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Abstract: Tomographic Synthetic Aperture Radar (SAR) allows the reconstruction of the 3D radar
reflectivity of forests from a large(r) number of multi-angular acquisitions. However, in most practical
implementations it suffers from limited vertical resolution and/or reconstruction artefacts as the
result of non-ideal acquisition setups. Polarisation Coherence Tomography (PCT) offers an alter-
native to traditional tomographic techniques that allow the reconstruction of the low-frequency
3D radar reflectivity components from a small(er) number of multi-angular SAR acquisitions. PCT
formulates the tomographic reconstruction problem as a series expansion on a given function basis.
The expansion coefficients are estimated from interferometric coherence measurements between
acquisitions. In its original form, PCT uses the Legendre polynomial basis for the reconstruction of
the 3D radar reflectivity. This paper investigates the use of new basis functions for the reconstruction
of X-band 3D radar reflectivity of forests derived from available lidar waveforms. This approach
enables an improved 3D radar reflectivity reconstruction with enhanced vertical resolution, tailored
to individual forest conditions. It also allows the translation from sparse lidar waveform vertical
reflectivity information into continuous vertical reflectivity estimates when combined with interfero-
metric SAR measurements. This is especially relevant for exploring the synergy of actual missions
such as GEDI and TanDEM-X. The quality of the reconstructed 3D radar reflectivity is assessed by
comparing simulated InSAR coherences derived from the reconstructed 3D radar reflectivity against
measured coherences at different spatial baselines. The assessment is performed and discussed
for interferometric TanDEM-X acquisitions performed over two tropical Gabonese rainforest sites:
Mondah and Lopé. The results demonstrate that the lidar-derived basis provides more physically
realistic vertical reflectivity profiles, which also produce a smaller bias in the simulated coherence
validation, compared to the conventional Legendre polynomial basis.

Keywords: Polarisation Coherence Tomography; InSAR; vertical reflectivity profile

1. Introduction

Three-dimensional forest structure is of significant interest due to its ability to describe
forest state and disturbance as imposed by forest degradation, logging activities, fire events,
and other processes [1–3]. However, 3D forest structure characterisation at large scales is
today only possible in the context of lidar and/or 3D SAR remote sensing techniques [4].

At regional scales, airborne lidar measurements are the standard. They allow the
derivation of 3D forest structure information from reflectivity profiles measured in the
form of waveforms (“full-waveform” lidar systems) or reconstructed from dense point
measurements (“discrete return” lidar systems) [5–7]. Discrete return lidars, with footprints
of 0.1 to 2 m, are designed for fine-scale topographic mapping. Large-footprint (>5 m)
waveform lidar, such as NASA’s LVIS [8], offers advantages like capturing both ground
and tree tops simultaneously and covering wider areas at lower costs. These systems
are also used for calibrating and validating spaceborne instruments like GEDI (Global
Ecosystem Dynamics Investigation) [9]. However, waveform interpretation is affected by
multiple scattering, sloped terrains, and off-nadir pointing. Multiple scattering in optically
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thick media distorts the waveform, making interpretation difficult. Off-nadir pointing and
sloped terrains can deform the vertical waveform shape, extending the ground return and
overlapping it with vegetation returns, an effect more critical with larger footprints [10–12].
In addition, lidar acquisitions are hindered by clouds and dense atmospheric haze, which
attenuate the signal.

At larger scales, spaceborne lidar measurements are currently limited to sampling
measurements, which are insufficient to provide continuous measurements of forest
structure [6,11]. The only alternative for achieving continuous forest structure estimates
at relevant spatial resolutions over large areas is to combine multi-angular SAR acqui-
sitions by means of interferometry and/or tomography. SAR tomography allows the
reconstruction of the 3D radar reflectivity by means of a large(r) number of multi-angular
(interferometric) acquisitions, creating a tomographic aperture in the across-track direc-
tion [13]. Over the last years, a multitude of tomographic focusing algorithms, includ-
ing both model-based and model-free approaches, have been developed and explored
in a number of airborne campaigns [13–16]. Among the most used algorithms, the
Fourier-based focusing algorithm estimates 3D radar reflectivity without any a priori
assumptions on the 3D distribution of scatterers [13,14]. However, its vertical resolution
is constrained by the largest across-track distance between the acquisitions while their
across-track spacing distribution defines the unambiguous reconstruction range and the
side lobe performance. In contrast, the Capon algorithm formulates the tomographic
focusing adaptively to measured data using the covariance matrix [14]. It mitigates
the side lobe levels and improves the vertical resolution but at the cost of radiometric
linearity. However, neither of these methods is optimised for the reconstruction of
volume scatterers [13], especially from a small set of acquisitions. Other reconstruction
approaches, such as MUltiple SIgnal Classification (MUSIC) or compressive sensing
algorithms, are optimised for discrete rather than continuous volumes. In particular, the
compressive sensing algorithm allows resolving scattering contributions with higher
resolution, but the profile reconstruction may be affected by artifacts [17–19].

In this context, Polarisation Coherence Tomography (PCT) was proposed as an attrac-
tive alternative approach for the reconstruction of 3D radar reflectivity of volume scatterers
from a small set of, even single, interferometric coherence measurements [20–25]. PCT ex-
presses the vertical reflectivity profile as a series expansion in a given set of basis functions
assuming prior knowledge of forest height and ground terrain elevation. The expansion
coefficients are estimated from the interferometric coherence measurements.

Similarly to classical tomographic algorithms, an accurate PCT reconstruction re-
quires low or even absent temporal decorrelation, such as in bistatic single-pass systems
like TanDEM-X [26] or repeat-pass long-wavelength SAR with a small revisit time like
BIOMASS [27]. Further, the PCT performance can be limited by inaccuracies in the knowl-
edge of the terrain elevation [20], which becomes difficult to achieve in the presence of
slopes. Importantly, the vertical resolution achieved by PCT and the reconstruction ac-
curacy increase with the number of expansion coefficients. However, a larger number of
coefficients requires a larger number of coherence measurements, resulting often in an
ill-conditioned higher-order system of linear equations [21].

The selection of the basis functions plays an important role in the PCT reconstruction
performance [28] and is still now an open issue. Based on the considerations above, an
optimal basis should meet two key criteria: (a) it should allow an accurate reconstruction
and high vertical resolution with a small number of basis functions for different forest condi-
tions, and (b) it should lead to a well-conditioned reconstruction problem for a wide range
of interferometric geometries (e.g., baselines). The originally proposed Legendre polynomi-
als have been proven to be well-suited for lower heights and vertical wavenumbers when
higher frequency components contribute to the volumetric decorrelation approximations
at lower order magnitude [20]. However, an alternative basis can also be considered,
especially for taller forest stands. In this context, this paper investigates the definition and
use of a set of basis functions derived from available large-footprint lidar waveforms for
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the reconstruction of X-band 3D radar reflectivity of forests. As discussed in [29,30], despite
differences in geometry and frequency, there is a certain similarity in terms of information
content between lidar and X-band measurements, induced by the high sensitivity to the
geometrical attributes/architecture of the canopy, the high attenuation rates and the high
spatial resolution common to both configurations. For this, lidar waveforms provide a
valuable starting point for deriving an alternative basis for X-band reflectivity reconstruc-
tion. Further, this paper investigates how the choice of basis functions affects the quality
of the PCT reflectivity reconstruction at X-band for varying interferometric baselines for
different forest types and conditions. Finally, it establishes a framework for translating
vertical reflectivity information from sparse lidar waveforms into a wall-to-wall vertical
reflectivity mapping, which is relevant for data integration in missions such as GEDI and
TanDEM-X [12,30–36]. To demonstrate this, data acquired over two tropical forest sites in
Gabon during the AfriSAR2016 Campaign are used [8,37].

The paper is organised as follows. After the introductory Section 1, the theoretical
background of interferometric coherence measurements and the PCT method is addressed
in Section 2. In Section 3, the experimental data used are described. In Section 4, the results
obtained from single- and dual-baseline PCT reconstruction using different basis functions
are presented. Finally, Section 5 provides discussion, and Section 6 draws conclusions.

2. Theoretical Background
2.1. Interferometric Measurements

Interferometric SAR measurements are inherently dependent on the vertical structure
of volume scatterers as forests are. The complex, polarisation-dependent, interferometric
coherence between two interferometric SAR images at a given polarisation

→
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w
)
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(→
w
)

, acquired with an across-track separation (e.g., baseline), is defined by their
normalised cross-correlation as [26]
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The volumetric decorrelation contribution, derived in [38,39], is defined as:

∼
γVol

(
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w
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= ejϕ0

∫ hV
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w
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exp(jkzz)dz∫ hV
0 F(z)dz

, (3)

given by the (normalised) Fourier transformation of the vertical distribution of scatterers
seen by the interferometer F

(
z,

→
w
)

, also known as the vertical reflectivity profile. The
phase term ϕ0 corresponds to the height z0 of the underlying terrain as ϕ0 = kzz0 and hV
is the vertical extent of the reflectivity volume; i.e., in forests, it is the forest height. The
vertical wavenumber kz is directly proportional to the look angle difference ∆θ between the
two acquisitions corresponding to their across-track separation and inversely proportional
to the sine of the incidence angle θ0, computed in the bistatic case as
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kz =
2π
λ

∆θ

sin(θ0)
. (4)

Substituting z′ = z/hv, Equation (3) rewrites to:

∼
γVol
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. (5)

Equation (5) contains the information about both the vertical extent of the forest
volume in terms of hv as well as its vertical structure in terms of F

(
z,

→
w
)

[29,40].

2.2. Polarisation Coherence Tomography

The estimation of F
(
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)

from (5) can be formulated by means of a linear system

of equations. For this, F
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is expanded in terms of a series of N basis functions
f0(z), .., fN(z) with unknown real-valued expansion coefficients a1, .., aN
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Solving two linear equations, associated with the real and imaginary parts of (7),
enables the determination of a1 and a2. Note that the normalisation in (7) cancels out
the zeroth order coefficient a0. The reconstruction of F

(
z,

→
w
)

is performed for every

polarisation
→
w independently. Since the TanDEM-X acquisitions used in this paper are

in HH-polarisation only, this work is concerned with the reconstruction of F
(

z,
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w
)

at a
single polarisation, and the polarisation dependence is suppressed in the following.

The multi-baseline problem for resolving N basis coefficients, as derived in [20], is
formulated in the following matrix form:
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In the case of N = 2M, the matrix [F] is quadratic and the solution is given by

→
A = [F]−1→B (9)

In order to solve for N ≤ 2M, the least square solution of (9) is obtained using the singular
value decomposition (SVD)

[F] = [U][Σ][V]T,
→
A = [V] [Σ]−1

[
U]T

→
B (10)

where [Σ] is the diagonal matrix which contains the singular values of [F], while [U] and
[V] are unitary matrices. The inversion robustness in the presence of noise is expressed
by the conditioning of the matrix [F], given by the ratio of the maximum and minimum
singular values σ1 . . .σN

CN = ||[F]||
∣∣∣∣∣∣[F]−1

∣∣∣∣∣∣−1
=

σmax

σmin
. (11)

A condition number CN ≈ 1 indicates an optimum-conditioned problem, while large CN
values characterise ill-conditioned cases.

Equation (8) represents the reconstruction of the vertical reflectivity function by means
of PCT. Originally, polarisation diversity was used to estimate ϕ0 [20]. This paper, however,
focuses on the reconstruction of the vertical reflectivity function and incorporates the ϕ0
information from the available lidar digital terrain model (DTM). Although the polarisation
information is omitted in the following, the term ‘PCT’ is retained in this paper to avoid
confusion with other coherence tomography methods [18,22].

2.3. Basis Functions for PCT

The exact form of the matrix [F] and the vector
→
B in (8) depends on the basis functions

used to express F(z). The first proposed basis functions are the Legendre polynomials, with
the first six functions given by

fL
0 (z) = 1, fL

1 (z) = z, fL
2 (z) =

1
2 (3z

2 − 1),

fL
3 (z) =

1
2 (5z

3 − 3z), fL
4 (z) =

1
8 (35z

4 − 30z2 + 3),

fL
5 (z) =

1
8 (63z5 − 70z

3
+ 15z).

(12)

Note that the orthogonality of the basis functions, given in the case of the Legendre
functions, can be generally omitted. Non-orthogonal basis functions, for example, the
“mean” vertical reflectivity profiles of certain/different forest types, can also serve as
potential basis functions. However, the orthogonality condition guarantees zero correlation
between the different basis functions, so that with each additional expansion coefficient
an independent contribution is added to the vertical reflectivity profile. This can be an
advantage with respect to the conditioning of the reconstruction problem.

The substitution z → z
2 + 1 normalises the integral limits of (7) to z ∈ [−1 : 1]

∼
γ

m
Vol(z) = e

jkmz hv
2

∫ 1
−1

[
f0(z) + ∑N

n=1 anfn(z)
]
ejkm

z hvzdz∫ 1
−1

[
f0(z) + ∑N

n=1 anfn(z)
]
dz

. (13)

The normalisation of the axis is particularly advantageous for the Legendre polynomials,
which are either even or odd functions. When multiplied by complex exponentials, the re-
sult is also an even or odd function. This allows either the imaginary or the real component
of the decomposition of the numerator to be cancelled.
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The analytical expression for the first 3 functions is given explicitly below [20]:

FL
n(kzhv) =

1∫
−1

ejkvzfL
n(z)dz, (14)

with

FL
0 =

sinkv
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, FL
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1
2kv

)
sin kv,

(15)

where kv = kzhv. Note that, since the Legendre polynomials are orthogonal to the zeroth
order constant function fL

0 (z), the denominator in (13) is zero, except for the zeroth order
integral

∫ 1
−1 f0(z)dz.

According to (15), for small kv values the higher frequency components FL
n have a

lower order contribution to the volumetric decorrelation expansion in (13), making the
Legendre basis a good choice as only a few of the components are sufficient for a relatively
accurate approximation of the vertical reflectivity profile.

For the single-baseline case,
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(17)

In general, the multi-baseline solution for an arbitrary basis is provided by (8) and, in
the case of non-orthogonal basis functions the denominator components are not zero. The
matrix [F] depends on the measured volumetric decorrelation, and therefore, its condition
number is also influenced.

As described in [29], another set of orthogonal basis functions can be obtained from
the profile covariance matrix, which is constructed using a set of available lidar waveforms.
Initially, the lidar waveforms are normalised along the vertical axis using the lidar rel-
ative height RH100 and subsequently resampled to the normalised vertical axis. These
normalised and resampled waveforms are then arranged into the columns of a so-called
K × L “profile” matrix [P] with K rows of waveforms and L columns of waveform’s vertical
axis samples

[R] = [P][P]T = [W][Λ][W]T (18)

The square L × L matrix [R] is symmetric and positive semi-definite. It can be diago-
nalized using an eigen-decomposition. The diagonal matrix [Λ] contains the real positive
eigenvalues of [R], while the square matrix [W] provides a set of orthogonal eigenvectors
which can be used as an alternative basis.

It is worth noting that the waveform normalization process along the vertical axis
might extend the ground surface reflection components of each individual profile in [P],
introducing a distortion in the reconstruction. As ground surface returns are especially
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strong (or even dominant) in lidar waveforms of sparse and shorter stands, it is suggested
to select only taller stands of a certain height range for the basis derivation. Note that one
way to eliminate the volumetric decorrelation-dependent terms of [F] in (8) is to modify
the basis. This can be achieved either by sacrificing the basis orthogonality or by imposing
the orthogonality between every basis function and the constant function.

3. Experimental Data

Experimental data collected over two tropical forest sites, Mondah and Lopé, both
located in Gabon (see Figure 1), have been used in this study. The Mondah site is a protected
coastal forest with relatively flat topography located near the capital of Libreville. The
forest is partially flooded and consists of very heterogeneous stands of variable tree height
and density, including mature stands with trees above 40 m, degraded stands, mangroves,
and woodlands. The Lopé site is located within Lopé National Park in central Gabon. It is
characterised by a more diverse landscape of hilly terrain with local slopes exceeding 20◦,
and includes savannah and dense colonizing rainforest stands with large trees up to 55 m
high and high biomass levels.

Interferometric X-band data (9.8 GHz) with 100 MHz bandwidth data were acquired
by TanDEM-X in a stripmap HH-polarisation mode with an average incidence angle
of 40◦. The acquisitions over the two sites were performed between 2010 and 2019 with
vertical wavenumbers varying from 0.06 to 0.13 rad/m, corresponding to ambiguity heights
(e.g., the height associated with a 2π interferometric phase difference) of 50 to 140 m (see
Table 1 and Figure 1) along descending and ascending orbits. The TanDEM-X Coregistered
Slant Range Single Look Complex (Co-SSC) data have been used to produce 100-look
complex interferometric coherence data, geocoded in the latitude/longitude coordinate
system. The volumetric decorrelation was calculated from interferometric coherence after
compensating for additive noise decorrelation, whereas temporal decorrelation and various
system-induced decorrelations were assumed to be negligible.

Lidar full waveform data were collected during the AfriSAR2016 campaign in February
2016 by NASA’s LVIS airborne lidar configuration. The footprints of LVIS returns range
from 18 to 22 m, and the waveforms were resampled to a regular 20 m × 20 m grid with
corresponding RH100 and DTM models provided by [8] and shown in Figures 2 and 3.

Table 1. TanDEM-X acquisition parameters for the two sites.

ID TanDEM-X Acquisition ID:
TDM1_SAR__COS_BIST_SM_S_SRA_ Test Site kz [rad/m] Ambiguity Height [m] Orbit

L1 20101231T045618_20101231T045626 Lopé 0.131 48.0 Desc

L2 20111002T045625_20111002T045633 Lopé 0.076 82.7 Desc

L3 20121215T045627_20121215T045635 Lopé 0.068 92.4 Desc

L4 20160125T173041_20160125T173048 Lopé 0.100 62.8 Asc

M1 20151111T050508_20151111T050516 Mondah 0.062 101.3 Desc

M2 20161211T050516_20161211T050524 Mondah 0.052 120.8 Desc

M3 20171117T050524_20171117T050532 Mondah 0.123 51.1 Desc

M4 20190704T050534_20190704T050542 Mondah 0.123 51.1 Desc
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Figure 3. Lopé forest. From left to right: lidar RH100 and digital terrain model, forest-non-forest map.

A 20 m × 20 m forest-non-forest map has been used to mask out the non-forested
regions as well as water and settlements in the two sites (see Figures 2 and 3) [41].

4. Results
4.1. General Reconstruction Performance

In this section, the two sets of basis functions, Legendre and lidar-derived eigen-
profiles, are compared in terms of their performance to reconstruct the vertical X-band
reflectivity profile. The eigen-profiles are obtained from the available lidar waveforms
for trees with heights ranging from 40 to 45 m following the approach proposed in [29]
and outlined in the previous section. As outlined in Section 2, the range of heights for
waveform selection in [P] can be defined for a certain height range within the forest sites.
As both the Lopé and Mondah sites contain a large number of stands above 40 m, the matrix
[P] contains a sufficiently large number of samples to produce a statistically meaningful
matrix [R].

Figure 4 displays the first five lidar eigen-profiles for the Lopé (green curves) and the
Mondah (orange curves) sites alongside the conventional Legendre functions (blue curves).
The zeroth-order eigen-profiles, i.e., the ones corresponding to the largest eigenvalue,
provide a low-frequency representation of the mean scattering contributions at the different
heights. Common to both sites, they indicate that most of the scattering contributions are
localised at the higher levels, as expected at the X-band. The higher-order profiles capture
higher-frequency components of the vertical reflectivity function along the height. The
similarity of the lower-order eigen-profiles across the two sites is visually apparent, despite
the significantly different forest structural conditions. The site difference is reflected in the
higher-order eigen-profiles, which become less similar.

The top row of Figure 5 shows the lidar waveforms along a transect aligned with the
0.85 latitude line in the Mondah site. The waveforms are decomposed (by means of (6))
into both function bases, the Legendre and the eigen-profile bases, and then reconstructed
using only the first three components of each basis. The three-component reconstruction
in the Legendre basis is shown in the second row of Figure 5, while the three-component
reconstruction in the eigen-profile basis is shown in the third row. The three-component
reconstruction in the eigen-profile basis appears to have a higher vertical resolution, pro-
viding a more detailed approximation of the original waveform than the three-component
reconstruction in the Legendre basis.
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In order to further investigate the reconstruction accuracy quantitatively, the number 
of basis functions required to represent 80% of the reflectivity of the lidar waveform is 
estimated in both bases. The obtained results are shown in Figure 6, for the Legendre basis 
on the top and the eigen-profile basis on the bottom. The eigen-profile basis proves more 
effective in representing the lidar waveforms with a lower number of functions compared 
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Figure 4. From left to right: basis function of zeroth to fourth order for Legendre (Blue), Mondah
lidar eigen-profile basis (Orange), Lopé lidar eigen-profile basis (Green).

In order to further investigate the reconstruction accuracy quantitatively, the number
of basis functions required to represent 80% of the reflectivity of the lidar waveform is
estimated in both bases. The obtained results are shown in Figure 6, for the Legendre basis
on the top and the eigen-profile basis on the bottom. The eigen-profile basis proves more
effective in representing the lidar waveforms with a lower number of functions compared
to the Legendre basis, especially for tall stands: three to four eigen-profiles are sufficient,
while five to six Legendre functions are required. Meanwhile, for lower stands, the number
of required Legendre functions is either similar or even smaller.
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Figure 5. Mondah forest vertical reflectivity profiles along 0.585 latitude from 9.31 to 9.37 longitude.
From top to bottom: lidar waveforms, lidar waveforms decomposed on three coefficients of Legendre
basis, lidar waveforms decomposed on three coefficients of eigen-profile basis. The vertical axis is
relative to the LVIS DTM, i.e., zero corresponds to the elevation from DTM. Green curve corresponds
to the LVIS RH100.
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Figure 6. Mondah forest. Number of functions to reconstruct 80% of lidar waveforms using Legendre
basis (top) and eigen-profile basis (bottom).

4.2. Single-Baseline Reconstruction

For the single-baseline PCT reconstruction, the same TanDEM-X acquisition has been
used for both basis sets. In order to establish a criterion for assessing the reconstruction
quality, the reconstructed vertical reflectivity profile fPCT(z) is used in (3) to model the
volumetric decorrelation for the available vertical wavenumbers km

z as [42]

∼
γ

m
Vol,Mod(k

m
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∫ 1
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v z

)
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Vol,Mod are then compared to the measured ones,
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Vol, at the same

vertical wavenumbers. The quality of the matching serves as an indicator of the quality of
the reconstructed vertical reflectivity profile. A comparison of this matching at different
vertical wavenumbers, e.g., for different observations, obviously assumes the profile to
remain unchanged across observations. For a quantitative assessment of the matching
between modelled and measured volume absolute volumetric decorrelation values, the
bias, the root mean square error (RMSE) and the correlation coefficient r2 are used
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where
∣∣∣∼γm

Vol,Mod

∣∣∣ is the mean modelled volume absolute volumetric decorrelation value,
and Q is the number of PCT estimated vertical reflectivity profiles.

Figure 7 shows the X-band reconstructed vertical reflectivity profiles in Mondah, using
the acquisition M1 with the Legendre basis (top row) and the eigen-profile basis (bottom
row). In the eigen-profile basis reconstruction the scattering contributions, identified in
correspondence with the local maxima of the reconstructed vertical reflectivity profile, are
more concentrated on the higher canopy layer. Meanwhile, in the Legendre basis, they
appear more distributed across a wider (and lower) height range.
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Figure 7. Mondah forest vertical reflectivity profiles along 0.585 latitude from 9.31 to 9.37 longitude.
Single-baseline PCT reconstructed vertical reflectivity profiles using Legendre basis (top row) and
eigen-profile basis (bottom row). The vertical axis is relative to the LVIS DTM, i.e., zero corresponds
to the elevation from DTM. Green curve corresponds to the LVIS RH100. PCT vertical reflectivity
profiles were reconstructed using acquisition M1.

Figure 8 shows the reconstruction performance for the Mondah site. The vertical reflec-
tivity profiles have been reconstructed from acquisition M1 (see Table 1). The correlation
histograms indicate the correspondence between the measured and modelled volumetric
decorrelation for the acquisitions M1–M4. The results obtained using the Legendre basis
are on the top row, while the results obtained using the eigen-profile basis are on the bottom
row. Clearly, the measured volumetric decorrelation matches the modelled one for the
acquisition M1, i.e., the same one which was used to produce the PCT vertical reflectivity
profiles. For the other interferometric acquisitions M2–M4, discrepancies exist depending
on the vertical wavenumber and the type of basis employed. The RMSE varies from 0.1 for
the similar vertical wavenumber (though with higher volumetric decorrelation on average)
to 0.2 for significantly larger vertical wavenumbers. The r2 value is below 0.1 for both basis
types, with a slightly better correlation in the Legendre basis case, while the mean bias is
smaller for the eigen-profile basis.

A similar analysis for Lopé is presented in Figure 9, where acquisition L2 was used
for the reconstruction of the vertical reflectivity profiles. Unlike the Mondah acquisitions,
which all are performed in descending orbits, the Lopé data set includes one ascending
orbit (L4). Across the descending orbits, the RMSE varies from 0.12 to 0.24, with slightly
better performance for eigen-profile basis reconstruction. For the ascending orbit, the
correlation breaks down with r2 not exceeding 0.01.
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Acquisition M1 was used to derive the single-baseline PCT vertical reflectivity profiles.
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Figure 9. Lopé forest. Correlation histograms between measured and modelled volumetric decorrela-
tion using single-baseline PCT reconstructed vertical reflectivity profile with Legendre (top row) and
eigen-profile basis (bottom row). From left to right TanDEM-X acquisitions: L1–L4. Acquisition L2
was used to reconstruct the single-baseline vertical reflectivity profile.
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4.3. Dual-Baseline Reconstruction

The natural extension is to add more interferometric observations at different vertical
wavenumbers in the PCT reconstruction, aiming for the reconstruction of higher-frequency
components of the vertical reflectivity profile. In Figure 10, the dual-baseline reconstructed
vertical reflectivity profiles in Mondah are presented, using the acquisitions M1 and M3,
with the Legendre basis (top row) and the eigen-profile basis (bottom row). Figure 11
presents the corresponding correlation histograms. Evidently, the two InSAR acquisitions
used to derive the PCT vertical reflectivity profile show the best correlation between
measured and modelled volumetric decorrelations. However, no significant difference in
performance between the two bases is observed.

This is a consequence of poor conditioning of (9), which can be addressed by applying
a regularization on the matrix [F]. The regularisation can be done either through a diagonal
loading of the matrix [F] or through a matrix filtering employed by removing the lowest
singular value(s) component from the matrix [Σ] in (10) [21]. In the second case, the
conditioning number (CN) is determined by the second smallest singular value. The
second approach is used for the dual-baseline matrix regularisation.

Figure 12 demonstrates the effect of regularisation of the [F] matrix, applied through
matrix filtering, on the CN for both the Legendre and the eigen-profile basis. The theoretical
structure of matrix [F] is studied. The dual-baseline results using k1

V and k2
V with small CN

are the ones where noise has a lesser effect on the reconstruction performance. For the given
4× 4 matrix the CN varies from 1 (well-conditioned) to more than 105 (ill-conditioned). The
Legendre matrix [FL] does not depend on the measured volumetric decorrelation, whereas
a general matrix [F] depends on the measured volumetric decorrelation. This is reflected in
the specific high CN features of the CN plot for the matrix [F], which, notably, disappears
after applying the matrix regularisation.
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Figure 10. Mondah forest vertical reflectivity profiles along 0.585 latitude from 9.31 to 9.37 longitude.
Dual-baseline PCT reconstructed vertical reflectivity profiles using Legendre basis (top row) and
eigen-profile basis (bottom row). The vertical axis is relative to the LVIS DTM, i.e., zero corresponds
to the elevation from DTM. Green curve corresponds to the LVIS RH100. PCT vertical reflectivity
profiles were reconstructed using acquisitions M1 and M3.

Accordingly, dual-baseline reconstruction allows a more accurate with higher verti-
cal resolution reconstruction expressed through the ability to interpret a wider range of
vertical wavenumbers. However, the ill-conditioned multi-baseline problem can lead to
erroneous reconstructions.
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Figure 11. Mondah forest. Correlation histograms between measured and modelled volumetric
decorrelation using dual-baseline PCT vertical reflectivity profile with Legendre (top row) and eigen-
profile basis (bottom row). From left to right are TanDEM-X acquisitions: M1–M4. Acquisitions M1
and M3 were used to reconstruct the dual-baseline vertical reflectivity profiles.
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5. Discussion

The use of an eigen-profile basis allows a vertical reflectivity profile reconstruction
that is better adapted to certain forest conditions compared to the use of the Legendre
polynomials. Acting as principal components in the lidar waveform, they converge to
the original waveform with only a few components, as visualised in Figure 5. Indeed,
as demonstrated by Figure 6, for taller forest stands, 3–4 eigen-profiles appear sufficient
to represent 80% of the energy of the lidar waveforms, compared to 5–6 required in the
Legendre basis. A qualitative evaluation of the reconstructed vertical reflectivity profiles
reveals that the eigen-profile basis allows for a more realistic profile reconstruction when
only a small number of components are available. Figure 7 shows that the eigen-profile
basis reconstruction localises most of the X-band relative intensity in the top layer of the
canopy, while the Legendre basis tends to distribute the relative intensity over a larger
height range and towards the middle layer. However, in the absence of reference 3D radar
reflectivity measurements, such as those obtained by tomographic SAR measurements,
a direct assessment of the accuracy of the reconstructed vertical reflectivity profiles is
not possible.

In order to establish an indirect quality criterion, the estimated PCT profiles were
used to model the absolute volumetric decorrelation at various vertical wavenumbers. An
accurately reconstructed profile should be capable of predicting volumetric decorrelations
at any other vertical wavenumber with comparable incidence angles. This approach was
applied to both single- and dual-baseline reconstruction scenarios to compare the PCT
reconstruction performance of the two basis types.

In the single-baseline scenario, the PCT-reconstructed vertical reflectivity profile using
the eigen-profile basis allowed the volumetric decorrelations to be modelled more accu-
rately in terms of mean bias, compared to the Legendre basis, across the given vertical
wavenumber range. The r2 value is comparable for both basis types, with a slightly better
correlation of the Legendre basis in the Mondah test site. Notably, for similar vertical
wavenumbers as those used for the PCT reconstruction, the error in modelling the volu-
metric decorrelation is low in both the Legendre and eigen-profile bases. The deviations
increase when the comparison is performed for acquisitions with significantly different
vertical wavenumbers than the ones used for the reconstruction. It is also evident that
the vertical reflectivity profiles derived from different look directions cannot be directly
compared, especially in sloped areas. As confirmed by Figure 11, the vertical reflectivity
profiles from the descending orbit could not be correlated with volumetric decorrelation
measurements from the ascending orbit.

The dual-baseline reconstruction allows a better reconstruction, expressed in the ex-
tended range of vertical wavenumbers where the reconstructed PCT vertical reflectivity pro-
files can correctly model the volumetric decorrelation. It also allows the higher-resolution
features and structural components which are visible in the lidar reference to be resolved.
However, the condition number of dual-baseline reconstruction is generally smaller com-
pared to the single-baseline case, necessitating matrix regularisation. Careful consideration
of baseline selection, as well as matrix regularisation, is mandatory to achieve physically
significant results in the multi-baseline scenario.

When the temporal separation between interferometric acquisitions becomes large,
changes in reflectivity induced by changes in dielectric and, structural conditions cannot be
neglected anymore. This makes single-baseline PCT reconstructions more attractive for
large-scale spaceborne applications, resulting in a more critical choice of the basis for an
accurate reconstruction.

The applicability of certain lidar-based eigen-profile bases to specific forest compo-
sitions and terrains is limited by differences between radar and lidar vertical reflectivity
profiles, potential errors in lidar waveform reconstructions, and the inability to account for
the full range of profile diversity within a given forest type. Additionally, it is expected
that in sloped areas, the performance of PCT reconstruction could be reduced not only by
errors in the terrain elevation estimation but also by inaccurate basis representation, for
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instance if basis functions were derived solely in flat terrains. Nevertheless, the use of an
eigen-profile basis allows for adaptation to the chosen scenario, which is especially useful
when only a small set of interferometric acquisitions is available.

6. Conclusions

In this paper, the performance of two different basis types to reconstruct the X-band
vertical reflectivity profile by means of single- and dual-baseline PCT at various interfer-
ometric baselines has been investigated. The reconstruction was tested at two different
tropical forest sites, covering a wide range of forest stand and topographic conditions.

Lidar waveforms, even if only sparsely available, enable the determination of a set
of orthogonal basis functions that can be used to expand the underlying reflectivity as a
series. When used in the PCT framework, this eigen-profile basis enables a reconstruction
of the vertical reflectivity of a specific forest by estimating the expansion coefficients from
interferometric coherence measurements. The use of such a lidar-derived eigen-profile
basis outperforms the originally proposed Legendre polynomial basis, especially in the
single-baseline inversion scenario, where the ability of the first three basis functions to
effectively represent the physical vertical reflectivity profile is critical.

The combination of a lidar-derived basis with interferometric SAR measurements
establishes a framework to increase the synergy between missions such as TanDEM-X and
GEDI. It may also allow to estimate the change of the PCT-reconstructed coefficients in
time, reflecting the change in the dielectric and/or structural properties of the illuminated
forest stands. The PCT with an eigen-profile basis approach can potentially be applied
to other SAR spaceborne missions, such as ESA’s BIOMASS, which will provide P-band
tomographic data sets in the first stage and interferometric data sets in the second stage of
the mission. Its tomographic-reconstructed vertical reflectivity profiles derived in the first
stage of the mission can be used as a basis for the following interferometric stage, enabling
PCT reconstruction and PCT coefficient change monitoring.
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