid
is investigated, in order to specify the equivalent solution as the ellipse
view factor.

The configuration of the spheroid and the plate element is illus-
trated in Fig. 2. The corresponding spheroid equation is

𝑥2

𝑎2
+
𝑦2

𝑎2
+ 𝑧2

𝑏2
= 1, (39)

here 𝑎 and 𝑏 are the equatorial radius and the distance from the center
o the pole, respectively. Considering the axi-symmetric shape of the
pheroid, it is possible to assume that the position of the differential
urface is located in the positive part of the xz-plane. The coordinates
f the plate element are expressed as (𝑥0, 0, 𝑧0), where 𝑥0 ≥ 0
nd 𝑧0 ≥ 0. The normal vector of the plate element is described by
cos 𝜃 cos𝜑, cos 𝜃 sin𝜑, sin 𝜃). While Fig. 2 depicts an oblate spheroid,
he following discussion is also applicable to a prolate spheroid.

For calculating the view factor from the plate element, evaluating
he projected shape on a screen is equivalent to evaluate the original
bject. In general cases, it requires complex calculation to specify the
xact image of the spheroid on the screen, as discussed in [31,32]. In
his study, we pre-define the screen orientation and the new coordi-
ates, so that the projected shape forms an ellipse, where the axes of
he ellipse are aligned with the coordinate axes.

The initial configuration of the spheroid, plate element, and screen
s illustrated in Fig. 3(a). Considering the symmetry of the spheroid, the
creen orientation is defined by one angular parameter 𝛾0. Since it does
ot influence the resulting view factor value, the distance between the
late element and the screen is set to unity. As the next step, we shift
he coordinate origin to the plate element and rotate the coordinate
ystem around the 𝑦-axis by −𝛾0 as shown in Fig. 3(b). This coordinate

system is specified by XsYsZs-axes, and the image of the spheroid on
the screen should be presented as the function of Ys and Zs. In order
to specify 𝑌s as the function of 𝛾, we consider the intersection of the
spheroid and a surface, which is inclined by 𝛾 with regard to the XsYs-
plane. In Fig. 3(c), the inclined surface is coincide with the XY-plane
by rotating the coordinate system around the 𝑦-axis additionally by −𝛾.
In this coordinate system, the spheroid is described by
{

cos(𝛾0 + 𝛾)𝑋 − sin(𝛾0 + 𝛾)𝑍 + 𝑥0
}2

𝑎2
+ 𝑌 2

𝑎2

+

{

sin(𝛾0 + 𝛾)𝑋 − cos(𝛾0 + 𝛾)𝑍 + 𝑧0
}2

= 1. (40)

𝑏2
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Fig. 3. Spheroid and a plate element in different coordinate systems.

The intersection of the spheroid and the XY-plane is specified by
Eq. (41), and geometrically shown in Fig. 3(d).

(𝑋 +𝑋0)2 + 𝑌 2
= 1, (41)
4

𝐴 𝐵
here

0 =
𝑏2𝑥0 cos(𝛾0 + 𝛾) + 𝑎2𝑧0 sin(𝛾0 + 𝛾)

𝑏2 cos2(𝛾0 + 𝛾) + 𝑎2 sin
2(𝛾0 + 𝛾)

, (42)

𝐴 =
𝑎2𝑏2 − 𝑏2𝑥20 − 𝑎

2𝑧20
𝑏2 cos2(𝛾0 + 𝛾) + 𝑎2 sin

2(𝛾0 + 𝛾)
+𝑋2

0 , (43)

𝐵 =
{

cos2(𝛾0 + 𝛾) +
𝑎2

𝑏2
sin2(𝛾0 + 𝛾)

}

𝐴. (44)

When 𝐴 > 0, Eq. (41) represents an ellipse. The tangential lines from
he coordinate origin to the ellipse on the XY-plane are given by

= 𝑡±𝑋, where 𝑡± = ±
√

𝐵
𝑋2

0 − 𝐴
. (45)

Based on this result, the coordinates of the image outline on the screen
are described by

𝑌s =
1

cos 𝛾

√

𝐵
𝑋2

0 − 𝐴
, (46)

−𝑍s = tan 𝛾. (47)

The relation of 𝑌s and 𝑍s can be presented in the following form.

2
s = 𝐴s𝑍

2
s + 𝐵s𝑍s + 𝐶s, (48)

here

s =
1
𝑏2

{

−𝑏2 sin2 𝛾0 − 𝑎2 cos2 𝛾0

+
𝑏4𝑥20 sin

2 𝛾0
−𝑎2𝑏2 + 𝑏2𝑥20 + 𝑎

2𝑧20
−

2𝑎2𝑏2𝑥0𝑧0 cos 𝛾0 sin 𝛾0
−𝑎2𝑏2 + 𝑏2𝑥20 + 𝑎

2𝑧20

+
𝑎4𝑧20 cos

2 𝛾0
−𝑎2𝑏2 + 𝑏2𝑥20 + 𝑎

2𝑧20

}

, (49)

𝐵s =
1
𝑏2

{

−2𝑏2 cos 𝛾0 sin 𝛾0 + 2𝑎2 cos 𝛾0 sin 𝛾0

+
2𝑏4𝑥20 cos 𝛾0 sin 𝛾0

−𝑎2𝑏2 + 𝑏2𝑥20 + 𝑎
2𝑧20

−
2𝑎2𝑏2𝑥0𝑧0(cos2 𝛾0 − sin2 𝛾0)

−𝑎2𝑏2 + 𝑏2𝑥20 + 𝑎
2𝑧20

−
2𝑎4𝑧20 cos 𝛾0 sin 𝛾0

−𝑎2𝑏2 + 𝑏2𝑥20 + 𝑎
2𝑧20

}

, (50)

𝐶s =
1
𝑏2

{

−𝑏2 cos2 𝛾0 − 𝑎2 sin
2 𝛾0

+
𝑏4𝑥20 cos

2 𝛾0
−𝑎2𝑏2 + 𝑏2𝑥20 + 𝑎

2𝑧20
+

2𝑎2𝑏2𝑥0𝑧0 cos 𝛾0 sin 𝛾0
−𝑎2𝑏2 + 𝑏2𝑥20 + 𝑎

2𝑧20

+
𝑎4𝑧20 sin

2 𝛾0
−𝑎2𝑏2 + 𝑏2𝑥20 + 𝑎

2𝑧20

}

. (51)

Eq. (48) suggests that the possible image on the screen is outlined by a
quadratic curve. The equation can be re-written in the following form.

𝑌 2
s

𝐶s −
𝐵2
s

4𝐴s

−

(

𝑍s −
𝐵2
s

2𝐴s

)2

1
𝐴s

(

𝐶s −
𝐵2
s

4𝐴s

)
= 1. (52)

When the following two conditions are satisfied, the image exists on
the screen as an ellipse.

𝐴s < 0, (53)

𝐵2
s − 4𝐴s𝐶s > 0. (54)

Substituting Eqs. (49)–(51) into Eq. (54), the condition can be con-
cretely presented as shown in Eq. (55), and it is confirmed that the

condition is satisfied when the plate element is placed outside of the
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𝐵2
s − 4𝐴s𝐶s =

4𝑎4

−𝑎2𝑏2 + 𝑏2𝑥20 + 𝑎
2𝑧20

> 0. (55)

The condition of Eq. (53) specifies the range of 𝛾0. Depending on the
alue of 𝑏 − 𝑧0, the range of 𝛾0 is described by the following forms.

a) 𝑏 − 𝑧0 > 0 ∶

tan 𝛾0 >
+𝑥0𝑧0 −

√

−𝑎2𝑏2 + 𝑎2𝑥20 + 𝑏
2𝑥20

𝑏2 − 𝑧20
, and

tan 𝛾0 <
+𝑥0𝑧0 +

√

−𝑎2𝑏2 + 𝑎2𝑥20 + 𝑏
2𝑥20

𝑏2 − 𝑧20
. (56)

(b) 𝑏 − 𝑧0 = 0 ∶ tan 𝛾0 >
𝑎2 − 𝑥20
2𝑥0𝑧0

. (57)

(c) 𝑏 − 𝑧0 < 0 ∶

tan 𝛾0 <
−𝑥0𝑧0 −

√

−𝑎2𝑏2 + 𝑎2𝑥20 + 𝑏
2𝑥20

−𝑏2 + 𝑧20
, or

tan 𝛾0 >
−𝑥0𝑧0 +

√

−𝑎2𝑏2 + 𝑎2𝑥20 + 𝑏
2𝑥20

−𝑏2 + 𝑧20
. (58)

Meanwhile, we require 𝐵s = 0, so that the image is symmetric with
respect to the 𝑍s = 0 plane. This condition specifies the parameter 𝛾0
as shown in Eqs. (59)–(60).

tan 2𝛾0 =
2𝑥0𝑧0

𝑎2 − 𝑥20 − 𝑏
2 + 𝑧20

, (59)

tan 𝛾0 = − 1
tan 2𝛾0

±

√

1
tan2 2𝛾0

+ 1. (60)

eometrically, 𝛾0 corresponds to the middle line of the range specified
y Eqs. (56)–(58), and so the value with a positive sign in Eq. (60) has
o be selected. For the special cases, where 𝑥0 = 0 or 𝑧0 = 0, the value
f 𝛾0 is determined as shown in Eqs. (61)–(62).

0 = 0 ∶ 𝛾0 = 0, (61)

0 = 0 ∶ 𝛾0 =
𝜋
2
. (62)

sing the specified 𝛾0, the image exists on the screen as an ellipse, with
he ellipse axes aligned to the YsZs-axes, as shown in Eq. (63).

𝑌 2
s
𝐶s

+
𝑍2

s
(−𝐶s∕𝐴s)

= 1. (63)

Based on the fact that the image on the screen is represented in the
orm of Eq. (63), the ellipse radius in the 𝑍s-axis direction is expressed
s tan 𝛾𝛥 as well, where 𝛾𝛥 represents the angle bisecting the two tangent
ines from the plate element to the ellipse as shown in Fig. 4. The
alue of tan 𝛾𝛥 is determined by Eq. (64). This equation is derived by
valuating the slope of the tangential lines from the plate element to
he ellipse on the xz-plane.

tan 𝛾𝛥 =
𝑎2 − 𝑥20 + 𝑏

2 − 𝑧20

2
√

−𝑎2𝑏2 + 𝑎2𝑧20 + 𝑏
2𝑥20

+

√

√

√

√

√

(

𝑎2 − 𝑥20 + 𝑏
2 − 𝑧20

)2

4
(

−𝑎2𝑏2 + 𝑎2𝑧20 + 𝑏
2𝑥20

) + 1. (64)

In the XsYsZs coordinate system, the orientation of the surface is
specified as

⎡

⎢

⎢

cos 𝛾0 0 sin 𝛾0
0 1 0

⎤

⎥

⎥

⎡

⎢

⎢

cos 𝜃 cos𝜑
cos 𝜃 sin𝜑

⎤

⎥

⎥

5

⎣ − sin 𝛾0 0 cos 𝛾0 ⎦ ⎣ sin 𝜃 ⎦

p

Fig. 4. Range of 𝛾0 depending on the value of 𝑏 − 𝑧0.

Fig. 5. Ellipse view factor corresponding to the original spheroid view factor.

=
⎡

⎢

⎢

⎣

cos 𝛾0 cos 𝜃 cos𝜑 + sin 𝛾0 sin 𝜃
cos 𝜃 sin𝜑

− sin 𝛾0 cos 𝜃 cos𝜑 + cos 𝛾0 sin 𝜃

⎤

⎥

⎥

⎦

. (65)

Finally, the original spheroid view factor is equivalent to that of the
ellipse shown in Fig. 5. The new angular parameters are

cos𝛩 = −cos 𝛾0 cos 𝜃 cos𝜑 − sin 𝛾0 sin 𝜃, (66)

tan𝛷 =
− sin 𝛾0 cos 𝜃 cos𝜑 + cos 𝛾0 sin 𝜃

cos 𝜃 sin𝜑
. (67)

n conclusion, the spheroid view factor from a plate element in arbitrary
osition and orientation can be calculated as the ellipse view factor.
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Fig. 6. Numerical evaluation of the ellipse view factor from a plate element.

Table 1
Test parameters for ellipse view factor calculation. The pa-
rameter 𝑏 is specified by 𝑎𝑏 = 1. The total number of test
cases is 1710.

Parameter Values

ℎ 0.1, 1.0, 10.0
𝑎 1.1, 2.0, 10.0
𝜃 [◦] 0, 10, 20, ⋯ 180
𝜑 [◦] 0, 10, 20, ⋯ 90

4. Numerical validation

In this section, the derived analytical solutions for ellipse and
spheroid view factors are validated by numerical calculations. The
numerical calculations are performed by summing the view factors of
the mesh elements on the ellipse or spheroid surface. In each test, the
geometrical parameters are varied, and the differences between the
numerical and analytical results are evaluated.

4.1. Ellipse view factor validation

The numerical calculation of the ellipse view factor is performed by
integrating the view factor of the rectangular mesh elements. The mesh
is generated by dividing the 2𝑎× 2𝑏 rectangular area into 4000 × 4000
ections, as shown in Fig. 6. For each mesh element, which is inside
he ellipse, the view factor is calculated based on the basic view factor
efinition.

𝐹 =
cos 𝜃1 cos 𝜃2

𝜋𝑆2
𝑑𝐴, (68)

here
2 = 𝑥2 + 𝑦2 + ℎ2, (69)

cos 𝜃1 =
1
𝑆

⎡

⎢

⎢

⎣

𝑥
𝑦
ℎ

⎤

⎥

⎥

⎦

⋅
⎡

⎢

⎢

⎣

sin 𝜃 cos𝜑
sin 𝜃 sin𝜑

cos 𝜃

⎤

⎥

⎥

⎦

, (70)

cos 𝜃2 = − 1
𝑆

⎡

⎢

⎢

⎣

𝑥
𝑦
ℎ

⎤

⎥

⎥

⎦

⋅
⎡

⎢

⎢

⎣

0
0
−1

⎤

⎥

⎥

⎦

, (71)

𝐴 = 𝑑𝑥𝑑𝑦. (72)

he used parameters for the test cases are summarized in Table 1.
he ellipse shape is varied so that the area of the ellipse is constant,
etermined by 𝜋𝑎𝑏 = 𝜋. For all test cases, the differences between
he numerical and analytical results are less than 0.0001. The selected
alculation results are shown in Fig. 7.

.2. Spheroid view factor validation

The numerical calculation of the spheroid view factor is performed
y integrating the view factor of the mesh elements on the spheroid sur-
ace. The spheroid surface can be presented by the following parametric
6

V

Table 2
Test parameters for spheroid view factor calculation. The pa-
rameter 𝑏 is specified by 𝑎2𝑏 = 1. The total number of test cases
is 43320.

Parameter Values

𝑎 0.5, 0.9, 1.1, 2.0
𝑟 1.1, 2.0, 10.0
𝜓 [◦] 0, 10, 20, ⋯ 90
𝜃 [◦] −90, −80, ⋯ −10, 0, 10, ⋯ 80, 90
𝜑 [◦] 0, 10, 20, ⋯ 180

equation.

⎡

⎢

⎢

⎣

𝑥
𝑦
𝑧

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

𝑎 cos 𝛼 cos 𝛽
𝑎 cos 𝛼 sin 𝛽
𝑏 sin 𝛼

⎤

⎥

⎥

⎦

. (73)

where 𝛼 is the polar angle and 𝛽 is the azimuthal angle. The differential
area of the surface element at (𝛼, 𝛽) is described by

𝑑𝐴 = 𝑎 cos 𝛼
√

𝑎2 sin2 𝛼 + 𝑏2 cos2 𝛽 𝑑𝛼𝑑𝛽. (74)

The normal vector at (𝛼, 𝛽) on the spheroid surface is given by

1
√

𝑎2 sin2 𝛼 + 𝑏2 cos2 𝛼

⎡

⎢

⎢

⎣

𝑏 cos 𝛼 cos 𝛽
𝑏 cos 𝛼 sin 𝛽
𝑎 sin 𝛼

⎤

⎥

⎥

⎦

. (75)

Therefore, the view factor of each mesh element is calculated by
Eq. (68), and related variables are specified by

𝑆2 = (𝑥 − 𝑥0)2 + 𝑦2 + (𝑧 − 𝑧0)2, (76)

cos 𝜃1 =
1
𝑆

⎡

⎢

⎢

⎣

𝑥 − 𝑥0
𝑦

𝑧 − 𝑧0

⎤

⎥

⎥

⎦

⋅
⎡

⎢

⎢

⎣

cos 𝜃 cos𝜑
cos 𝜃 sin𝜑

sin 𝜃

⎤

⎥

⎥

⎦

, (77)

cos 𝜃2 =
1

𝑆
√

𝑎2 sin2 𝛼 + 𝑏2 cos2 𝛼

⎡

⎢

⎢

⎣

𝑥0 − 𝑥
−𝑦

𝑧0 − 𝑧

⎤

⎥

⎥

⎦

⋅
⎡

⎢

⎢

⎣

𝑏 cos 𝛼 cos 𝛽
𝑏 cos 𝛼 sin 𝛽
𝑎 sin 𝛼

⎤

⎥

⎥

⎦

. (78)

For the validation tests, the spheroid surface is divided into
000 × 8000 sections in the polar direction and the azimuthal direction,

respectively. The position of the plate element (𝑥0, 0, 𝑧0) is varied by
using the radial parameter 𝑟, and the angular parameter 𝜓 , as shown
below.

𝑥0 = 𝑟𝑎 cos𝜓, (79)

𝑧0 = 𝑟𝑏 sin𝜓. (80)

The used parameters for the validation tests are summarized in Table 2.
The spheroid shape is varied so that the volume of the ellipse is
constant, determined by 4

3𝜋𝑎
2𝑏 = 4

3𝜋. For all test cases, the differences
between the numerical and analytical results are less than 0.0004. The
selected calculation results are shown in Figs. 8 and 9.

5. Conclusion

In this study, the view factors of a spheroid and an ellipse from a
plate element are analytically derived. These results are generalization
of the analytical view factors of a sphere and circle, and broaden the
application possibility in various radiative heat transfer problems. The
derived analytical view factors are validated by numerical calculations.
In addition to the general derivation method, results of some specific
configurations, in which the view factor is described by the simple
formula, are presented in Appendix.
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Fig. 7. Selected calculation results from the ellipse view factor verification cases.

Fig. 8. Selected calculation results from the view factor verification cases for an oblate spheroid.
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Fig. 9. Selected calculation results from the view factor verification cases for a prolate spheroid.
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ppendix. Results for specific configurations

In some specific geometrical configurations, the view factor of an
llipse or a spheroid from a plate element can be expressed in simple
ormula. In this section, the analytical solutions of such cases are
resented.

As discussed in the previous section, the ellipse view factor is
alculated by Eq. (18), when the entire ellipse is visible from the
late element. Although the ellipse is not axi-symmetric around the 𝑧-
xis, the view factor does not depend on the azimuthal angle in this
onfiguration.

When the plate element normal is aligned to the semi-major axis
irection as shown in Fig. 10, the view factor is calculated by Eq. (81).

Fig.10 = −ℎ𝑏
𝜋
√

(𝑎2 − 𝑏2)(𝑎2 + ℎ2)
tanh−1

√

𝑎2 − 𝑏2
𝑎2 + ℎ2

+ 1
𝜋
arctan 𝑏

ℎ
. (81)

When the plate element normal is aligned to the semi-minor axis
irection as shown in Fig. 11, the view factor is calculated by Eq. (82).

Fig.11 = −ℎ𝑎
𝜋
√

(𝑎2 − 𝑏2)(𝑏2 + ℎ2)
arctan

√

𝑎2 − 𝑏2
𝑏2 + ℎ2

+ 1
𝜋
arctan 𝑎

ℎ
. (82)
8

Fig. 10. Ellipse view factor when the plate element is oriented to the semi-major axis
(x-axis) direction.

Fig. 11. Ellipse view factor when the plate element is oriented to the semi-minor axis
(y-axis) direction.
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Fig. 12. Spheroid view factor when the plate element is on the 𝑧-axis. The extended
surface of the plate element does not intersect with the spheroid.

Fig. 13. Spheroid view factor when the plate element is on the 𝑧-axis. The surface
normal is oriented to the 𝑥-axis.

Fig. 14. Spheroid view factor when the plate element is on the x-axis. The extended
urface of the plate element does not intersect with the spheroid.

Fig. 15. Spheroid view factor when the plate element is on the x-axis. The surface
ormal is oriented to the 𝑧-axis.
9

Fig. 16. Spheroid view factor when the plate element is on the x-axis. The surface
normal is oriented to the 𝑦-axis.

When the plate element is on the 𝑧-axis and Eq. (83) is satisfied, the
extended plate element surface does not intersect with the spheroid as
shown in Fig. 12. In this case, the view factor is independent of the
azimuthal orientation of the plate element, and the resulting value is
calculated by Eq. (84).

tan2 𝜃 < ℎ2 − 𝑏2

𝑎2
, and 0 ≤ 𝜃 < 𝜋

2
. (83)

Fig.12 = 𝑎2 cos 𝜃
𝑎2 + ℎ2 − 𝑏2

. (84)

When the plate element is on the 𝑧-axis and the orientation is
erpendicular to the 𝑧-axis as shown in Fig. 13, the view factor is
alculated by Eq. (85).

Fig.13 = − 𝑎
√

ℎ2 − 𝑏2

𝜋(𝑎2 + ℎ2 − 𝑏2)
+ 1
𝜋
arctan 𝑎

√

ℎ2 − 𝑏2
. (85)

When the plate element is on the 𝑥-axis and Eq. (86) is satisfied, the
extended plate element surface does not intersect with the spheroid as
shown in Fig. 14. In this case, the view factor is independent of the
angular parameter 𝜑, and the resulting value is calculated by Eq. (87).

tan2 𝜃 < ℎ2 − 𝑎2

𝑎2 cos2 𝜑 + 𝑏2 sin2 𝜑
, and 0 ≤ 𝜃 < 𝜋

2
. (86)

𝐹Fig.14 = 𝑎𝑏 cos 𝜃

ℎ
√

𝑏2 + ℎ2 − 𝑎2
. (87)

When the plate element is on the 𝑥-axis and the plate element
ormal is aligned to the 𝑧-axis as shown in Fig. 15, the analytical ex-
ression of the view factor changes depending on whether the spheroid
s oblate or prolate. If the spheroid is oblate, where 𝑎 > 𝑏, the view
actor is calculated by Eq. (88).

Fig.15 = − 𝑎
𝜋

√

ℎ2 − 𝑎2
(𝑎2 − 𝑏2)(𝑏2 + ℎ2 − 𝑎2)

arctan
√

𝑎2 − 𝑏2
𝑏2 + ℎ2 − 𝑎2

+ 1
𝜋
arctan 𝑎

√

ℎ2 − 𝑎2
. (88)

If the spheroid is prolate, where 𝑎 < 𝑏, the view factor is calculated by
Eq. (89).

𝐹Fig.15 = − 𝑎
𝜋

√

ℎ2 − 𝑎2
(𝑏2 − 𝑎2)(𝑏2 + ℎ2 − 𝑎2)

tanh−1
√

𝑏2 − 𝑎2
𝑏2 + ℎ2 − 𝑎2

+ 1
𝜋
arctan 𝑎

√

ℎ2 − 𝑎2
. (89)

When the plate element is on the 𝑥-axis and the plate element
normal is aligned to the 𝑦-axis as shown in Fig. 16, the analytical ex-
pression of the view factor changes depending on whether the spheroid
is oblate or prolate. The view factor of the oblate spheroid is calculated
by Eq. (90).

𝐹 = − 𝑏
√

ℎ2 − 𝑎2 tanh−1
√

𝑎2 − 𝑏2

Fig.16 𝜋ℎ 𝑎2 − 𝑏2 ℎ
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+ 1
𝜋
arctan 𝑏

√

ℎ2 − 𝑎2
. (90)

The view factor of the prolate spheroid is calculated by Eq. (91).

𝐹Fig.16 = − 𝑏
𝜋ℎ

√

ℎ2 − 𝑎2
𝑏2 − 𝑎2

arctan

√

𝑏2 − 𝑎2
ℎ

+ 1
𝜋
arctan 𝑏

√

ℎ2 − 𝑎2
. (91)
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