
Vol:.(1234567890)

Journal of Marine Science and Technology (2024) 29:620–640
https://doi.org/10.1007/s00773-024-01008-0

ORIGINAL ARTICLE

Integrating scenario‑ and contract‑based verification for automated
vessels

Georg Hake1 · David Reiher2 · Jan Mentjes1 · Axel Hahn1,2

Received: 5 March 2023 / Accepted: 23 May 2024 / Published online: 27 June 2024
© The Author(s) 2024

Abstract
Scenario-based verification defines the current state of the art for examining a vessel’s control systems for reliability and
safety. However, software updates after release can only be covered to a limited extent. To take changes to a deployed system
into account, the design and test phase must be harmonized with the operational phase. For all phases, regulatory, techni-
cal and safety requirements provide the scope to which the development process and the scenario-based tests need to be
aligned and whose specifications the System under Test (SuT) must adhere to during operation. For this reason, a procedure
is needed that converts the requirements into a format that can be utilized across all phases and measured in a structured
manner comparing the original system to the updated version. This work does so by combining scenario-based verification
methods with formal composition and monitoring techniques based on contract-based design into an integrated development
approach. It is shown how safety requirements can be transferred into a Verification Descriptor that in turn provides the
foundation for the division into model-based system development, contract-based virtual integration testing and a scenario-
based test environment. For the entire lifecycle of the System under Test (SuT) to be included, the extended scenario and
contract descriptors are carried forward up to the operational phase, such that the previously defined properties of the SuT
can be monitored and validated during runtime. The approach is designed alongside a minimal-viable system and evaluated
on an actual implementation of a safety-critical maritime LiDAR-based positioning system.

Keywords Scenario-based verification · Reliability · Assumption-guarantee contracts · Verification descriptor · Updates ·
Safety · Maritime autonomous surface ships (MASS)

Abbreviations
A/G Assumption/Guarantee
ADAS Advanced driver system
AI Artificial intelligence
BAS Berthing assistant system

BSA Berthing support area
BVA Boundary value analysis
CD Continuous delivery
CI Continuous integration
CPS Cyber physical system
COLREG Collision avoidance regulations
DevOps Development and operations
EARS Easy approach to requirements syntax
EPM Equivalence partitioning method
GNSS Global navigation satellite systems
GUI Graphical user interface
HIL Hardware in the loop
INS Integrated navigation system
LiDAR Light detection and ranging
MASS Maritime autonomous surface ship
ML Machine learning
ODD Operational design domain
OS Ownship
SIL Software in the loop
SoS System of systems

 * Georg Hake
 georg.hake@dlr.de

 David Reiher
 david.reiher@uol.de

 Jan Mentjes
 jan.mentjes@dlr.de

 Axel Hahn
 axel.hahn@dlr.de; axel.hahn@uol.de

1 Institute of Systems Engineering for Future
Mobility, German Aerospace Center (DLR),
Oldenburg, Lower Saxony, Germany

2 Department of Computing Science, Carl von Ossietzky
University of Oldenburg (UOL), Oldenburg, Lower Saxony,
Germany

http://crossmark.crossref.org/dialog/?doi=10.1007/s00773-024-01008-0&domain=pdf
http://orcid.org/0009-0007-9769-6188

621Journal of Marine Science and Technology (2024) 29:620–640

SuT System under test
TS Target ship
VD Verification descriptor
VIL Vehicle in the loop
VIT Virtual integration test

1 Introduction

The maritime domain is undergoing a transformation
towards highly automated assistance systems and MASSs
that take over safety-critical functions and support the opera-
tor on board as much as possible. The former Secretary-
General and CEO of The Baltic and International Maritime
Council (BIMCO) Angus Frew described this situation by
stating that the “[...] industry has been living in a world of
hardware. But software has been integrated into most physi-
cal equipment on the vessels, and the systems and proce-
dures to manage the software have not kept up with technical
developments, and it creates problems”. The results were
accidents on the high seas where ships suffered complete
system failures due to a faulty update of software compo-
nents [1].

Unlike in the traditional case, the built-in software com-
ponents are subject to new requirements and at the same
time offer opportunities for new test procedures that also
extend into the operation phase. For this reason, supplier
companies [2] and the International Association of Clas-
sification Societies (IACS) [3] developed standards and
proposals for the integration and maintenance of software
components on ships, which resulted in the ISO 24060 [4]
standard for system monitoring in 2021 and was extended
by the IACS Unified Requirements on the cyber resilience
of ships in April 2022 [5, 6], which is applied to all new ship
constructions after January 2024.

In summary, three key points emerge for the software-
based system verification of maritime transportation
systems:

• The software components used are subject to constant
change and continuous further development and must
also be checked again for safe behavior after an update
following the initial release.

• For novel automated and autonomous navigation func-
tions, no classical certification procedures exist yet, so
that additional qualification stages [7] must be passed
through before individual components can be certified
and released.

• The behavior of Artificial Intelligence (AI) and Machine
Learning (ML)-based components cannot be described
deterministically [8]. Similarly, unexpected situations to
which the target system is exposed during the operational

phase cannot be fully mapped at design time. Therefore,
unknown environmental factors, impacts, and encounter
situations must be considered.

Various approaches for safety assessment of automated ves-
sels take these factors into account [9], including (i) traffic
simulation-based safety assessment approaches, (ii) staged
introduction of autonomous vehicles, (iii) shadow modes,
(iv) formal verification, (v) function-based approaches, (vi)
real-world testing and (vii) scenario-based testing. In their
survey on scenario-based safety assessment, Riedmaier et al.
[9] conclude that a combined approach of scenario-based
methods and formal verification compensates the drawbacks
of individual approaches to demonstrate the safety of a SuT.

In this work an integrated approach on scenario-based
methods with a formal verification approach based on
Assumption/Guarantee (A/G) contracts is presented. A con-
tinuous test procedure is introduced that supports scenario-
based test techniques along all phases of the Development
and Operations (DevOps)-cycle as depicted in Fig. 1, such
that the entire development and verification process does
not have to be repeated in its entirety when changes to the
SuT occur.

Continuous improvement of system components along
the DevOps-cycle has so far found only limited application
for safety-critical system components since Continuous Inte-
gration (CI) and Continuous Delivery (CD) pipelines con-
flict with the rather static safety requirements of a system.
Safety standards such as ISO 26262 [13] require proof of a
comprehensive safety case before deployment. Not only the
safety of an updated module must be proven, but also the
maintenance of the safety properties of the entire system,
because safety is an overall system property that also affects
the hardware and mechanical parts on board and can there-
fore not be considered in isolation. Nevertheless, it is argued
here that software-driven continuous improvement moves
increasingly into the development of safety-critical system
components in the maritime as well as other transportation
domains and provides means for extending safety measures
with continuous monitoring and remote diagnostics of rel-
evant security parameters and requirements during system
operation. This allows for periodic reviews by approval
authorities confirming the validity of novel technology.
Therefore, it becomes necessary to align the requirements
of existing safety standards with the development principles
of the DevOps-cycle [14, 15]. Thus, the principles of the
DevOps-lifecycle can and need also be applied as additional
safety-measure to safety-critical systems.

As depicted in Fig. 1, the entire lifecycle of the SuT
starts with an extended scenario description complemented
by contracts, which is continued up to runtime, so that the
previously defined properties can also be measured dur-
ing operation. The goal is to transfer the simulation and

622 Journal of Marine Science and Technology (2024) 29:620–640

scenario-based verification to the operations phase using the
contracts, so that the insights from both phases can be deliv-
ered to the subsequent phase and back again. As depicted,
the Continuous Engineering DevOps-cycle is extended to
allow for continuous scenario-based testing at each phase
of the overall process. Based on the functional and safety
requirements identified during design time, test scenarios
(depicted as scenario catalog at each phase) and contract-
based monitors (depicted as A/G-contracts) are derived that
can be carried forward to the operational and service phase
and automatically applied for validation during runtime. The
monitoring results form the basis for new features, require-
ments, and subsequently new or altered test cases used
during subsequent design and development phases. In the
following, related work to the process is presented and its
phases are described subsequently in detail.

2 Related work

This work combines scenario- and contract-based verifica-
tion approaches and demonstrates their integration into the
lifecycle certification of maritime software-systems. There-
fore, related work covers four areas of interest: systematic
transformation and application of system requirements into
a verification process, scenario-based test approaches, con-
tract-based requirement proof, and integrated approaches of
the former.

The first building block, the systematic transformation of
system requirements, allows to derive a structured format
of the inherently imprecise requirements and regulations
written in natural language that serve as input for the frame-
work presented. The Easy Approach to Requirements Syntax

(EARS) presents a ruleset to address the ambiguous, com-
plex, and vague requirements written in natural language
[16]. Similar to the EARS ruleset, [17] developed parameter-
ized safety description templates to structure safety require-
ments of embedded software systems. A further requirement
management technique is presented by [18] that analyzes
the activities to be performed, the tools to be applied, and
the schemes used in the requirement engineering of safety-
critical systems.

The second area of related work covers scenario-based
test approaches. Here, the linking of safety requirements
in the simulation runs of selected scenarios was presented
by [19]. There, the requirements are made verifiable with
respect to their safety properties based on defined environ-
mental situations, thus making the environment statistically
evaluable in relation to the SuT. Furthermore, the formal
and mathematical basics of simulation runs are shown in
[20]. The authors include techniques such as simulation
units, behavior traces, and time testing. Finally, in [21] fun-
damental considerations regarding scenario-based testing,
necessary to obtain a coherent safety-argumentation for the
high-level safety requirements, are derived.

For the third area of interest, contract-based develop-
ment, a contract-based lifecycle approach for the automotive
domain is presented by [22]. Safety-critical updates are high-
lighted, and the demonstrator UPDATER is presented and
evaluated based on an Advanced Driver System (ADAS).
The subdivision of the development phase and operational
deployment is also made by the authors in [23]. Here, the
focus of the purpose is to negotiate the update between the
system in operation and the update deployment considering
multiple viewpoints. A possible way to use contracts for
monitoring of ADAS is presented by [24] and integrated

Virtual
Integration and

Simulation-
based Testing

Develop

Scenario- and
Contract-based
System Design

and Optimization

Build

Verify

Deploy / Update

Monitor

Validation of
Safety Goals

during
Operation

Re-Certification
and ReleaseDesign Physical

Certification

DiagnoseVirtual
Certification

Scenario 1
Scenario 1

Scenario 1
Scenario 1

A
GA

GA
G

A
GA

GA
G

Scenario 1
Scenario 1

Scenario 1
Scenario 1

A
GA

GA
G

A
GA

GA
G

Scenario 1
Scenario 1

Scenario 1
Scenario 1

A
GA
GA
G

A
GA
GA
G

Scenario 1
Scenario 1

Scenario 1
Scenario 1

A
GA
GA
G

A
GA
GA
G

Scenario 1
Scenario 1

Scenario 1
Scenario 1

A
GA
GA
G

A
GA
GA
G

Fig. 1 A Verification Approach across all Phases of the Continuous Engineering DevOps-cycle (Adapted from [10–12])

623Journal of Marine Science and Technology (2024) 29:620–640

into a development process as well as illuminated from an
industrial point of view.

Lastly, the integration of the previously presented build-
ing blocks of this work has been partially applied in an inte-
grated approach of scenario-based modeling and contract-
based verification in [25]. The proposed methodology is
based on a sequential sequence, in which the environment
and basic scenarios are modeled first, and the contracts
are developed based on the functionality to be achieved
within the derived scenarios. Finally, the controllers are
implemented from the contracts and verified using Scenic,
a domain-specific language for describing scenarios [26].
Their methodology differentiates from the approach in this
work, such that it assumes the scenarios to be known before
the system- and contract development, which is paralleled
in this work. Nuzzo et al. present with CHASE [27] another
integrated approach that transfers requirements from natural
language into contracts and into a framework that enables
the validation of high-level system specifications of Cyber
Physical System (CPS). In their approach, requirements for
legal environment configurations and scenarios are derived
from the assumptions of the system components. Finally,
in [28], the authors present a decomposition strategy for
safety validation by introducing a simulation-based approach
with error injection for requirements analysis in the form of
assumption-guarantee arguments.

This work extends the approaches presented above by
expanding the individual verification methods into an over-
arching process perspective that comprises the advantages of
formal specification such as scenario space coverage, corner
case identification, parameter compatibility and statement
reliability, with the strengths of scenario-based approaches
including black-box compatibility, system applicability, sce-
nario representativeness and assessment transferability [9].
In the following, the integrated process is introduced and
each phase is described along a minimal example.

3 Integrating scenario‑based verification
with contract‑enhanced system
development

The overarching development process as depicted in Fig. 2 is
divided into the phases “Planning”, “Development”, “Veri-
fication”, and "Operation".

The process deviates from a traditional development
process in that it introduces a Verification Descriptor
(VD), the division of the development phase into system
development, contract development, and scenario devel-
opment as parallel and complementary lanes along the
development phase as well as the integration of feedback
loops, which return the scenarios, the model, the software
artifacts, and the contracts to the previous phases. The pro-
cess starts with the transformation of the textual require-
ments into the VD. The derivation for this is presented in
the first part of the work. Based on the VD, the scenarios
are extracted in the development phase, the contracts
are formed and the model-based system development is
started. The contracts are then transferred to a contract
monitor, which uses the simulation model based on the
scenario instances to check the SuT for the contractually
guaranteed properties. Finally, the release of the system
into the operational phase follows, for which the monitors
from the verification phase are reused. If a contractual
breach is detected in the verification or operational phase,
a warning or safety measure is triggered by the contract
monitor, which results in the implemented modules having
to be revised. If this happens after the release, a revision
of the VD is necessary, because the originally set require-
ments may no longer hold. If the system receives a new
feature by means of an update after release, a revision of
the original requirements is necessary. It should be noted
that, as shown in Fig. 1, the existing contracts and sce-
narios can be reused and do not have to be completely

Contracts

Scenarios

Scenario
Definition

Scenario
Definition

Scenario
Model

System Development

Scenario
Model

Simulation
(Model)

Monitoring

Scenario
Descriptions

Release

simulation
integration
(SiL,HiL,ViL)

System
Under
Test

Verified
System in
Operation

Corrective Update / Bugfix is needed

Monitoring

Contract Verification not successful

Start
Textual
System

Requirements

Verification
Descriptor

Scenario
Definition

Scenario
Model

Activity
Data Flow Scenario

Descriptions

 Functional and non-
functional Module

Requirements

Scenario
Definition

Implemented
Modules

Not successful

Contract Based
Virtual Integration

Test (VIT)

Operation

Contract
Monitor

Verification

Feature Update

Development

Control Flow

Planning

input

input

System Model

System and
Module

Contracts
input

Fig. 2 The Overall Process Integrating Contracts and Scenario-based Verification

624 Journal of Marine Science and Technology (2024) 29:620–640

renewed. By using the VD, it is also possible to narrow
down which parts of the development phase need to be
adapted and, if necessary, repeated, so that the renewed
development, verification, and certification effort is sig-
nificantly reduced.

This is illustrated in further detail in the following for
each of the respective phases using a minimal viable exam-
ple of a collision avoidance system for maritime Head-On
situations. According to the Collision Avoidance Regula-
tions (COLREG) a Head-On situation exists if two power-
driven vessels meet on an opposite course [29]. If there is
a risk of a collision, both ships must alter their course to
starboard [30]. The SuT recognizes for an Ownship (OS)
if it enters a Head-On situation and initiates the collision
avoidance progress, which in turn calculates a rudder turn.
We investigate the module of the SuT which classifies the
encounter situation, called COLREG-Classifier. The COL-
REG-Classifier module is depicted in Fig. 3 as part of a
System of Systems (SoS) connected to the sensors and the
actuators on board. An additional module for the monitor-
ing is attached to the interfaces of the COLREG-Classifier
to validate its functionality during operation.

Furthermore, on a technical level the situation that the
COLREG-Classifier is supposed to detect is depicted in
Fig. 4 and defined as follows:

• An encounter situation between the OS and the Target
Ship (TS) can be classified as Head-On when two or
more ships are moving within a close distance (up to
two nautical miles) towards each other. Among other
things, collision avoidance systems on board can use this
information to initiate an evasive maneuver that safely
resolves the situation.

• A head-on encounter situation exists exactly when the
TS and OS have a course difference of 170◦ and 190◦ to
each other and the bearing from the OS to the target ship
is between 350◦ and 10◦.

This minimal example is used below to show how the phases
of the development model presented here support the devel-
opment and verification of that SuT along its lifecycle.

3.1 Phase 1: planning

The overall process begins with the planning phase, this
involves describing the requirements for the target system in
an unorganized manner, usually in the form of long text doc-
uments and prose. To be able to further process the require-
ments in the following phases in a well-structured way, it is
necessary as an intermediate step to transfer the textual form
of the requirements into an evaluable form. The require-
ments are oriented at the definitions in [31] and bundled into
a VD. It allows the transfer of the collected requirements to
the subsequent phases and the subdivision into scenario and
simulation-based verification, formal verification by means

Sense Plan Act

SoS

Radar

AIS Receiver

GPS

COLREG
Classifier

Collision
Avoidance

Rudder

Monitor

Sensor
Fusion

Propulsion

CSoS
A
G
A
G

CRadar
A
G
A
G

CAIS
A
G
A
G

CGPS
A
G
A
G

CFusion
A
G
A
G

CCOLREG
A
G
A
G

CCA
A
G
A
G

CPropulsion
A
G
A
G

CRudder
A
G
A
G

Fig. 3 COLREG-Classifier as part of a contractually enhanced System of Systems (SoS) with a Monitor attached to its Interfaces

OSA)

B)

TS

TSOS

350°

10°

170°

190°

Fig. 4 Classification of Head-On situations based on bearing (a) and
course difference (b)

625Journal of Marine Science and Technology (2024) 29:620–640

of contracts, and the model-based development of the system
or update. The VD thus represents the basis for the further
procedure, which is introduced in more detail in the follow-
ing. It makes it possible to capture the requirements and
structure them in such a way that they can be integrated by
the scenario description logic and transferred to contracts of
the System under Test (SuT).

3.2 Verification descriptor

The ISO/IEC/IEEE standard 29148-2018 defines the term
requirement, as well as the processes needed to man-
age them [31]. It defines requirements as a statement that
expresses a need and the associated constraints and condi-
tions. Requirements can be formulated in natural language
for that the standard states examples of relevant elements
in their corresponding order. Elements include a subject
(e.g., the system’s name) and the action to be performed.
Optionally, a measurable condition and constraints for the
action can be stated. According to the standard, conditions
provide attributes that permit a requirement to be verified
and validated [31]. To evaluate the quality of requirements,
the ISO standard defines characteristics and quality criteria.
Individual requirements should be “necessary, appropri-
ate, unambiguous, complete, singular, feasible, verifiable,
correct and conforming”. A set of requirements should be
“complete, consistent, feasible, comprehensible and able to
be validated” [31].

Based on the requirement definition of the standard, the
VD is derived. It is focused specifically on the parts of the
requirements that are necessary for the verification and mon-
itoring of a system. It can thus be defined as a subset of the
requirements. A VD is formed based on the requirements by
analyzing them for their attributes. The basic elements are
the descriptor-id (I), requirements-id (II), parameter (III),
conditions (IV), dependencies to other VDs (V), and accept-
ance criterion (VI). A VD is uniquely identifiable by its own
id, while the requirements-id refers to the requirement it
was derived from. This enables traceability during the veri-
fication process as each VD and derived test cases can be
traced back to their corresponding requirements. Conditions
describe under which circumstances a requirement is valid

and are expressed as mathematical conditions considered
the parameter. The acceptance criterion is interpreted as the
output of the system and is verified if the condition is true.

In accordance with the quality criteria of the ISO stand-
ard, the criteria for the VD are defined. They must be neces-
sary and unique. They are necessary if they contribute to the
testing of a requirement and are unique if their elements do
not occur in other VDs (e.g., duplications of conditions). If
this is not the case, they need to be decomposed (e.g., split
into atomic ones) and linked as dependencies to avoid dupli-
cations. A set of VDs must be complete, able to be validated,
and comprehensible. The set is complete if all requirements
and their properties have been mapped. Validity ensures that
measurable conditions and no circular dependencies exist
(not testable, since dependencies cannot be resolved). Com-
prehensibility requires stating the requirements-id to show
the basis from which the VD was derived.

According to the study conducted in [32], templates are
used in many cases for the specification of requirements in
the industry. Requirements in natural language are easier to
understand by stakeholders and therefore more accessible
[33]. Thus, the basis of the VD forms textual requirements
which are present by means of templates in a consistent
structure. Many templates were already presented for dif-
ferent use cases [16, 17, 27]. However, these usually repre-
sent only one form of requirements within a requirements
specification (e.g., the definition of safety requirements),
whereas all system requirements should be considered for
system development, scenario- and contract-generation. We
base the requirements in this work on [34], in which general
requirement templates are defined. A requirement essentially
consists of a condition and the main clause describing the
desired function. For the VD, the requirement condition is
successively translated into a mathematical expression and
the main clause is used to derive the acceptance criterion.

Once VDs are derived and tests are executed, they are
used to verify requirements. For each requirement and
derived VD, the following activities (shown in Fig. 5) are
performed for the verification.

For each VD, it is first checked whether the dependen-
cies (including conditions of the dependencies) are satis-
fied. Then, the condition of the VD is checked. Finally, the

[dependencies not fullfilled]

Check
Dependencies

Check
Condition[else]

Verify
Performance

Metric
[else]

[condition not fullfilled]

[else]

[performance metric not fullfilled]

Fig. 5 Activity diagram for checking verification descriptors

626 Journal of Marine Science and Technology (2024) 29:620–640

acceptance criterion is checked and compliance with the
requirements is verified. In all other cases, the VD does
not apply, so the acceptance criterion is not checked. If the
conditions or dependencies are not defined within a VD,
they are automatically considered satisfied.

For the exemplary detection of Head-On situations, a
small set of requirements is defined, describing when an
encounter situation is given and under which condition the
system should classify a situation as “Head-On”:

1. The COLREG-Classifier must be able to detect encoun-
ter situations.

a. If the distance between an OS and TS is less than
two nautical miles an encounter situation exists.

2. The COLREG-Classifier must be able to classify Head-
On encounter situations.

a. If an encounter situation exists, and the course dif-
ference is between 170◦ and 190◦ , and the bearing is
between 350◦ and 10◦ then the COLREG-Classifier
must classify the encounter situation as "Head-On".

3. The COLREG-Classifier must be able to classify a situ-
ation in a maximum of 10ms.

4. The COLREG-Classifier must be able to process contin-
uous data input for at least 10 s with a maximum delay
of 1 s between two data sets.

For the example provided, two high-level requirements
describe that the system must be able to detect encounter
situations and classify them accordingly. The sub-require-
ments concretize these and describe conditions under
which they are applied. Requirements 3 and 4 describe
performance obligations, where 3 defines the maximum
processing time and 4 defines the input duration and delay
between datasets. Following these requirements, VDs are
derived. Based on the requirements condition the param-
eters and conditions for the VDs are extracted. The accept-
ance criterion is derived based on the systems output (e.g.
“Head-On“).

As depicted in Table 1, for requirement 1.a a single VD
is derived, describing under which conditions an encounter
situation exists. If condition (C) is true, the system’s out-
put cannot be null (AC). For requirement 2.a two VDs are
derived, as two parameters are needed to classify a situa-
tion as “Head-On”. VD 2.1 and 2.2 define the conditions
for Head-On classification, based on angle difference and
bearing. They are linked by the dependency between them.
In addition, the dependency on VD 1.1 specifies that the
classification can only be performed if an encounter situation
is present. An additional non-functional requirement defines
temporal constraints on the processing time. Thus, VD 3
ensures that the processing time is less or equal than 10ms
if an encounter situation is present. Finally, VD 4 defines
how long a continuous input stream is present and how fast
data is received by the system. As this is not bound to the
existence of encounter situations, the acceptance criterion
is that the output cannot be empty.

3.3 Phase 2: development

The second phase is divided into three parallel processes that
are interdependent and interrelated: scenario development,
formalization of the requirements by means of contracts, and
the actual module or system development.

In the following, a closer look at these parallel executed
threads will be taken and the activities and artifacts they
contain will be outlined.

3.4 Scenario development

To be able to obtain reliable results in a reasonable time
frame in the verification phase, following the development
phase, a targeted approach is necessary. The approach of
scenario-based testing currently sets the current state of the
art for examining a SuT for reliability and safety [35–38] -
especially for modern non-deterministic assistance systems
- and is expected to replace classical static methods in part
[39]. That is to identify, model, simulate, and evaluate traffic
scenarios that are relevant for the significance of simulation
results with respect to a specific SuT.

When creating scenarios, a distinction is made between
functional, logical and concrete scenarios [40]. Functional

Table 1 Derived verification
descriptors for COLREG-
Classifier requirements

Req-ID VD-ID Parameter (P) & Condition (C) Depen-
dency (D)

Acceptance Criterion (AC)

1.a 1.1 0m ≤ DistanceOS,TS ≤ 3704m − Output ≠ NULL

2.a 2.1 170◦ ≤ CourseDifferenceOS,TS ≤ 190◦ − −
2.a 2.2 350◦ ≤ BearingOS,TS ≤ 10◦ 1.1 Output = ”Head-On”
3 3 − 2.2 CalculationTime ≤ 10ms

4 4 InputLatency ≥ 1 s ∧ InputDuration ≥ 10 s − Output ≠ NULL

627Journal of Marine Science and Technology (2024) 29:620–640

scenarios are formulated linguistically and are typically
used in the concept phase. Logical ones, on the other hand,
describe a situation by parameters and boundary values for
those parameters. Concrete scenarios are determined by
selecting certain parameters based on the ranges defined by
the limiting boundary values. As the VD is represented by
several parameter conditions, the boundaries of the param-
eters are given, which in turn are transformed into logical
scenarios. The use of those previously created VDs also
leads to the creation of functional scenarios not being nec-
essary at this point.

Since requirements describe the performance of a system,
but do not necessarily describe how the test cases must be
designed, a process is necessary to identify base scenarios.
This can be data-driven (based on historical data sets) or
expert-driven (e.g., expert knowledge, regulations). If not all
necessary scenario parameters are covered by the require-
ments (because they are not relevant to the system), they can
be filled by experts or historical data. For example, a system
can be executed independently of the environment (sea area,
infrastructure), but the environment must be defined for a
complete and valid scenario definition.

Figure 6 outlines the process for the creation of logi-
cal scenarios. The necessary parameters, conditions, and
dependencies are extracted from the VD as the first pro-
cess step. In the second step, they are grouped to extract
the necessary parameters for functional scenarios. These are
supplemented by expert knowledge or historical data sets
in the third and last process step. As a result, the scenario
is represented by several parameters (e.g., speed, course,
etc.) and their applicable value ranges. Since these are by

then still logical scenarios described by parameter ranges
and boundary values, they are not directly applicable for a
simulation run and distinct parameters must be selected to
obtain a set of concrete scenarios covering the given state
space. Through a selection, combination, or sampling pro-
cess (or a combination of those) parameters are chosen from
the previously defined value ranges to create a concrete sce-
nario for a single simulation run. Which approach is chosen
here depends on the specific use case and SuT, one possible
three-step process combining selection and combination is
shown by Schuldt et. al [41]. The resulting set of concrete
scenario descriptions is then transferred into a set of techni-
cal scenario model instances that serves as input for the used
simulation system. The three steps described above form the
process of moving from VDs to scenario models, which can
serve as input for a simulation system. The individual steps
and their respective input and output artifacts are once again
listed in a structured manner in Table 2.

Similar to the example described at the beginning of this
chapter - the COLREG-Classifier - the identified three steps
are applied in the following to the procedure, inputs, and the
outputs result.

3.4.1 Step 1: derive scenario descriptions

To obtain logical scenarios from the given verification
descriptions, a method based on the process shown in Fig. 6
is necessary. For step (1), the relevant parameters can be
read directly from the given VDs. Parameters are omitted
that cannot be mapped in the scenario itself but are used for
verification after the simulation run. This is the case here

Verification
Descriptor

Parameters
Conditions

Dependencies

(1)
extract

Logical
Scenario

param1 = [from...to]
param2 = [from...to]
param3 = [from...to]

param4 = fixed value
param5 = fixed value

(2)
set

boundaries Data
or

Knowledge

(3)
complete

Fig. 6 Overview of the process to derive complete logical scenario space descriptions from the verification descriptors

Table 2 The three main process steps to derive concrete scenario models from a verification descriptor and their respective I/O artifacts

Step Activity Input Output

1 Derive Scenario Descriptions Verification Descriptor Scenario Space Description (logical scenarios)
2 Parameter Value Selection Scenario Space Description (logical scenarios) Scenario Definitions (concrete scenarios)
3 Scenario Modeling Scenario Definitions (concrete scenarios) Scenario Models (simulatable scenarios)

628 Journal of Marine Science and Technology (2024) 29:620–640

with the Calculation Time parameter given by VD 3. The
other three parameters can be taken as relevant: Distance
between OS and TS, Course Difference between OS and TS,
Bearing of OS and TS. Dependencies between those param-
eters relevant for the scenarios to simulate can then also be
derived directly from the given VDs. In order to identify
the relevant parameter spaces and their limit values for the
identified parameters in step (2) of Fig. 2 "set boundaries",
equivalent classes are first formed via the Equivalence Par-
titioning Method (EPM) [42] and then a Boundary Value
Analysis (BVA) [43] is carried out. By that concrete parame-
ter values can be deduced that have to be tested simulatively.

The results can be found in Table 3 and Table 4. Typi-
cally, at least three limit values are defined, X(min), X(nom),
and X(max) representing the smallest, the biggest valid
value, and the value lying exactly in the middle of the inter-
val spanned by those to boundary values. In addition, values
close to the limits are tested. Here, X(min+) and X(max-)
were additionally defined. These lie in each case in the
direct valid neighborhood of the limits of the parameter to
be tested. They are each defined by an interval to be deter-
mined in advance and enable tests near the limits of a sys-
tem. Here, the value that is at the 10% mark before the limit
starting from X(nom) was selected in each case.

Now that the identified parameters and a set of values
that are important for testing the given system have been
identified, the remaining parameters that are necessary for
a complete maritime traffic scenario need to be defined
and filled in using expert knowledge or historical data (see
Fig. 6, Step 3).

Here, for example, the location of the encounter situation,
the type of ships, and the weather are important. For the
minimal example considered, it is assumed that the weather
does not play a role, and therefore the best possible weather
could be used, i.e., no wind, infinite visibility, no waves, or
currents. Thus, in the end, the weather can even be com-
pletely excluded. Since in the given minimal example only

the collision risk of two ships is examined, excluding static
infrastructure or land masses, the scenario is placed on a vir-
tual open sea. Thus, this aspect can also be omitted and does
not have to be explicitly parameterized or modeled. In terms
of the types and dimensions of the two vessels participating
in the scenario, the Evergreen A-class container ships will
be used as a reference and a length of 400 m and a width of
61.5m will be assumed for both vessels. The resulting logi-
cal scenario is depicted in Table 6, the relevant parameter
value selection is described in the following.

3.4.2 Step 2: parameter value selection

Since the previously created logical scenario still contains
value ranges or, in the case shown here, value sets, these
must be combined reasonably to obtain concrete scenarios
with specific parameter assignments. The combinatorial test
case generation according to Schuldt et al [41] can be used
for this. There are four possible concrete methods for com-
bining the parameters purely combinatorial and without the
use of any semantic information: "each-used", "pair-wise",
"t-wise" and "N-wise" [44]. For representational reasons -
the methods t-wise and N-wise would require a graphical
representation with 3 or more dimensions - the pair-wise
method is used and shown here.

The result can be seen in Table 5. Each cell represents
a combination of two parameters; the representation as a
two-dimensional table is a prerequisite for the "pair-wise"
combination method: Every assignment of a parameter is
tested with every assignment of all other parameters. The
parameters that are not specified by the cell combination
must of course also be assigned. Different metrics can be
used for this. At this point, the mean value X(nom) is always
chosen. The cell marked with an “x” represents the concrete
scenario shown in Table 6 as well as depicted in Fig. 7. The
dark grey colored cells represent invalid combinations, in
this case, combinations of different assignments of the same
parameter. The concrete scenarios identified in this way still
contain composite values such as the distance between two
or more vessels to each other.

To make the scenarios easier to use and to prepare them
for the next step, individual values for each traffic partici-
pant must be derived from these composite values. In the
case shown here, this means that the parameter values Lati-
tude, Longitude, Course, and Heading from the parameters
DistanceOS,TS , Course DifferenceOS,TS , and BearingOS,TS for
both TS and OS are determined. This results in the values
in Table 7.

To also test the non-functional requirement 4 (see
Sect. 3.2) a temporal progression must be introduced into
the scenario. So far, only two ships are in a fixed position.
This represents the one particular situation in which the out-
put of the system under test is to be verified according to the

Table 3 Relevant parameters portioned by equivalence

Parameter Invalid Valid Invalid

Distance OS,TS − 0– 3704 m ≥ 3704 m
Course OS,TS ≤ 170◦ 170◦ – 190◦

≥ 190◦

Bearing OS,TS ≤ 350◦ 350◦ – 10◦

≥ 10◦

Table 4 Boundary values identified for the relevant parameters

Parameter X (min) X (min+) X (nom) X (max-) X (max)

Distance OS,TS 0 m 185.2 m 1852 m 3518.8 m 3704 m
Course OS,TS 170◦ 171◦ 180◦ 189◦ 190◦

Bearing OS,TS 350◦ 351◦ 360◦ / 0 ◦ 9◦ 10◦

629Journal of Marine Science and Technology (2024) 29:620–640

identified parameter combinations to be tested. However,
traffic is dynamic and usually moves continuously, which
is also the aim of requirement 4. Therefore, a situation is
sought which is temporally prior to the one just identified
and from which it will be reached. This can be done based
on recorded trajectories, average values, interpolations, or
abstractions. For the minimal example shown, therefore
additionally a parameter speed for both vessels is defined.
Since the values are based on the Evergreen A-class vessels
the speed will also be the average cruising speed of vessels
of this class of 22.6kn [45]. For this minimal example, sail-
ing on a straight-lined trajectory is sufficient and therefore
the coordinates are shifted by 116.26m in the opposite direc-
tion to the heading so that both vessels need about 10 s to
reach the situation to be tested.

3.4.3 Step 3: scenario modelling

Now that concrete scenarios have been identified and fully
defined, they are to be reproduced within a simulation

system. For this purpose, the traffic participants and their
environment must be mapped onto the simulation model
according to the values defined in the concrete scenario.
How this can be achieved depends largely on the simulation
system that is to be used. Some simulation systems only
offer one simulation model and the situation to be simulated
must therefore be defined in the simulation system itself.
This is often done via a Graphical User Interface (GUI) and
a subsequent run of the created scenario. Another approach
is to consider the scenario model separated from the simula-
tion model. In this case, a concrete scenario is created based
on the possibilities of the scenario model. This can be an

Table 5 Parameter combination
table as the result of pairwise
combinatorial test case
generation

Distance Course Diff. Bearing

0 18
2.
2

18
52

35
18

.8

37
04

17
0

17
1

18
0

18
9

19
0

35
0

35
1

36
0

9 10

D
is
ta

n
ce

0
182.2
1852

3518.8
3704 x

C
o
u
rs

e
D
iff

. 170
171
180
189
190

B
ea

ri
n
g

350
351
360

9
10

Table 6 Complete logical and derived concrete scenario

Logical Scenario Concrete Scenario

Name Ownship (OS) / Targetship (TS) Ownship (OS) /
Targetship (TS)

Type Container Ship Container Ship
Length 400 m 400 m
Width 61.5 m 61.5 m
Distance [0, 182.2, 1852, 3518.8, 3704]m 3704 m
Course Diff. [170, 171, 180, 189, 190]◦ 170◦

Bearing [350, 351, 360, 9, 10]◦ 360◦

Weather Perfect (ignore) Perfect (ignore)
Area Open Sea (ignore) Open Sea (ignore)

OS TS

3704m

90° 260°

Fig. 7 The encounter situation from Table 6 illustrated graphically

Table 7 Concrete scenario with single concrete placement values for
each ship

Vessel 1 Vessel 2

Name OS TS
Type Container Ship Container Ship
Length 400 m 400 m
Width 61.5 m 61.5 m
Latitude 47.0 47.0
Longitude −35.0 −34.9514208
Course 90◦ 260◦

Heading 90◦ 260◦

Weather Perfect (ignore) Perfect (ignore)
Area Open Sea (ignore) Open Sea (ignore)

630 Journal of Marine Science and Technology (2024) 29:620–640

XML file, for example, which describes and parametrizes
concrete instances of elements from the given scenario
model. These scenario instances can then usually be read
in by the simulation system and serve as the basis for the
simulation model. The components described in the scenario
file are extracted from the possible simulation elements,
instantiated, and filled with values accordingly. The result
is the simulation model, i.e., a representation of the simula-
tion contents, which can change over time during an active
simulation run. These interrelationships and dependencies
are shown on a high level in Fig. 8.

3.5 Contract development

The parameters in the VD are available in semi-structural
form after extraction from the unstructured sets of rules and
texts. To make the parameters, constraints, and dependencies
contained in the VD automatically analyzable, it is necessary
to convert them into a format for which formal methods of
analysis exist that can be applied to the extracted values.
Contract-based design is suitable for this purpose [25, 27].

Contracts are used in the design of safety and time-crit-
ical as well as component-based systems. Here, the linked
embedded systems and/or software components are assigned
contractual assurances about their behavior at their inter-
faces. This makes it possible to formally verify the intercon-
nection on one, as well as on different hierarchy levels, and
to uncover dependencies as well as temporal discrepancies
in the overall system view.

Contracts consist of a pair of assumptions and guarantees.
The guarantees specify the contractually assured properties
that the component promises, provided that the assumptions
it makes about its environment are met. In the case of INSs
such as those used on modern ship bridges, for example,
this means that the contracts express the behavior of the
individual functions of the bridge and their interaction can
be formally tested before the modules from different manu-
facturers are combined to form an overall system. For the
COLREG-Classifier minimal example, the generated con-
tract breaks down into assumptions and guarantees as shown
in Table 8.

Fig. 8 From a Scenario Meta-
Model to Simulation Runtime
Instances (Source: [46])

Meta Model

Simulation Model

M0
M0

M0
M0

M0()
Runtime Instance()

Meta Model

Scenario Model

Scenario Model Instance

Scenario

represents
subset of

represents
subset of

instan ated by

Simula
on execu

on

Instance of

Instance of Instance of

Instance of

Simulation

Table 8 The contract for the
implementation and system
integration of the COLREG
classifier Module

ID 1.0 ContractCOLREG−Classifier

Assumptions Receive Distance OS,TS every x ≤ 1s

Course Difference OS,TS
Bearing OS,TS

Guarantees Whenever Distance OS,TS x ≤ 3704m Output within x ≤ 10ms

Course Difference OS,TS 170◦ ≤ x ≤ 190◦

Bearing OS,TS 350◦ ≤ x ≤ 10◦

631Journal of Marine Science and Technology (2024) 29:620–640

Unlike in the VD, in the contract the minimal requirement
for the functionality of the component that provides that
function is defined. Moreover, the timing requirements for
receiving the necessary parameters and the required time in
which the output is generated are defined. The COLREG-
Classifier as a SuT requires receiving the values for distance,
course and bearing to the target ship from the ship’s sensors
every x ≤ 1s and guarantees to issue a “Head-On” signal
within 10ms after receipt of the values, provided that the
assumptions are fulfilled.

As a module component of a SoS system network, the
COLREG-Classifier therefore expects input every second
at its interface, evaluates them and outputs the result at its
output interface. As can be seen in the minimal example of
the COLREG-Classifier SuT shown in Fig. 3, the module
receives its expected input from the sensor fusion system
within the system network.

In this early stage of the design the static system verifi-
cation, which is based exclusively on the contract model,
referred to as Virtual Integration Test (VIT) (see Fig. 2), can
be applied. For the VIT the compositional properties of the
system are verified with respect to the system model devel-
oped in the design phase and the properties of the model
components specified in the contract. For the model driven-
development expressive modeling languages and tools,
such as SysML, MathWorks Simulink, Ansys SCADE or
AADL are regularly utilized [14] and the contracts are sup-
plemented on a textual basis. Based on the extended models,
tools such as MULTIC Tooling [10] or OCRA [47] enable
evaluation of the modeling and the contracts.

In many cases, this is where the use of the contracts for
system verification ends [48, 49]. In this work, the contrac-
tually defined properties are carried over to the simulative
and operational phases, by transferring the assumptions
and guarantees of the contracts to a monitor. This allows to
validate the properties not only with respect to their com-
positional nature, but also simulatively and during opera-
tion based on the scenario space that has been identified in
the simultaneously performed process steps, to determine
whether the defined limits of the assumptions and guaran-
tees are exceeded, or components lose performance or fail
completely. In case of a faulty behavior the feedback loops
can be triggered so that corrective action can be taken. In
the following, it is described how this context is designed.

3.6 System development

The system development phase essentially follows the estab-
lished procedure for the development of safety-critical appli-
cations on board of a vessel. To counteract risks, established
standards are applied whose aim is to mitigate or avoid
potential hazards already during system development. One
of these established automotive standards is ISO 26262 [13],

which revolves around the key concept of functional safety.
A further standard that deals with the systematic develop-
ment of electronic systems for maritime transport systems
is ISO 17894 [50], which proposes a process model similar
to the V-model in one of its annexes.

Due to the frequent application of this model in the mari-
time context, this work orientates itself on the traditional
development process and adapts it to the requirements pre-
sented. As already presented in other related publications,
the classical phases of the V-model are extended by stepwise
V&V loops [39], so that a continuous V&V is achieved,
which is in accordance with the overall model presented
here and at the same time guarantees assurance of functional
errors during the early phases of system development.

3.7 Phase 3: verification

One or more scenario models, a set of contracts and the real-
ized parts of the system under test emerge from the develop-
ment phase. These three building blocks enable simulation-
based verification of the implemented software modules.

In the model-based simulation, the identified environ-
mental parameters, participating and interacting systems and
components as well as induced situations and error values
can be checked using the output values of the simulation.
Section 3.4 shows how the VDs can be used directly as a
basis for a complete and valid set of scenarios. Moreover,
Fig. 6 shows how the approach is applied and how the VDs
serve as direct input for the scenario modelling. With this
already relatively restrictive basis, the problem of elusive
high-dimensional state spaces can be simplified to a large
extent, as only scenarios that suit the requirements and con-
straints of the VDs are needed and modelled.

For the actual simulation run, the scenario model is trans-
ferred to a simulation model [51] and is merged with the
SuT. The SuT is integrated into the simulated environment
and takes part in the simulation execution. This is done via a
communication channel between the SuT and the simulation
system, sending and receiving relevant data every simulation
time step. This way the SuT is a discrete part of the simula-
tion, which makes it a sub-simulation and the simulation
system a co-simulation. This way it is possible to verify that
the contractually assured properties can be met. For this pur-
pose, software as well as hardware and vehicle-in-the-loop
(SIL,HIL & VIL) testing can be performed. The SuT can
thus also be represented as a module of the vessel within a
SoS. Furthermore, the interacting parts of the SoS do not
necessarily all have to be already implemented or present
on dedicated hardware but can also be present in the form of
black-box models whose behavior can be simulated virtually.
This is especially important to protect the intellectual prop-
erty of the stakeholders and to be able to perform tests of the

632 Journal of Marine Science and Technology (2024) 29:620–640

SuT module under investigation even before all components
of a SoS to be integrated have been completed.

As shown in Fig. 9, monitors can be synthesized for the
SuT’s system modules based on the requirements specifica-
tion at design time. These monitors then enable validation
of compliance with the system specification (satisfaction),
detection of ambiguous system states or results (inconclu-
siveness) or a violation of the specification (violation) at
runtime. The system generates event chains that are picked
up by the monitor and evaluated based on the requirements
specification [52].

Since in this work the requirement specification is based
on the VD and the contracts, the monitor synthesis results
from the specifications in the contracts. The contract
monitors are themselves components of the SoS within
the simulation and verify compliance with the specifica-
tions of the contracts. As components within the SoS the
monitors are connected to the input and output interfaces
of the system modules and measure the message-based
communication between the components. Thereby the con-
tracts indicate the time between the arrival of a signal and
the time of processing. In addition, value ranges can be
defined by which the input and output values are allowed
to fluctuate. The monitors use the assumptions and guar-
antees of the contracts to measure the module communica-
tion. This relationship is shown in Fig. 9 as well as Fig. 3.
The verification of properties at run-time, in simulation
and in actual operation, is also referred to as online moni-
toring and opens up possibilities for run-time verification
as well as the initiation of mitigation strategies [10].

At simulation time, the simulation runs are observed
with the scenarios as input from monitors resulting from
the contracts. If a monitor detects a breach of the contrac-
tually secured safety properties, which were collected by
the VD, a regression into the implementation phase of the
involved modules takes place. The chronological sequence
of the monitored contracts allows the process to be traced,
thus facilitating troubleshooting.

Based on the contract for the COLREG-Classifier
shown in Table 8, a monitor can be generated in the devel-
opment phase. The monitor checks both the value ranges
of the assumption and guarantee and their temporal pro-
cessing of the incoming event and the output at the inter-
faces of the COLREG-Classifier module. Therefore, the
predefined value ranges and time ranges of the contracts
are observed when the simulation is executed. This process
supplements the static VIT by additionally checking the
realized software modules for their ability to implement
the limit ranges that were previously checked against the
system model.

3.8 Phase 4: deployment, operation and updates

Once the developed system or module has successfully
passed all verification stages and has been approved, certi-
fied, and classified, it can be released and deployed. The sys-
tem can enter the operational state. However, in accordance
with the DevOps-cycle, verification and validation does not
end here, but is continuously checked by monitoring of the
properties specified in the contracts, similar to the simula-
tion phase. Thus, the certification and classification of the
transportation system on which the system is applied con-
tinues to depend on the ability to maintain in operation the
properties previously promised and demonstrated in the test.

Since a test can never fully represent reality, especially
in the case of novel software systems and automated or
autonomous control functions, it is important to further
detect deviations from specified functionality during opera-
tion. This includes the detection of trends before a threshold
is exceeded, to identify load profiles, and to log individual
component behavior as well as the interaction between com-
ponents. The information gathered enables, in the event of
a breach of contract, to pinpoint the modules involved and
to reconstruct the corresponding environmental situation
retrospectively.

In case of an update within a contractually defined sys-
tem, three different deltas of change can be differentiated

SuT

e1 e2 e3 e4 e5 ...

Event Output

Contract
Adherence

InconclusiveContract
breach

Design Time Simulation / Runtime

System Requirements

Verification Descriptor Assumption/Guarantee Contracts

Component

Contract-MonitorAre

Structures

Validation of Satisfaction

Synthesis

is a

Satisfies

Fig. 9 From System Requirements to Contract Monitors (Adapted and modified from [52])

633Journal of Marine Science and Technology (2024) 29:620–640

(ΔC , ΔI , ΔImpl) depending on the respective type of update
(corrective, perfective and adaptive), which in turn deter-
mine the impact on the overall system. A corrective update
includes bugfixes to a module, perfective updates comprise
performance improvements and adaptive updates incorpo-
rate functional changes to the implementation. The different
types of deltas are depicted in Fig. 10.

A contract change ΔC requires at the minimum a rep-
etition of the VIT. An update that results in a delta of the
interfaces ΔI requires a review of the modules connected to
the affected module and dependent modules within the SoS,
as well as an adjustment of the interface description by the
contracts, if necessary. Finally, a delta of the implementation
ΔImpl results in a complete revision of the functionality of
the system [22].

Hence, to accommodate updates after release, two feed-
back loops are necessary during operation. Firstly, in case
of a corrective or perfective update, it becomes necessary
to return to the VD to reassess the systemized requirements.
Secondly, an adaptive update would require the initial sys-
tem design to be altered. Here, it is required to reevaluate
whether the textual system requirements still cover the
changed system functionality.

Both cases result in parts of the system being re-planned.
Therefore, it is required to pass all the described develop-
ment and verification steps again for the system to be re-ver-
ified. By linking requirements, scenarios and contracts with
VDs the delta of the update can be narrowed down and the
re-evaluation effort be minimized. Furthermore, via the IDs
of the VD as well as the contracts, changes are traceable and
the impact of the change can be traced bidirectionally. For
each requirement, it is possible to pin down what has been
derived based on it, so that the elements that are affected can
be identified. Existing scenarios and contracts can be reused
for a new DevOps run, which reduces the amount test runs
that need to be repeated.

4 Evaluation: verification of an update
of a safety critical maritime LiDAR‑based
berthing assistant

To evaluate the development process designed in this paper,
it is applied to a safety-critical maritime Light Detection and
Ranging (LiDAR)-based Berthing Assistant System (BAS).
Thus, applying a concrete implementation of the developed
process on a SuT. For this purpose, the SuT and its require-
ments are described. This forms the basis for deriving the
VDs, which in turn are used to derive scenarios for the simu-
lation as well as contracts for monitoring of runtime proper-
ties. Since requirement changes and system enhancements
are part of the DevOps-cycle, it will be examined how the
process behaves in the event of changes and how updates
influence the scenario generation.

4.1 System under test

To evaluate the approach presented, a BAS based on LiDAR
sensors, previously presented in [53], is utilized. This uses
several LiDAR sensors, positioned at the harbor and con-
nected with each other. Measurements of these are fused and
made available to the nautical personal on ships in aggre-
gated form, so that they can integrate further position data
into their calculations in addition to their GPS data. The
authors base their system on reference points in conjunction
with a Berthing Support Area (BSA). Reference points are
aligned at a quay’s meter marks measuring distance, speed
and acceleration values of an approaching object. The con-
cept of reference points is based on 1D-LiDAR sensors,
measuring a single distance. In contrast to physical LiDAR
sensors, they can be placed virtually at any position, while
working with 2D or 3D point data. Following the concept of
the Operational Design Domain (ODD) of the automotive
domain, the BSA defines an area in which the system offers
support. It is derived based on a set of constraints, where
the authors consider P Control (e.g., vessel angle of attack),
P Construction (e.g. vessel hull) and P Environment (e.g. visibility,

Fig. 10 Contract-based impact
identification due to an update
(Adapted and modified from
[22])

M1

M3

M2

A
G
A
G

A
G
A
G

A
G
A
G Interface change ΔI

Contract change ΔC

Implementation
change ΔImpl

CS
A
G
A
GCM1

CM2

CM3

634 Journal of Marine Science and Technology (2024) 29:620–640

tide, wind) as well as the possible illumination of a target
based on a LiDAR setup. Based on the concept and con-
straints of the BSA several requirements must be fulfilled
to ensure that the system is working as expected in terms of
precision and guarantees of the BSA. For the evaluation the
following requirements refer to an implementation of the
system for a specific setup:

1. The system must be able to offer support for a vessel
within the Berthing Support Area.

a. The system must measure the distance up to at least
120 m perpendicular to the quay wall.

b. The system must measure the distance up to 120 m
along the quay wall.

c. The system must measure the distance for a vessel
with at least 16 m length.

d. The system must measure the distance for a vessel
with at least 4.8m width.

e. The system must provide measurements for a vessel
within the BSA with a maximum angle 15◦.

2. As long as a vessel is within/intersects the Berthing
Support Area the reference points must provide distance
measurements.

a. If at least 5 pts are within a reference point the dis-
tance must be calculated.

b. The system must report measurements with a delay
below 200ms.

c. The system must provide distance measurements
with a precision of 0.1m.

For the BAS, two top-level requirements are derived,
describing the desired functionality. Requirement 1
describes non-functional constraints for the system regard-
ing the BSA. Sub-requirements describe more detailed con-
straints for these. The size of the BSA is 120 m in width and
length. This is estimated by the authors based on P Control
and P Construction , considering the ships dimension and the
maximum angle of attack. Only if a ship based on these

characteristics is entering the BSA, measurements will be
reliable. With requirement 2 performance conditions for pro-
cessing the reference points are defined. Thus, they should
only provide measurements if the vessel is within the BSA
and if enough points are present within an individual refer-
ence point. As the system is based on 5HZ LiDAR sensors,
reference points should provide measurements in less than
200ms. Accuracy requirements are derived based on the
IMO Resolution A.915 describing minimal requirements for
GNSS [54]. They define position accuracy metrics for GNSS
for automatic docking maneuvers, hence the BAS must pro-
vide distance measurements with an accuracy of 0.1m.

To evaluate how the presented development process
reacts to requirement changes, the update of the function is
introduced. In particular, the measurement accuracy of the
system gets refined by extending the condition that at least
5 points within a reference point are calculated by a further
condition. A clustering of the recorded measurement points
is recorded based on the distances to each other. The aim
is to exclude outliers in distance measurements to enable
a more precise evaluation of the measured values. This is
reflected by updating the requirement 2.a to the following
form:

2. a. If at least 5 pts with a maximum point to point dis-
tance of 1m are within a reference point, the distance
must be calculated.

4.2 Requirements analysis

The first step is to analyze the requirements to translate
requirements into VDs. For this purpose, parameters,
their conditions, dependencies, and acceptance criteria are
extracted from requirements, for which the results are shown
in Table 9.

Seven parameters were derived from requirements 1.a to
1.e. VD 1.1 and 1.2 restrict the size of the supported area
(i.e., length and width). VD 1.3 and 1.4 limit the minimum
supported vessel size for the system. VD 1.5 describes that

Table 9 Derived verification descriptors based on requirements for a berthing assistant system

Req-ID VD-ID Parameter (P) & Condition (C) Depen-dency (D) Acceptance Criterion (AC)

1.a 1.1 BSALength = 120m − −
1.b 1.2 BSAWidth = 100m − −
1.c 1.3 VesselLength > 16m − −
1.d 1.4 VesselWidth > 4.8m − −
1.e 1.5 0.0◦ < VesselAngle ≤ 15◦ ∧VesselHull ∩ BSA 1.1 ∧ 1.2 ∧1.3 ∧ 1.4 Measurement ≠ NULL

2.a 2.1 ReferencePointsPointCount ≥ 5 1.5 Measurement ≠ NULL

2.b 2.2 − 2.1 0ms ≤ MeasurementTime ≤ 200ms

2.c 2.3 − 2.1 MeasurementAccuracy ≤ 0.1m

635Journal of Marine Science and Technology (2024) 29:620–640

the hull must be within the BSA and that the vessel must
not exceed a certain angle. One parameter was extracted
from requirements 2.a to 2.c. VD 2.1 defines that if at least
5 points are within a reference point a measurement must
be emitted. This is valid under the dependence that the ship
is within the BSA, hence VD 1.5 is given as a dependency.
VD 2.2 and 2.3 limit the calculation time and accuracy of
the distance measurement. No parameters or conditions are
specified for these VDs as they are always valid if a refer-
ence point provides measurements.

The introduction of an update for an existing system
changes the requirements. Consequently, the VDs must be
adapted to reflect the new requirements. For the SuT, the
condition under which it should perform a measurement
changes. Consequently, the condition for VD 2.1 must be
modified. The results are shown in Table 10.

Due to the update, the condition was extended that the
point-to-point distance must be smaller than 1 m within the
reference point. Therefore, the parameter Reference Points
Point−To−PointDistance and the corresponding condition is added
to VD 2.1. Other VDs are not affected since they are merely
linked to each other by dependencies. However, all VD 2.1
dependent descriptors must be retested due to the update, as
the update could influence the measurements for the accept-
ance criterion.

4.3 Derivation of contracts

For the system and module contracts, the initial contractual
requirement depicted in Table 11 can be derived from the
VD.

The assumption of the BAS is a regular sensor input with
a frequency of 5Hz within a time window of [0, 200]ms. A
possible delay or offset is negligible in this case. As long as
the sensor delivers values with a frequency of 5Hz, the BAS
can guarantee a reaction by means of a reaction pattern. In
this case, the reaction pattern looks like this: for a sensor
input that identifies 5 points within the window of view, the
distance to the quay wall is calculated within [0, 200]ms.

A monitor is derived from the structured assumption-
guarantee contracts, which can observe the behavior of
BAS in simulated or real environment. For this purpose,
the monitor is connected to the interfaces of the realized
implementation of the component in the operative system.
As an input, sensor values must be received continuously
with a frequency of 5Hz. If this input has less than 5 points
the BAS should not show any reaction. In this case, however,
the monitor can already report the failure of the assumption
if a faulty input occurs over a long period of time, since an
error on the part of the input source, i.e., the LiDAR sensor,
could already be indicated here.

If the condition of an input of > 5 points is present, the
reaction pattern must be monitored for time compliance.
In this case, the time measurement of the calculation starts
on the part of the monitor. From a timing perspective, the
calculation can therefore take too long (>200ms). This can

Table 10 Changed descriptors based on an update

Req-ID VD-ID Parameter (P) & Condition (C) Dependency (D) Acceptance Criterion (AC)

2.a 2.1 ReferencePointPointCount ≥ 5 ∧ ReferencePointPoint−To−PointDistance ≤ 1m 1.5 Measurement ≠ NULL

Table 11 Contract of the initial configuration of the Berthing Assistant System

CBerthingAssistentSystem(InitialConfiguration)

Assumptions Receive Sensor Input every [0, 200]ms (5HZ)
Guarantees Whenever ReferencePointsPointCount ≥ 5 Provide DistanceOS,QuayWall within [0, 200]ms

Table 12 Contract of the updated port positioning system

ID 1.0 CBerthingAssistentSystem(Updated)

Assumptions Receive Sensor Input every [0, 200]ms(5HZ)
Guarantees Whenever ReferencePointsPointCount ≥ 5 Provide DistanceOS,QuayWall within [0, 200]ms

ReferencePointsPoint−To−PointDistance ≤ 1 m

636 Journal of Marine Science and Technology (2024) 29:620–640

point to faulty hardware or incorrect input from components
the SuT is dependent on. Moreover, if there is a faulty clock
of the component, it could lead to the malfunction of other
components if dependencies exist.

For the update, the contract is extended to include the
supplemented additional requirements from VD 2.1. As
shown in Table 12, a further condition is added to include
the clusters of point clouds as an additional condition. As
explained in the VD, the point cloud may only have a maxi-
mum point-to-point distance between the reference points
of ≤1 m, so that a distance calculation by the SuT can be
guaranteed at its output interface.

In addition to the temporary runtime check, the value
range can also be monitored for discrepancies. For exam-
ple, due to the LiDAR sensors range, the possible measured
distance of the identified OS is limited to a maximum range.
The same applies to the maximum speed, which is limited on
the one hand by the sensors accuracy, but also by contextual
knowledge about the allowed ship types in the specific port.
Thus, the monitor can be set up in a generalized way and
supplemented by context information or expert knowledge
in the concrete application field.

4.4 Derivation of scenario descriptions

Based on the VDs from Table 9 and the procedure from
Sect. 3.4, mooring maneuvers are generated for the simula-
tion. The VDs indicate that a ship with a length of at least
16 m and a width of 4.8m is berthing at the quay wall with
a berthing angle of less than 15◦ . This allows to determine
clear limits for the parameters of logical scenarios. Based on
these boundaries, the combinatorial test case generation is
performed to create concrete scenarios. To be able to quickly

check the system for errors, we use the parameter bounda-
ries. Hence, we choose a vessel with a length of 16 m and
a width of 4.8m, performing a berthing maneuver with an
angle of attack of 15◦ continuously reducing this value to 0 ◦.

The basis of the BAS system are LiDAR sensors, which
are affected by various weather effects and the reflectivity of
a target. To simulate this phenomenon we use a probabilistic
3D LiDAR simulation from [55]. This allows to simulate
LiDAR sensors under the influence of rain and target reflec-
tivity. Thus, the limits of the system can be tested under bad
weather conditions. Within the simulation, the prototypi-
cal setup from [53] was reproduced, with which the system
was already tested under real conditions. This is a 120 m
quay wall in which two 2D-LiDAR sensors with a maximum
range of 250 m are integrated. The first sensor is placed at
meter mark 0 m and the second one at meter mark 80 m.

Due to the updated function, the scenarios do not have
to be derived again. These are only based on requirement 1
of the BAS, whereas the update only affects requirement 2.
Therefore, the existing scenario catalog is reused for a new
test run.

4.5 Monitoring results

Based on Table 9 and the contracts, two metrics are required
for verification: (1) the accuracy of the BAS and (2) the
computation time between the sensor and system output.
For the evaluation of the accuracy, the ground truth dis-
tance measurement of the simulation is needed, hence the
perpendicular distance between the vessel hull and the quay
wall. The computation time, on the other hand, is measured
by the difference in time between receiving the sensor data

Fig. 11 Deviations in the distance calculation between both systems
and the ground truth measurement during the scenario. Measure-
ments of the original system (left) correspond to the ground truth.

The system update (right) increases the deviations and exceeds the
maximum acceptable deviation of 0.1m

637Journal of Marine Science and Technology (2024) 29:620–640

and outputting the reference points. Both measurements are
performed for the original form of the BAS and the updated
version.

First, we evaluate the system’s accuracy by observing the
distance measurements. Figure 11 shows the deviation from
the simulation ground truth for the original BAS version and
it’s updated form.

The deviation between the original BAS and the ground
truth is 0.06m at the highest, with a mean deviation of
0.0007m. However, high deviations are generated by the
updated BAS, with a maximum of 0.18m and an aver-
age deviation of 0.01m. As the vessel is approaching the
quay wall, the angle between the sensor and the vessel gets
smaller, reducing the point density. Thus, the maximum
point spacing should be increased to better detect small
ships. Considering that the maximum value is above the
maximum defined deviation of 0.1m, the accuracy require-
ments cannot be met for the updated BAS.

Figure 12 shows the results of the latency measurement.
For the original BAS, a minimum value of 3.48ms and a
maximum value of 31.15ms were measured. The aver-
age latency is 9.62ms. Similar values are generated by the
updated version. The minimum latency is 3.74ms and the
maximum latency is 31.4ms. An average value of 10.15ms is
determined here. The measurements suggest that the latency
increased due to the update, as the computational complexity
increased. However, these are still below the repetition rate
of the sensors, which transfer measurements every 200ms,
so that the requirements regarding the latency behavior can
be met. The change in the measured run times and distance
measurements can be attributed to the new calculation basis
introduced by the update. The accuracy of the measurement
therefore requires a revision of the algorithm. Regarding the

latencies, the runtime monitor also enables the detection of
faulty hardware or at the interfaces of the module.

5 Conclusion

The evaluation of the functional update of a practically
applied LiDAR-based BAS [53] shows that the steps devel-
oped in the development process can be implemented using
real-world SuTs. The requirements for the berthing system
can be transferred from the catalog of specifications of IMO
Resolution A.915 [54], which sets the minimum require-
ments for GNSS. These include the accuracy of positioning
for automated berthing maneuvers of less than 0.1m. In addi-
tion, technical specifications of the existing system, such as a
5HZ frequency rate of the LiDAR sensor, set time limits that
must continue to be adhered to after the update. This meant
that both regulatory and technical requirements could be
transferred to the VD in a structured manner in order to be
contractually recorded in the further course and checked for
compliance using generated scenarios. The measurements
and comparison of the accuracy and time behavior of the
original and updated SuT show both a breach of contract
in terms of accuracy and compliance with the contractual
specifications in terms of time requirements. This shows that
the presented development process enables the structured
measurement of test specifications from unstructured exter-
nal sources. In addition, it could be shown that tests can be
made more reliable, as requirement catalogs are structured
in a measurable and formal way and thus compliance and
breach of contract can be determined during an update using
repeatable tests based on a defined rule set. The unreliable
accuracy with a deviation of > 0.1m was determined and

Fig. 12 Boxplot of latency
monitoring results of reference
points and its updated version.
Both versions show compara-
ble min/max latencies but the
updated version has a higher
average latency. 25 and 50
percentile are increased due to
the update

638 Journal of Marine Science and Technology (2024) 29:620–640

the update rejected before deployment. Since contract-based
design also enables the consistency check of the integrated
construct the specifications of the components of the SuT,
the comparison of the original contract model and the con-
tracts modified by the update can also be checked for cor-
rectness. Using monitors at runtime, compliance with the
rules could also be realized during operation, thus further
increasing the reliability of the approved system.

6 Outlook and discussion

In this work a development approach is demonstrated that
integrates scenario-based verification with formal test
capabilities based on assumption-guarantee contracts. The
process explicitly takes future change management, such
as updates to the initial system, into account. As such, the
assessor of the system, e.g., the classification society respon-
sible in providing release approval, can re-run existing sce-
narios and test procedures and can track changes made to
safety-relevant aspects based on the previously defined sce-
nario and contract specifications.

The approach presented shows how unstructured require-
ment texts written in natural language can be transferred
into a structured test procedure that extends over all phases
of the development process. The introduced VD provides a
bridge to build delimitable scenario cases as well as formal-
ized and contractually verifiable requirement descriptions.
The VD integrates all external requirements and regulations
and can be used by the subsequent development branches.
By that it helps to reduce information asymmetries between
software development departments and system testers and,
in the event of non-compliance, directly shows which parts
have not been met.

With the focus of the development process towards
changes to the overall system composition, it is also shown
how feedback loops can be used to reduce re-verification
effort in case of an update. The process does not have to be
completely rolled out again in every case but can also be
resumed at intermediate steps. Furthermore, not all devel-
opment branches are always affected and existing parts can
be reused. This avoids unnecessary repetition of work and
streamlines the process, enabling a faster response to urgent
updates. The feedback loops and the linkage of process arti-
facts also allow the affected area to be targeted directly when
errors are identified in system development, without neces-
sarily addressing all branches.

Overall, the development areas can thus work in parallel
based on a common specification construct in the form of the
VD, without all branches having to stop work in the event
of breaks in one part of the overall development process. In
addition, the introduction of contract-based VITs means that
system analyses can be performed even before a component

has been fully developed. After completion, software tests
and contract-based monitoring can additionally underline
the functional capability of a component.

Further research can build up on this and address the
traceability of an update in the sense of an impact analysis,
to be able to determine the effect of an update even more
precisely and to limit the re-verification as well as the re-cer-
tification effort to the affected parts. One possibility would
be the functional decomposition of the SuT and the deter-
mination of the module dependencies and the impact of the
update within a SoS. This would also allow to only repeat
the required test scenarios that are covering the particular
module. Finally, an additional focus could be on the early
verification within the development phase to reduce efforts
in test beds. This is possible primarily through formal veri-
fication by means of contracts, which should be reconciled
with the advantage of early security guarantees on security
requirement statements without testing effort.

Funding Open Access funding enabled and organized by Projekt
DEAL.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

 1. Jorgensen RN (2017) BIMCO and CIRM propose software main-
tenance standard for shipping. https://www.bimco.org/news/
priority-news/20171214_software-maintenance

 2. CIRM/BIMCO Joint Working Group (2017) Industry standard on
software maintenance of shipboard equipment v1.0

 3. International Association of Classification Societies (IACS)
(2018) Recommended procedures for software maintenance of
computer based systems on board

 4. International Organization for Standardization (2021) ISO
24060:2021 - ships and marine technology - ship software log-
ging system for operational technology

 5. International Association of Classification Societies (IACS)
(2022) Unified requirement for electrical and electronic installa-
tions (UR E26) - cyber resilience of ships

 6. International Association of Classification Societies (IACS)
(2022) Unified requirement for electrical and electronic instal-
lations (UR E27) - cyber resilience of on-board systems and
equipment

 7. Heikkilä E, Tuominen R, Tiusanen R, Montewka J, Kujala P
(2017) Safety qualification process for an autonomous ship pro-
totype – a goal-based safety case approach, in marine navigation.
CRC Press, Gdynia, Poland, pp 365–370

http://creativecommons.org/licenses/by/4.0/

639Journal of Marine Science and Technology (2024) 29:620–640

 8. Dreossi T, Fremont DJ, Ghosh S, Kim E, Ravanbakhsh H,
Vazquez-Chanlatte M, Seshia SA (2019) VerifAI: a toolkit for the
formal design and analysis of artificial intelligence-based systems.
In Dillig I, Tasiran S (Eds) Computer aided verification. Springer
International Publishing, Cham. Lecture Notes in Computer Sci-
ence, pp. 432–442. https:// doi. org/ 10. 1007/ 978-3- 030- 25540-4_
25

 9. Riedmaier S, Ponn T, Ludwig D, Schick B, Diermeyer F (2020)
Survey on scenario-based safety assessment of automated vehi-
cles. IEEE Access 8:87456–87477. https:// doi. org/ 10. 1109/
ACCESS. 2020. 29937 30

 10. Ehmen G, Koopmann B, Bebawy Y, Ittershagen P, Measurement-
based online verification of timing properties in distributed sys-
tems. In: 2020 international conference on omni-layer intelligent
systems (COINS) (IEEE, Barcelona, Spain), pp. 1–6. https:// doi.
org/ 10. 1109/ COINS 49042. 2020. 91916 47

 11. Myklebust T, Stålhane T, Hanssen GK (2020) Agile safety case
and DevOps for the automotive industry. In Proceedings of the
30th European safety and reliability conference and 15th proba-
bilistic safety assessment and management conference (Research
Publishing Services), pp. 4652–4657. https:// doi. org/ 10. 3850/
978- 981- 14- 8593-0_ 3495- cd

 12. Ugarte M, Querejeta, Etxeberria L, Sagardui G (2020)Towards
a DevOps approach in cyber physical production systems using
digital twins. In: Casimiro A, Ortmeier F, Schoitsch E, Bitsch
F, Ferreira P (Eds) Computer safety, reliability, and security.
SAFECOMP 2020 Workshops, ed. by (Springer International
Publishing, Cham, 2020), Lecture Notes in Computer Science,
pp. 205–216.https:// doi. org/ 10. 1007/ 978-3- 030- 55583-2_ 15

 13. International Organization for Standardization (2018) ISO
26262:2018 - Road vehicles - functional safety

 14. Gautham S, Jayakumar AV, Rajagopala A, Elks C (2021) Reali-
zation of a model-based DevOps process for industrial safety
critical cyber physical systems. In: 2021 4th IEEE international
conference on industrial cyber-physical systems (ICPS), pp. 597–
604.https:// doi. org/ 10. 1109/ ICPS4 9255. 2021. 94682 13

 15. Munk P, Schweizer M (2022) Trapp M, Schoitsch E, Guiochet
J, Bitsch F (Eds) Computer safety, reliability, and security.
SAFECOMP 2022 workshops, vol. 13415. Springer International
Publishing, Cham. pp. 145–157. https:// doi. org/ 10. 1007/ 978-3-
031- 14862-0_ 11

 16. Tahvonen T, Uusitalo E (2018) Easy approach to requirements
syntax in nuclear power plant safety design. In: 2018 1st interna-
tional workshop on easy approach to requirements syntax (EARS),
pp. 1–2.https:// doi. org/ 10. 1109/ EARS. 2018. 00006

 17. Fu R, Bao X, Zhao T (2017) Generic safety requirements descrip-
tion templates for the embedded software. In: 2017 IEEE 9th
international conference on communication software and networks
(ICCSN), pp. 1477–1481. https:// doi. org/ 10. 1109/ ICCSN. 2017.
82303 53

 18. Gillani M, Ullah A, Niaz HA (2018) Survey of requirement man-
agement techniques for safety critical systems. In: 2018 12th inter-
national conference on mathematics, actuarial science, Computer
Science and Statistics (MACS). pp. 1–5. https:// doi. org/ 10. 1109/
MACS. 2018. 86283 89

 19. Gerwinn S, Möhlmann E, Sieper A (2019) In: Waschl H, Kol-
manovsky I, Willems F (Eds) Control strategies for advanced
Driver assistance systems and autonomous driving functions :
development, testing and verification. Lecture Notes in Control
and Information Sciences. Springer International Publishing,
Cham. pp. 67–87. https:// doi. org/ 10. 1007/ 978-3- 319- 91569-2_4

 20. Gomes C, Thule C, Broman D, Larsen PG, Vangheluwe H (2019)
Co-simulation: a survey. ACM Comput Surv 51(3):1–33. https://
doi. org/ 10. 1145/ 31799 93

 21. Neurohr C, Westhofen L, Henning T, de Graaff T, Möhlmann
E, Böde E, Fundamental considerations around scenario-based

testing for automated driving. In 2020 IEEE intelligent vehicles
symposium (IV) (2020), pp. 121–127. https:// doi. org/ 10. 1109/
IV474 02. 2020. 93048 23

 22. Guissouma H, Hohl CP, Lesniak F, Schindewolf M, Becker J,
Sax E (2022) Lifecycle management of automotive safety-critical
over the air updates: a systems approach. IEEE Access 10:57696–
57717. https:// doi. org/ 10. 1109/ ACCESS. 2022. 31768 79

 23. Holthusen S, Quinton S, Schaefer I, Schlatow J, Wegner M (2016)
Using multi-viewpoint contracts for negotiation of embedded soft-
ware updates. Electron Proc Theor Comput Sci 208:31–45. https://
doi. org/ 10. 4204/ EPTCS. 208.3

 24. Watanabe K, Kang E, Lin CW, Shiraishi S (2018) Runtime Moni-
toring for Safety of intelligent vehicles. In 2018 55th ACM/ESDA/
IEEE design automation conference (DAC). IEEE, San Francisco,
CA, pp. 1–6. https:// doi. org/ 10. 1109/ DAC. 2018. 84659 12

 25. Tabassam N, Fränzle MG (2022) Scenario-oriented contract based
design for safety of autonomous vehicles. In Bie Y, Qu BX, Howl-
ett RJ, Jain LC (Eds) smart transportation systems 2022. Springer
Nature, Singapore. Smart innovation, systems and technologies,
pp. 171–183. https:// doi. org/ 10. 1007/ 978- 981- 19- 2813-0_ 18

 26. Fremont DJ, Yue X, Dreossi T, Ghosh S, Sangiovanni-Vincentelli
AL, Seshia SA (2019) Scenic: a language for scenario specifica-
tion and scene generation. In: PLDI 2019: proceedings of the 40th
ACM SIGPLAN conference on programming language design
and implementation, pp 63–78. https:// doi. org/ 10. 1145/ 33142 21.
33146 33

 27. Nuzzo P, Lora M, Feldman YA, Sangiovanni-Vincentelli AL
(2018) CHASE: contract-based Requirement engineering for
cyber-physical system design. In: 2018 design, automation & test
in Europe conference & exhibition (DATE). IEEE, Dresden. pp.
839–844.https:// doi. org/ 10. 23919/ DATE. 2018. 83421 22

 28. Philipp R, Qian H, Hartjen L, Schuldt F, Howar F (2021) Sim-
ulation-based elicitation of accuracy requirements for the envi-
ronmental perception of autonomous vehicles. In: Margaria T,
Steffen B. Leveraging applications of formal methods, verification
and validation. Springer International Publishing, Cham. Lecture
Notes in Computer Science, pp. 129–145. https:// doi. org/ 10. 1007/
978-3- 030- 89159-6_9

 29. International Maritime Organization (2003) COLREG: convention
on the international regulations for preventing collisions at sea.
IMO Publication (International Maritime Organization)

 30. Perera L, Carvalho J, Guedes Soares C (2009) Advanced ship
design for pollution prevention. Taylor & Francis Group, London,
UK. pp 205–216.https:// doi. org/ 10. 1201/ b10565- 26

 31. International Organization for Standardization (2018) ISO/IEC/
IEEE international standard - systems and software engineer-
ing – life cycle processes – requirements engineering. ISO/IEC/
IEEE 29148:2018(E) pp. 1–104. https:// doi. org/ 10. 1109/ IEEES
TD. 2018. 85596 86

 32. Martins LEG, Gorschek T (2020) Requirements engineering for
safety-critical systems: an interview study with industry practi-
tioners. IEEE Trans Softw Eng 46(4):346–361. https:// doi. org/ 10.
1109/ TSE. 2018. 28547 16

 33. Fanmuy G, Fraga A, Llorens J (2012) Requirements Verification
in the Industry. In: Hammami O, Krob D, Voirin JL (Eds) Com-
plex systems design & management. Springer, Berlin, Heidelberg.
pp. 145–160. https:// doi. org/ 10. 1007/ 978-3- 642- 25203-7_ 10

 34. Rupp C (2020) Requirements-engineering Und -management. Carl
Hanser Verlag GmbH & Co. KG. pp I–XVI. https:// doi. org/ 10.
3139/ 97834 46464 308. fm

 35. Akkermann A, Hjollo BA (2019) Scenario-based V &V in a mari-
time co-simulation framework. In: 2019 spring simulation con-
ference. SpringSim 2019) (Institute of Electrical and Electronics
Engineers (IEEE), Tucson, Arizona, USA, pp. 1–12. https:// doi.
org/ 10. 23919/ Sprin gSim. 2019. 87328 71

https://doi.org/10.1007/978-3-030-25540-4_25
https://doi.org/10.1007/978-3-030-25540-4_25
https://doi.org/10.1109/ACCESS.2020.2993730
https://doi.org/10.1109/ACCESS.2020.2993730
https://doi.org/10.1109/COINS49042.2020.9191647
https://doi.org/10.1109/COINS49042.2020.9191647
https://doi.org/10.3850/978-981-14-8593-0_3495-cd
https://doi.org/10.3850/978-981-14-8593-0_3495-cd
https://doi.org/10.1007/978-3-030-55583-2_15
https://doi.org/10.1109/ICPS49255.2021.9468213
https://doi.org/10.1007/978-3-031-14862-0_11
https://doi.org/10.1007/978-3-031-14862-0_11
https://doi.org/10.1109/EARS.2018.00006
https://doi.org/10.1109/ICCSN.2017.8230353
https://doi.org/10.1109/ICCSN.2017.8230353
https://doi.org/10.1109/MACS.2018.8628389
https://doi.org/10.1109/MACS.2018.8628389
https://doi.org/10.1007/978-3-319-91569-2_4
https://doi.org/10.1145/3179993
https://doi.org/10.1145/3179993
https://doi.org/10.1109/IV47402.2020.9304823
https://doi.org/10.1109/IV47402.2020.9304823
https://doi.org/10.1109/ACCESS.2022.3176879
https://doi.org/10.4204/EPTCS.208.3
https://doi.org/10.4204/EPTCS.208.3
https://doi.org/10.1109/DAC.2018.8465912
https://doi.org/10.1007/978-981-19-2813-0_18
https://doi.org/10.1145/3314221.3314633
https://doi.org/10.1145/3314221.3314633
https://doi.org/10.23919/DATE.2018.8342122
https://doi.org/10.1007/978-3-030-89159-6_9
https://doi.org/10.1007/978-3-030-89159-6_9
https://doi.org/10.1201/b10565-26
https://doi.org/10.1109/IEEESTD.2018.8559686
https://doi.org/10.1109/IEEESTD.2018.8559686
https://doi.org/10.1109/TSE.2018.2854716
https://doi.org/10.1109/TSE.2018.2854716
https://doi.org/10.1007/978-3-642-25203-7_10
https://doi.org/10.3139/9783446464308.fm
https://doi.org/10.3139/9783446464308.fm
https://doi.org/10.23919/SpringSim.2019.8732871
https://doi.org/10.23919/SpringSim.2019.8732871

640 Journal of Marine Science and Technology (2024) 29:620–640

 36. Brinkmann M, Bode E, Lamm A, Maelen SV, Hahn A (2017)
Learning from automotive: testing maritime assistance systems
up to autonomous vessels. In: Oceans 2017 – Aberdeen. IEEE.
pp. 1–8. https:// doi. org/ 10. 1109/ OCEAN SE. 2017. 80849 51

 37. PEGASUS consortium (2019) Pegasus method - an overview.
https:// www. pegas uspro jekt. de/

 38. Lamm A, Hahn A (2018) Towards critical-scenario based test-
ing with maritime observation data. In: 2018 Oceans. MTS/
IEEE Kobe Techno-Oceans (OTO). IEEE. https:// doi. org/ 10.
1109/ OCEAN SKOBE. 2018. 85590 45

 39. Reiher D, Hahn A (2021) Review on the current state of sce-
nario- and simulation-based V &V in application for maritime
traffic systems. In: OCEANS 2021: San Diego – Porto. IEEE.
pp. 1–9. https:// doi. org/ 10. 23919/ OCEAN S44145. 2021. 97057
81

 40. Menzel T, Bagschik G, Maurer M (2018) Scenarios for develop-
ment, test and validation of automated vehicles. In: 2018 IEEE
intelligent vehicles symposium (IV). pp. 1821–1827. https:// doi.
org/ 10. 1109/ IVS. 2018. 85004 06

 41. Schuldt F, Saust F, Lichte B, Maurer M, Scholz S (2013) Effiziente
Systematische Testgenerierung Für Fahrerassistenzsysteme in Vir-
tuellen Umgebungen. In AAET https:// doi. org/ 10. 24355/ DBBS.
084- 20130 71014 21-0

 42. Jahanbin S, Zamani B (2018) Test model generation using equiva-
lence partitioning. In 2018 8th international conference on com-
puter and knowledge engineering (ICCKE). pp. 98–103. https://
doi. org/ 10. 1109/ ICCKE. 2018. 85663 35

 43. Aryandana I, Permanasari A, Adji T (2020) Comparing method
equivalence class partitioning and boundary value analysis with
study case add medicine module. IOP Conf Ser: Mater Sci Eng
732:012072. https:// doi. org/ 10. 1088/ 1757- 899X/ 732/1/ 012072

 44. Grindal M, Offutt J, Andler SF (2005) Combination testing strate-
gies: a survey. Softw Test Verif Reliab 15(3):167–199. https:// doi.
org/ 10. 1002/ stvr. 319

 45. Port of Hamburg (2023) Special Ever Ace. http://www.hafen-
hamburg.de/en/special/ever-ace/

 46. Reiher D, Hahn A (2021) Towards a model-based multi-layered
approach to describe traffic scenarios on a technical level. J Mar
Sci Eng. https:// doi. org/ 10. 3390/ jmse9 060673

 47. Cimatti A, Dorigatti M, Tonetta S (2013) OCRA: a tool for check-
ing the refinement of temporal contracts. In: 2013 28th IEEE/

ACM international conference on automated software engineering
(ASE) (2013), pp. 702–705. https:// doi. org/ 10. 1109/ ASE. 2013.
66931 37

 48. Sharf M, Besselink B, Molin A, Zhao Q, Johansson HK (2021)
Assume/guarantee contracts for dynamical systems: theory and
computational tools. IFAC-PapersOnLine 54(5):25–30. https://
doi. org/ 10. 1016/j. ifacol. 2021. 08. 469

 49. Xie J, Tan W, Yang Z, Li S, Xing L, Huang Z (2022) SysML-
based compositional verification and safety analysis for safety-
critical cyber-physical systems. Connect Sci 34(1):911–941.
https:// doi. org/ 10. 1080/ 09540 091. 2021. 20178 53

 50. International Organization for Standardization (2005) ISO
17894:2005 - ships and marine technology - computer applica-
tions - general principles for the development and use of program-
mable electronic systems in marine applications

 51. Reiher D, Hahn A (2022) Ad Hoc HLA simulation data model
derived from a model-based traffic scenario (2022). https:// doi.
org/ 10. 48550/ arXiv. 2208. 06234

 52. Francalanza A, Aceto L, Achilleos A, Attard DP, Cassar I,
Della Monica D, Ingólfsdóttir A (2017) A foundation for runt-
ime monitoring. In: Lahiri S, Reger G (Eds) Runtime veri-
fication. Springer International Publishing, Cham. Lecture
Notes in Computer Science, pp. 8–29. https:// doi. org/ 10. 1007/
978-3- 319- 67531-2_2

 53. Mentjes J, Wiards H, Feuerstack S (2022) Berthing assistant sys-
tem using reference points. J Mar Sci Eng 10(3):385. https:// doi.
org/ 10. 3390/ jmse1 00303 85

 54. International Maritime Organization (IMO) (2001) Revised mari-
time policy and requirements for a future global navigation satel-
lite system (GNSS)

 55. Bathmann M, Feuerstack S (2022) Validation of a probabilistic
model for the consideration of rain and target reflection effects
within maritime 3D LIDAR simulations. In MARESEC 2022.
https:// elib. dlr. de/ 188307/

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1109/OCEANSE.2017.8084951
https://www.pegasusprojekt.de/
https://doi.org/10.1109/OCEANSKOBE.2018.8559045
https://doi.org/10.1109/OCEANSKOBE.2018.8559045
https://doi.org/10.23919/OCEANS44145.2021.9705781
https://doi.org/10.23919/OCEANS44145.2021.9705781
https://doi.org/10.1109/IVS.2018.8500406
https://doi.org/10.1109/IVS.2018.8500406
https://doi.org/10.24355/DBBS.084-201307101421-0
https://doi.org/10.24355/DBBS.084-201307101421-0
https://doi.org/10.1109/ICCKE.2018.8566335
https://doi.org/10.1109/ICCKE.2018.8566335
https://doi.org/10.1088/1757-899X/732/1/012072
https://doi.org/10.1002/stvr.319
https://doi.org/10.1002/stvr.319
https://doi.org/10.3390/jmse9060673
https://doi.org/10.1109/ASE.2013.6693137
https://doi.org/10.1109/ASE.2013.6693137
https://doi.org/10.1016/j.ifacol.2021.08.469
https://doi.org/10.1016/j.ifacol.2021.08.469
https://doi.org/10.1080/09540091.2021.2017853
https://doi.org/10.48550/arXiv.2208.06234
https://doi.org/10.48550/arXiv.2208.06234
https://doi.org/10.1007/978-3-319-67531-2_2
https://doi.org/10.1007/978-3-319-67531-2_2
https://doi.org/10.3390/jmse10030385
https://doi.org/10.3390/jmse10030385
https://elib.dlr.de/188307/

	Integrating scenario- and contract-based verification for automated vessels
	Abstract
	1 Introduction
	2 Related work
	3 Integrating scenario-based verification with contract-enhanced system development
	3.1 Phase 1: planning
	3.2 Verification descriptor
	3.3 Phase 2: development
	3.4 Scenario development
	3.4.1 Step 1: derive scenario descriptions
	3.4.2 Step 2: parameter value selection
	3.4.3 Step 3: scenario modelling

	3.5 Contract development
	3.6 System development
	3.7 Phase 3: verification
	3.8 Phase 4: deployment, operation and updates

	4 Evaluation: verification of an update of a safety critical maritime LiDAR-based berthing assistant
	4.1 System under test
	4.2 Requirements analysis
	4.3 Derivation of contracts
	4.4 Derivation of scenario descriptions
	4.5 Monitoring results

	5 Conclusion
	6 Outlook and discussion
	References

