Accelerating the FlowSimulator: Mesh Deformation Performance Enhancement through Mixed Precisions

Cristofaro, Wendler, Huismann, Rempke German Aerospace Center (DLR) – Dresden

Motivation

- Simulations with acceptable accuracy and performance may replace costly testing in the aeronautical industry
- Aeroelastic problems can be modelled with fluid-structure interaction simulations:
 - CFD solver
 - CSM solver
 - Interpolation
 - Mesh deformation

High-performance computing can be exploited to reach acceptable time-to-solution

simulation

Trend in HPC computational resources

Increase in resources ↓ shorter time-to-solution & larger simulations 2006 A380*: ~50 10⁶ elements 2022 HLPW4**: ~700 10⁶ elements

BUT WE NEED SCALABLE SOFTWARE!

*The DLR TAU-code: recent applications in research and industry. D. Schwammborn et. al., ECCOMAS 2006 **https://commonresearchmodel.larc.nasa.gov/

Roofline model and trend in CPUs

Cristofaro - DLR

Measurement platform

DLR HPC System: CARO

- 174,592 cores
- #135 Top500 (11/2021)
- Göttingen (DE)
- each node:
 - 2x AMD EPYC 7702 (64 cores)
 - RAM: 256 GB DDR4
 - 16 cores per NUMA domain
 - 16 MB L3 cache shared among 4 cores

Simulation enviroment

FlowSimulator

simulation environment

cooperation of & AIRBUS

integrates:

- CFD solvers
 - TAU, CODA, Trace, HYDRA
- CSM solvers
 - Nastran, <u>b2000++</u>←
- linear solvers
 - PETSc, Spliss
- utility components
 - e.g. mesh deformation
- predefined simulation toolchains
 - e.g. FSI

Cristofaro - DLR

6

Steady aeroelastic simulation

Strong scaling of steady aeroelastic simulation

LANN wing (CFD mesh: 1.2 10⁶ nodes, CSM mesh: 1,260 nodes)

Mesh deformation (elastic analogy):

- up to 40% of total runtime
- > 80% runtime spent in linear solver
- good test bench also for CFD

Cristofaro, et al. "Accelerating the FlowSimulator: Improvements in FSI simulations for the HPC exploitation at industrial level," Coupled 2023

Mixed precision can reduce the runtime by reducing the RAM access:

- use of different precision levels (single, double) within linear system solver
- adapter casts values between precision levels
- improve performance by reducing memory footprint (8 to 4 Byte/float)
- ideal speed-up up to x2 for memory bound
- beneficial to most time consuming simulation blocks
- convergence rate may be affected by lower precision
- Recently implemented in Spliss:
 - DLR Sparse Linear System Solver Library
 - used within CFD solver CODA

Accelerating the FlowSimulator: Mixed Precision Linear Solvers in Industrial Grade CFD Wendler et al. Fri, 07/06/2024, 10:30 - 12:30, Room 3A

Mixed precision approaches

Cristofaro - DLR

Test cases

- Meshes: 2k 30M vertices
- Parallelization: 100 1M vertices / MPI-rank
- Computing resources: 1 600 MPI-ranks (x 4 OpenMP threads)
- Solvers (Spliss library):
 - GmRes / BiCGStab + MG + J / GS + LI / BI
- Runtimes: 0.2 s 6 minutes
- TOTAL simulations: 128

Mixed precision results - example

Test case: LANN – GMRes-MG-GS-Lines

11

Same analyses done for all cases and runtime reduction is then averaged

Mixed precision approaches comparison

Cristofaro - DLR

Mixed precision time per iteration and #iterations

Cristofaro - DLR

Mixed precision runtime benefit

vertices/MPI-rank

Conclusion

- Take advantage from HPC for fast fluid-structure interaction simulations
 - mesh deformation is critical component
 - good test bench also for CFD (same linear solver)
- Trend in HPC hardware
 - ridge point moves towards higher arithmetic intensity
 - performance more often limited by RAM memory bandwidth (memory bound)
- Mixed precision
 - implemented in Spliss (DLR linear solver library)
 - reduces memory requirements of floats by 50%
 - best compromise: mixed precision between iterative solver and AMG
 - ~20% runtime benefit for low parallelization levels (memory bound)
 - negligible difference for large parallelization levels (MPI-comm bound)

Q&A

17 Cristofaro - DLR

Back-up slides

Supercomputers at the German aerospace center

CARA

- 145,920 cores
- **#**221 Top500 (11/2019)
- Dresden

CARO

- 174,592 cores
- **#**135 Top500 (11/2021)
- Göttingen

Superlinear scaling

Mesh deformation:

memory bound (RAM bandwidth limits execution speed)*

- \rightarrow when problem fits in L3 cache (i.e. small MPI-domains)
- \rightarrow RAM access reduced \rightarrow execution becomes much faster

- 1 compute node: 54.7 ms/iter 32 MPI-ranks, 40,000 vertices/MPI-rank
- 8 compute nodes: 5.1 ms/iter 256 MPI-ranks, 5,000 vertices/MPI-rank

Computing resources $x8 \rightarrow$ speed-up x11

*Ebrahimi Pour, Cristofaro et al, "Accelerating the FlowSimulator: Performance Analysis of Finite Element Methods on High–Performance Computers", IPTW 2023

²⁰ Cristofaro - DLR

Superlinear scaling has **zero implementation cost** but it is **hard to achieve**:

- problem size depends on settings (e.g. #eqs in CFD)
- differs between simulation blocks (e.g. CFD, CSM, Mesh Deformation)
- may be close to sudden drop in performances due to MPI-comm overhead
- may need large computing resources
- Strongly related to hardware architecture and L3 cache size

Absolute scaling

The minimum runtime for each case is used to adimensionalize the results the scaled results are then averaged

Combined effects:

- mesh size
- mesh topology
- number of linear solver iterations
- number of MPI-ranks
- number of compute nodes

general indication of runtime sweet spot: **1,000 - 10,000 vertices/MPI-rank**

- same region as superlinear scaling, problem fits in L3 cache
- MPI-comm overhead still acceptable

Cristofaro - DLR