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Complexity in Autonomous Mobile Manipulation
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Abstract—Mobile manipulation tasks in unstructured environ-
ments remain challenging for autonomous robots. The need to
employ a diverse set of software and hardware components
to solve the various subtasks inevitably increases system com-
plexity. Knowledge exchange among such diverse components
renders them highly coupled, reduces communication efficiency,
and makes the knowledge less accessible. To overcome these
challenges, we propose AIMM-WM, a central world model
as a single source of truth having an abstracted geometric
tree structure. Despite its concise, efficient state representation,
AIMM-WM is able to provide a wide range of information
from low-level geometries to highly abstracted symbols and
is interfaced with diverse components for navigation, motion
planning, perception, decision-making, and mission control. We
evaluate the performance of AIMM-WM from the real use case of
our Lightweight Rover Unit during the four-week Moon-analogue
demo mission on Mt. Etna, Italy.

Index Terms—Software Architecture for Robotic and Automa-
tion; Mobile Manipulation

I. INTRODUCTION

EVEN with the major advancements in robotic hardware

and artificial intelligence methods, mobile manipulation

in unstructured environements – from homes to extraterrestrial

surfaces – remains challenging. We consider the main reason

for this to be the inevitable system complexity. As no single

component can solve the entire mobile manipulation problem,

mobile manipulation platforms inevitably have a variety of

hardware and software components.

This complexity is exemplified by the four-week ARCHES

demo mission we conducted on Mt. Etna, Italy [1], [2],

illustrated in Fig. 1. In this Moon-analogue environment,

we demonstrated the successful completion of autonomous,

collaborative planetary exploration tasks. The mission involved

a heterogeneous team of 3 robots and the preparations involved

70 researchers. The Lightweight Rover Unit 2 (LRU2) [3]

alone already has a high system complexity. It is equipped with

stereo and color cameras on a pan-tilt unit, and a manipulator
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Fig. 1: Snapshots of autonomous task execution by our LRU2 during
the ARCHES demo mission; (1a) sand sample collection with a
shovel; (1b) stone sample collection with a robotic hand; (2) LIBS
measurements; (3) a network of LOFAR boxes deployment.
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Fig. 2: AIMM-WM reduces data coupling of components within our
LRU2 and provides a scalable and efficient system architecture.

with a docking interface for tool exchange and box manip-

ulation. In total, 89 software components were run to solve

diverse subtasks such as platform and arm control, navigation,

mapping, localization, object detection, scene analysis, motion

planning, decision-making, and mission control.

To address such system complexity, this letter proposes a

central robotic world model [4] for autonomous intelligent

mobile manipulators (AIMM-WM). The first contribution of

AIMM-WM is to reduce data coupling of components within
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a system by providing a central world representation, as

illustrated in Fig. 2. Data coupling is a type of coupling in

which output from one software module serves as input to

another module [5]. With AIMM-WM, components do not

need to communicate with every other component to maintain

world knowledge by themselves.

Secondly, AIMM-WM makes a wide range of knowledge

accessible to different components, from low-level geometric

information required for motion planners to high-level, ab-

stracted view of the world for decision-making components.

In comparison with a pure transformation representation (e. g.

ROS TF [6]) or a physical, 3D representation (e. g. Universal

Scene Description [7]), AIMM-WM represents not only con-

crete objects but also abstract ones (e. g. grasps and storages)

to make the state rich enough to support interfaces with diverse

components.

One of the approaches to achieve these two features, i. e.,

being central and providing diverse information, is to store

heterogeneous data from sensor streams to symbols, e. g. as

KnowRob [8], [9] and its extention [10], [11] does. However,

this potentially makes the state also heterogeneous, enormous,

and redundant. The third contribution of AIMM-WM is thus to

keep the state representation concise in a homogeneous tree

structure. Nodes represent objects from different abstraction

levels while edges represent only geometric transformations.

By taking advantage of the tree topology, AIMM-WM can

represent high-level symbolic knowledge such as physical

dependencies, which are critical for object manipulation. The

tree structure also enables efficient integration of geometrical

pose updates by localization.

AIMM-WM has been used in our heterogeneous robots

in industrial ([12], [13]) and planetary exploration ([14])

domains. This letter abstracts the requirements from these

specific applications and describes the whole concepts generi-

cally applicable. Furthermore, we evaluate the performance of

AIMM-WM from the aforementioned Moon-analogue demo

mission, where LRU2 performed long-term autonomous sam-

ple collection, laser-induced breakdown spectrometer (LIBS)

analyses [15], and deployment of the low-frequency radio

array (LOFAR) boxes [16] (see Fig. 1).

The rest of this letter is structured as follows. We first

present a concrete use case of AIMM-WM in our LRU2

during the Moon-analogue mission in Section II. Design of

AIMM-WM’s state representation and its tell/ask interfaces are

presented in Section III and Section IV, respectively. AIMM-

WM is evaluated in Section VI and compared with related

work in Section VII. We conclude with Section VIII.

II. USE CASE

To motivate the need for a central representation that stores

heterogeneous information, we now first describe the LRU2

software components that will interact with the world model.

In our LRU2, there are 12 software components that inter-

face with AIMM-WM. As is listed and described in Table I,

LRU2 employs four different perception components [17],

[18], [15], the motion planner RMPL [14], [15], the SLAM

system [19], [20], the controllers for the wheels and the manip-

ulator, the state machine execution framework RAFCON [21],

and the high-level mission control ROSMC [22].

These components require heterogeneous types of data re-

garding the world. For instance, the object detector component

based on AprilTag fiducial markers [23] queries a geometric

structure of how multiple AprilTags are associated to a single

concrete object. RMPL requires all concrete objects near the

robot to construct a collision environment. RAFCON asks

options and conditions for decision making and tells back

expected results of decided actions.

As is described in Section I and illustrated in Fig. 1,

LRU2 participated in the four-week ARCHES demo mission

campaign at a Moon-analogue site on Mt. Etna, Italy [1],

[2]. The missions LRU2 conducted were 1) to collect sand

and stone samples from unvisited locations, 2) to perform

LIBS sample analyses [15], and 3) to deploy the network of

the LOFAR boxes in rough terrain [16]. The missions took

approximately 2.5 hours, 1 hour, and 3 hours, respectively, and

were executed in a region of 1500m2 only partially known in

advance.

One of the main technological challenges of the mission

is that the different software components require different

perspectives on the real world. For example, where the tools

are located (in the holder or at the end-effector) affects the

controller (to compensate the load), the motion planning (to

find a collision-free motion), and also the decision making (to

attach a suitable tool/box to the end-effector for the current

task). AIMM-WM, by providing a central world state in the

robot with diverse interfaces, plays a key role within the

system architecture to address this technological challenge.

III. STATE REPRESENTATION

We define a world model (WM) as a software component

in a robot that reflects the real world and shares information

about the world with other components. As shown in Fig. 3, a

WM is segregated by a boundary and internally consists of a

state (which represents the world), and operations (which are

used to provide/receive information between the state and the

boundary). The boundary has two types of interfaces: “tell” to

provide information to the WM and “ask” to query information

from the WM. For more detailed descriptions of the definition,

refer to [4].

State

World Model

Operations

...

Tell Ask

External Components

Fig. 3: Graphical representation of a world model in general [4].

AIMM-WM represents the state as a tree structure whose

nodes represent concrete objects (e.g. a LOFAR box) and

abstract objects (e.g. an appropriate grasp for a concrete

object) and whose edges represent a 6-DOF transformation
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TABLE I: The software components on LRU2 that communicate with AIMM-WM to perform the mission of sample collection, LIBS sample
analyses, and LOFAR box deployments.

Components Description Data types Examples of data exchanged with WM

AprilTag object
detector

Calculates poses of objects annotated with
AprilTags, based on a camera image and the
geometric structure of the AprilTags.

Generic Tells poses of objects

Visual
feature

Asks a size and a geometric structure of AprilTags composing an
object

Object localizer
[17], [18]

Detects unknown objects on the terrain surface and
calculates the poses of their center.

File Tells an instance of the detected object type from a configuration
file

ROSMC [22] Sepcifies and controls a high-level mission for a
heterogeneous robotic team.

File Tells a new scene at the poses of points of interest

File system Provides an initial world state as a file and stores
the current state dumped into a file

File Tells an initial state and asks the current state

Environment
Map [15]

Models the surrounding area except for known
objects as a collision map

Physical Asks a region of interest for mapping and existing objects inside
of it

SLAM [19], [20] Creates a geometrical map for navigation and ex-
ploration and estimates the current robot pose

Physical Asks if landmark objects with AprilTags are being or have been
manipulated by the robot. a

RMPL [14], [15] Plans paths of the Jaco2 manipulator to avoid
collisions with the environment and the robot

Physical Asks all concrete objects in the current scene to construct a
collision environment

Sampling point
generator [15]

Computes poses on the surface of stones usable for
LIBS measurements

Generic Tells poses of sampling points with respect to the stones

Pan/tilt unit Controls the pan and tilt joints, whose end-effector
is equipped with the navigation cameras

Generic Asks poses of objects for the robot to look at

Navigation Controls the wheels to drive the robot to a goal
pose

Generic Asks navigation location poses

Jaco controller Controls the Jaco2 manipulator to reach a targeted
joint configuration

Physical Ask the total mass and the center of gravity of objects attached to
the end effector

RAFCON [21] Makes decisions of behaviors using state
machines to achieve local autonomy

Generic Asks properties of nodes; tells new poses and properties; tells to
reassign a node to a new parent node, etc.

Decision-
making

Asks available storages, suitable grasps/approaches, etc; tells to
update the storage availability, etc.

aInformation is told/asked not by synchronizing robots’ poses but via common landmark objects.

between two objects. A schematic example of the state is

shown in Fig. 4.
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Fig. 4: Schematic example of AIMM-WM’s state representation.

A. Node Types

Both concrete and abstract objects are represented as nodes

of the tree. We identified the following object types to repre-

sent different properties of the world based on our previous

review [4] and the requirements of our robots.

1) Concrete Objects:

a) Robot: This type of object represents the robot itself.

The concept here is to represent in an abstracted manner

how the robot relates itself to the surrounding environment.

Therefore, every robotic part that has physical interaction with

the environment should be defined as an object with this

Robot type.

For a mobile manipulator, it is typical to define a robot’s

base and a manipulator’s end effector as independent objects.

In this manner, all objects related to the robots base, e. g.,

objects placed on the platform, can be attached as children of

the robot base node. Objects grasped by a manipulator can be

attached as children of the end effector node, since they have

a physical dependency on the manipulator. Relocation of the

robot base can be represented by updating the relation from

the robot base to its parent.

Note that providing a detailed robotic model is not the

scope of this Robot type since the motivation of AIMM-

WM is to reduce complexity of communication among diverse

components. For instance, the kinematics and dynamics of the

manipulator are only relevant for the controllers, and thus it

should be represented in a separate robot model module. If

necessary, AIMM-WM can still interface to such an external

knowledge representation and update the relation between

Robot nodes, e. g. to continually update the pose relation

of the robot base node and the end effector node.

b) Fiducial Marker: Annotating concrete objects with

fiducial markers enables accurate and robust localization [24].

The object type Fiducial Marker is a specialized one for

modelling a fiducial marker pose as well as its size. By having

the Fiducial Marker objects as children of a Physical

Body object (see below), it is possible to encode the geometric
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relation between the fiducial markers to the concrete object

itself.

c) Physical Body: This type represents concrete objects

that do not compose the robot. Physical body objects

describe the physical properties, e. g., a mass, an inertia,

and a material. Therefore, this type is close to the common

understanding of the term “object”. Note that the Physical

Body object can have one or more children with the Shape

type (see below) to describe the geometrical information.

2) Abstract Objects:

a) Shape: The objects with this type are abstract in a

sense that they define only a geometric shape at a pose. The

form of the shape is flexible; it can be primitive shapes such

as boxes or cylinders, a voxel, or complex meshes1.

Due to its simple definition, this type can be used for

different purposes. For instance, it is useful for defining a

region of interest for a perception component, for modelling

safety zones, for defining goal regions of delivery tasks, and

for specifying collision obstacles for the motion planner.

b) Grasp: The Grasp objects represent contact informa-

tion for grasping a concrete object. A grasp has a geometric

relation to its concrete object and thus is modelled as a child

node of the Physical Body objects. Besides this geometric

relation, a grasp stores various process parameters such as a

gripper width and force.

c) Storage: The Storage objects represent contact in-

formation for placing a concrete object on another one. Similar

to the grasp, a storage has a geometric relation to a concrete

object that can sustain another concrete object. Therefore, a

storage is modelled as a child node of the Physical Body

or Robot objects.

d) Manipulator Approach: This type of objects repre-

sents poses where the manipulator should reach. An approach

has a geometric relation to its grasps and storages, and thus

is modelled as a child node of the Grasp objects as well as

the Storage objects.

e) Navigation Location: Similar to the Manipulator

Approach, this type of objects represents poses where the

robot base should reach.

B. Tree Structure

The tree structure is employed due to the following advan-

tages.

a) Physical Dependencies: Mobile manipulation tasks

by nature involves activities of picking and placing objects.

Depending on physical contacts – a box on a shelf, or in the

gripper – objects move together. Physical contact introduces

invariants w. r. t. relative poses.

Representing such physical dependencies between objects

in a WM provides substantial advantages for mobile manip-

ulation tasks. Utilizing the parent-child relations in the tree

structure is a concise approach to do so. In the example above,

the box node can be represented as a child node of the shelf

before picking, and then the box node can be reassigned to

the gripper node at the end-effector after picking.

1Only a pointer, e. g., a path to a mesh file, is stored in the node’s property.

The advantage of the tree structure against the physics

simulation approaches [25], [26], [10] is that the model does

not require parameters difficult to estimate in reality, e. g.,

friction coefficients and exactly correct meshes, nor heavy

computational effort as simulators do. The disadvantage is that

cyclic physical dependencies (e. g. when an object stands over

the edge of different objects) cannot be directly represented in

the tree. Introducing an abstract common parent node to group

the object nodes having physical dependencies is one of the

practical solution to overcome this conceptual limitation.

b) Local Reference: With the tree structure, every object

has exactly one parent object with a specified transformation.

Changing this transformation leads implicitly to change poses

of all children objects with respect to the world coordinate

frame. This concept has been employed in many other world

model approaches such as ROS TF [6] and Robot Scene

Graph [27] and we find it especially useful for localizing

objects and a robot. For example, when a robot moves its

platform, the only transformation which needs to be updated

is the one from the robot node to its parent, regardless of the

objects that the robot is carrying. If a list representation is

used, all the objects on the robot must update their pose with

respect to the world coordinate frame.

c) Scene Concept: For mobile manipulation tasks, there

are many cases that a robot needs to consider only its local

workspace. We call such a local workspace a scene. With

the tree structure, scenes are easily represented by dividing

the entire tree into sub-trees and thus a search space can be

reduced to be inside a scene where the robot belongs to. This

is typically beneficial for interfacing with a motion planner,

since it performs more efficient by neglecting geometrical

constraints far away from the manipulator. Other components

also take great advantage of the scene concept if a robot works

in an environment with a large number of objects, e. g. in a

manufacturing factory.

Although the local scene can also be extracted by calculat-

ing all the objects within a certain distance, utilizing the tree

structure is more advantageous in efficiency for performance

and in transparency for human understanding.

IV. TELL AND ASK INTERFACES

As is highlighted in Section II, an autonomous mobile

manipulation robot requires various components for different

subtasks, and they require information about the world from a

different perspective. Thus the challenge for having a central

WM is to have an extendable boundary so that heterogeneous,

wide-range information about the world can be provided/re-

quested. Since some components have a common interest

in a certain aspect of the world (e. g. only physics-related

information), we group domain-specific queries into separate

interfaces to make the system architecture well-structured and

extensible. In this section, we describe the following five types

of tell/ask interfaces required for AIMM-WM.

1) Generic Interface: Through the generic interface, com-

ponents can tell/ask generically useful data to/from the world

model, such as to add, remove, change, and get nodes and

edges of the state. This interface also provides data containing
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the information of the state’s tree structure as well. For

instance, asking pairs/triplets of parent and child nodes sat-

isfying a certain condition is generically useful for abstracting

physical dependencies. We call them pair/triplet queries and

include them in this interface.

2) File Interface: Through the file interface, components

tell/ask a state in a human readable file such as YAML. This

interface is used 1) to integrate prior knowledge such as a

topological/geometric structure of the entire world or sub-parts

composing it, and 2) to store the state into a file for logging

and debugging purposes.

3) Physical Interface: This interface provides physical and

geometrical data from the world model. This interface extracts

concrete objects from the state and builds a 3D collision

representation, which is used e. g. by motion planners.

As another example, this interface provides the overall mass

and the center of gravity of an object taking all children

object nodes into consideration. This is especially useful for

the impedance controllers of manipulators, since an estimation

of the weight of workpieces at the end effector is essential for

them.

4) Perception Interface: Through this interface, perception

components tell/ask data necessary and useful for them to

run their algorithms and to provide new information regard-

ing the world. Components based on fiducial markers [24]

require geometric information of markers attached to objects.

Other feature-based perception components need the model

of features of objects, i. e. how these features are related to

each other. The interface extracts such visual features and their

relation stored in the state and provides them to the various

perception modules.

5) Decision-Making Interface: Through this interface,

decision-making components ask from AIMM-WM a list of

certain objects or specific conditions so that the robot can

decide its behavior, and tell to AIMM-WM the expected results

of the decision.

The list of objects are often used for iterating certain skills

(e. g. to transport all cups) or for error handling (e. g. to use

other grasps if one has lead to a failure). For example, as

shown in Fig. 5, this interface uses specialized pair/triplet

queries to provide all the empty storages in the scene ( 1 ),

all the storages on the robot base ( 2 ), and all the storages on

a physical body object having fiducial markers ( 3 ).

Scene

Robot
BaseShelf

Physical
Body

Ask empty storages (pair query)
{parent_node_type: Scene,

 child_node_type: Storage,

 property: {full: False}}

Storage C

{full: False}

Storage A

{full: False}

Storage B

{full: True}

Marker

Ask robot's storages (triplet chain query)
{grandparent_node_type: Scene,

 parent_node_type: Robot,

 child_node_type: Storage}

Ask storages on marked objects
(triplet common-parent query)
{common_parent_node_type: PhysicalBody,

 child_node_type_1: Storage,

 child_node_type_2: Marker}

A C

C

A
B

1

2

3

Fig. 5: Examples of pair and triplet queries for decision making.

A typical example of certain conditions relevant for picking

tasks is to check where the targeted object is located. De-

pending on the type of the sustaining object, the robot needs

to choose a proper strategy and tool for manipulation.

V. IMPLEMENTATION

The implementation of AIMM-WM is shown in the software

architecture in Fig. 6, which is according to our WM template

shown in Fig. 3. AIMM-WM consists of a database and

five processes where external components tell/ask information

to/from AIMM-WM.

WM database (Neo4j)

...
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Tell/ask
generic
information
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Fig. 6: Software architecture of AIMM-WM.

The database process maintains the state of AIMM-WM. We

employed a Neo4j graph database because it provides 1) data

persistence essential for long-term autonomy, 2) reliable data

handling (e. g. to manage race conditions), 3) browser-based

visualization tools, and 4) maintainability due to a wide-range

of users and an active open-source community.

Since Neo4j is a generic graph database, it is tailored into

the state representation described in Section III by implement-

ing a Python library. It ensures that the internal structure of

the database is a tree, defines the different node types as

classes, and associates transformation information with edges.

Furthermore, sanity checks are executed after each writing

operation so that the state satisfies certain conditions, e. g.,

that no edges would lead to a cycle. When the checks fail, the

database safely rollbacks the operation.

The tell and ask interfaces are implemented by five pro-

cesses for each of the five data types described in Section IV.

To increase robustness, these interfaces are implemented as

independent client processes on the robotic operating system.

In case of unexpected errors during runtime, only the cor-

responding processes can be restarted without affecting the

database nor other running processes.

Another advantage of making the tell/ask processes inde-

pendent is to keep the runtime environment minimal. De-

pending on the communication protocol used by the external

components, the tell/ask processes require a different runtime

environment as well. Although we used ROS topics and

services to communicate with external components, this can

be flexibly adapted per process to suit system requirements.

VI. EXPERIMENTS

In this section, we evaluate the performance of AIMM-WM

utilizing data from the ARCHES demo mission, which took

place at a Moon-analogue field on Mt. Etna in Italy [1], [2].

We logged the initial world state as well as the sequence of
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ROS service calls on the tell/ask interfaces. Recording the

inputs/outputs of the services as well as the name of the service

caller component enables us to reconstruct and analyze the

world state at each execution step of the mission.

The following features of AIMM-WM are evaluated: 1) pro-

viding a central WM within the robot architecture, 2) providing

diverse tell/ask interfaces, 3) having the tree structure for local

reference, and 4) the inherent ability of representing a scene

in the tree structure.

A. Experiment 1: Data Coupling Reduction

One of the motivations of having a WM was to reduce the

data couplings among components, as is highlighted in Fig. 2.

To quantify the impact of introducing a WM, we analyzed the

system architecture of LRU2 with and without AIMM-WM,

and compared the number of data couplings (which we denote

by c) w. r. t. the number of software components exchanging

world information (which we denote by n). The results are

shown in Fig. 7.

AB

C1

C2

D1

D2

E

Fig. 7: Data couplings among software components in LRU2 with
and without AIMM-WM.

As is listed in Table I, n = 12 in LRU2. We represented

a system architecture as a graph, where a node represents

a software component and a directed edge represents an

information flow, as shown in the right diagram of Fig. 2.

If we would have not employed AIMM-WM, each software

component must have told information to all relevant ones,

as shown in the left diagram of Fig. 2. We computed c as

the total number of the directed edges in such a graph. In the

actual LRU2 system c was 15, though the value would be 39

if AIMM-WM were not used ( A ). This means that the data

coupling is improved by a factor of 2.6 by having AIMM-WM

in LRU2.

Secondly, in order to analyze the case where the system

were simpler, we removed nodes from the graph of Fig. 2 and

computed c. Since c is affected by which node is removed,

we randomly chose nr nodes to be removed and computed

the average of c of 200 times. The nodes were chosen so that

no node is isolated because such a node does not tell nor ask

any world information. This was iterated for nr from 1 to 10,

and as a result, the system with AIMM-WM outperforms if

n ≥ 5 ( B ).

Thirdly, we derived the upper/lower bound of c by utilizing

the graph theory. Without AIMM-WM, the maximum of c
is n(n − 1) when the system is represented as a complete

directed graph ( C1 ). On the other hand, the minimum of

c is n/2 when each node of the system graph has only

one outbound or inbound edge ( C2 ). With AIMM-WM, each

software component node can have edges only to/from AIMM-

WM. Therefore, the minimum of c is n when each node has

either outbound/inbound edge ( D2 ) and the maximum of c is

2n when each node has both ( D1 ).

Finally, we simulate a situation where LRU2 could have

employed more components. With AIMM-WM, c can be mod-

eled as a linear function of n because an additional software

component increments c only by 1 or 2 to communicate with

AIMM-WM. The slope was computed to be 1.25 based on the

actual LRU2 system. Without AIMM-WM, c can be modeled

as a quadratic function of n because an additional software

component needs to communicate with some of the other

existing components, which increases as n does. The quadratic

coefficient was computed to be 0.27 for LRU2. As a result, if

n were 18 in LRU2, there would have been four times more

data couplings in the system without AIMM-WM than with

AIMM-WM ( E ).

B. Experiment 2: Knowledge Accessibility

The second motivation for AIMM-WM was to make the

knowledge about the world accessible to various different

components from a single world model, instead of having

multiple different world models synchronizing information

between them. In Fig. 8a, we show the actual communication

diagram with the five interfaces (see Section IV) and the

components. The annotated numbers on the directed edges

show the total number of ROS service calls hosted by the

interface processes during the demo mission.

To quantify the advantage of having a single, central world

model with diverse interfaces, we simulated a communication

diagram if we would have employed five different world

models (see Fig. 8b). In this simulated system architecture,

each world model needs to synchronize the other world models

whenever it receives new information. The expected number

of such synchronization calls additionally required would be

counted to 1604 in total, while in AIMM-WM the information

was directly written into the state without synchronization 396

times. This means that providing diverse information from a

single world model by AIMM-WM improved the efficiency

by a factor of 4.05.

C. Experiment 3: Efficiency of Tree Structure

One of the reasons why we chose the tree structure as a

state representation was to make pose representations among

objects efficient by utilizing local references. To evaluate this,

we compare the tree structure against a list structure, since

some object-centric world models such as [28] employ the

list structure. We assume that the list state consists of the

same number of objects as the tree nodes of AIMM-WM,

and each object has a pose information w. r. t. the global

coordinate frame. By replaying the ROS service calls which

were executed on LRU2 during the mission, we evaluate the

computational effort if the list structure had been employed as

a world state.
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(b) Expected communication among the components if sep-
arate world models were employed.

Fig. 8: Communication diagrams annotated with the number of
interface calls during the ARCHES demo mission.

During the mission, the services to update the pose infor-

mation and to reassign a node took place 23 times and 182

times, respectively, typically when LRU2 localized itself and

picked/placed objects. If the list structure were employed, all

the N children nodes under the manipulated node must have

updated their pose information with respect to the global co-

ordinate frame. Therefore, the list structure would have costed

at least N -times more computation than the tree structure. The

average value of N is calculated to be 22.05 by conducting the

simulation using the log data of the operation calls. This means

that the tree structure of AIMM-WM improved the operation

efficiency by a factor of 22.05.

D. Experiment 4: Efficiency of Scene Concept

The last advantage of AIMM-WM is that its tree structure

inherently allows a scene to be extracted as a subtree. This

is advantageous in many contexts, and here we focus on

the physical interface used by the motion planner for eval-

uation. The motion planner requires all the physical bodies

and shapes in the environment, but only if they are in the

current workspace. Therefore, the scene concept improves the

performance by restricting the search space into a subset of

the current entire state.

The query took place 143 times, and on average, when the

motion planner queries, 109.89 nodes existed under the current

scene in comparison with 325.90 in the entire state. This means

that the search space to query relevant, concrete objects is

reduced by a factor of 2.97 on average.

E. Summary of experiments

Table II summarizes the performance improvement by hav-

ing AIMM-WM with respect to each feature.

TABLE II: Performance improvement factor achieved by AIMM-WM
with respect to each of its feature.

Experiment / Feature Benchmark method Improvement factor

1. Central WM Distributed states 2.60

2. Single WM Multiple WMs 4.05

3. Tree representation List representation 22.05

4. Scene concept No scene concept 2.97

VII. RELATED WORK

As is reviewed in [4], [29], [30], [31], the world model

has been studied for more than five decades in robotics. After

being employed in the first autonomous robot Shakey [32],

different research domains in robotics have developed their

concepts about the world model independently.

The navigation domain studies the world model to represent

a map of the environment and a robot pose. The geometries

of the environment are represented in various models [29] and

estimated by simultaneous localization and mapping (SLAM)

components [33]. Recent approaches are combined with neural

networks to integrate semantic information as well [34].

In the object detection and manipulation domain, the world

model can take a form of the object-centric knowledge base.

This could contain shapes, grasps, approaches, and taxonom-

ical labels identified by categorization [28], [35], which are

utilized for hybrid planning and reasoning activities [36].

Being compared to all the domain-specific approaches

above, our AIMM-WM addresses the inter-domain world

modelling to cover the entire mobile manipulation tasks.

As related work of such mobile manipulation WMs, there

are Robot Scene Graph (RSG) [27] and KnowRob [8], [9]

extended with a simulator [10] and Universal Scene Descrip-

tion [7]. While RSG shares similar design decisions as AIMM-

WM does (e. g. to employ an abstracted graph structure), the

main focus of RSG was to process diverse data effectively in

a central place by caching raw sensor data and intermediate

results, rather than to interface with diverse components as

AIMM-WM does.

KnowRob incorporates information of diverse abstraction

levels from sensory data to high-level events and stores them

into a heterogeneous set of databases with potentially redun-

dant or inconsistent information. AIMM-WM in comparison

aims to represent the world in a single, consistent state with

as concise information as possible, but as rich enough as

necessary to interface with heterogeneous components.

VIII. CONCLUSION

In this paper, we proposed AIMM-WM, a central world

model for autonomous intelligent mobile manipulation robots.

The main feature of this WM is to provide/receive a wide

range of information to/from components required by the

autonomous system, such as perception, navigation, motion



8 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED MAY, 2024

planning, and decision-making components. Despite the differ-

ence in the type of required information, AIMM-WM is able

to cover all the use cases with the single, minimal, concise

state represented as a tree.

AIMM-WM contributes to making complex robotic systems

more robust and extensible by 1) providing a consistent

world state for the entire system instead of synchronizing

states among every component, 2) reducing the data couplings

and improving the scalability of the system for integrat-

ing more software components, and 3) improving efficiency

in telling/asking information to/from the state due to the

tree structure composed of abstracted objects. Nevertheless,

AIMM-WM as a central component increases communication

latency due to an additional data transit, and thus low-level

components requiring strict real-time data exchange should

communicate directly.

In this article, we have highlighted the impact of using

AIMM-WM on our LRU2 system during the ARCHES mis-

sion. However, we have also integrated AIMM-WM in our

other heterogeneous robots such as the lander, the aerial drone,

and another rover with science cameras [1] as well as our

two different industrial robots [12], [13]. In our future work,

we aim to use ontology [37] to represent the object types of

AIMM-WM. We also plan to publish AIMM-WM with ROS2

support as open source.
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[12] A. Dömel et al., “Toward fully autonomous mobile manipulation for
industrial environments,” International Journal of Advanced Robotic

Systems, vol. 14, 2017.

[13] F. Steinmetz et al., “Intuitive task-level programming by demonstration
through semantic skill recognition,” IEEE Robotics and Automation

Letters, vol. 4, pp. 3742–3749, 2019.

[14] P. Lehner et al., “Mobile manipulation for planetary exploration,” in
IEEE Aerospace Conference, March 2018, pp. 1–11.

[15] ——, “Mobile manipulation of a laser-induced breakdown spectrometer
for planetary exploration,” in 2023 IEEE Aerospace Conference. IEEE,
May 2023.

[16] E. Staudinger et al., “Enabling distributed low radio frequency arrays
– results of an analog campaign on Mt. Etna,” in IEEE Aerospace

Conference, 2023.
[17] M. Durner et al., “Unknown object segmentation from stereo images,”

in 2021 IEEE/RSJ International Conference on Intelligent Robots and

Systems (IROS), 2021, pp. 4823–4830.
[18] ——, “Autonomous rock instance segmentation for extra-terrestrial

robotic missions,” in 2023 IEEE Aerospace Conference, 2023, pp. 01–
14.

[19] M. J. Schuster et al., “Distributed stereo vision-based 6d localization
and mapping for multi-robot teams,” Journal of Field Robotics (JFR),
2018.

[20] M. J. Schuster, “Collaborative Localization and Mapping for Au-
tonomous Planetary Exploration: Distributed Stereo Vision-Based 6D
SLAM in GNSS-Denied Environments,” Ph.D. dissertation, University
of Bremen, 2019.

[21] S. G. Brunner et al., “RAFCON: A graphical tool for engineering
complex, robotic tasks,” in IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS), 2016.
[22] R. Sakagami et al., “ROSMC: A high-level mission operation framework

for heterogeneous robotic teams,” in 2023 IEEE International Confer-

ence on Robotics and Automation (ICRA). IEEE, 2023, pp. 5473–5479.
[23] E. Olson, “AprilTag: A robust and flexible visual fiducial system,” in

Proceedings of the IEEE International Conference on Robotics and

Automation (ICRA). IEEE, May 2011, pp. 3400–3407.
[24] M. Kalaitzakis et al., “Fiducial markers for pose estimation: Overview,

applications and experimental comparison of the artag, apriltag, aruco
and stag markers,” Journal of Intelligent & Robotic Systems, vol. 101,
pp. 1–26, 2021.

[25] A. S. Bauer et al., “Probabilistic effect prediction through semantic
augmentation and physical simulation,” in 2020 IEEE International

Conference on Robotics and Automation (ICRA), 2020, pp. 9278–9284.
[26] M. Neumann et al., “URoboSim – an episodic simulation framework

for prospective reasoning in robotic agents,” 2020.
[27] S. Blumenthal et al., “A scene graph based shared 3D world model

for robotic applications,” in 2013 IEEE International Conference on

Robotics and Automation (ICRA). IEEE, 2013, pp. 453–460.
[28] D. Leidner et al., “Things are made for what they are: Solving manip-

ulation tasks by using functional object classes,” in 2012 12th IEEE-

RAS International Conference on Humanoid Robots (Humanoids 2012),
2012, pp. 429–435.

[29] E. Angelopoulou et al., “World model representations for mobile robots,”
in Proceedings of the Intelligent Vehicles ‘92 Symposium, 1992, pp. 293–
297.

[30] C. Landsiedel et al., “A review of spatial reasoning and interaction for
real-world robotics,” Advanced Robotics, vol. 31, pp. 222–242, 2017.

[31] A. Belkin et al., “World modeling for autonomous systems,” Innovative

information systems modelling techniques, vol. 1, pp. 135–158, 2012.
[32] N. J. Nilsson, “Shakey the robot,” AI Center, SRI International, Menlo

Park, CA, USA, Tech. Rep., 1984.
[33] T. Taketomi et al., “Visual slam algorithms: A survey from 2010 to

2016,” IPSJ Transactions on Computer Vision and Applications, vol. 9,
pp. 1–11, 2017.

[34] W. Chen et al., “An overview on visual slam: From tradition to
semantic,” Remote Sensing, vol. 14, p. 3010, 2022.

[35] D. Leidner, “Cognitive Reasoning for Compliant Robot Manipulation,”
Ph.D. Thesis, Universität Bremen, Bremen, 2017.

[36] D. Leidner et al., “Object-centered hybrid reasoning for whole-body mo-
bile manipulation,” in 2014 IEEE International conference on robotics

and automation (ICRA). IEEE, 2014, pp. 1828–1835.
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