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Abstract— This article introduces an improved system for
sea state observations for near-real-time (NRT) services using
satellite-borne synthetic aperture radar (SAR). The empirical
algorithm SAR sea state retrieval (SAR-SeaStaR) applies a
combination of a classical approach using linear regression (LR)
with machine learning (ML). SAR-SeaStaR includes a series
of filtering and control procedures and a series of LR and
ML model functions for different satellites/modes and following
integrated sea state parameters: total significant wave height Hs,
wave heights of dominant and secondary swells and windsea,
mean, first and second moment wave periods Tm2, and windsea
period. SAR scenes are processed in raster format, the output
are fields for each parameter showing their spatial distribution.
In the scope of this study, the ML models were developed for
Hs and Tm2 and implemented into SAR-SeaStaR for processing
Level-1 (L1) products of X-band TerraSAR-X (TS-X) StripMap
(SM) and C-band Sentinel-1 (S1) interferometric wide swath
mode (IW), S1 extra wide (EW). The validations are based
on processing large worldwide archives with several years of
acquisitions. Hindcast data from numerical spectral models and
in situ buoys measurements are used as ground truth. The root
mean squared errors of the complete system reached from these
archived data for Hs are RMSE = 0.35 m for TS-X SM (pixel
spacing ca. 1.2–4.5 m pixel), RMSE = 0.25 m for S1 Wave Mode
(WV), (ca. 3.5 m pixels), RMSE = 0.42 m for the coarser S1
IW (10 m pixels) and RMSE = 0.52 m for S1 EW (40 m
pixels). SAR-SeaStaR was implemented in the sea state processor
(SSP) software using modular architecture and applied at the
DLR ground station (GS) in Neustrelitz as part of an NRT
demonstrator service. S1 IW data acquired over North and
Baltic Sea are processed automatically, surface wind and sea
state parameters are provided daily.

Index Terms— CWAVE_EX, integrated sea state parameters,
linear regression (LR), machine learning (ML), near-real-time
(NRT) processing, synthetic aperture radar (SAR).

I. INTRODUCTION

A. SAR Processing for Meteo-Marine Parameters Estimation

MOST of the international goods transportation of cargo
takes place across the oceans, which increases the

importance of marine surveillance throughout the world.
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Synthetic aperture radar (SAR) satellites are a significant
component of Maritime Situational Awareness (MSA) sys-
tems, which fuse the data from various sources based on
remote sensing, in situ measurements, forecast modeling,
and communication systems for the safety of navigation [1].
An active sensor provides SAR the ability to derive spatial
meteomarine information for wide-swath areas independent of
sun illumination and cloudiness.

In terms of technology, the newest developments of
space-based SAR sensors, the improved transmission of data
from satellites to ground stations (GSs) and data processing
infrastructures, and the latest retrieval methods with increased
accuracy in recent years enable a number of near-real-time
(NRT) oceanographic applications (e.g., [2], [3], [4]). The
tendency is to combine individual applications and algorithms
such as sea state, ship detection, and oil and ice detection (e.g.,
[5], [6], [7], [8]), into universal systems where the parallel
processing branches can exchange information derived from
the same SAR scene in order to improve accuracy of the
results.

Furthermore, collocation and combination of satellites with
different radar bands, altitudes, and different SAR modes
offers an opportunity to compare and improve the devel-
oped methods for various SAR-based applications. This
opportunity is demonstrated, for example, in [9], where the
detectability of ship wake components is compared between
C-band and X-band SARs, while the influence of local envi-
ronmental parameters (i.e., sea state and wind) estimated
from corresponding SAR scenes is taken into account. Such
an approach requires the development of processing sys-
tems capable of extracting information (sea state in this
study) from various satellites in NRT, and also capable
of quickly re-processing large archived data with testing
various processing options (filtering, denoising, rescaling,
control-of-features, control-of-results) and also different model
functions.

In terms of methodology, machine learning (ML) techniques
took a leading position in science in the last few years,
as their results are superior to empirical algorithms of the
first-generation based on simple empirical functions (e.g.,
[10]) and methods of the second-generation based on linear
regressions (LR) use wide series of SAR image features
(e.g., CWAVE-family algorithms [11], [12]). ML models with
higher complexity can be trained, since sufficiently large
databases are available and can be quickly processed and
analyzed due to higher computational power. Only a few
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years ago, a ML approach did not provide noticeably more
accrue solutions compared with classical approaches. For
example, in 2017, the accuracy of significant wave height
Hs obtained from Sentinel-1 (S1) wave mode (WV) imagery
by applying neural networks (NN) had not improved signifi-
cantly the RMSE of ca. 0.50 m of the conventional CWAVE
method [12]. However, in 2020, the accuracy was significantly
improved to an RMSE of ca. 0.30 m [13] by using a deep
learning technique. Further, in 2022, the accuracy of ca.
0.25 m was achieved by ML using support vector machine
(SVM) technique applied to the same data and ground truth
sources [14].

However, practical application of LR and ML models
reveals that both LR and ML methods have their advantages
and disadvantages. The advantage of the LR approach is the
availability of an analytical solution bases on a series of
coefficients that can be estimated quickly and an extensive
learning process is not required. Further, despite the overall
lower accuracy, LR has proven more stable extrapolating
when the data are beyond training domains (e.g., rare extreme
weather conditions such as storms, hurricanes, or a complex
combination of wave systems and artifacts in the SAR image),
while the ML models can result in an error under such
conditions. Basically, the ML functions are more flexible and
require larger training datasets for a robust solution. Generally,
the linear solution is already stable with around 1/10 samples
needed for ML by using worldwide data with normal distri-
bution (random worldwide sea state is near-normal distributed
with ca. 70% of all data in the domain 0–3 m Hs , ca. 5%
of waves reach a height of 6 m, and only 0.1% exceed
10 m [14]).

Furthermore, the training time of ML model can take
months. Regarding storage space, the developed ML model
is many orders of magnitude larger (several gigabytes) than
the list of coefficients for the LR (a few kilobytes). Parsing
the ML model in a production run takes much longer than
parsing the LR model. This point is especially important for
NRT services for which these models are ultimately developed.
Recently, a migration of the sea state processor (SSP) for direct
installation on a satellite for onboard processing has been
developed [15]. In this case, processed sea state parameters can
be directly transferred from satellite to earth for NRT services.
This technology will significantly reduce the sea state products
delivery delay in comparison to today’s technology based on
transfer of the huge raw SAR data to a GS for subsequent
processing.

Based on this background, a combination of LR and ML
methods should benefit from the advantages of each method.
For example, as it was shown in [14], using the LR solution as
a first guess value for ML accelerates the training procedure
and slightly improves the resulting RMSE by ca. 1–2 cm in
terms of Hs . Further, as already mentioned, LR is less accurate,
but the extrapolations are more robust. For example, as found
in this work, under rare extreme storms conditions (Hs > 8 m),
a difference between Hs estimated by ML and LR of more
than 4 m indicates a failure of ML; therefore, LR can be used
as a control-of-results in order to check validity of the ML
solutions.

B. Objective of the Study

The purpose of this study was improving a system designed
to process integrated sea state parameters from SAR imagery
for NRT services. The CWAVE_EX algorithm bases on LR
was developed in previous study [14] and realized in the SSP
as one of the processing branches in the SAR AIS Integrated
Toolbox (SAINT) package [4]. SAINT includes a series of
parallel branches for processing different meteo-marine param-
eters and targets: sea state, oil, ships, ship wakes, surface wind,
coastline, iceberg detection, sea ice classification, and drift.
Information from different layers is shared with each other
to improve product accuracy. For example, ship motion and
background meteo-marine information retrieved from SAR
scene were combined in ship detectability models to connect
the probability of SAR ship detection information with the
actual wind and sea state (e.g., [8], [9]). In turn, SAINT is
incorporated into the NRT processing chain at DLR (German
Aerospace Center) GS Neustrelitz (for more information see
Section IV “Implementation”).

The SSP was designed in a modular architecture for differ-
ent satellite and modes: TerraSAR-X (TS-X) StripMap (SM),
S1 interferometric wide swath mode (IW), S1 extra wide (EW)
and S1 WV Level-1 (L1) products. At present, it utilizes the
LR model functions CWAVE_EX established for estimation
of eight integrated sea state parameters [14]: total significant
wave height Hs , wave heights of dominant and secondary
swell H swell−1

s , Hswell−2
s , wave height of windsea H wind,

s mean
wave period Tm0, first and second moment wave periods
Tm1, Tm2 and periods of windsea Twind. The SAR scenes are
processed in a raster format and result in continuous sea state
fields. An exception is S1 WV where averaged meteo-marine
parameters for each along-orbit imagettes of ca. 20 × 20 km
are estimated.

Within the scope of this work, the new empirical model
functions based on a ML approach were developed for two
basic parameters Hs and Tm2 for all satellites/modes listed
above (TS-X SM, S1 IW, and S1 EW, in total six new model
functions). A series of processing steps and several model
functions, considered previously independent and different for
various parameters and satellites are systematized, unified
and combined into one universal algorithm. The proposed
algorithm combines both: LR models (based on CWAVE
approach [11] extended by additional features [4], [14]) and
new developed ML models.

II. METHODS AND DATA

In this study, SAR C-band data from the Copernicus
S1-A and S1-B satellites and X-band data from the TS-X
and TanDEM-X satellites have been used. As ground truth,
two hindcast spectral models and buoy measurements were
applied. As the amount of data is in the order of hundred
thousand of samples, rounded values are given in the text.

A. Methodology

The empirical algorithm SAR Sea State Retrieval (SAR-
SeaStaR) has been introduced in this study. It is based on
combination of the LR function CWAVE_EX [14] and a ML
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TABLE I
EFFECT OF THE PROCESSING STEPS TO ENTIRE ACCURACY IN TERMS OF

WAVE HEIGHT RMSE. THE PERCENTAGE GIVES THE APPROXIMATE
INPUT OF EACH STEP CONSIDERED SEPARATELY

approach using the SVM technique. The algorithm includes
the complete processing chain with a series of steps needed
to reach high accuracy.

1) Filtering of the image artifacts (e.g., ships, wakes, off-
shore windfarms constructions).

2) Resampling and denoising (e.g., for S1 IW resampling
from 10 to 2.5 m pixel spacing).

3) SAR features estimation and control-of-features.
4) Model functions (LR and ML models) for estimation of

sea state parameters.
5) Control-of-results using filtering procedures.

Each processing step contributes to the entire accuracy of
the algorithm. In scope of this study, a series of tests with
switching individual steps were carried out and the effect of
each step was evaluated (see Table I). The rounded numbers
are valid for all considered satellites/modes. It can be clearly
seen that the cumulative impact of the preparation of the
subscenes and control procedures has an effect comparable to
the effect of the model function. For these reasons, all of these
steps were committed to model functions within the algorithm.

Steps 1–3 are described in [3] and [4] in detail. Detailed
information on step-5 (control-of-results procedure) can be
found in [14]. The focus of this study is step-4 which includes
the model functions and their development. A series of LR
of CWAVE_EX model functions were developed for each
satellite/mode and each sea state parameter in [14]. Analogous
to [14], where MLs for S1 WV were trained, the present study
focuses on the development of the new ML functions for Hs

and Tm2 for TS-X SM, S1 IW, and S1 EW. These for two
parameters are commonly used for general characterization of
the sea state and are provided by majority of the buoys. In our
previous work [14], the SVM technique allowed improving the
accuracy from ca. 35 cm, reached with CWAVE_EX method,
to ca. 25 cm.

Due to the combination of LR and ML methods, the
SAR-SeaStaR algorithm includes both.

1) CWAVE_EX functions (32 functions: eight parame-
ters × four satellite modes).

2) SVM models (currently eight functions: two parame-
ters × four satellite modes).

Actually, when processing SAR scenes:
1) Six parameters are only derived by CWAVE_EX [14].
2) Hs and Tm2 have both CWAVE_EX and an improved

SVM ML solution.
Compared to [14], where SVM for S1 WV was applied as
a postprocessing operation, in the current work, all SVM
models are incorporated into one processing chain of SSP
and are directly executed as part of the NRT processing.
However, the use of the additional SVM processing is optional.
It can be skipped if timeliness is preferred over result quality.
The complete workflow of the SAR-SeaStaR can be seen in
Appendix.

B. Sea State Parameters Estimation

The estimation of sea state parameters bases on an analysis
of the normalized radar cross section (NRCS) of a subscene.
A series of subscenes are initialized in a raster format and their
analysis results in a continuous sea state field for series of
integrated parameters. The raster step is the distance between
the center points of analyzed subscenes. It was experimentally
found out that for optimal control-of-features (by comparison
with the neighboring subscenes) a raster step between 1/4 and
twice the subscene size should be chosen [14].

One of the basic variables represents the SAR image
spectrum obtained using fast Fourier transformation (FFT)
applied to radiometrically calibrated, filtered, denoised, land-
masked, and normalized subscenes with a size of 1024 ×

1024 pixels in wavenumber k domain as introduced by
Pleskachevsky et al. [4]. The primary SAR features estimated
from a subscene are of five different types.

1) NRCS and NRCS statistics (variance, skewness, kurto-
sis, etc.), in total nine features.

2) Geophysical parameters (surface wind speed estimated
from analyzed subscene using CMOD-5 algorithms
for C-band [16] and XMOD-2 for X-Band [17]), one
feature.

3) Gray level co-occurrence matrix (GLCM) parameters
(homogeneity, dissimilarity, etc.), in total eight features.

4) Spectral parameters based on image spectrum inte-
gration for different wavelength domains (0–30 m,
30–100 m, 100–400 m, etc.) and spectral width param-
eters (Longuet–Higgins, Goda), in total 17 features.

5) Spectral parameters using products of normalized
image spectrum with orthonormal functions (CWAVE
approach) and cutoff wavelength estimated using auto-
correlation function (ACF), in total 21 features.

Note, both sea state and wind are estimated from prefiltered
subscenes, and there the NRCS outliers (ships, wakes, oil, etc.)
and noise are essentially removed.

The detailed description of all features can be found in [4]
and [14]. In total, 54 primary and the 77 most significant
secondary features are applied in CWAVE_EX. Secondary
features are combinations of primary features in quadratic
and inverse forms. The features normalization using the mean
(MEAN) and standard deviation (STD) for each feature was
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found to be optimal [14]. Each additional SAR feature slightly
improves the resulting Hs RMSE by 0.1–3.0 cm with an
accumulative improvement of around 15 cm in comparison to
the RMSE reached in [12]. The input for the SVM functions
are primary features complemented with

1) First-guess Hs from CWAVE_EX LR solution.
2) Precise incidence angle with an accuracy of third deci-

mal place (affects the results ca. 2 cm RMSE [14]).
3) Flag identifying the satellite (S1-A or S1-B for Sentinel-

1 and TS-X or TD-X for TerraSAR-X).
4) Pixel spacing (different for, e.g., TS-X SM radiometric

enhanced (RE) and spatially enhanced (SE) products)
5) Flag identifying polarization (HH or VV).

In a series of several analyses used for the control-of-
results [14], one of the most acting features is the so-called
“Rosenthal parameter,” named after Wolfgang Rosenthal (RIP
2016), who suggested its introduction. The Rosenthal parame-
ter ER indicates an integration of the image spectrum with an
additional scaling of 1/k for each spectrum bin. In contrast to
a direct integration, the ER integration significantly amplifies
the longer wavelength signals in the image spectrum. Objects
such as ships or ship wakes significantly increase the value of
ER and, hence, can be filtered out. For each satellite/mode, the
threshold value of ER was experimentally established using
statistics of processed scenes indicating the validity of the
subscene for sea state estimation [14].

According to their influence on the results, the features can
be systematized as follows.

1) Basic features build a stable basis for estimations. Such
features [11] include parameters resulting by integration
of the image spectrum and surface wind U10. Using
these features allows a stable estimation of the sea state
parameters with a coarse accuracy regarding today’s
state-of-the-art (first-guess solution). The impact of each
feature is in range of centimeters in terms of Hs RMSE.

2) Additional features allow improving RMSE gained using
basic features. These are a series of features each
contributing to the RMSE improvement in the order of
millimeters, but the combined total contribution of all
additional features is in the range of centimeters. These
features include, for example, GLCM-based features.

3) Features dealing with rare conditions and not con-
tributing to the total RMSE. These features deal with
individual outliers such as strong storms, zero-wind,
or scenes with many artifacts (e.g., ships or algae spots).
For example, the feature INT ensures correct estimation
of enormously high waves. INT means integration of
the weighted Complementary Cumulative Distribution
Function (CCDF) of the pixel’s brightness and has
pronounced high values only for individual high waves
above ca. 10 m·

4) Control features used for assessment the validity of the
subscene and results. An example of such a feature is Er .

C. Model Function and Its Application

In continuation to study [14], the SVM technique was
applied. The nu-SVR Support Vector Regression (ν-SVR) [18]

Fig. 1. Percentage of the Tm2 wave period in global S1 and TS-X datasets.
Due to acquisitions of TS-X and S1 IW in coastal areas, the percentage of
very short waves with period under 4 s is quite high with ca. 22% of all data.

with a radial basis function as kernel type was chosen as
the most suitable for the used features and ground truth as
a result from testing several different hyperparameter setting
with different kernel functions [14]. For practical applica-
tions, the high-performance ThunderSVM (TSVM) library was
applied [19]. TSVM runs an order of magnitude faster than the
standard LibSVM and allows training of large datasets with
millions of samples for all 59 SAR features used in this study.

The main difference between S1 WV data trained in
study [14] and the current study was a switch to acquisition
areas with other geophysical conditions, while S1 WV are
acquired only in open ocean, S1 IW and TS-X SM are
acquired predominantly in coastal waters and closed seas. Ice-
free S1 EW were dominantly acquired in open ocean in areas
with pronounced storms (ca. 70% in North Atlantic). The
consequence is a significant increase of artifacts (ships, wakes,
offshore constructions, oil spills etc.) and a larger percentage
of short waves with wavelengths below cutoff in S1 IW and
TS-X SM. Additionally, in coastal shallow waters, where the
bathymetry plays a role, the model ground truth has stronger
uncertainties due to differences in model space resolutions and
bathymetry.

Fig. 1 shows the statistics for the Tm2 period for all datasets.
It represents the sea state distribution for short and long
wavelengths. Due to the acquisitions of TS-X and S1 IW in
coastal areas, the percentage of very short waves with periods
under 4 s (means wavelength in order ca. <50 m) is quite high
with ca. 22% of all data. As sea state much shorter than cut off
enters the SAR image predominantly as noise, it needs special
consideration when achieving high accuracy for all period (i.e.,
wavelength) domains.

As the algorithms are developed for practical daily NRT
use, special attention was paid to stability and applicability of
the algorithm under all conditions (also for low wind under
1.5 m· s−1, which previously was excluded as not physically
trustworthy in [14]) and areas (e.g., coastal waters, harbors).
In this way, the model functions were especially trained for
all data without prefiltering nonvalid scenes by using, for
example, homogeneity test by variance [12]. Although this
precondition introduces additional difficulty into trainings,
the resulting model functions are able process all scenes
except only ca. 0.1% of subscenes, which are detected as
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“non-valid” (acquired directly over strong artifacts such as
multiple ships, oil spills, which were not able to be removed
from the subscene due to their configuration or size during
the subscene-preparation processing step). In comparison, the
accuracy in [14] for S1 WV was achieved with ca. 2% detected
“nonvalid” subscenes even for open ocean acquisitions.

A series of sensitivity tests was carried out for S1 IW,
S1 EW, and TS-X in this study in order to verify the appli-
cability of the SVR hyperparameters found to be optimal for
S1 WV during previous study [14].

The trainings and validations were repeated using a series
of cost regularization parameters C {25–100} and exponential
degrees in the radial basis function γ ={0.001–0.010} analo-
gous to [13] for both Hs and Tm2.

In terms of Hs , it was found that for the mentioned
satellite/modes, using stronger γ = 0.01 extends the training
time by a factor of about five in comparison to γ =0.001,
while the resulting accuracy is improved by ca. 3 cm.

In terms of the period Tm2, the same changing of γ

results into a training time around ten times longer with an
comparable effect on accuracy.

Generally, it was found that the wave period trainings need
more effort and time than the wave heights (more details
and summaries on period training see Section III-A). It also
became obvious that training the dataset including a higher
percentage of waves with short wavelength also requires more
training time using the same SVM hyperparameters.

A series of model functions with different hyperparameters
were collected. For archive processing (see Section III-B), the
function with optimal hyperparameters were chosen.

1) The cost regularization parameter C = 55.
2) The exponential degree in the radial basis function γ =

0.0075 (gamma).
3) The parameter ν (nu) determines the proportion of the

number of support vectors to keep in the solution with
respect to the total number of samples in the dataset
(0≤ ν ≤1, ν = 0.5 was implemented).

4) Tolerance of the termination criterion defines how close
the compared models should be reached by the next
iteration e = 0.01.

The technical realization of the algorithm in the SSP
software-packet using modular architecture allows to switch
SVM functions to a more modern one when expanding the
number of training events, or disable it. In this case, the
processor gives the results only using LR CWAWE_EX (see
Fig. 11).

D. Training and Validation Procedures

The fundamental difference between TS-X and S1 satellites
is the availability of data. In contrast to S1 satellites, for which
the data are acquired daily worldwide in an automatic way and
the ESA archive allows a routinely downloading thousands
of scenes, TS-X acquisitions over ocean are rare. Each TS-X
image was individually ordered by a user. Downloading of
TS-X is also individual for each scene, not all archived scenes
are available for the scientific use. In this way, the following
approach was used:

1) For S1, all initially in [14] collected data were divided
into training and validation sets (ca. 70% and 30%
correspondingly). During the training, new data were
downloaded from ESA datahub and processed. This
training dataset extension was repeated until the next
independent validation measured improved the RMSE,
while individual storms were reproduced.

2) For TS-X, all scenes acquired over ocean, which can be
accessed via the TS-X science archive were collected for
2009–2022 (ca. 60% of all existing TS-X SM acquisi-
tions over oceans available for scientific studies). Again,
these were divided into training (analogically ca. 70%)
and validation datasets.

The main problem of improving the model was the insufficient
number of cases with wave height higher than 6 m Hs (see sea
state statistics in Table III). Around 70% of all data are waves
in the domain 0–3 m Hs , and the number of samples collected
in scope of [14] for this domain was already sufficient at the
beginning of this study. With ML training, a linear increase
of data leads to an exponential increase in training time. For
instance, by Hs training, the doubling of the data from for
example, 0.5 to 1 Mio samples increases the training time
by ca. seven times when using the same number of parallel
running CPUs. In order to accelerate and improve the learning,
the data were divided into domains according to Hs (see values
in Table III) and recombined. In this way, the training dataset
was supplemented foremost with data for domains reflecting
storms. All new data not used in the training were included
in the validation sets.

E. SAR Data

For S1, the original Ground Range Detected (GRD) IW
and EW L1 products are used in this study. The scenes are
available in single (HH or VV) or dual (HH + HV or VV
+ VH) polarization. For sea state estimation, the VV or
HH polarization data were used, with priority given to VV
products.

For TS-X, SM L1 multi-look ground range detected (MGD)
standard products are used. From the S1 and TS-X archives,
only scenes with ocean at least 5 km off the coast were
taken into consideration by training and validations. Generally,
only the data in ice-free regions −55◦ <latitude <60◦ were
considered.

For S1 IW, around 6000 S1 IW individual images were
collected for years 2016–2022. The data include worldwide
acquisitions including North Atlantic, west and east coasts
of USA and Canada, Japan, Australia, Aleutian Islands and
Hawaii, Mediterranean, North, Baltic, and Black Seas. Special
attention was given to including scenes of severe storms,
cyclones, and hurricanes (e.g., hurricane Irma in 2017, [20]).
Each IW image covers an area of around 250 km × 200 km.
The S1 IW scenes were processed with a 10 km raster with
around 500 samples per image. However, in coastal areas,
the relatively coarse grid resolution of the ground truth wave
models requires an additional distance of around 10 km from
the coastline. In total, ca. 2 Mio samples collocated with
ground truth were collected.
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After a series of tests with different setups [4], [14],
a denoising operation was employed which significantly
improves the results for modes with coarse resolution. For
an initial subscene of 256 × 256 pixels (covers an area of
2560 m × 2560 m in S1 IW with 10 m original pixel spacing
and 10 240 × 10 240 m in EW with 40 m pixels, both GRD
products), a resampling with a factor of four (each pixel is
divided into 4 × 4 = 16 pixels with the same NRCS value
and with a size of 1/4 of the original spacing) followed by 2-D
Gaussian smoothing has been applied. The resulting 1024 ×

1024 pixels subscene further applied for FFT analysis has a
modified pixel resolution of 2.5 m for IW and 10 m for EW.
Due to this operation, the wave-like structures associated with
sea state and the corresponding peaks in the image spectrum
are stronger pronounced.

S1 EW images are mostly acquired in Polar Regions
where sea ice is present (ca. 80% all acquisitions). However,
a number of S1 EW images were acquired in ice-free regions
and around the equator and other areas (e.g., Madagascar).
For this study, almost all EW archived images for 2016–
2022 in ice-free regions were collected. The processing with
a raster of 20 km resulted in around 400 collocated samples
per individual EW image covers each ca. 400 km × 400 km.
In total, around 2500 S1 EW images were collected and
resulted in around 1.2 Mio samples collocated with model.

TS-X SM. For this study, worldwide archived TS-X SM
data acquired over ocean with ca. 7000 scenes were collected.
The TS-X SM images were acquired either in single polariza-
tion (VV, HH) or dual polarization (VV + HH). Around 30%
of all pooled TS-X SM data had dual polarization. Here, both
polarizations were used individually, extending the number of
samples for each polarization. Each TS-X SM scene covers
an area of ca. 30 km × 50 km. The subscene size for TS-X
SM is different with coverage of ca. 3.7–4.6 km dependent on
the pixel spacing of the TS-X SM RE products (1.2–4.5 m).
Since TS-X SM scenes are often acquired near the coast and
over harbors, around 60% of all processed subscenes cover
land and only around 40% covers sea surface and could be
used for the ocean collocations. Processed with a raster step
of 1.5 km, the collected TS-X SM images resulted in around
1.5 Mio collocated model samples.

F. Ground Truth Data

In this study, two kinds of ground truth were used: numerical
hindcasts covering worldwide sea state, and local in situ
measurements from wave rider buoys. The spectral integrated
parameters from two hindcast wave models were employed:

1) Météo-France WAve Model (MFWAM) [21]. MFWAM
results are available with a spatial resolution of 1/12◦

(available from 2016 onward [22]).
2) WaveWatch-3 (WW3) model of National Oceanic and

Atmospheric Administration (NOAA, [23]) with a
spatial resolution of 1/2◦ (spatially interpolated for col-
location) for collocations before 2016. Further, Tm1 wave
period was provided only by WW3.

The model results are provided in 3-h steps and are temporally
interpolated.

For collocations before 2016, it was found that sea state
is extrapolated toward the coast in WW3 data with coarse
resolution, while in the fine resolution MFWAM model (and
corresponding SAR subscenes) the sea state is already dissi-
pated. An additional MFWAM land mask with 1/12◦ resolution
was generated and applied to WW3 results in order to avoid
overestimated ground truth wave height in the subscenes next
to the coastline. This operation reduces the model ground truth
uncertainty and helps to significantly improve the training for
near-coast sea state.

As an independent validations source, the observations from
in situ buoys were used, provided from different operators with
focus on National Data Buoy Center (NDBC), Environment
and Climate Change Canada (ECCC) and European Marine
Observation and Data Network (EMODNET) [24], [25], [26].
For a statistically significant validation, these buoy measure-
ments provide a sufficient collocation density in the order of
thousand samples for S1 IW, while for S1 EW and TS-X
collocations can be found only for individual cases.

The uncertainty in the ground truth was evaluated around
0.25 m for Hs , as the Hs comparison for models and NDBC
buoys resulted in an RMSE = 0.26 m for MFWAM/NDBC
and RMSE = 0.23 m for MFWAM/WW3 at NDBC buoy
locations [14].

G. Additional Correction and Filtering Procedures

The model functions for sea state parameters were
developed and implemented for processing each parameter
independently. However, since the parameters are defined as
results of the integration of the same wave spectrum, they are
related. In this study, a series of corrections of the resulting sea
state parameters were introduced (see Table I) by connecting
the parameters based on physics and statistics. This step plays
a greater role, the more data are processed. Regardless of the
quality of the functions, when processing a large amount of
remote sensing data, the appearance of individual outliers is
inevitable; the challenge is to properly handle these outliers.

Using Hs , the most stable parameter, trained with ML,
a series of thresholds were introduced using the defini-
tion of the parameters for partial integrated parameters
(CWAVE_EX):

Hs > H swell−1
s > H swell−2

s , Hs > H wind
s . In this way, the

swell and windsea outlier values are accordingly reduced.
The wave energy balance was taken into consideration by

estimating the significant wave height using three components
(H swell−12

s + H swell−22
s + H wind2

s )0.5. The comparison with Hs

estimated by model functions allows compensating the energy
deficit by modifying H swell−2

s (which generally has lower
values with ca. 0.68 m for S1 IW datasets (dominant swell ca.
2.14 m) and is the weakest component in terms of accuracy
due to uncertainties in ground truth by partitioning of the wave
spectrum into dominant and secondary wave systems).

The NDBC measurements were analyzed for a relationship
between wave period and wave height. From the point of
view of physics, these parameters are independent. In nature,
however, due to the parameters of the medium (i.e., water
surface tension), they interact closely. In fact, large wave
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Fig. 2. Measured significant wave height Hs and Tm2 wave period from
70 worldwide NDBC buoys in 2018 with ca. 1.5 Mio samples. The enveloping
min and max curves are applied as low and high pass filters for the periods
estimated from SAR using processed Hs .

heights cause longer wave periods: waves with short periods
mean shorter wavelengths L and accordingly stronger wave
steepness, which leads to wave breaking. Fig. 2 presents the
worldwide measurements from 70 NDBC buoys for 2018 with
ca. 1.5 Mio samples, Hs and Tm2 are plotted against each
other and the min and max enveloping curves were approxi-
mated. Based on this statistic, the corresponding min and max
enveloping functions for Tm2 were applied

T min
m2 = Amin

√
H s, T max

m2 = Amax
√

H s (1)

with Amin = 3 and Amax = 9. The corresponding filter reset the
Tm2 outliers corresponding to these functions in the control-of-
results block. By applying the deep-water dispersion relation
for estimating the corresponding wavelength (L = gT 2/2π),
this corresponds for min to a maximal wave steepness of 0.07
(Hs /L ∼ 1/14) and for max to a minimal steepness of 0.008
(Hs /L ∼ 1/125). The main condition for wave breaking is
the exceeding of the local orbital velocity Uorb in wave crests
the phase velocity cp of a wave crest propagation. A rough
assessment of deep-water cp based on period and wavelength
and maximal Uorb based on wave amplitude and period results
in positive values of cp − Uorb for Amin > 3 and in negative
values for Amin < 3 (wave breaking condition).

Similar to wave height, based on Tm2, the thresholds
for the periods were introduced with Tm2 > Twind and
Tm0 > Tm1 > Tm2.

The large statistics generated by archive processing has
shown that worldwide Hs > 6 m does not occur in the open
ocean under weak winds below 5 m · s−1 (with exceptions
in coastal areas with beaches, such as individual solitons
appearing by the coasts of Hawaii). This means that basically
swell waves stay below Hs ∼ 6 m without wind support.
The higher wave heights depict a combination of swell with
windsea and strong local wind. A filter was implemented to
detect such individual cases as outliers.

Another phenomenon associated with trainings of
machine-learning models became apparent while validating
large datasets. As found in [14], the LR is less accurate than
SVM, but the extrapolations are more robust. It was found in
this study that under rare extreme storm conditions with Hs >

8 m, in individual cases a difference between Hs estimated by
ML and LR of more than 4 m indicates a failure of SVM ML
(outlier). Thus, the CWAVE_EX solution was implemented
to control the results in order to check the validity of the
ML solutions, the Hs will reset to CWAVE_EX for such
cases.

III. RESULTS

A. Results for Total Integrated Sea State Parameters
for S1 and TS-X

After a series of trainings and validations (see Section II),
six new SVM models were created (SVM models for S1
WV were already developed in [14] and only incorporated
into the processing chain in this study). Table II presents the
overview of the resulting RMSE for all eight parameters for
all considered satellites/modes by comparison of the MFWAM
model results. For Hs and Tm2, the values in bold depict the
new SVM results (only used for these two parameters) while
unmarked values mean the LR CWAVE_EX [14], which is
also given for the remaining six parameters. In general, the
SVM solution yields a ca. 10% higher accuracy than the LR
solution of CWAVE_EX in comparison with [14].

It is important to point out that the results in Table II
reflect the full processing of the SAR-SeaStaR algorithm
implemented in the SSP using the model functions and all
steps listed in Section II-A. Applying only the model functions
without any other steps statistically results in an accuracy
loss of at least 15%. The corresponding validation scatter
plots for TS-X SM and S1 EW are presented in Fig. 12
in Appendix. Scatterplots for S1 IW, which are additionally
validated when processing long archive dataset, are shown
separately in Section III-B.

Note that much more data were processed in this study
in comparison to [14], including several thousands of world-
wide scenes from the S1 and TS-X archives. Hence, the
CWAVE_EX results slightly differ for individual parameters
from the results in [14], which was, from today’s point of
view, based on a limited dataset.

S1 IW has better resolution and potentially can better image
waves in comparison to S1 EW. Most of the S1 IW acquisitions
are in coastal areas with low and short waves and with a high
number of image artifacts (ships, wakes, buoys, sandbanks,
etc.). Statistically, ca. 15% of S1 IW and ca. 30% of TS-X
samples in this study have a near-zero wind speed under
2 m· s−1 (e.g. in areas with regions shadowed by coastal
mountains in the Adriatic and Ionian Seas). The resulting
low waves, usually below 0.5 m and waves with wavelengths
under the so-called cut-off wavelength, are imaged in the form
of noise in SAR image. From such noisy images (image
spectrum depicts no peaks associated with waves), the wave
height can quite accurately be estimated. The wave height then
remains within a small domain of 0–1 m. However, low sea
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TABLE II
RMSE FOR TOTAL INTEGRATED SEA STATE PARAMETERS ESTIMATED USING SAR-SEASTAR ALGORITHM FOR Hs AND Tm2 ,

CWAVE_EX RESULTS [14] ARE SUPPLEMENTED BY SVM RESULTS OF THIS STUDY IN BOLD

TABLE III
DISTRIBUTION OF RMSE FOR SIGNIFICANT WAVE HEIGHT Hs FOR S1 IW ARCHIVE 2020–2021

state is difficult for estimating the wave period, which can
differ from 1 s (very low wind sea) to ca. 15 s (long swell)
for the same low wave height. Although the value of the
wave period for such small waves has no practical importance
(e.g., for shipping), a large number of such cases negatively
affects the overall statistics. On the other hand, S1 EW are
acquired in the open ocean, where swell waves dominate and
can be well imaged in SAR. The number of image artifacts
in S1 EW is also noticeably lower due to the open ocean
areas.

It should also be mentioned that although training for Hs

and Tm2 are based on the same features and the domains
for both parameters are nearly identical (0–16 m for Hs and
0–16 s for Tm2), the training for Tm2 using the same number
of samples takes twice the time compared to Hs trainings. The
reason is the effect described above: large areas have near-zero
wave heights which can be easily trained, which, however, can
have a wide range of wave periods.

B. S1 IW Detailed Validation in Scope of ESA SARWAVE

An especially detailed validation for S1 IW was carried
out in scope of study for the ESA SARWAVE project [27],
where a large proportion of S1 IW archive over ocean for
2020 and 2021 was processed with a 5 km raster step. The
ESA SARWAVE project aimed to develop methodologies for
deriving sea state related parameters and wave spectra from
S1 SAR IW imagery using the newest methodologies in
connection with altimeter and optical sensors. In the scope of
this study, DLR processed the S1 IW ESA archive for Areas-
of-Interest (AoIs) cover the majority of measurement buoys
open for scientific studies, that is, NDBC/ECCC around USA
and Canada and EMODNET in European waters. Fig. 3 gives

an overview on buoys used for validation (top) and overview of
S1 IW scenes in 2020 (11 589 images) processed and validated
(bottom).

Hs and Tm2 were analyzed in detail and compared with the
results of a wave model and buoy measurements. For ice-free
areas −55◦ <latitude<60◦, ca. 14 Mio. Model collocations
were collected. For buoy comparisons with a collocation
radius of 10 km (means all processed S1 IW values are
inside the collocation circle), ca. 45 000 buoy collocations
were collected. In total, for wave height Hs , by compari-
son with MFWAM model RMSE = 0.42 m and BIAS =

−0.02 m, by comparison with buoys RMSE = 0.49 m and
BIAS = −0.05 m were reached. More detailed information
on RMSE distribution for different sea state domains and
as well as percental distribution of data can be found in
Tables III and IV.

Fig. 4 presents scatterplots for the validation of Hs and Tm2
against model results and buoy measurements. Fig. 5 demon-
strates an example of a time series with half a year duration
of Hs and Tm2 measurements from the buoy EMODNET-
1043928 (ID: 6200163) located in the North Atlantic in front
of the French coast (location marked in Fig. 3) and collocated
with S1 IW measurements. Fig. 6 shows an example of sea
state processing for all eight sea state parameters from S1
IW scenes, covering ca. 1600 km × 200 km, acquired during
a strong storm in the North Atlantic on 2020-02-14 at 18:45
UTC with Hs reaching up to 13 m. Processing in a 5 km raster
results in ca. 1500 subscenes for each individual IW image.
The isolines depict the results of MFWAM model at 18:00
UTC (excluding Tm1 period which is not provided by [22]).

In Tables III and IV, the number of collocations for Hs and
Tm2 differs for both, the model and the buoys, due to two
reasons:
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Fig. 3. (Top) Overview of buoys used in the study. (Bottom) Example coverage S1 IW in scope of the ESA SARWAVE in 2020 used for validations in
ice-free area −55◦ <latitude<60◦ with total number of ca. 12 000 scenes. The scenes are displayed overlapped in the order their acquisitions, the color
indicates processed wave height.

TABLE IV
DISTRIBUTION OF RMSE FOR SECOND MOMENT WAVE PERIOD Tm2 FOR S1 IW ARCHIVE 2020–2021

1) Hs and Tm2 are two independent functions with their
own control-of-results. For a series of certain factors
(details in [14]), the resulting values can be filtered out
as an error.

2) The buoy measurements have gaps in the data recording,
some buoys measure only Hs .

IV. COLLOCATION OF THE RESULTS FOR DIFFERENT
RADAR BANDS AND METHOD PRACTICAL

IMPLEMENTATION

A. Collocation S1 IW and TS-X SM Archives

In the scope of this study, the first cross-comparison between
sea state estimated from two sensors working with different
radar bands and scanning modes was carried out.

The S1 IW processed scenes (complete ESA archive
2020 and 2021 for the AoI, Section III-B) were collocated

to TS-X “ocean archive” (all scenes with at least 5 km water).
To each S1 IW processed subscene (5 km processing raster
step) several TS-X subscenes (1.5 km raster) with a distance
of up to 30 km and within a ±30 min time window were
assigned.

As an example, Fig. 7 shows the TS-X SM scenes from
the TS-X SM ocean archive 2020 collocated with S1 IW (first
row, the whole ocean archive is displayed bottom left, the
color means scenes density within 20 km considering TS-X
SM scene centers).

An example of a direct collocation in space and under 1 min
in time acquired over Mediterranean Sea on 2020-02-03 at
05:05 UTC can be seen in the second row. In the collocated
area, the wave height estimated from S1 IW is ca. 1.01 m,
the averaged wave height from TS-X is ca. 0.85 m (ca. 15 cm
bias for this case). The MFWAM model wave heights are ca.
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Fig. 4. Comparisons for significant wave height Hs and second moment wave period Tm2 estimated using SAR-SeaStaR with model and buoys (10 km
collocations) worldwide (see Fig. 3).

Fig. 5. Example of a time series with a duration of half a year of significant wave height Hs (top panel) and second moment wave period Tm2(bottom panel)
for the buoy EMODNET-1043928 (ID:6200163) located in North Atlantic in front of the French coast (marked by a black circle in Fig. 3). Blue: model data,
green: buoy measurement, red dots: S1 IW retrievals.

0.90 m at 03:00 UTC and increased to ca. 1 m at 06:00 UTC
in the collocation area. Interpolated in time, this mean wave
height of ca. 0.95 m what is exactly between these two values.

From all TS-X ocean scenes in 2020 and 2021 185 scenes
could be collocated with S1 IW scenes, resulting in ca. 23 000
collocated TS-X subscenes. Fig. 8 (left) presents the statistics
for time and space collocations independently, where the
number of collocated images (ID products) is displayed for six
domains for both time and space. The cumulative percentage
is given in the vertical axis: it can be seen that only ca. 25%
of all collocated S1 and TS-X are directly overlapping with a
distance under 5 km, while around 50% are collocated under

10 km. In terms of time, around 50% of all collocations are
under 5 min time delay.

Fig. 8 (right) presents the Hs scatterplot for collocated
subscenes. A series of wave heights estimated from TS-X
(1.5 km raster processing step) corresponds to one value in S1
IW (5 km step) with a distribution of the values. The statistical
comparisons of Hs estimated from S1 IW and TS-X SM results
in RMSEHs

S1−TSX = 0.44 m and BIASHs
S1−TSX = 0.07 m. The

numbers are on the same order as the accuracy of S1 IW
compared with ground truth model data. Note, that the partial
uncertainties estimated against the model only for these near-
coast 23 000 locations for S1 are RMSEHs,partial

S1-model = 0.37 m
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Fig. 6. Example of eight sea state fields processed from a S1 IW scene with ca. 1600 × 200 km coverage acquired during a strong storm in the North
Atlantic on 2020-02-14 at 18:45 UTC with Hs reaching ca. 13 m. Processing in a 5 km raster results in ca. 1500 subscenes (approximately 30 × 50) for
each individual IW image. Isolines shows the results of MFWAM at 18:00 UTC.

with BIASHs,partial
S1-model = 0.06 m and for TS-X RMSEHs,partial

TSX-model =

0.42 m with BIASHs,partial
TSX-model = −0.01 m. In this way, bias

between S1 and TS-X means the local overestimation by S1
with ca. 7 cm.

It was found that the individual outliers in sea state in
TS-X SM are connected to large slick-looking structures
mostly due to algae bloom, oil, etc., which depict a stronger
NRCS contrast in X-band (TS-X) in comparison to C-band
(S1) (“dark spots” with low NRCS). These cover multiple
subscenes and therefore cannot be correctly filtered out in the
subscene-preparation and control-of-feature processing steps.
It was found that generally, in S1 IW C-band scenes (with a
lower spatial resolution), these local slicks are not so strongly
pronounced.

A cross-comparison for collocated S1 IW, TS-X and buoys
were carried out and shown in Fig. 13. The cross-comparison
matrix presents RMSEs for each combination for all four
sources including model is presented. Unfortunately, such
quadruple collocations are very rare (N = 152 means number
of all S1 IW subscenes collocated to TS-X subscenes and also
collocated to a buoy). Statistically it can be only summarized

that RMSE values are on the same order as the uncertainties
for each equipment.

B. Technical Implementation for Daily NRT Services

The current version of the SSP is integrated into the S1
NRT processing chain which is part of Copernicus Collab-
orative Ground Segment developed by the Maritime Safety
and Security Laboratory at the German Remote Sensing Data
Center (DFD) GS in Neustrelitz (NZ) [28], [29]. For the SSP,
the data acquired daily over the North and Baltic Seas are
processed directly and the derived information products are
delivered to users in NRT.

The GS in Neustrelitz is located north of Berlin at
53◦19.779′N, 13◦4.247′E and thus offers ideal opportunities
to receive and process satellite data acquired over Europe in
the so-called “direct downlink (Pass Through) mode.” Fig. 9
shows the 5◦ reception mask of GS NZ which represents the
area of possible direct downlink acquisitions. For S1 reception,
DLR’s Front End Processor (FEP) is in use to generate the
Level-0 (L0) products and is configured to consider only Pass
Through (VC37–VC44) and NRT (VC4–VC19) data packages.
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Fig. 7. TS-X SM scenes from the TS-X SM ocean archive 2020 collocated with S1 IW scenes collected in scope of SARWAVE study (AoI, ca. 12.000 scenes,
Fig. 3) with 30 km and 30 min (first row, the whole ocean archive displayed bottom left), the color means scenes density within 20 km considering TS-X
SM scene centers. An example of a direct collocation between S1 IW and TS-X SM (second row) with a rare collocation of under 1 min.

Fig. 8. (Left) Collocation of S1 IW (see Fig. 3) and TS-X SM scenes for 2020 and 2021. The statistic for collocation in time and space is given independently
with dividing the data into six domains. The bars show both: the number of scenes (inside bars) for each domain and cumulative percentage of the collocated
images. (Right) Scatterplot for collocated subscenes; one value in S1 IW (5 km raster processing step) corresponds to a series of Hs from TS-X (1.5 km
raster) in 30 km circle around center of S1 IW subscene. The RMSE = 0.44 m corresponds to total RMSE of S1 IW. The BIAS = 0.07 m shows a slight
local overestimation of S1 for collocated cases by comparison with model for these near-coastal locations.

Once the first L0 slice product (SAFE format) is completed,
the Telemetry Processing Unit (TM Proc) generates a transfer
request for the distribution unit, which immediately starts the
transfer to the image and value-adding processing system.

The Instrument Processing Facility (IPF) developed for the
ESA Payload Data Core Ground Segment (PDGS) is used
to generate Level 1 (L1) products. The IPF was developed
by MacDonald, Dettwilerand Associates Ltd. (MDA), Canada,
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Fig. 9. GS Neustrelitz and acquisition circles for S1 and TS-X satellites, 5◦ elevation. Inside of the yellow acquisition circles the data can be transferred from
satellites to GS directly after acquisition for Near-Real-Time processing. Text boxes present the parameters of satellite modes included into current version of
SAR-SeaStaR.

under contract of ESA and was also licensed and supported
for the collaborative ground segment. The solution imple-
mented for the NRT processing framework is based on the
Processing System Management (PSM), which provides a
systematic process flow and also controls subsequent Level-2
(L2) processing.

The SSP is part of SAINT, developed at the DLR Maritime
Safety and Security Laboratory Bremen. It is provided as a
container, enabling easy integration into the PSM. Subscription
rules allow user requests to be directly linked to on-demand
GS planning and L2 processing.

L2 products with meteo-marine parameters (sea state and
wind fields) are typically delivered within 15 min after acqui-
sition. This is accomplished using standard methods such as
FTP, SFTP, Google storage, and rapid delivery via e-mail
or web mapping servers. Fig. 10 shows an example result
of the SSP visualized in the Maritime Surveillance System
(MARISS) Web Client, which was developed at the DLR
Maritime Safety and Security Laboratory Neustrelitz.

C. Application for Arctic Under Partial Ice Coverage

The method was applied for studies of sea state in the
Arctic. All archive TS-X SM scenes acquired over the Cana-
dian coast in an area north of 68◦ latitude around Herschel
Island (north of Alaska) for summer periods (175 partially
ice-free scenes found) were processed in scope of a study [30]
to assess the bottom shear stress which triggers erosion and
were validated against the hindcast model [21]. Although the
acquisitions with high percentages of ice and ice floes in

many scenes were difficult for processing, the filtering and
control-of-features procedures allowed to detect the largest
proportion of ice-spoiled subscenes as “non-valid” and reach
a total accuracy of 0.37 m for Hs . This is only 2 cm
below the overall accuracy of the TS-X SM reported in the
study conducted in ice-free zones south of 60◦ latitude. It is
noteworthy that the majority of the ice-covered subscenes were
automatically recognized as “nonvalid” by control features (Er

in the first place, more information on control features can be
found in [14]) and ice floes are treated successfully as ships,
where NRCS-outlier pixels in a subscene are replaced by the
subscene NRCS mean value.

V. SUMMARY

A. Method Generally and Cross Comparisons for Different
Satellites

In the scope of this study, a new method was developed
allowing the estimation of a series of sea state parameters in
the form of fields for multiple satellites/modes in near-real
time with improved accuracy for the significant wave height
Hs and the second moment wave period Tm2. By comparison
with models, in terms of Hs , an RMSE = 0.42 m for S1 IW,
RMSE = 0.51 m for S1 EW and RMSE = 0.35 m for TS-X
SM were reached. In terms of Tm2, an RMSE = 0.88 s for
S1 IW, RMSE = 0.69 s for S1 EW, and RMSE = 0.45 s for
TS-X SM were achieved. The advantage of the method is its
applicability not only for open ocean with well pronounced
long swell but also for coastal areas with short windsea and
for calm wind conditions. The method does not depend on
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Fig. 10. Demonstrator for NRT services at GS Neustrelitz with implemented SAINT&SAR-SeaStar. The demonstrator runs daily for S1 IW in Southern
North Sea and Western Baltic Sea. The processing raster is 3 km, the wave-detection layer shows wave height (background color) and wave period (in circles:
Hs top, Tm2 bottom). Data for eight sea state parameters can be directly downloaded as Google-Earth kmz file. The wind-detection layer (white wind flags)
shows the wind speed estimated from the SAR image.

the cut off which is just one feature in the set of other
features. It is also not dependent on type of sea state imaging
(linear/nonlinear, wave-looking-structures/noise-only imaged).
The accuracy is not dependent on imaging of swell in SAR
and is not connected to proportion of swell in total Hs .

For the first time, a comparison for sea state estimated from
different satellites with different radar bands and scanning
modes was carried out based on an archive processing. It was
found that from ca. 12 000 annual TS-X SM ocean scenes
ca. 90 can be collocated to S1 IW within 30 km and 30 min.
There, ca. 25% of collocations are a direct overlapping and ca.
50% closer than 5 min in time (see Fig. 8). The comparisons
of the collocated wave height estimated using the presented
method from S1 IW and TS-X SM resulted in an RMSE =

44 cm, which corresponds to the general accuracy of S1 IW of
42 cm, and a BIAS∼7 cm, which means a slow overestimation
by S1 for collocated samples located predominantly in coastal
waters.

B. Sea State From Different Satellite Modes

It was found that the training for various satellite SAR
modes has differences not only due to technical parameters
of the acquisition like resolution but also due to differences of
acquisition areas by different modes. As S1 acquires WV mode
imagettes across the open ocean and generally switches to IW
and EW in shelf waters and Polar Regions, the kind of sea
state and ground truth uncertainties are different. It was shown
that for the WV acquisitions, only sea state with a period
Tm2 >4 s (predominantly includes swell) are imaged. On the
other hand, in the IW scenes around 22% of acquisitions

have a wave period Tm2 <4 s. This means waves with short
wavelengths are under ca. 50 m (two times under cutoff). Such
waves are imaged as noise without any wave-looking patterns.
Furthermore, ca. 10% of all S1 IW acquisitions worldwide are
in wind shadowed areas (e.g., Mediterranean Sea) with winds
under 1.5 m · s−1. Under such near-zero wind, no required
capillary waves are built, the Bragg radar scattering does not
take place and only specular noise from the sea surface can be
used for estimations (for open ocean WV mode, winds under
1.5 m · s−1 are only ca. 1%).

C. Method Development

It was shown that the method designed and trained for
near-real-time application under all conditions can process all
data without excluding “nonvalid” scenes (e.g., homogeneity
test, low wind) without loss of accuracy. In the study, only
individual subscenes (“black gaps” with zero NRCS due to
invalid pixels by row SAR data processing, multiple ships in
one subscene, wind turbines, oils spills, or sea ice floes) were
detected as “error” with ca. 0.1% of all data (subscenes).

The processing of the large archives of many thousand
scenes shows that it is not realistic to completely remove
and correct all artifacts and ambiguities in SAR images.
Outliers in the results are inevitable if only the model func-
tion is applied. However, the results of the model functions,
developed for different parameters independently, can be sub-
sequently improved by connection of the resulting parameters.
A series of thresholds and filters based on parameter defi-
nitions (e.g., Hs > H swell−1

s >H swell−2
s , Hs>H wind

s ) and wave
energy conversation (sum of squares of three components
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Fig. 11. SAR-SeaStaR algorithm workflow realized in SSP as a part of SAINT package for processing meteo-marine information, targets, and processes at
sea surface from SAR imagery. The current version of the algorithm includes 32 CWAVE_EX model functions (four satellite/modes, eight sea state parameters)
and eight SVM ML functions (four satellite/modes Hs and Tm2). For each processing operation, the approximate effects in percent on resulting RMSE in
terms of wave height are shown on the right; for the model functions, this is compared to CWAVE method [11].

dominant and secondary swells and windsea) were imple-
mented. Furthermore, from statistics and measurements, the
connections between wave height, wind, and wave period were
implemented (details in Section II-G “Additional correction
and filtering procedures”) in control-of-results filters. All these
filters contribute to a significant reduction of the percentage
of outliers.

The processing and validation of the large satellite scene
archives show, for a competitive accuracy, a state-of-the-art
algorithm, additional to model function, has to include a series
of processing steps, each needed to reach high accuracy, deal
with outliers in the results, and must be adopted for each

satellite/mode. It was found that, independent of satel-
lite/mode, even for an accurate ML function, these steps
(including the subscene preparation by finding and resetting
NRCS outliers, denoising, control of the SAR features, cor-
rection of the results by filtering, control of the resulting sea
state parameters) contribute to an improvement comparable
with the improvement of the ML model to the LR solution.

D. Trainings

The period Tm2 was first trained for SAR imagery based on
global datasets including open ocean, coastal areas and closed
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Fig. 12. Validations for TS-X SM and S1 EW for significant wave height Hs and Tm2 wave period. In the 30 × 50 km TS-X 1.5 km raster results, the
local distribution by comparison to coarse model grid points 1/12◦. S1 EW with ca. 400 × 450 km processed with a raster of 20 km corresponds to ca. each
second model grid point. TS-X SM are dominantly acquired over coasts with basically lower sea state (mean Hs ∼ 2 m, Tm2 ∼ 5 s), while the largest part
of S1 EWs are acquired in North Atlantics (mean Hs ∼ 3.5 m, Tm2 ∼ 7 s).

seas with an accuracy in the order of 0.8 s. It was found that
training the wave periods needs much more capacity than the
wave height, especially due to areas with very low sea state and
wind, which, however, can have very long waves (e.g., in the
Mediterranean Sea the areas between islands with mountains).

A phenomenon regarding the trainings of ML models
became apparent when validating large datasets. By processing
the archives and comparison with ground truth, it was observed
that while LR has generally lower accuracy in terms of RMSE
in comparison to ML, under rare extreme storm conditions
with Hs >8 m (statistically under 1% of all data) the ML
can result in a significant error in order of 4–6 m, while
LR extrapolates with an error in the order of 2–3 m. This
effect is eventually connected to higher flexibility of ML
functions, which need larger datasets for different domains,
in comparison to LR. It was found that a difference between
Hs estimated by ML and LR of more than 4 m indicates a

failure of SVM ML (outlier), where the resulting Hs is reset
to the LR solution CWAVE_EX.

E. Technical Note and Application

The complete method was made operational with direct
processing of all data using ML models, while in the previous
study [14], ML was only applied for S1 WV Hs as an
additional postprocessing procedure. The additional advantage
of the developed algorithm and processor is the possibility to
switch between SVM functions or replace them with updated
ones developed using an extended training dataset. This creates
the opportunity to continuously improve the processed results
for different parameters of the complete system.

The processing of the archives extends the available data
and enables new applications for estimating the parameters
connected to local sea state. For example, in [36], the method
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Fig. 13. Cross-comparison for quadruple collocations S1 IW, TS-X, buoys
and model for 2020 and 2021 archived data. The RMSE cross-comparison
matrix for all four sources. The partial RMSEs are calculated only for
locations where all four sources are available.

was applied to process sea state in shelf waters around USA
and Canada; all S1 IW in 2015–2020 covering the NDBC
buoys provide sea state measurements, ca. 10 000 scenes, were
processed and validated with model and buoys. That study
confirms the RMSE numbers estimated in this work and uses,
for the first time, the local sea state variations for retrieving
the roughness length of the sea surface.

The application of the method by processing TS-X SM in
the Arctic (Herschel Island north of Alaska, ca. 69◦ latitude,
175 scenes in archive) with partial ice coverage shows the total
accuracy of 0.37 m for Hs [30] by comparison to the hindcast
model results MFWAM. This is only 2 cm below the RMSE
for TS-X SM reported in the study conducted in ice-free zones
south of 60◦ latitude.

The potential to process a series of sea state parameters
including partial integrated such as dominant and secondary
swell and windsea allows connecting the empirical methods to
wave spectra estimation methods based on transfer functions
(e.g., [31], [32], [33]). A joint product could be an opportunity
to improve both methods and contribute to forecast modeling
where the wave spectra from remote sensing are assimilated
(e.g., [34], [35]).

APPENDIX

The algorithm SAR-SeaStaR includes the complete pro-
cessing chain with a series of steps each needed to reach
high accuracy (see Fig. 11). The basic processing runs with
CWAVE_EX LR models, for Hs and Tm2 the ML models are
available.
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