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With deep convection mainly resolved,
how well Is the tropical UT cloudiness simulated?
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FUNDAMENTALScALE = PROCESS GRID RESOLUTION
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Figure 2: Diagram showing fundamental scales and processes in the atmosphere and the grid spacing employed
in state of the art modeling versus the grid spacing proposed for this project.

Total (ice + snow + graupel) ice water path (TIWP) in high-
resolution DYAMOND model and observations
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Evaluation of partitioning of TIWP & precipitation
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» DYAMOND models improved compared to ICON-NWP
» TIWP underestimated in very low precipitation areas even relative to passive remote
sensing!

» Large deficiency of TIWP in SRMs comes from weaker and/or aged convective
systems while strong and young convective systems are simulated well also in NWP
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Is lack of TIWP in models due to or cloud
scheme?
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» Models exhibit similar convective activity on anvil time scales (differences in distribution)
» Reaction of cloud properties (TIWP & TLWP) to strength of convection shows large model
variability (differences due to cloud microphysics)

How different are NWP models compared to high-resolution

models?
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» Higher probability for weaker convection compared to high-resolution DYAMOND
models

» Compared to high-resolution: smaller TIWP at lower convective strength / aged systems

Conclusions and outlook

Conclusions:

Deep convection is mainly resolved in DYAMOND models (resolution < 5km):

Cloud scale dynamics is much improved in the high-resolution simulations (B. Stevens et al.,

2020)

When analysing IWP dependent on convective strength:

» Improved TIWP when compared to ICON-NWP in particular at lower convective strength

» SRMs still exhibit large spread in simulated cloud properties.

» Largest deficiency of TIWP in models comes from weaker and/or aged convective
systems

» The spread likely results from uncertainty in cloud microphysics - too fast conversion into
precipitating hydrometeors?

» Connection between the strength of the convection and the ice water path Is very stable (not
shown here)

Outlook:

» Double moment microphyisics may lead to improvements in simulated convective life
cycles.

» New data sets, such as those coming from Earthcare or initiatives learning from lidar, radar
and in-situ measurements, may help advance the field in the near future
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