

# Evaluation of the tropical upper tropospheric cloudiness simulated by the storm resolving models (SRMs) from DYAMOND project

## Karol Corko, Ulrike Burkhardt, Florian Ewald, Martin Köhler

With deep convection mainly resolved, how well is the tropical UT cloudiness simulated?



![](_page_0_Figure_5.jpeg)

- > DYAMOND models improved compared to ICON-NWP
- > TIWP underestimated in very low precipitation areas even relative to passive remote sensing!
- Large deficiency of TIWP in SRMs comes from weaker and/or aged convective systems while strong and young convective systems are simulated well also in NWP

### How different are NWP models compared to high-resolution

## Is lack of TIWP in models due to dynamics or cloud scheme?

 $\overline{CWP} =$  $CWP_w$  dw S. Bony et al., 2004

CWP – Cloud water path

 $PDF_{w} - PDF$  of vertical velocity w (at 500 hPa);

CWP<sub>w</sub> – Cloud water path for given vertical velocity

**Daily mean** 

#### Monthly mean

![](_page_0_Figure_16.jpeg)

![](_page_0_Figure_17.jpeg)

![](_page_0_Figure_18.jpeg)

> Higher probability for weaker convection compared to high-resolution DYAMOND models

> Compared to high-resolution: smaller TIWP at lower convective strength / aged systems

## **Conclusions and outlook**

#### **Conclusions:**

Deep convection is mainly resolved in DYAMOND models (resolution < 5km): Cloud scale dynamics is much improved in the high-resolution simulations (B. Stevens et al.,

- 2020)
- When analysing IWP dependent on convective strength:
- > Improved TIWP when compared to ICON-NWP in particular at lower convective strength
- $\succ$  SRMs still exhibit large spread in simulated cloud properties.
- Largest deficiency of TIWP in models comes from weaker and/or aged convective systems
- > The spread likely results from uncertainty in cloud microphysics too fast conversion into precipitating hydrometeors?
- > Connection between the strength of the convection and the ice water path is very stable (not shown here)

#### **Outlook:**

- > Double moment microphyisics may lead to improvements in simulated convective life cycles.
- > New data sets, such as those coming from Earthcare or initiatives learning from lidar, radar and in-situ measurements, may help advance the field in the near future

#### Literature:

Stevens, B., et al. (2020) The added value of large-eddy and storm-resolving models for simulating clouds and precipitation. Journal of the Meteorological Society of Japan, Series II. https://doi.org/10.2151/jmsj.2020-021

Bony, S., Dufresne, JL., Le Treut, H. et al. On dynamic and thermodynamic components of cloud changes. Climate Dynamics 22, 71–86 (2004). https://doi.org/10.1007/s00382-003-0369-6

**Funding:** This work is funded by the research project "The changing monsoon circulation in global storm-resolving simulations – Monsoon" of the BMBF (German Federal Ministry of Education and Research) (grant no. 01LP1927C)

## *E-mail: karol.corko@dlr.de; ulrike.burkhardt@dlr.de*