
Fitting Parameters of Linear Dynamical Systems
to Regularize Forcing Terms in Dynamical Movement Primitives
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Abstract— Due to their flexibility and ease of use, Dynamical
Movement Primitives (DMPs) are widely used in robotics
applications and research. DMPs combine linear dynamical
systems to achieve robustness to perturbations and adaptation
to moving targets with non-linear function approximators to fit
a wide range of demonstrated trajectories.

We propose a novel DMP formulation with a generalized
logistic function as a delayed goal system. This formulation
inherently has low initial jerk, and generates the bell-shaped
velocity profiles that are typical of human movement. As the
novel formulation is more expressive, it is able to fit a wide range
of human demonstrations well, also without a non-linear forcing
term. We exploit this increased expressiveness by automating
the fitting of the dynamical system parameters through opti-
mization. Our experimental evaluation demonstrates that this
optimization regularizes the forcing term, and improves the
interpolation accuracy of parametric DMPs.

I. INTRODUCTION

Introduced over twenty years ago [1], Dynamical Move-
ment Primitives (DMPs) remain an active topic of research
[2]–[8]. DMPs represent movements by combining linear
differential equations with non-linear forcing terms. The
forcing term is a gated function approximator, whose open
parameters are determined through regression, based on a
demonstrated trajectory. In contrast, the parameters of the
dynamical systems are tuned by hand, which is straightfor-
ward, and therefore usually not given much consideration1.

We investigate the fitting of the linear dynamical systems
(LDS) to a demonstrated trajectory before fitting the non-
linear function approximators. As the LDS in current DMP
formulations cannot represent typical human demonstrations
well, hitherto not much could be gained from fitting LDS
parameters. Doing so has thus hardly been explored [9],

Our first contribution is therefore to propose a modification
of the DMP formulation that enables the LDS to represent
bell-shaped velocity profiles – which are typical of human
movement and thus human demonstrations – even without a
forcing term. The modification is to use a generalized logistic
differential equation as a delayed goal system [10]. The new
formulation also has a richer parameterization than previous
formulations, enabling the LDS to express a much wider
range of demonstrations, as illustrated in Fig. 1.

With the more expressive formulation now available, our
second contribution is to automate the hand-tuning of the
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1In [1] for instance, these parameters are briefly mentioned in a figure

caption, along with the remark “The same parameters will be used through-
out the article.”

LDS parameters through optimization. Our evaluation on
several datasets with human demonstrations shows that the
optimization of LDS parameters improves the fitting without
a forcing term for all DMP formulations, and that the effect
is far more substantial with our novel formulation.

The third contribution is to demonstrate that if more
‘fitting work’ is done by the LDS, less work needs to
be ‘delegated’ to the function approximators, leading to a
regularization of their parameters. We consider such reg-
ularization to be a desirable property in itself, and also
demonstrate its practical impact on the interpolation accuracy
of a task-parameterized DMP [7], [11].

All implementations described in this paper are available
as part of the open-source library dmpbbo [12].

The rest of this paper is structured as follows. In the
next section, we describe related work and previous DMP
formulations. In Section III, we propose the novel DMP for-
mulation, and highlight its expressiveness. The procedure for
fitting the parameters of the dynamical systems is described
in Section IV, and it is evaluated on several datasets and
tasks in Section V. We conclude with Section VI.

II. RELATED WORK

Motion primitive representations can be classified accord-
ing to whether they are time-dependent (e.g. DMPs), state-
dependent (SEDS [14]), or can be both (TP-GMMs [15],
ProMPs [8], [16], KMPs [17]). A comprehensive, recent
overview of DMP research is provided in [2].

Whereas TP-GMMs, ProMPs and KMPs are typically used
in position space, DMPs and SEDS inherently represent
velocities and/or accelerations. The aim of this paper is not to
argue or demonstrate the advantages of DMPs over SEDS,
TP-GMMs, ProMPs or KMPs; the appropriate method de-
pends on the properties of the task. But if DMPs are the
appropriate approach for a particular problem, our DMP for-
mulation has important advantages over other formulations.

We consider the work of Li et al. [9] to be most similar to
our approach, in that it also optimizes the parameters of the
dynamical systems. In [9], the aim is to tune these parameters
for non-experts. Our approach rather aims at regularizing the
forcing term, which hinges on providing more expressive
dynamical systems (see Section III).

To focus on the main contributions of our paper, we do
not take end-effector orientations into account. However,
all movement primitive representations above, including our
formulation, can be readily extended to represent orienta-
tions [3], [18]–[20].
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Fig. 1. Illustration of the contributions. By representing the delayed goal system with a generalized logistic differential equation (bottom row), a DMP
can represent a much larger range of movements (gray trajectories generated by random sampling of the parameters of the dynamical systems). As the
formulation is able to generate the bell-shaped velocity profiles typical of human movement (Section III), trajectories demonstrated by humans (an example
of one of the y coordinates of a trajectory from [13] in red) can therefore often be fitted well with this novel formulation (blue), without requiring a non-
linear forcing term. The parameters of the blue trajectory in the lower row have been acquired with gradient-free optimization (Section IV). This parameter
fitting minimizes the targets for the function approximator that represents the forcing term, which leads to better numerical stability and generalization.

A. Initial DMP formulation (IJS formulation)

Dynamical Movement Primitives were introduced in [1].
DMPs consist of a spring-damper system, with a forcing term
added to the accelerations2.

 ż
ẏ
ṡ

 =

 αy(βy(g − y)− z + sfθ(s)
z
−αvs

 1

τ
(4)

Movements are generated by integrating this system with
the initial state y = y(t0) (e.g. the initial end-effector pose),
whereby y will converge to the attractor state g (the goal).

The forcing term sfθ(s) modulates the acceleration pro-
file. The parameters θ of fθ are trained from a demonstrated
trajectory through regression. The aim is for the DMP to fit
the acceleration profile of the demonstrated trajectory.

The canonical system with state s decays exponentially
from 1 towards 0 during the movement with ṡ = −αss. It
serves as an input phase variable for the forcing term fθ(s),
which makes the DMP autonomous, i.e. independent of time.
It also gates the function approximator with sfθ. Because the
gated forcing term converges towards 0, the overall system
is guaranteed to converge towards the attractor state g of the
spring-damper system [1].

To avoid overshooting, the spring-damper system is crit-
ically damped with βy = αy/4. The time scaling factor τ
allows the duration of the movement to be scaled. To improve
invariance properties, various further scaling approaches of
fθ have been proposed [21].

In multi-dimensional DMPs, y, z and g will be vectors,
and one function approximator fi is trained for each dimen-
sion i = 1 . . . N . The canonical system remains 1-D, and is

2Readers for whom this introduction is too brief are encouraged to read
the DMP tutorial in the accompanying open-source software:
https://github.com/stulp/dmpbbo/blob/master/tutorial/dmp.md

shared between all dimensions to synchronize the movement
of all dimensions. Also αy and βy are shared between
dimensions. We use the 1-D DMP notation for simplicity,
and consider multi-dimensional DMPs in Section IV-B.

B. Delayed Goal System (KUL formulation)

Kulvicius et al. [10] proposed an adapted formulation to
resolve several issues in the original formulation. The first
issue was the high initial accelerations of the spring-damper
system, see the fourth graph in the first row in Fig. 1. When
fitting a DMP, the function approximator must counteract
these high accelerations. Kulvicius et al. took the stance that
the function approximator should not have to compensate for
a shortcoming of the spring-damper system. They therefore
introduced a delayed goal system ĝ which starts at the initial
state and (quickly) converges towards the goal state. It is
also represented with a linear system ˙̂g = −αg(g − ĝ)/τ
with initial state ĝ(t0) = y(t0) and attractor state g, see the
first graph in the second row in Fig. 1. As the initial states
y(t0) and ĝ(t0) are the same, ż = αy(βy(ĝ−y)−z does not
generate accelerations at the beginning, see the fourth graph
in the second row in Fig. 1.

Another important contribution in [10] was to split the
canonical system into a phase system (s) and a gating system
(v), so that the forcing term becomes vfθ(s). It was demon-
strated that replacing the exponentially decaying system with
a logistic function (for gating) and a constant velocity system
(for the phase) leads to more regularized training data for the
function approximators, as our experiments will confirm.

See Eq. (2) for the full formulation. It is easy to imple-
ment, yet has a profound impact on the numerical stability
and ease of applying DMPs to real-world tasks. We therefore
consider [10] to be a key contribution to DMPs.

https://github.com/stulp/dmpbbo/blob/master/tutorial/dmp.md


III. INCREASING THE EXPRESSIVENESS OF THE LINEAR
DYNAMICAL SYSTEMS (LDS)

By introducing a delayed goal system, Kulvicius et al. [10]
ensured that the LDS generate zero initial accelerations,
alleviating the function approximator from having to com-
pensate for the high accelerations in the initial formulation.
We take this idea one step further, by proposing a generalized
logistic equation for the delayed goal system, which ensures
low initial jerk, and inherently generates bell-shaped velocity
profiles. These are desirable properties, since they are typical
for human point-to-point movements [22]. As is apparent
from the fourth column of graphs in Fig. 1, IJS and KUL do
not have these properties, and are not able to represent bell-
shaped velocity profiles without a forcing term. Furthermore,
our novel formulation is more expressive, with 4 open
parameters instead of the 1 (αy) and 2 (αy and αg) in the
previous formulations.

A. The Generalized Logistic Differential Equation (GLDE)
GLDEs are commonly used in population dynamics [23] to

describe the growth of a population Y towards its maximum
carrying capacity K

Ẏ = ηY (1−
(
Y
K

)ν
), (5)

where right asymptote of this differential equation is K, and
the left asymptote is 0. We can rewrite the equation by setting
the left asymptote to A instead with

Ẏ = η(Y −A)
(
1−

(
Y−A
K−A

)ν)
. (6)

B. GLDE as a delayed goal system in a DMP
We use the GLDE as a delayed goal system as follows.

The parameter K corresponds to the goal g to which the
movement should converge, and η is replaced with αg/τ for
compatibility with the DMP terminology:

˙̂g =
αg

τ
(ĝ − a)

(
1−

(
ĝ − a

g − a

)ν)
, (7)

The delayed goal ĝ converges from its initial state ĝ(t0) =
y(t0) to its attractor state g. The state ĝ is then used as the
attractor state of the spring-damper system, so that it too
converges to the target position g.

The novel formulation is shown in Eq. (3) in Fig. 1.
The shape of using the GLDE as a delayed goal system is
illustrated in the lower left graph of Fig. 1. We see that the
resulting velocity profile of the overall DMP is bell-shaped
for all variations of the parameters.

1) Inflection time as an explicit parameter: The left
asymptote of the GLDE – A in Eq. (6) – corresponds to
a in Eq. (7). It is a virtual parameter that has no physical
interpretation in the context of DMPs. However, it can be
computed from a desired inflection point with:

a =
bĝt0 − g

b− 1
, with b =

ν
√
1 + νeαgν(t∗−t0)/τ . (8)

Fig. 2 illustrates the shape of the delayed goal function
for different inflection times t∗ and the effect on the virtual
asymptote a in (8). The clear interpretation of the inflection
time makes it a convenient parameter to be able to set.

Fig. 2. Varying inflection times t∗ = 1, 2, 3, 4, 5 for a generalized logistic
function with τ = 6, y(t0) = 3, g = 5.0, αg = 10, ν = 2. The virtual
asymptote a is computed from these parameters, and visualized by extending
the analytical solution before t0.

2) Numerical stability: The virtual left asymptote a goes
towards −∞ and 0 for very small and large t∗ respectively.
In practice, this is not an issue, as t∗ < 0 and t∗ > τ are
not sensible values.

If the end-goal g changes during the movement, numerical
instabilities may arise when g drops below a. This is a real
issue, which can be resolved by implementing Eq. (7) as
follows:

ḋ = −αg

τ
(d− a)

(
1−

(
d− a

1− a

)ν)
, with dt0 = 0 (9)

with a = −
(

ν
√
1 + νeαgν(t∗−t0)/τ − 1

)−1

(10)

ĝ = y(t0) + d(g − y(t0)) (11)

Here, d develops from 0 to 1, and thus ĝ from y(t0) to g.
Overall, this leads to the same behavior as in Eq. (7), but
it is robust towards arbitrary changes of the goal during the
movement because a does not depend on g. This approach
is very similar to goal scaling [1], [21].

3) Illustrating the increased expressiveness: Fig. 1 shows
the effect of varying the parameters of the different DMP
formulations. With IJS there is only one parameter (αy), and
for KUL there are two (αy , αg). Their limited expressiveness
inherently precludes them from fitting bell-shaped velocity
profiles. In both cases, the maximum velocity cannot be set
independently of the time at which this velocity is reached.

With the GLDE as a delayed goal system, there are 4
parameters: αy , αg , ν, t∗. The sensitivity analysis in Fig. 1
shows that decoupling the first three shape parameters from
the timing of the maximum velocity (with t∗) enables a much
wider range of velocity profiles. Furthermore, independent of
the variations of these 4 parameters, the initial acceleration
and jerk remain low, often orders of magnitude lower than
for IJS or KUL.

A summary of the properties of the different formulations
(without adding forcing term) is provided in Table I.

4) GLDE for the gating function: We also use a GLDE
for the gating function which develops from 1 to 0. We have
found that for high ν, even sharper declines towards the
end of the movement can be achieved than with a standard
logistic system as used in KUL (a special case with ν = 1).
This leads to further regularization of the forcing term.
However, we have not found it advantageous to use it as
a phase system [24].



IJS KUL (novel) SCT
converges towards goal yes yes yes
initial velocity zero zero zero
initial acceleration high zero zero
initial jerk high high zero / low
bell-shaped velocity profiles no no yes
# free parameters 1 2 4
free parameters αy αy , αg αy , αg , t∗, ν

TABLE I
DMP FORMULATION PROPERTIES; GREEN INDICATES AN ADVANTAGE.

IV. AUTOMATING THE FITTING
OF DYNAMICAL SYSTEM PARAMETERS

As Fig. 1 and Table I illustrate, IJS and KUL provide little
room for tuning the dynamical system parameters to fit the
bell-shaped velocity profiles typical of human movement. For
this reason, this parameter tuning has not been emphasized in
previous work. In contrast, the expressiveness of the novel
formulation allows many different trajectories to be fitted
well even without a forcing term. We exploit this by training
a DMP in two phases: 1) optimize the parameters of the
dynamical systems so that they best fit a demonstrated tra-
jectory without a forcing term; 2) with these LDS parameters,
train the forcing term, as is standard in DMP training.

A. Cost Function for the Optimization

To minimize the ‘fitting work’ that is delegated to the
forcing term – which is in acceleration space – we regu-
larize the absolute differences in acceleration between the
demonstrated and reproduced trajectory over all times steps
N and dimensions D:

cÿ =
1

N ·D

Nτ∑
i=0

D∑
d=0

|ÿdemo
d,ti − ÿrepro

d,ti
| (12)

This constitutes the summed L1-norm in acceleration
space. An advantage of penalizing accelerations – rather than
regularizing the function approximator parameters – is that
the approach becomes independent of the specific function
approximator implementation that is used.

A further cost component is added to ensure timely
convergence to the goal. It is not often discussed in the
DMP literature, but if the parameter αy is set too low,
the movement converges towards the goal only very slowly,
and y may still be far from the target g at the end of the
movement at t = τ . Some examples can be seen in second
column of graphs in Fig. 1. When tuning parameters by
hand, one simply sets αy high enough so that this does not
happen. To formalize this requirement in the cost function,
we integrate the DMP 25% beyond τ (corresponding to M
extra time steps), and sum the absolute difference between
the goal and the trajectory for t ≥ τ :

cg =
1

M ·D

Nτ+M∑
i=Nτ

D∑
d=0

|ydemo
d,ti − yrepro

d,ti
| (13)

The overall cost is c = cÿ+u ·cg, with weighting factor u.
Furthermore, as not all LDS parameters are valid (e.g. ν >

0, 0 < t∗ < τ ), these constraints are enforced during the
optimization.

We perform the optimization of the LDS parameters in the
last row of Table I with the evolutionary strategy PIBB [25].
Alternatively, Bayesian optimization could be used; for such
low-dimensional spaces the algorithm used is not critical. In
future work, we will investigate if the optimal parameters
can be derived analytically rather than through iterative
optimization.

B. Decoupling LDS Parameters for each Dimension

Different dimensions of a demonstrated trajectory may
require different dynamical system parameters for optimal
fitting. For this reason, it is advantageous to run the op-
timization separately for each dimension. Rather than all
dimensions sharing the same αy , αy etc. (as in IJS and
KUL) each dimension then has its own parameter set, as is
customary for the forcing term parameters θ in fθ. As shown
in the empirical evaluation, this separation (or ‘decoupling’)
has no impact on fitting quality for IJS and KUL, but it is
substantial for the novel SCT formulation.

V. EMPIRICAL EVALUATION

All implementations in this evaluation are based on the
dmpbbo open-source library [12]. A separate repository
allows the results of this paper to be reproduced3.

A. Benchmarking on three human demonstration datasets

The aim of this experiment is to demonstrate that 1) op-
timization of the dynamical system parameters leads to
a regularization of the function approximator parameters;
2) our formulation leads to the best regularization due to
its increased expressiveness.

1) Data: We use the first 12 trajectories from the two
datasets described in [13] and [26]. The first contains human
reaching movements towards a cup, acquired with a magnetic
tracking device. The second contains robot end-effector
trajectories for reaching towards a box, which were acquired
through kinesthetic teaching. The datasets are described in
more detail in [13], [26]. A third dataset was acquired in
the context of this paper, and is described in more detail
in Section V-B. The raw recorded data was filtered with a
third-order Butterworth filter.

2) Procedure: There are three steps, which are performed
separately for each trajectory in the dataset and for each of
the three DMP formulations: 1) Evaluate how well a DMP
with default parameters and without a function approximator
fits each trajectories. The default parameters were taken from
previous work [12], and were not tuned further for any of the
experiments in this paper. 2) Optimize the LDS parameters,
with and without coupling of the dimensions (see Section IV-
B), and evaluate again. Optimization is performed with an
evolutionary strategy based on reward-weighted averaging
of the mean (PIBB , see Section IV-A), with 10 samples per
update, and 25 optimization updates. The initial parameters
correspond to the default LDS parameters of the DMP, and

3https://github.com/DLR-RM/dmpbbo-glde-evaluation

https://github.com/DLR-RM/dmpbbo-glde-evaluation


the covariance of the sampling distribution is (p/4)2 for
each parameter p. The cost scaling parameter u is 104 in all
experiments in this paper. 3) Fit the function approximators
of the forcing term both for the default and the optimized
LDS parameters to each trajectory. We use a radial basis
function network with 10 basis functions for all datasets.

3) Result 1: The main results of step 1 and 2 are summa-
rized in Fig. 3. The cost before optimization (µ±σ over the
12 trajectories) is shown in gray for each DMP formulation
and dataset. The cost after optimization is depicted in blue
(with coupled LDS parameters) and green (with separate
LDS parameters for each dimension); for clarity, they are
connected with the cost before optimization.

Fig. 3. Results of fitting the dynamical system parameters with different
DMP formulations (IJS, KUL, SCT) and datasets (left: [13], center: [26],
right: Section V-B). y-axis is logarithmic.

Analysis: From the results in Fig. 3, we draw the fol-
lowing conclusions. • The datasets are very different (from
magnetic tracking to kinesthetic teaching on different robots),
but the results are qualitatively similar. • All formulations
benefit from LDS parameter optimization, which verifies
the second contribution. • IJS does not fit the acceleration
profiles well, neither before nor after optimization. There is
no difference between optimizing LDS parameters coupled
(blue) or separate (green). • KUL is able to fit much better,
as it has 2 parameters for optimization, rather than 1. Again
no difference between coupled/separate. • SCT fits the
acceleration profiles best on all datasets, and doing so with
separate LDS parameters leads to further improvement. This
verifies the first contribution, that the novel formulation is
more expressive, and better able to fit human motions.

4) Result 2: To illustrate the impact of the optimization
on the distribution of the function approximator parameters
(which is fitted in step 3 of this experiment), Fig. 4 depicts
histograms of these parameters accumulated over all 12
trajectories.

Analysis: From Fig. 4, we draw the following conclusions:
• Before and after optimization, the function approximator
parameters with IJS are very large, i.e. very spread out around
0. • With KUL, values are much smaller. The main reason for
this is the replacement of the exponentially decaying gating
function in IJS with a sigmoid gating function. • SCT has
the smallest means and the lowest standard deviations, i.e.
−0.3 ± 0.91, −0.02 ± 0.42 and −0.12 ± 3.65 for the three
datasets. In comparison to previous formulations, this leads
to a reduction of function approximator parameter spread
of 3.2 (2.97/0.91), 5.33 (2.24/0.42) and 3.2 (11.91/3.65) in

Fig. 4. Histogram of function approximator parameter values for each
DMP type (top to bottom) and dataset (left to right), before (gray histogram)
and after (green) optimization.

comparison to KUL, and at least a factor of 15 to IJS. This
verifies contribution 3 of the paper, namely that both the
novel formulation (contribution 1) and the optimization of the
LDS parameters (contribution 2) contribute to regularization.

B. Impact of Regularization on Parametric DMPs

Regularization is generally a nice property, but not an
aim in itself. The objective of the second experiment is to
demonstrate the practical impact of regularization on task-
parameterized motion primitives [7], [11], [15], [26], [27].
In parametric DMPs (pDMPs), parameters related to the
task – for instance the location of a box [26] – modulate
the DMP parameters. Since our aim is not to propose a
novel pDMP formulation, but rather show the impact of
regularization on its quality, we use the pDMP formulation
originally proposed in [11]: 1) train a DMP on each trajectory
in a dataset; 2) train a policy parameter function, which maps
task parameters to DMP function approximator parameters.
As we shall see, regularization in the first step is beneficial
for training in the second step.

1) Data collection: The task is to hang a coat hanger on a
rail at different positions, the position along the rail being the
task parameter. On a UR5 robot, we gathered 4 trajectories
for different positions, approximately 7cm apart. Trajectories
were filtered with a Butterworth filter, and aligned with
dynamic time warping. As the end-effector orientation was
almost constant during the demonstration, it was not included
in the pDMP training.

2) Procedure: The two-step procedure above was used
to train one pDMP from the 4 trajectories. In the first
step, the function approximator parameters were determined
through regression. In the second step, the policy parameter
function was trained. We used a Gaussian Process with a
length parameter of 7cm. These steps were performed for all



three DMP formulations, with the default parameters for IJS
and KUL, and the optimized parameters for SCT. During
the optimization, the cost function was the sum over the
individual costs for each of the 4 trajectories.

We evaluate two performance measures: 1) the mean
distance at each time step between the demonstrated path and
the path generated by the pDMP for the same task parameter
as the demonstration. This evaluates the accuracy of fitting
on the training set. 2) the same distance between the path
between two demonstrations, and the path generated by the
pDMP for the task parameter between these demonstration.
This evaluates the accuracy of interpolation.

To validate the repeatability of our experiment, the entire
procedure of data gathering and training was repeated 5
times. One of these 5 batches needed to be discarded due
to a recording error.

3) Results: Fig. 5 shows the placement of the coat hanger
for the different DMP formulations for one of the 4 batches.
The video supplement shows the performed trajectories.

train test train test train test train

Fig. 5. Overview of the experiment. Demonstrations were given only for
the red markers. The lower rows (IJS, KUL and SCT respectively) show
snapshots of the video when the coat hanger is placed at each position.

Table II summarizes the quantitative results, by listing the
distance between demonstrations and trajectories generated
by the parametric DMP, averaged over all time steps. We
report the mean and standard deviation over all 4 batches of
demonstrations.

Analysis: Fig. 5 qualitatively shows that SCT (the last
row) has more accurate placements both for the red (training)
and blue (to test interpolation) markers. For IJS, the coat
hanger can hardly be seen in the cropped images for any of

on demonstrations with interpolation
(training set) (test set)

IJS 1.9± 0.2 3.0± 1.0
KUL 1.1± 0.2 2.3± 0.8
SCT 1.2± 0.2 1.3± 0.9

TABLE II
AVERAGE DISTANCE (IN CM) BETWEEN DEMONSTRATIONS AND

GENERATED TRAJECTORIES.

the blue markers. From Table II we also conclude that the
performance of IJS and KUL decreases substantially from
the training to the test set, i.e. (1.9 → 3.0 and 1.1 →
2.3 respectively). Due to the lower function approximator
parameters resulting from LDS parameter optimization, SCT
performs almost as well on training and test (1.2→1.3). This
demonstrates the practical relevance of the regularization
(contribution 3), based on contributions 1 and 2.

VI. CONCLUSION AND OUTLOOK

Most work on DMPs has focussed on extending the
original formulation, or integrating DMPs into overarching
frameworks for DMP selection and execution [2]. In this
paper, we instead reconsidered the core formulation, and
asked the question: What if the linear dynamical systems
themselves could represent the movement, rather than leaving
it to the function approximator? By replacing the delayed
goal system from [10] with a generalized logistic system,
we indeed found that bell-shaped velocity profiles can be
generated, thereby ensuring low initial jerk.

Fitting the LDS parameters prior to fitting the function
approximator leads to smaller function approximator param-
eter values for all formulations. Due to its expressiveness,
the effect is more substantial with the novel formulation,
We demonstrated the practical impact of regularization on a
parametric DMP.

Minimum-jerk and bell-shaped velocity profiles are defin-
ing features of human movement. However, not all tasks
require such a profile, i.e. some may even require high jerk.
Due to its higher expressiveness and the resulting ability to
represent all movements that IJS and KUL can (as long as
they have zero initial acceleration and jerk), we expect our
novel formulation to still be advantageous in these cases.

In our future work, we will study further human movement
types, and see if other dynamical system equations may
improve fitting of the resulting demonstrations. Furthermore,
we intend to study the impact of regularization on reinforce-
ment learning with DMPs.
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