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1 Introduction

The sum-rank metric [15], Hamming metric [7] and Lee metric [10] are examples
of coordinate-additive metrics. Codes with distance properties in such metrics are
of particular interest in various applications, such as linear network coding [12],
quantum-resistant cryptography [8,17], coding for storage [13], space-time cod-
ing [19]. Bounds on the size of an `-dimensional ball or sphere in such metrics
are essential for deriving bounds like the sphere-packing bound or the Gilbert–
Varshamov bound [4]. An information-theoretic approach for bounding the vol-
ume of an `-dimensional ball concerning any coordinate-additive metric, via the
entropy of an auxiliary probability distribution, was presented in [11]. Specifi-
cally addressing the sum-rank metric, closed-form upper and lower bounds for
the sphere size were introduced in [17,16] and further discussed in [6]. However,
these bounds are limited in their tightness, particularly noticeable in scenarios
involving smaller sizes of the base field q and/or a larger number of blocks `.

The exact value for the size of an `-dimensional sphere S`
t of radius t in any

coordinate-additive metric can be derived by computing all its (ordered) inte-
ger partitions, where each part of the partition has at most a part size of the
maximal possible weight in the corresponding metric. These will represent the
decomposition of the nonzero entries of the elements in the sphere. To get the
size of the sphere we sum over all integer partitions adding up the number of el-
ements that have a weight decomposition corresponding to the integer partition.
Although this procedure provides the exact value of

�

�S`
t

�

�, it often doesn’t give an
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intuitive or practical understanding of the sphere size or how this size changes as
the parameters change. For large parameters it is even impractical to compute
the size in this way. Hence, the derivation of closed-form bounds on the exact
formula are of major interest. A current method of obtaining both upper and
lower bounds on

�

�S`
t

�

� is, for instance, to consider only the partition attaining the
maximum number of elements. This approach is utilized by [16,17,6]. Another
method is to bound the size of an `-dimensional ball B`

t of radius t, since clearly
every upper bound on

�

�B`
t

�

� is a valid upper bound on
�

�S`
t

�

�, too. On a complex
analytic side, sizes of spheres and balls can be described using generating func-
tions, whose coefficients can be computed using the saddle-point technique and
other techniques from analytic combinatorics (see [2,3]). We refer to [18] for a
more detailed discussion and proofs of the results presented in this paper.

2 Preliminaries

Let q be a prime power and denote by Fq the finite field of q elements. The
natural numbers N shall include 0. Given a random variable X over a finite
alphabet A with probability distribution P , we define P (a) := Prob(X = a)
with a 2 A. The entropy H(P ) of P with respect to the base q is defined as
H(P ) := �

P

a2A,P (a) 6=0 P (a) logq P (a).

2.1 Coordinate-Additive Metrics

Let (A,+) be a finite abelian group with identity element 0 called the alphabet.
We define a weight function wtA : A ! N on A to be a function satisfying for
all a, b 2 A:

1. wtA(a) = 0 if and only if a = 0,
2. wtA(a) = wtA(�a),
3. wtA(a+ b)  wtA(a) + wtA(b).

This function can be extended to a coordinate-additive weight function
on the cartesian product A` (with group structure inherited coordinate-wise
from A) by defining the weight of an `-tuple to be the sum of the weights of

its coordinates, i.e., wt⌃A(a1, . . . , a`) =
P`

i=1 wtA(ai). This coordinate-additive
weight function naturally induces a metric d⌃A : A`⇥A` ! N as d⌃A(v, w) :=
wt⌃A(v�w). Given a coordinate-additive weight function wt⌃A on A`, we define
the `-dimensional sphere, respectively ball, of radius t 2 N by

S`
t := {v 2 A` : wt⌃A(v) = t} and B`

t := {v 2 A` : wt⌃A(v)  t}.

For the special case of the sum-rank metric, let m, ⌘ and ` be positive integers.
Also define µ := min{m, ⌘} and n := ⌘`. We write F

m⇥⌘`
q for the space of

m⇥(⌘`) matrices over the finite field Fq. Every matrix M 2 F
m⇥⌘`
q is represented

as a sequence of ` blocks, i.e., M = (B1 |B2 | . . . |B`) with each Bi 2 F
m⇥⌘
q .

The sum-rank weight of a matrix M 2 F
m⇥⌘`
q is defined as wtSR(M) :=
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P`
i=1 rkq(Bi) where rkq(Bi) is the rank of Bi over Fq. Analogously, we define

for every 0  t  µ · `, the sum-rank sphere of radius t as

Sm,⌘,`,q
t := {M 2 F

m⇥⌘`
q : wtSR(M) = t}.

For fixed m, ⌘, q, `, the sum-rank sphere sizes
�

�

�
Sm,⌘,`,q
t

�

�

�
can be computed with a

dynamic program described in [17].

2.2 Ordinary Generating Functions

The theory of ordinary generating functions (OGFs) is a useful branch of math-
ematics that lays connections between combinatorics, analysis, number theory,
probability theory and other fields. In this paper we restrict ourselves to OGFs
corresponding to weights in coordinate-additive metrics, which are polynomials
with non-negative coefficients. Consider a finite abelian group A with weight
function wtA and induced coordinate-additive weight function wt⌃A on A`. The
OGF corresponding to wt⌃A is defined as the polynomial

FA`(z) :=
P

v2A` zwt⌃A(v) =
Pµ`

i=0 |S
`
i | z

i.

The OGF for A = A1 is denoted by FA(z). For a polynomial F (z) = F0+F1z+
. . .+Fdz

d we use the notation [zi]F (z) to refer to the i-th coefficient Fi of F (z),
with [zi]F (z) = 0 for i > deg(F ). The OGF for the sum-rank metric on F

m⇥⌘`
q

is denoted by Sm,⌘,`,q(z) =
Pµ`

i=0 |S
m,⌘,`,q
i | zi.

Definition 1 (Partial order on polynomials). Let F (z), G(z) 2 R[z] be two

real polynomials. If [zi]F (z)  [zi]G(z) for all i 2 N, we say F (z) is coefficient-

wise less-than-or-equal to G(z), denoted as F (z) 4c G(z).

Proposition 1 ([2, Theorem I.1]). Let A1, A2 be two finite alphabets with

weight functions wtA1
,wtA2

respectively. Then wtA1⇥A2
(a, b) := wtA1

(a) +
wtA2

(b) is a weight function on A1 ⇥A2 and

FA1⇥A2
(z) = FA1

(z)FA2
(z).

In particular, we have FA`(z) = FA(z)
`, for ` 2 N. Furthermore, the product

of real polynomials with non-negative coefficients preserves the partial order: if

F (z) 4c G(z) and K(z) 4c L(z), then F (z)K(z) 4c G(z)L(z).

Lemma 1. Let F (z) be a real polynomial of degree d > 0 with non-negative

coefficients Fi � 0 and first derivative F 0(z). If F (z) is not a monomial, then

the function G(z) = zF 0(z)/F (z) is a strictly increasing smooth function on the

positive reals R>0. In particular if F (0) > 0, which is the case with OGFs of

finite alphabets with weight functions, G(z) is a bijection from [0,1) to [0, d).

Proof. Smoothness follows directly from smoothness of F (z) and 1/z on R>0.
Setting K(a, b) := bF 0(b)F (a) � aF 0(a)F (b) with 0 < a < b, we can show that
K(a, b) > 0, thereby proving G(z) is strictly increasing. Lastly, we have that
limz!1 F 0(z)/zd�1 = dFd and limz!1 F (z)/zd = Fd, so limz!1 G(z) = d. ut
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3 Information-Theoretic Bounds on Spheres

In [11] an asymptotically tight upper bound on the volume of an `-dimensional
ball

�

�B`
t

�

� of radius t was introduced. This bound is valid for any arbitrary additive
weight function wtA with respect to some finite abelian group A as described in
Section 2.1. The bound was proved to hold for normalized weights ⇢ with ⇢ := t/`
up to the average weight w := |A|�1

P

a2A wtA(a) at which the volume of the
ball is saturated. We extend the result from [11] to the size of spheres and also
prove that the bound holds for ⇢ � w up to the maximum possible weight, i.e.
0 < ⇢ < µ with µ := maxa2A {wtA(a)}. Note that this notation coincides with
µ = min{m, ⌘} for the sum-rank metric. For any a 2 A, ` 2 N and 0 < ⇢ < µ,
we define the probability distribution

P�(a) :=
q�� wtA(a)

Z(�)
(1)

where � is the unique solution to the weight constraint

P

a2A P�(a) wtA(a) = ⇢ (2)

and Z(�) is chosen s.t.
P

a2A P�(a) = 1. Note that the normalized radius ⇢

and � are in one-to-one correspondence due to the weight constraint (2) and
Lemma 1 (cf. (3)). For a � 2 R, the value ⇢ determined by this correspondence
is denoted ⇢(�). Let us denote by H⇢ := H(P�) the entropy of the distribution
in (1). Then, the following bound was proven in [11].

Theorem 1 ([11]). For any 0 < ⇢  w and ` 2 N we have

1

`
logq

�

�B`
⇢`

�

�  H⇢.

The following is an immediate consequence of Theorem 1 above.

Corollary 1. For any 0 < ⇢ < w and ` 2 N we have

1

`
logq

�

�S`
⇢`

�

�  H⇢.

3.1 Upper Bounds

We show that Corollary 1 also holds for normalized weights s.t. 0 < ⇢ < µ.
Recall the OGFs for A and A`

FA(z) =
P

a2A zwtA(a) and FA`(z) =
P

v2A` zwt⌃A(v) = FA(z)
`.

We now can express Z(�), ⇢(�) and H⇢ in terms of these OGFs, i.e.

Z(�) = FA

�

q��
�

, ⇢(�) = q��
F 0
A

�

q��
�

FA (q��)
, H⇢ = logq

✓

FA(q
��)

(q��)⇢

◆

. (3)

Due to space constraints, we skip the proof for these equalities. We now make
use of a technique explained in [2, Section VIII.2] where Flajolet and Sedgewick
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present the saddle-point bound, i.e., an upper bound on the coefficients of a
OGF. For any real valued y > 0 we have

|S`
t |y

t =
�

[zt]FA`(z)
�

yt  FA`(y) = FA(y)
`.

We can further rewrite this expression and take the infimum on the right-hand
side and obtain

1
`
logq |S

`
t |  inf

y>0
logq

⇣

FA(y)
y⇢

⌘

. (4)

We can, moreover, show that a global minimum of FA(y)/y
⇢ exists and therefore

the infimum is a minimum: by setting the derivative of FA(y)/y
⇢ to zero and

using (3) for ⇢, we obtain a local minimum for y = q�� . Then using Lemma 1,
we can show that the derivative of FA(y)/y

⇢ is negative for 0 < y < q�� and
positive for y > q�� . Therefore, the local minimum is also the global minimum,

where the function logq

⇣

FA(y)
y⇢

⌘

takes the value H⇢ (cf. (3)).

To summarize, the saddle-point bound (4) coincides with the entropy bound
(see also [5, Theorem 4.1], [1, Theorem IV.9]), but extends the range of ⇢ to
(0, µ), as stated in the following theorem.

Theorem 2. For any 0 < ⇢ < µ and ` 2 N we have
1

`
logq |S

`
⇢`|  H⇢.

3.2 Lower Bounds

We now derive a lower bound based on the probability distribution in (1). Let
X� , X�,1, X�,2, X�,3, . . . be i.i.d. random variables taking values in A with prob-
ability distribution P� . Define the function '�(a) := � logq (P�(a)) for a 2 A.
As a consequence of Chebyshev’s inequality [20], we have for any � > 0

Prob
⇣�

�

�

1
`

P`
i=1 '�(X�,i) � H⇢

�

�

�
� �

⌘


Var('�(X�))

`�2 =
�2 Var(wtA(X�))

`�2 .

By setting � = |�|�/`, where � is chosen for some variable 0 < " < 1 as

� = `1/2
Var(wtA(X�))

1/2

(1� ")1/2
, (5)

we can derive a lower bound with a similar technique used in [11].

Theorem 3. Given t = `⇢ and 0 < " < 1, let � be defined by the weight

constraint (2) and � as in (5). Then

X

��<j<�, j2Z

|S`
t+j | � " q`H(P�)�|�|�.

Theorem 4 gives an alternative bound using the inequality

max
��<j<�, j2Z

|S`
t+j | �

1

2d�e � 1

X

��<j<�, j2Z

|S`
t+j |.
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Theorem 4. Given t = `⇢ and 0 < " < 1, let � be defined by the weight

constraint (2) and � as in (5). Then

max
��<j<�, j2Z

1

`
logq |S

`
t+j | � H(P�)�

|�|�

`
�

1

`
logq

✓

2d�e � 1

"

◆

.

Empirically, good bounds seem to be obtained for " close to 0. Moreover, for

constant " and ⇢, the bound coincides asymptotically with Theorem 2 as ` ! 1
and is therefore asymptotically tight.

4 Bounds on Spheres in the Sum-rank Metric

In this section we derive improved closed-form upper and lower bounds on the
size of a sphere in the sum-rank metric. Hence, we fix m,⌘ and q and we
use NMq(m, ⌘, t) to denote the number of matrices of rank t over F

m⇥⌘
q . For

a, b 2 N we define the q-binomial coefficient as
h

a
b

i

q
=
Qb

i=1
1�qa−b+i

1�qi . Then,

NMq(m, ⌘, t) =
h

m
t

i

q

Qt�1
i=0(q

⌘ � qi) (see [14]). The q-Pochhammer symbol is

defined as

(a;x)1 :=
Q1

i=0(1� axi), �q :=
⇣

1
q ;

1
q

⌘�1

1
.

Let q � 2, µ = min{m, ⌘}, M = max{m, ⌘} and 0  i  µ. Then the q-binomial
coefficients and q-Pochhammer symbols satisfy the following inequalities, that
follow from elementary arguments (see [9, Lemma 2.2])

1 + 1
q �

⇣

1
q2 ;

1
q2

⌘�1

1
and



µ
i

�

q

�

(

(1 + 1
q )q

i(µ�i) if 0 < i < µ

1 if i = 0 or i = µ

and as a direct corollary of these two inequalities we obtain


µ
i

�

1/q2
qi(µ�i) 



µ
i

�

q

. (6)

Now the inequality
⇣

Qa�1
j=0 (q

c � qj)
⌘b

>
⇣

Qb�1
j=0(q

c � qj)
⌘a

for a, b, c 2 N with

0  a < b < c yields
Qi�1

j=0(q
M � qj) >

⇣

Qµ�1
j=0 (q

M � qj)
⌘i/µ

= qiM
�

�q,m,⌘
�1
�i/µ

(7)

where we introduce the notation �q,m,⌘
�1 :=

QM

j=M�µ+1(1�(1/q)j). Combining
(6) and (7) lead to a new lower bound on the number of matrices of rank t.

Proposition 2. For m, ⌘, i 2 N with i  µ, we have the lower bound
⇣

�q,m,⌘
�1/µ

⌘i


µ
i

�

1/q2
qi(m+⌘�i)  NMq(m, ⌘, i).

Next, we can obtain an upper bound for the number of matrices by introducing

the function q,m,⌘(t) :=
⇣

(1�q−m)(1�q−⌘)
(1�q−1)

⌘t

and writing

NMq(m, ⌘, t) =
⇣

Qt
i=1

(1�q−m+i−1)(1�q−⌘+i−1)
(1�q−i)

⌘

qt(m+⌘�t).
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Proposition 3. For m, ⌘, t 2 N we have the following upper bound

NMq(m, ⌘, t)  q,m,⌘(t)q
t(m+⌘�t).

In [17] an upper bound is derived using NMq(m, ⌘, t)  �qq
t(m+⌘�t). By doing

similar steps with q,m,⌘(t) instead of �q we obtain Theorem 5.

Theorem 5. Given positive integers m, ⌘, `, t and a prime power q, it holds

�

�

�
Sm,⌘,`,q
t

�

�

�
 q,m,⌘(t)

✓

`+ 1� 1

`� 1

◆

qt(m+⌘� t
`
).

Finally we state a strong form of log-concavity for (NMq(m, ⌘, i))µi=0 that we
apply later to Theorem 8.

Theorem 6. For 0 < i < µ we have

NMq(m, ⌘, i)2

NMq(m, ⌘, i� 1)NMq(m, ⌘, i+ 1)
=

(qm � qi�1)

(qm � qi)

(q⌘ � qi�1)

(q⌘ � qi)

qi(qi+1 � 1)

qi�1(qi � 1)
� q2.

Moreover, since convolution preserves log-concavity, it holds that for all ` that

the sequence
⇣�

�

�
Sm,⌘,`,q
i

�

�

�

⌘µ`

i=0
is log-concave.

4.1 Integral Upper Bound

Let f(x) and g(x) be two real-valued functions defined on the natural numbers
(or on a larger domain). We define the discrete convolution by [f ⇤ g](t) :=
Pt

i=0 f(i)g(t � i), for t 2 N. The `-fold discrete convolution [f ⇤ f ⇤ · · · ⇤ f ]
(well-defined by associativity of ⇤) is denoted as f⇤`. Let C(t) be a real-valued
function depending on parameters m, ⌘, q and satisfying

�

�

�
Sm,⌘,1,q
t

�

�

�
 C(t)qt(m+⌘�t) and C(t1)C(t2) = C(t3)C(t4)

whenever t1 + t2 = t3 + t4. By Proposition 3, examples of such functions are �q
and q,m,⌘(t). The reason for looking at these functions is because they work well
with discrete convolutions, i.e., [C(x)f(x) ⇤ C(x)g(x)] (t) = C(0)C(t)[f ⇤ g](t).
Therefore, we can upper bound the sphere sizes as follows

�

�

�
Sm,⌘,`,q
t

�

�

�

⇣

C(x)qx(m+⌘�x)
⌘⇤`

(t) = C(0)`�1C(t)
⇣

qx(m+⌘�x)
⌘⇤`

(t).

Proposition 4 provides a formula to compute convolutions.

Proposition 4. Consider f`(x) := qx(m+⌘�x/`) for x 2 R and ` 2 N. Functions

of this form satisfy the following relation on their discrete convolutions

[f`1 ⇤ f`2 ](t) 

 

1 +

s

`1`2⇡

(`1 + `2) ln q

!

f`1+`2(t).
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The bound is obtained by bounding summations by integrals and by noticing

[f`1 ⇤f`2 ](t) = f`1+`2(t)
Pt

i=0 q
�
⇣

1
`1

+ 1
`2

⌘⇣

i�
`1

`1+`2
t
⌘

2

. Setting `1 = 1 and applying
Proposition 4 inductively for `2 = 1, . . . , ` � 1 we obtain upper bounds on the
sphere sizes.

Theorem 7. Let m, ⌘, `, q, t be positive integers. Choosing C(t) equal to �q or

q,m,⌘(t), we observe the following bounds, respectively

�

�

�
Sm,⌘,`,q
t

�

�

�
 �`

q

Q`�1
k=1

⇣

1 +
q

k⇡
(k+1) ln q

⌘

qt(m+⌘�t/`)

�

�

�
Sm,⌘,`,q
t

�

�

�
 q,m,⌘(t)

Q`�1
k=1

⇣

1 +
q

k⇡
(k+1) ln q

⌘

qt(m+⌘�t/`)

where the further simplifications
q

k⇡
(k+1) ln q 

q

(`�1)⇡
` ln q <

q

⇡
ln q can be made.

4.2 Lower Bound via Ordinary Generating Functions

An alternative approach is not to bound the number of matrices first, but to
bound the generating function Sm,⌘,1,q(z) coefficient-wise with another polyno-
mial F(z) whose `-th power can be computed more easily. The polynomial F
that we use to obtain a lower bound can be factored nicely into linear parts by
the q-binomial theorem.

Proposition 5. Let m, ⌘ 2 N. Then,

F(z) :=
Pµ

i=0 q
i(m+⌘�i)

h

µ
i

i

1/q2
zi =

Qµ
i=1(1 + qm+⌘�2i+1z).

This polynomial satisfies the following chain of coefficient-wise inequalities

Pµ
i=0 �

�1
q qi(m+⌘�i)zi 4c ��1

q F(z) 4c F(�q,m,⌘
�1/µz) 4c Sm,⌘,1,q(z).

The first inequality follows from
h

µ
i

i

1/q2
� 1, the second from ��1

q  �q,m,⌘
�1 

�q,m,⌘
�i/µ  1 for 0  i  µ and the third from Proposition 2. Since this

coefficient-wise inequality is preserved under convolution, we obtain

�
Pµ

i=0 �
�1
q qi(m+⌘�i)zi

�`
4c F(�q,m,⌘

�1/µz)` 4c Sm,⌘,`,q(z). (8)

If we look now at F(z)` =
Qµ

i=1

⇣

P`
j=0

�

`
j

�

qj(m+⌘�2i+1)zj
⌘

, we can lower bound

[zt]F(z)` as follows: let t = t⇤` + r with t⇤ 2 N and 0  r < `. Then using,
depending on i, the inequality

⇣

P`
j=0

�

`
j

�

qj(m+⌘�2i+1)zj
⌘

<c

8

>

<

>

:

q`(m+⌘�2i+1)z` for 1  i  t⇤
�

`
r

�

qr(m+⌘�2i+1)zr for i = t⇤ + 1

1 for t⇤ + 2  i  µ

(9)
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we obtain
µ`
X

t=0

✓

`

r

◆

qt(m+⌘� t
`
)+ r2

`
�rzt 4c F(z)`.

Finally, substituting �q,m,⌘
�1/µz for z in this inequality and applying equation

(8) we get the following result.

Theorem 8. Let t = t⇤`+ r with t⇤ 2 N and 0  r < `. Then
�

�q,m,⌘
�1
�t/µ

✓

`

r

◆

qt(m+⌘� t
`
)+ r2

`
�r 

�

�

�
Sm,⌘,`,q
t

�

�

�
.

Notice that remarkably, aside for the coefficient in front, we have obtained
the same lower bound as [16, Lemma 2] via a completely different method.
However, by choosing different inequalities in (9) there is still room for fu-

ture optimization. Since
⇣
�

�

�
Sm,⌘,`,q
i

�

�

�

⌘µ`

i=0
is log-concave, we can take the small-

est concave sequence that is coefficient-wise greater or equal to the sequence
⇣

logq

⇣

�

�q,m,⌘
�1
�i/µ �`

r

�

qi(m+⌘� i
`
)+ r2

`
�r
⌘⌘µ`

i=0
(i.e. its convex hull) for a slightly

improved lower bound on logq

�

�

�
Sm,⌘,`,q
t

�

�

�
.

5 Comparison of Bounds

In this section, we compare the new bounds presented in this paper with the ex-
isting bounds related to the sphere size in the sum-rank metric. In Figure 1 the

relationship between the growth rate 1
`
logq

�

�

�
Sm,⌘,`,q
t

�

�

�
of the sphere size and the

normalized radius ⇢ is shown. We observe that the upper bound using Theorem 2
and the lower bound using Theorem 4 are the tightest bounds and very close to
the exact values. The computation of these bounds necessitates the evaluation of
the entropy H⇢. Computing H⇢ is straightforward for a specified �, whereas de-
termining � for a given ⇢ cannot be achieved in a closed-form manner, as outlined
in (2). For scenarios where prioritizing closed-form expressions dependent on ⇢ is
essential, the derived alternative bounds may better suit the intended use-cases.
In Figure 1, the upper bounds from Theorem 7 using q,m,⌘, Theorem 7 using
�q and Theorem 5 are consolidated into a single piece-wise function by selecting
the minimum value among these bounds. The transition points are indicated
by circles. We observe that for the new closed-form upper and lower bounds we
improve significantly in comparison to the already existing closed-form bounds
given in [17, Theorem 5] and [16, Lemma 2]. Furthermore, the new bounds are
potentially useful tools for obtaining improved closed-form Gilbert-Varshamov
or sphere-packing bounds, as introduced in [1] and [16].

In Figure 2 we show the tightness of the improved bounds for different num-
bers of blocks. We choose the same values for the parameters q, m, t and n as for
the bounds given in [17]. Notably, the bounds proposed in [17] exhibit consid-
erable looseness in scenarios where ` becomes substantially large (i.e., when the
sum-rank metric converges to the Hamming metric). While superior bounds are
already established for the Hamming metric (i.e., ` = n), our analysis illustrates
substantial enhancements for ` < 60 compared to existing bounds.



10 H. Sauerbier Couvée et al.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

5

10

15

20

25

Normalized radius ⇢

1 `
lo
g
q

� � �
S

m
,⌘

,`
,q

⇢
`

� � �

[17, Theorem 5]

Theorem 5

Theorem 7 using �q

Theorem 7 using q,m,⌘

Theorem 2

Exact value

Theorem 4 with " = 0.01

Theorem 8 (convex hull)

Theorem 8

[16, Lemma 2]

Fig. 1. Comparison of upper and lower bounds for the sphere S
m,⌘,`,q
⇢` as function of ⇢

with parameters q = 2, m = 5, ⌘ = 5, ` = 100.

123456 1012 15 20 30 60
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600

800

Number of blocks `

lo
g
q

� � �
S

m
,⌘

,`
,q

t

� � �

Theorem 7 using q,m,⌘

[17, Theorem 5]

Theorem 7 using �q

Theorem 5

Exact value

Theorem 8

[16, Lemma 2]

Fig. 2. Comparison of upper and lower bounds for the sphere S
m,⌘,`,q
t as function of `

with parameters q = 2, m = 40, t = 10 and keeping n = ⌘` = 60 constant.
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