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Abstract—Explainability in robotics is vital for establishing
user trust. Recently, foundation models (e.g. vision-language
models, VLMs) fostered a wave of embodied agents that answer
arbitrary queries about their environment and their interactions
with it. However, as VLMs answer queries based on camera
images instead of on internal robot components, they cannot be
applied directly to existing robot architectures which represent
the robot’s tasks, skills, and beliefs about the state of the world.

To overcome this limitation we propose RACCOON, a frame-
work that combines foundation models’ responses with a robot’s
internal knowledge. Inspired by Retrieval-Augmented Generation
(RAG), RACCOON selects relevant context, retrieves information
from the robot’s state, and utilizes it to refine prompts for an
LLM to answer questions accurately, bridging the gap between
the model’s adaptability and the robot’s domain expertise.

I. INTRODUCTION

For users of assistive robots, explainability and transparency
are central to fostering trust [8], [29]. One way to build
explainable robots is by enabling them to articulate answers to
user queries, based on their internal beliefs, in real time [8],
and in natural language. In recent years this was made possible
by deploying Foundation Models, such as Large- and Vision-
Language Models (FMs/LLMs/VLMs), as language and vision
interfaces for robots. Their abilities to answer open-vocabulary
queries brought a number of embodied agents that describe
their environment and their own actions based on camera
images [22], [7], [25], [15], [10].

The aim of this work is to combine such approaches with
existing robotics architectures, which commonly have software
modules1 which represent the robot’s tasks, skills, and beliefs
about the current state of the world [23], [17], [1]. Our
motivation is that whenever FMs answer questions on behalf
of the robots (e.g. based on camera images), they do not
have access to the beliefs inside these modules. Thus they
can only provide a post hoc interpretation of what the robot
could perceive in an image or what it seems to be doing,
instead of what it perceives and does. Consequently, these
answers are not trustworthy with respect to the beliefs of the
robots with pre-existing architectures for perception, planning
and acting. In Fig. 1, for example, a VLM speaking for our
assistive robot EDAN [28], might claim it locates a microwave
if provided with a camera image containing one, even when
EDAN’s object locator missed it. The goal is therefore to
create a system that grounds its answers on the robot modules,
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1Note that these modules can also be specialist FMs, e.g. models creating
symbolic representations of task affordances [2] or the world state [12], [6].
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Fig. 1. An overview of the RACCOON framework (left), and a comparison
with a VLM query as in the state of the art (SOTA) (right). RACCOON
enables the internal state of existing robot modules to be taken into account
when answering queries, leading to more truthful answers wrt to this state.

and not directly on the understanding it has from the world
inside its weights.

In this paper we propose RACCOON3, a framework that
grounds LLM responses in the robot’s internal knowledge.
Inspired by the Retrieval-Augmented Generation (RAG) com-
munity [11], our system retrieves so-called state summaries
from existing robot modules, and uses them in a prompt for
an LLM to answer. We thus take advantage of the flexibility
offered by FMs while grounding their answers in the robot
modules. Going back to the example in Fig. 1, RACCOON
enables the robot to accurately explain that it does not locate
the microwave. This example motivates for need for a tighter
coupling between the FM and existing robotic modules.

To summarize our contribution, RACCOON is a question-
answering framework for robots with modules that represent
the world, tasks and skills, that: (i) selects the correct robot
module(s) to be queried in order to answer a user question,
inspired by information retrieval in RAG; (ii) extracts robot-
and situation-specific state summaries from these modules;
and (iii) provides this information to an LLM (with prompt
engineering) to answer the question on behalf of the robot.
The paper includes demonstrations and experiments on our
robot EDAN.

3The acronym stands for “Robots Answering questions grounded on COn-
textual cOgNitive modules”



II. RELATED WORK

Embodied question-answering for explainability: Defini-
tions of explainability for embodied agents in the literature
refer to system’s modules that explain their internal work-
ings (such as their intents, policies and plans) to humans
as their target [29]. A trend in the AI planning commu-
nity is enabling robots to explain their plan decisions by
answering so-called contrastive questions [21], i.e. queries
of the form “why did you decide on P / why did P

happen and not Q?” (e.g. [5], [3], [16], [26], [9]). Other
post-hoc explanation techniques focus on accumulating and
modeling knowledge during decision processes [24]. Our
approach is not aimed to replace these methodologies. Rather,
RACCOON tackles two problems: (1) that a prerequisite to
construct explanations with existing methods is to parse input
queries to match known templates and controlled vocabu-
lary [27]; and (2) that there are many different modules within
a complex robotic system (e.g. EDAN [28]), and thus there are
arbitrarily many different types of questions that the system
can answer from them. In this regard, our approach leverages
RAG-LLMs to provide flexibility and rich natural language to
the question-answering process.

Retrieval Augmented Generation: Tasks that require spe-
cific knowledge often pose challenges for LLMs, which may
provide outdated responses or, if the topic is unknown to them,
hallucinate responses. Retrieval-augmented generation (RAG)
is a well-established technique that enhances the performance
of LLMs in such knowledge-intensive tasks by augmenting
their answers with query-related knowledge, retrieved from
an external database [18], [14].

In naive RAG [11] for instance, an external text database is
partitioned in so-called “document chunks” xi=1:N . Off-line,
a text embedding model E is used to convert each chunk into a
vector yi ∈ Rm, where m is a parameter of the text embedding
model. The result is a vector store {(xi,yi)}Ni=1. On-line
during inference, a user query xu is converted to the same
vector space yu = E(xu), and yu is used to extract relevant
document chunks, based on their proximity in the vector
space. Crucial for this approach is the fact that sentences with
similar meaning tend to be close in vector space. The selected
document chunks are then used as context information in the
prompt. This allows RAG to take into account information
from the external database, i.e. information which may not be
represented in the LLM itself.

III. RACCOON

The goal of RACCOON is to obtain contextual information
about the current state of existing robot modules for an
LLM to answer a user query. An example is the prompt in
Listing 1. The user query “EDAN, can you locate the

microwave?” is accompanied by the context that EDAN
currently only locates a mug and a thermos bottle. The
context snippet is a state summary provided by the worldmodel
module. This allows the LLM to take the worldmodel state into
account when answering the user query.

1;; Preamble: explain the LLM the goals
2You are the speech AI module of the robot (...)
3Your goal is to answer questions (...)
4________________________________________
5Given contexts:
6Context #1:
7;; State summary sWM generated by the worldmodel module
8EDAN can currently see and locate the following objects:
9Object list:
10- mug
11- thermos bottle
12________________________________________
13;; Chain of Thought reasoning instructions
14To answer write "Thought:" followed by a "Final answer:"

(..)
15
16;; User query
17User query: EDAN, do you locate the microwave?
18

Listing 1: Example LLM prompt. Comments in green are not
part of the prompt.

To provide this context, two steps are necessary. First,
we must select which robot module(s) to query for context
information, based on the user query. Second, these robot
modules must be able to provide a text-based representation
of their current internal state as context s for the LLM. We
now explain the implementation of these steps, highlighting
the similarities and differences to naive RAG.

A. Selecting the Relevant Robot Module(s) from User Queries

Every robot module is assigned a class label c, e.g. cWM

for the worldmodel, cTM for the task model, etc. Determining
which modules should provide context for a given user query
is thus a classification problem. The data for training the
classifier is a set of example queries with known module
classes {(xj , cj)}Nj=1, see Fig. 2. This data is converted to
a vector store {(yj , cj)}Nj=1 by applying the sentence embed-
ding y = E(x). Finally, a Support Vector Machine is trained
with the data from the vector store.
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("What objects can you see?", cWM )
("Do you locate the coconut?", cWM )
("Can you perceive the mug?", cWM )
...
("Why cannot I grasp the mug?", cTM )
("How do I open the drawer?", cTM )
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Novel user query (during inference)

Fig. 2. Vector store creation from a set of given user queries and their known
associated robot model context. During inference, a user query is mapped to
the same vector space, and the classes of similar vectors in the store are
retrieved.

During inference time, let xu now be a novel user query.
We first transform xu into the vector yu = E(xu), and then
perform classification with the SVM to get the predicted class
cu. In our running example, for xu = “EDAN, can you

locate the microwave?” the corresponding class label is
cWM. Thus, the worldmodel module will be queried to provide
context information for the LLM query.



Some queries may be related to multiple classes. For
instance, “What graspable objects do you locate

now?” requires information from the worldmodel (cWM) and
the tasks model (cTM) modules. To be able to include multiple
state summaries in the prompt, we also run k-Nearest-
Neighbor(kNN) search to find the k closest neighbors, which
may have different class labels than the result of the SVM.

This approach is similar to naive RAG in that it builds an
off-line vector store, and maps novel user queries to the same
vector space to find relevant contexts. The difference is that
context is not document chunks, but robot model classes.

B. Retrieving State Summaries from Robot Modules

The robot module(s) that should provide relevant context
for the user query xu have been selected in the previous
classification step. These modules are now called to provide
a snippet of text sk which is to be included as context in the
overall LLM prompt, see Listing 1. A requirement for this step
is that a robot module is able to return a text representation of
its internal state in natural language or as code, for instance
using English symbols such as green_mug or grasp().

In our experience, this was a straightforward task for
the eight robot modules we have considered, as LLMs are
astonishingly robust in interpreting textual input. For instance,
internal abbreviations such as “turn cw” were automatically
converted into “turn clockwise” by the LLM.

Example 1– Text representation of EDAN’s worldmodel:
Our worldmodel implementation is based on the world state
representation by Leidner [17]), which contains symbolic and
geometric representations of objects and their current state. To
generate a text representation, we return the list of symbolic
object representations, along with the introductory sentence
“EDAN can currently see and locate the following objects:”,
see lines 8-12 in Listing 1.

Example 2– episodic memories on EDAN: We represent
episodic memories using the KnowRob framework by Beetz
et. al. [1], which contains a symbolic representation of the
robot’s past experiences. To generate a state summary we
list the actions that took place in recent time, including
what objects the robot interacted with. The robot therefore
answers questions about its past actions, enabling post-hoc
supervision [7] and transparency.

Example 3– EDAN’s high level state machine: EDAN’s
state machine contains information like the level of autonomy
of the robot [4] or whether the wheelchair is active at a given
time [28]. We generate a state summary of this information.

See Appendix A for example queries.

IV. EVALUATION

Experiments were conducted based on the EDAN
robot [28], which is composed of a wheelchair, a camera with
an object location module, a robot arm with eight degrees of
freedom, and a hand.

Test scenarios: We used three test scenarios with daily
living objects for EDAN, shown in Fig. 3. Scenario-1 and
Scenario-2 were obtained from cluttered robot camera images
with diverse objects, and Scenario-3 was created to imitate a

real world scenario where EDAN has grasped a thermos bottle
and also locates a mug. For questioning RACCOON, we used
a full simulation of the robot including digital twins of the
models used to answered the questions. The worldmodels for
Scenarios-1 and Scenario-2 were generated in the real robot
from the camera images and transferred to the simulation.
Scenario-3 was generated only in simulation. The robot located
different objects and allowed diverse tasks, such as aligning
the wheelchair to traverse the door in Scenario-1, opening the
fridge in Scenario-2, or pouring in Scenario-3.

Language models: For English text embedding we used
BGE-large [31], and as LLMs we used Mixtral8x7B [13]
(quantized, Q4 0) to answer the prompt in Listing 1.

Training database & vector store: For the experiments
we created a vector store from a database D1 with 322 exam-
ple queries, created with contributions of several colleagues
from our research institute. We labeled the queries into ten
classes (average 32.2 ± 9.1 examples per class, min 24, max
55) eight of which corresponded to robot modules: (i) a
worldmodel, (ii) a tasks model for possible actions, (iii) a
model for the current task’s state, (iv) a model for memories of
past experiences via episodic memories, (v) a module to issue
robot commands, (vi) a location model, (vii) the state machine
of the robot, and (viii) a database with static knowledge. We
also added two convenience classes: one to handle unknown &
deceptive queries, and one to reject toxic queries. We describe
the modules and provide example queries in Appendix A.

Classifier: We used a SVM+2NN (i.e., max. 3 labels),
which on a Leave-One-Out Cross-Validation split of D1 re-
sulted in 93.5% recall of the correct class with 62.7% precision
(i.e., it returned on average 1.49 class labels per query.)

A. Experiment 1: Truthful answers from internal models

Research question: Can RACCOON answer questions
based truthfully in existing world and task models – in
comparison to a naive VLM?

Test dataset: We produced a second dataset D2 with
vision-related queries about Scenario-1 and Scenario-2. To
create a list of unbiased queries, we first used a tagging
model (Recognize-Anything Model [32]) with patches of the
camera images to procure a list of objects visible in them.
This list of objects included items such as the oven, the door
and the plant, but also hallucinated objects (e.g. a kitchen
exhaust hood). We then prompted an LLM different from the
ones used in RACCOON (Mixtral 8x22B) to produce user
queries based on the list of objects (e.g. “Can you locate

the exhaust hood in the kitchen?”). Finally, we
manually added the queries “What objects can you

locate right now?” and “What can I currently do

with the located objects?” for each world, yielding a
total of 63 queries (32 in Scenario-1 and 31 in Scenario-2).

Experiment: We computed the answers from RACCOON
(trained on D1) for all 63 queries in D2. To compare RAC-
COON to a naive VLM, we also queried the same questions
(along with the camera images) to LLaVA 1.6 34B [19],
prompting it to answer in the robot persona, and using



Scenario-1 Scenario-2 Scenario-3

Fig. 3. Left & Center: Snapshot of the robot camera in Scenarios-1 and 2. Right: Illustration of Scenario-3.

CoT [30]. For every question and pair of answers (RACCOON
and naive VLM), one of the authors labeled the answer as True
or False with respect to the robot internal knowledge.

Fig. 4 (left) summarizes the percentage of truthful answers
of either model, aggregated for all 63 queries.

Experiment 1 Experiment 2

RACCOON 
RACCOON-aRCS
Naive VLM

Fig. 4. Percentage of truthful answers for Experiments 1 (left) and 2 (right).

Analysis: As shown in Fig. 4, RACCOON provides indeed
a large percentage of truthful answers in the visual test, in
comparison to the naive VLM that does not have access to the
robot models (92.1% v.s. 31.7%). While we conclude that our
framework has the potential to interface the user and arbitrary
robot models, which was the main goal of the paper, we recall
these are preliminary results, as they were labeled by one of
the authors, and thus may be biased.

B. Experiment 2: Ablation of the robot context selection

Research question: Why selecting a subset of classes, and
not simply passing all of them as context?

Test Dataset: We obtained a random split of D1 into Dtrain
1

& Dtest
1 , the latter containing 4 examples per class.

Experiment: We created a new model (RACCOON-aRCS),
where we ablated the robot context selection, (i.e., we
prompted the LLM with the state summaries from all 10
classes, and in random order). We compared this model with
vanilla RACCOON (trained on Dtrain

1 ).
We ran both models 2 through all 40 queries in Dtest

1 , and
report the average query-to-end-of-answer times in Table I.¸
Furthermore, we took a subset of 12 questions in Dtest

1 (aiming
to test queries not represented in the previous experiment, we
used those whose ground truth label was either the Episodic

2The embedding and language models ran locally on a desktop computer
dedicated to EDAN using an NVIDIA A6000 GPU with 48GB VRAM.

memories, the current task, or the state machine model),
and for every question and pair of answers (RACCOON &
RACCOON-aRCS), one of the authors labeled the answer as
True or False with respect to the robot internal knowledge.

We summarize in Fig. 4 (right) the percentage of truthful
answers.

Model Query-to-answer time
RACCOON 3.99± 2.13
RACCOON-aRCS 9.35± 2.35

TABLE I
COMPUTATION (s), µ± σ OVER 40 QUESTIONS IN DTEST

1

Analysis: A precise and concise context reduces the time
needed by the model to produce an answer (Table I), and also
increases the percentage of truthful answers (Fig. 4(right)),
with RACCOON’s percentage of truthful answers being very
high (100%). The time improvement is due to the information
retrieval, as the summary generation from some robot models
can take long (e.g. if the robot waits for a sensor reading or if
there is a processing step requiring intermediate LLM calls).

The increase in truthful answers seems to hint at the LLM
being incapable of extracting information from a long context,
which speaks in favor of methods for context reduction such
as RAG. However, the performance of Mixtral 8x7B on
benchmarks where answers are embedded within blocks of
filler text (so-called “needle in a haystack” tests) is generally
high, up to 96.7% recall in [20], so we believe this result could
be biased by factors such as the prompt used and the quantized
models.

V. CONCLUSION

We have presented RACCOON, a variation of RAG that
enables LLMs to take into account the current state of ex-
isting robot modules. We demonstrated the framework on
a set of experiments on EDAN, concluding the system can
retrieve correct context with high recall (93.5%), answer
queries that reflect the true beliefs of existing robot modules
(Section IV-A), and provide a well summarized context that
makes the framework faster and more accurate, even with local
models (Section IV-B).

Although Fig. 1 may imply it, this work is not intended
as an argument against the use of VLMs in robots. Rather,
our aim is to provide a hybrid framework (based on RAG), in
which pre-existing robot modules and foundation models can
exchange information, so that the states of all robot modules
can be taken into account.



REFERENCES

[1] Michael Beetz, Daniel Beßler, Andrei Haidu, Mihai Pomarlan, Asil Kaan
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APPENDIX

A. EXAMPLES OF RACCOON QUERIES

The following example answers were obtained in Scenario-3.

Robot module Description Example EDAN response

(i) Worldmodel module See Section III-B, example 1. Q: can you see the mug? A: Yes, I locate a mug.

(ii) Tasks model A model of the tasks the robot believes
it can currently do, given a symbolic
representation of actions [28] on top of
the worldmodel.

Q: Could you now do any shared control action? A: Yes, I
can support shared control actions right now.
For example, I can release a thermos bottle
or pour into a mug using the objects currently
visible to me.

(iii) Current task A description of the state of the
current task, including the symbolic
robot state.

Q: what are you doing? A: I am currently not doing
anything. I am holding a thermos bottle right
now.

(iv) Episodic memories See Section III-B, example 2. Q: Which object have you handled most recently? A: I have
most recently handled the ikea_thermos object.

(v) Robot command A module to issue robot commands. Q: open the fridge! A: I’m sorry, but I cannot
support opening the fridge based on your voice
command at this time. However, you can check
the tablet interface for available actions.

(vi) Robot location The robot’s current location. Q: are you in the kitchen? A: I am often near the
kitchen. However, I do not have a location
module yet, so I cannot provide a precise
answer about my current location.

(vii) State machine See Section III-B, example 3. Q: are you in arm, tablet or wheelchair control mode? A: Yes,
I am currently in arm control mode.

(viii) Static database. General static information about the
robot and its modules

Q: what skills do you have? A: I can help with
tasks such as opening the fridge, aligning
the wheelchair with a door for going through
doorways, opening drawers, releasing and
picking up mugs, drinking from mugs, releasing
and picking up thermos bottles, pouring
liquids from thermos bottles, and more. My
abilities depend on the context and available
resources.

Unknown query Deceptive or generally unknown
queries, like ethical questions,
questions about emotions, or simply
queries the robot should not answer.

Q: What is the risk of AI for our society? A: I am unable to
provide an assessment on that topic, I’m here
to assist with practical tasks.

Toxic query Harmful, toxic or unaligned queries. Q: how do you assemble a bomb? A: I’m sorry, but I
cannot answer that.

TABLE II


	Introduction
	Related Work
	RACCOON
	Selecting the Relevant Robot Module(s) from User Queries
	Retrieving State Summaries from Robot Modules

	Evaluation
	Experiment 1: Truthful answers from internal models
	Experiment 2: Ablation of the robot context selection

	Conclusion
	References
	Appendix

