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The surge of deep-space probes makes it unsustainable to navigate them with standard radiometric tracking.

Autonomous interplanetary satellites represent a solution to this problem. In this work, a vision-based navigation

algorithm is built by combining an orbit determination method with an image processing pipeline suitable for

interplanetary transfers of autonomous platforms. To increase the computational efficiency of the algorithm, an

extended Kalman filter is selected as state estimator, fed by the positions of the planets extracted from deep-space

images. An enhancement of the estimation accuracy is performed by applying an optimal strategy to select the best

pair of planets to track. Moreover, a novel analytical measurement model for deep-space navigation is developed

providing a first-order approximation of the light-aberration and light-time effects. Algorithm performance is tested

on a high-fidelity, Earth–Mars interplanetary transfer, showing the algorithm applicability for deep-space

navigation.

I. Introduction

A S A new era of deep-space exploration and exploitation
is rapidly approaching, the adoption of efficient and sustain-

able navigation methods becomes increasingly crucial. Traditional

ground-based radiometric tracking, while accurate and reliable,
heavily depends on limited resources, such as ground stations and

flight dynamics teams. This approach is not applicable in the
long term to all the spacecraft launched in deep space. There is then

an urgent need to enhance the level of navigation autonomy for future

interplanetary missions.
Different alternatives enable autonomous navigation capabilities.

Among them, the primary ones are autonomous x-ray pulsar-based

navigation [1,2], semi-autonomous radio-based navigation [3], and
autonomous vision-based navigation (VBN) [4,5]. Among these,

x-ray navigation requires large detectors and long integration

times [6]. One-way radiometric tracking still relies on Earth-based
infrastructure, whereas VBN is an economical and fully ground-

independent solution; it enables determining the probe position by

observing the movement of celestial bodies on optical images [6].
VBN stands out as it is also compatible with all mission phases

toward celestial bodies: cruise [4,7–9], midrange [10–13], and close

proximity [14], including landing [5,15]. Consequently, numerous
VBN solutions for approach and close proximity have already been

developed for various missions. However, VBN algorithms tailored
for interplanetary navigation have only undergone onboard testing,

with no direct application in probe operations, as evidenced by the

validation conducted during theDeep-Space 1 (DS1)mission in 1998
[16]. Nevertheless, the increasing interest in deep-space missions

[17], particularly concerning CubeSats [18], is expected to push the

adoption of autonomous optical navigation even in far-range scenar-
ios alongside the research in this field. Current research primarily

focuses on implementing orbit determination (OD) algorithms to

determine the probe state [8,9,19–21]. In the work of Karimi and

Mortari [19], innovative angles-only initial orbit determination
algorithms are developed, whose output is then used within an
extended Kalman filter (EKF) embedding light-effects corrections
on the planet position in the measurement model. In the work by
Franzese et al. [8], the feasibility of the M-ARGO autonomous deep-
space navigation experiment is presented over a low-thrust trajectory
without considering light time correction. In the work by Andreis
et al. [9], an OD algorithm suited to be deployed on a miniaturized
processor is developed by studying the most promising EKF imple-
mentations for onboard applications. Although theseworks elaborate
on autonomy, there is a gap in the literature regarding the develop-
ment of a fully integrated pipeline embedding an image-processing
procedure for extracting information from deep-space images. In
the work by Bhaskaran [22], an image processing (IP) technique to
retrieve beacon information is qualitatively mentioned yet not imple-
mented in a fully integrated simulation, and the effect of the meas-
urement errors on the state estimation is not quantified through
simulations. Bhaskaran et al. [7] detail the procedure adopted to
process the deep-space images of DS1. Because of the long exposure
time and high-speed slew rate of themission, complex image patterns
were produced for the point sources. Thus, to retrieve accurately the
centroids of the bright objects and the beacon position in the image,
computationally heavy multiple cross-correlations were applied,
following the approach used for the Galileo mission [23]. In this
work, an alternative and computationally lighter approach has been
preferred based only on geometrical evaluations following the
assumptions of having slower slew rates.
To address these literature gaps, this paper develops an autono-

mous VBN algorithm intended for use during a deep-space transfer,
where the estimation accuracy is improved by applying light-effect
corrections and an optimal strategy to select the best pair of beacons
to track. The contribution to the state of the art is threefold. First, the
extended Kalman filter adopted as an OD algorithm [9] is integrated
with an IP pipeline suited to deep-space navigation [24]. Thework by
Andreis et al. [9] and Casini et al. [20] is extended by considering
synthetic deep-space images as input. In this way, the measurements
are the outcome of an IP procedure rather than being simulated with a
mere behavioralmodel. Consequently, they introduce amore authen-
tic representation of the actual measurement error associated with the
image processing and real cameras, resulting in a more accurate
reproduction of the state estimation error. Second, the VBN filter is
developed for CubeSat applications; thus, particular attention has
been paid to the computation capabilities of the navigation algorithm.
Third, a novel analytical measurement model for deep-space navi-
gation providing a first-order approximation of light-time correction
on the beacon position is presented. The proposed model avoids any
calculations on the raw camera measurement, so decoupling the
spacecraft prediction from the process noise and prevents onboard
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optimization as in the work by Andreis et al. [9]. Moreover,
light-aberration correction is also applied to stars position, being
the attitude determined from deep-space images.
The paper is structured as follows. In Sec. II, the interplanetary

navigation problem is described by paying particular attention to the
definition of the optimal beacon selection method and light-effects
perturbations relevant in the deep-space environment. Section III
details the IP procedure to extract observations from deep-space
images. In Sec. IV, the developed VBN filter to be used during an
interplanetary transfer is presented. Here, the dynamics and meas-
urement models are described together with the chosen filtering
scheme. Eventually, the performance of the IP pipeline and the
VBN filter tested on an interplanetary high-fidelity ballistic trajectory
is reported in Sec. V.

II. Interplanetary Vision-Based Navigation Problem

A. Problem Geometry

A probe can determine its location by acquiring information from
the observation of celestial bodies through optical sensors. Because
celestial objects are unresolved in deep space (i.e., they fall within a
single pixel), their line-of-sight (LOS) direction or pixel position is
the only available information that can be used to estimate the probe
state.When twoLOS directions associatedwith different beacons are
obtained simultaneously, the kinematic celestial triangulation prob-
lem can be solved [4,19,25].
In thiswork, CubeSats applications are investigated. This brings us

to enforce some constraints, which make the navigation problem
even more challenging than for standard probes:
1) Only one miniaturized optical sensor (e.g., star tracker or

camera) is adopted.
2) Only planets are tracked because of the limited performance of

the optical sensor [26].
However, note that the algorithm can be also used for larger

spacecraft, despite the examples reported in this paper.
Because to solve the kinematic celestial triangulation problem at

least two different synchronous observations are needed, the static
celestial triangulation cannot be exploited for the CubeSat opera-
tional scenario, given the low probability of detecting several planets
with only one instrument. It is worth noting that, in case of a fortunate
detection of two planets, the position triangulation would be affected
by high uncertainty, given that the two associate LOS are almost
parallel [27]. Therefore, dynamic estimators (e.g., Kalman filtering)
are adopted as they can process asynchronous observations and
estimate the probe velocity.

B. Optimal Planets Selection

To reach the highest accuracy possible in the state estimation, the
approach described by Franzese and Topputo [27] is adopted to
optimally select the planets to observe during the interplanetary
transfer. The optimal planets pair is chosen among the observable
ones by minimizing the figure of merit J , which is the trace of the
position error covariance matrix when considering perturbed LOS
directions. It is defined as

J � σ2str
1� cos γ2

sin γ4
d⊤ �I3x3 − ρ̂iρ̂⊤i � � �I3x3 − ρ̂jρ̂⊤j � d (1)

where ρ̂i and ρ̂j are the unitary LOS vectors to the i-esimal and

j-esimal planets, respectively; σstr is the standard deviation of the
LOS angular error; and I3x3 is the three-by-three identity matrix,
whereas, d and γ are defined as

d � ri − rj (2)

γ � acos ρ̂⊤i ρ̂j (3)

where ri and rj are the positions of the two planets in the inertial

reference frame, respectively. It is convenient to divide d by 1
astronomical unit (AU) to keep J nondimensional.

The optimal planet pair is selected taking into account the planets
observability, which is preliminarily assessed by evaluating the
planet apparent magnitude and Solar Exclusion Angle (SEA). For
more information refer to thework by Andreis et al. [9]. In this work,
the optimal planet selection procedure is used to choose the two
planets to be sequentially targeted in different images, typically
containing only one planet at a time.

C. Light-Effects Perturbations

Another important aspect for deep-space navigation is the impact
of light effects (i.e., light time and light aberration [19]) on the
observations used to estimate the spacecraft state. The light-effect
perturbations are caused by two factors. The first one is caused by the
large distance between the spacecraft and the beacon involved in deep
space and by the finite speed of the light. This implies that the light
detected at the camera has been emitted from the source in the past,
causing the celestial object to be observed shifted with respect to its
position in the instant of detection by the camera. The faster and
farther the planet is, the more significant the light-time effect is. For
what concerns the second factor, light aberration is a phenomenon
where celestial objects display an apparent motion with respect to
their true positions relative to the observer velocity. Because the
spacecraft velocity is not negligible in deep space, light-aberration
effects become important. The location shift of the celestial body
depends on the velocity magnitude and direction relative to the LOS
of the observed planet.
These two effects shall be corrected in the filter to avoid systematic

errors in the estimation of the spacecraft state. Previous works con-
sider these effects by applying corrections only to the planet LOS
directions [9,19]. Instead, in thiswork, as the probe attitude is derived
from deep-space images, it becomes necessary to apply light aberra-
tion correction to the calculated stars LOS directions, as typically
done by star trackers [28,29]. This correction is essential to prevent
the computation of a biased attitude value. It is worth noting that only
light aberration requires a correction for stars, as they are considered
fixed with respect to the solar system. The corrections of these two
effects are described in the upcoming sections.

III. Image Processing Pipeline for Deep-Space
Vision-Based Navigation

Let C � fC;C1;C2g be the two-dimensional (2D) camera refer-
ence framewhereC1 points to the right,C2 points downward, and the
reference frame centerC is placed at the upper left-hand corner of the
image. In deep space, the projection of the planet position inC, called
Crpl, or its associated LOSdirection, is the only information available

to support state estimation. An IP algorithm suited for deep-space
navigation is adopted to extract this information from the image.
The goal of the IP procedure is to recognize the planet locations in
the image among the centroids available. The procedure, whose
high-level representation is shown in Fig. 1, goes through three steps:
1) The probe attitude is determined.
2) The light-aberration correction is applied to bright star centroids.
3) The planets are identified.

Note that the first step is to identify the portion of the sky the probe is
observing and recognize those bright spots that correspond to non-
stellar objects in the image. Although the current implementation
foresees the attitude determination from the image, note that the
Attitude Determination and Control System can also provide this
solution in an operative scenario.

A. Attitude Determination

As first step, the probe determines its attitude. To this aim,
Niblack’s thresholding method [30] is adopted to remove the back-
ground noise to patches of the image centered on bright pixels and
delimited by squared windows with a one-pixel margin on each
side. Hence, the centroid of the object is computed by applying
an intensity-weighted center of gravity algorithm considering the
pixels inside the associated squared window [31]. Specifically, the
intensity-weighted center-of-gravity method has been selected as
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it presents enhanced accuracy compared to the simple center-

of-gravity approach and minor computation effort compared to

Gaussian fitting procedures [32], respecting the computational con-

straint enforced by the CubeSat application.
Then, the registration problem is solved to find the correct match-

ing between the observed star asterism (i.e., stellar pattern) and the

cataloged stars in the inertial frame. This last step is performed

differently according to whether the planet is acquired for the first

time or not.

1. Lost-in-Space Strategy

In the former case, the selected Lost-In-Space (LIS) strategy is the

pyramid algorithm detailed by Mortari et al. [33]. In this work,

the pyramid algorithm has been preferred over the binary search

technique [34] for its higher-speed gain rate (from 10 to more than

50 times [35]) and for its robustness to spikes (i.e., objects not

recognized as stars by the pyramid algorithm).During the operational

phase, the pyramid algorithm accesses the star catalog by exploiting

an additional vector of integer stored onboard (i.e., the k vector),

which avoids binary search and makes searching time independent

from the database size. Specifically, the interstellar angle is the

invariant chosen to build the vector adopted for onboard star identi-

fication. To meet the stringent memory constraints of a miniaturized

onboard computer, solely angles less than 35 deg are considered to

reduce the catalog size. Additionally, only stars with an apparent
magnitude lower than 5.5 are adopted in the generation of the
invariant. Moreover, the pyramid feature extraction phase is based
on subgraph isomorphism. In other terms, an isomorphic subgraph
(in this case a pyramid) corresponding to the measured one has to be
found in the onboard database for star identification [36]. Note that
the objects identified by the pyramid algorithm as spikes may be
nonstellar objects (such as planets, asteroids, and cosmic rays) or
stars not recognized due to errors in the centroid extraction.Yet, when
a great number of spikes is present in the image, the star asterisms
may not be recognized by the algorithm. In this work, to reduce the
number of scenarios in which this failure occurs, a heuristic approach
is considered. Because faint stars are typically not stored in the
onboard catalog and centroids extraction is influenced by the thresh-
olding procedure, the procedure is iteratedwith an increased intensity
threshold if attitude determination fails. This approach has the side
effect of reducing the number of bright objects in the image, poten-
tially eliminating some spikes. The iteration continues until observed
star asterisms are recognized or fewer than three stars are detected.

2. Recursive Strategy

When the spacecraft is not in LIS mode, it has a rough estimate of
its orientation. Therefore, a recursive registration method can be
applied. Indeed, by knowing the previous attitude estimation, the
LOS directions in the inertial reference frame I of the four corners of
the image are determined. At this point, a check is performed to
identify which stars of the onboard catalog are contained inside the
image field of view (FOV). Thus, their locations in the 2D camera
reference frame are predicted, and they are associatedwith the closest
centroids of the bright objects extracted from the image when the
distances do not exceed a selected threshold value.
When stars are identified, the probe attitude is determined by

solving Wahba’s problem [37] between the stars LOS directions in
the camera and inertial reference frame exploiting the singular value
decomposition method [37]. Note that the camera reference frame
coincides with the body reference frame for the sake of simplicity,
while the inertial reference frame is the International Celestial Refer-
ence Frame. Moreover, the robustness of the solution to Wahba’s
problem is increased thanks to the adoption of a Random-Sample
Consensus (RANSAC) procedure [38,39]. The RANSAC algorithm
is an outlier rejection method aiming to detect the bright objects that
have beenmisidentified by the star identification, which can thus lead
to awrong attitude determination. To detect these outliers, the attitude
of the spacecraft is adopted as the mathematical model for the data
fitting. The attitude is estimated nR-times by selecting randomly every
time a group of three identified stars. A small set of stars needed for
attitude determination is chosen to increase the probability of having
a group made of different stars at each time. Thus, the estimated nR
spacecraft orientations are compared to identify the best model,
which is then adopted for the data fitting. The stars not respecting
the best model are considered outliers and are labeled as spikes.
When the recursive attitude determination fails, the spacecraft ori-
entation at the following image acquisition is determined again with
the LIS method. Conversely, when the LIS algorithm succeeds in the
determination of the probe orientation, in the following image acquis-
ition, the recursive attitude determination algorithm is adopted.

B. Light-Aberration Correction

After the first attitude determination, the centroids of the stars are
corrected for the light-aberration effect, and the probe attitude is
recomputed by taking into account the corrected stars LOS direc-
tions. The procedure adopted is described in [19] and summarized in
this section. At first, the observed stars LOS directions as seen by the
spacecraft in the inertial reference frame I are found,

Iρsobs � �KcamA�−1Ch rsobs (4)

where C
h rsobs � �Crsobs ; 1� are the observed stars projection in C

in homogeneous coordinates (see thework byHartley and Zisserman
[39] for homogeneous coordinates definition). Conversely, A is

NO Previous attitude
available?

LIS attitude
determination

Recursive attitude
determination

YES

NO

YES

Success?

New image

Celestial bodies
identification

Stellar aberration
correction

Spacecraft
attitude

Spacecraft
attitude

corrected

Celestial bodies
location

Fig. 1 High-level workflow of the two modes of the image processing

procedure.
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the attitude matrix, and Kcam is the camera calibration matrix
defined as

Kcam �
f1 0 c1

0 f2 c2

0 0 1

(5)

where f1 and f2 represent the camera focal length along C1 and C2

directions in pixel, whereas, c1 and c2 describe the position of
the principal point in pixels in C. Then, the angle θobs between
I ρ̂sobs (i.e., the unit vector of

Iρsobs ) and the estimated unitary velocity

vector of the probe v̂ is defined as

tan θobs �
kI ρ̂sobs × v̂k

I ρ̂⊤sobs v̂
(6)

Then, the aberration angle ε is evaluated,

tan ε � �v∕c� sin θobs
1 − �v∕c� cos θobs

(7)

where c is the speed of light. Thus, the corrected unitary stars LOS

directions I ρ̂scorr can be retrieved as

I ρ̂scorr �
I ρ̂sobs sin θcorr − v̂ sin ε

sin θobs
(8)

with θcorr � θobs � ε. At this point, the attitude matrix of the probe

is redetermined by solving Wahba’s problem [37] in which I ρ̂scorr
are considered. This corrected attitude matrix is labeled Acorr.

C. Beacon Identification

At this step, the planet must be identified in the image, and its
projection Crpl must be extracted. The identification is performed
through the evaluation of the mean and covariance matrix associated
with the planet location. This latter defines the Gaussian probability
of finding the planet in that portion of the image. At first, the expected
location of the observed planet in the image plane is evaluated as

C
h rpl0 � KcamAcorr�I rpl − I r� (9)

where Ir is the predicted probe position. If Crpl0 falls within the

boundaries of the image, its associated 3σ covariance ellipse is
computed. The latter depends on the uncertainties of the spacecraft

pose and planet position and is centered in Crpl0 . The ellipse of
Crpl0

represents the area of the image where the planet is most likely to be
found within a 3σ probability. The spike contained in the 3σ ellipse is
identified as the planet location Crpl. If multiple spikes are located

within this ellipse, the closest one to the expected planet position is
identified as the planet, as it is most likely to be the true planet
location. The covariance matrix of the beacon location P due to the
spacecraft pose (i.e., probe attitude and position) and beacon position
uncertainty is computed as

P � GSG⊤ (10)

G is the matrix describing the mapping between Crpl and the space-

craft pose and beacon position.S is the covariancematrix of the probe

pose and beacon position. To evaluate G, the variation of Crpl with
respect to the variation of the spacecraft pose and the beacon position

is computed. In particular, the quaternions qC∕N � �q0; qv�⊤ are

chosen to represent the probe attitude matrix. Specifically, q0 and
qv represent the quaternion scalar and vectorial part, respectively.
Equation (11) gives the quaternion representation of the attitude
matrix Acorr [37]

Acorr � �q20 − q⊤v qv�I3x3 � 2qvq
⊤
v − 2q0�qv�∧ (11)

where ��⋅��∧ is the skew-symmetric matrix associated with the cross-

product operation. Thus, the variation of Crpl with respect to the

variation of the spacecraft pose (i.e., Acorr and
Ir) and the beacon

position I rpl can be defined as

δCrpl �
∂Crpl
∂q0

∂Crpl
∂qv

∂Crpl
∂Ir

∂Crpl
∂I rpl

G

δq0

δqv

δIr

δIrpl

(12)

Here, the quaternion qC∕I � �q0; qv�⊤ represents the rotation from

inertial reference frame I to the camera reference frame C. The
matrix G has dimension 2 × 10, and it can be expressed as

G�

1
C
h rpl3

0 −
C
h rpl;�1�
C
h r

2
pl;�3�

0
1

C
h rpl;�3�

−
C
h rpl;�2�
C
h r

2
pl;�3�

D

Kcam

∂Crpl
∂q0

∂Crpl
∂qv

∂Crpl
∂Ir

∂Crpl
∂Irpl

(13)

with D the matrix containing the derivatives of Crpl with respect to
C
h rpl and with C

h rpl;�i� being the i-esimal component of the object

location in homogenous coordinates. Note that the partial derivatives

of Crpl � Acorr�Irpl − Ir� with respect to the spacecraft pose and

beacon position are

∂ Crpl
∂q0

� 2q0
Iρ − 2�qv�∧Iρ (14)

∂ Crpl
∂qv

� −2Iρq⊤v � 2q⊤v
IρI3x3 � 2qv

Iρ⊤ � 2q0�Iρ�∧ (15)

∂ Crpl

∂Ir
� −Acorr (16)

∂ Crpl

∂ Irpl
� Acorr (17)

A change of attitude representation is performed to define S.
Because the uncertainty of the probe orientation is more clearly

identified through Euler’s principal rotation theorem, the quatern-

ion variation is linked to the one relative to the principal angle θ,
also known as pointing error, and principal axis e. Moreover, a

reference attitude value is considered to be always present onboard.

Therefore, the variation with respect to the nominal value is

limited. Thus, the small-error-angles formulation can be adopted

[37]:

δq0 � 1 (18)

δqv �
1

2
δ�θe� (19)

It is worth noting that the variance of the scalar part is σ2q0 � 0.

Therefore, S can be described,

S � diag�σ2q0 ; σ2qvI3x3; σ2rI3x3; σ2rplI3x3� (20)

where σr and σrpl represent the standard deviation of the probe

position and beacon position, respectively. The cross-correlations

are ignored for simplicity, yet in a more general solution, the
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spacecraft position and orientation could be correlated. Once the
covariance matrix of the beacon location is assessed, the associated
3σ covariance ellipse is computed. Let λmax and λmin be the largest
and smallest eigenvalues of P, respectively, and vmax and vmin be
their related eigenvectors. Note that P has only two eigenvalues.
The characteristics of the 3σ covariance ellipse can be com-
puted as

a � 11.8292λmax b � 11.8292λmin ψ � arctan
vmax2

vmax1

(21)

where a is the 3σ covariance ellipse semimajor axis, b is the 3σ
covariance ellipse semiminor axis, ψ is the 3σ covariance ellipse
orientation (i.e., the angle of the largest eigenvector toward the
image axis C1), and vmax2

and vmax2
are the eigenvectors related to

the maximum eigenvalue along the C2 and C1 directions, respec-
tively. Note that the value 11.8292 represents the inverse cumu-
lative distribution function of the chi-square distribution with two
degrees of freedom at the values in 0.9973 (3σ). Eventually, the
beacon is identified with the closest spike to the expected beacon
location contained in the 3σ ellipse.

IV. Extended Kalman Filter Based on Planets
Observations

In this section, the VBN filter is described. First, the dynamic and
measurement models adopted in the VBN filter are detailed. Succes-
sively, the chosen filtering scheme is shown. Note that the vectors
specified in this section are always defined in the inertial reference
frame I . Thus, the superscript is indicated only for exceptions.

A. Dynamics Model

The dynamics model adopted in this work is an extension of the
one described by Andreis et al. [9]. The process state x is defined as

x�t� � �r�t�; v�t�; η�t��⊤ (22)

where r and v are the inertial probe position and velocity, respec-

tively, and η � �ηR; ηSRP�⊤ is a vector of Gauss–Markov (GM) proc-
esses accounting for unmodeled terms: a three-dimensional residual
accelerations ηR and the stochastic component of the solar radiation
pressure (SRP) ηSRP [40]. The process is modeled using the differ-
ential equation

_x�t� � f�x�t�; t� �w (23)

where f is the vector field embedding the deterministic part, whilew
is the process white noise

_x�t��

v

aSun�aSRP�
i
apli

�ηR�ηSRP

−ξRηR

−ξSRPηSRP
f

�

03x1

03x1

wR

wSRP

w

(24)

and

aSun � −μSun
r

krk3 (25)

aSRP � CR

P0R
2
0

c

As

ms

r

krk3 (26)

apli
� μpli

rpli − r

krpli − rk3 −
rpli

krplik3
(27)

As detailed by Jean et al. [41], the terms that describe the SRP areCR

being the coefficient of reflection,P0 being the solar power,R0 being

the sun radius, As being the cross-section area of the probe, and ms

being its mass. The third-body perturbations of the Earth–Moon

barycenter, Mars, and Jupiter are also included. Recall that μpli is
the gravitational parameter of the i − esimal planet considered. In the
Langevin equations that govern the Gauss–Markov processes, the

coefficients ξR and ξSRP define the reciprocal of the correlation times,

while wR and wSRP are the process noises of the Gauss–Markov

parameters with σR and σSRP standard deviations. The covariance of
these two process noises can be defined as

E�wRw
⊤
R� � σ2RI3x3 � QR (28)

E�wSRPw
⊤
SRP� � σ2SRPI3x3 � QSRP (29)

These covariances are not apriori known. Yet, reference values for

the acceleration uncertainties QaR
and QaSRP

are reported in the

literature. Moreover, these covariances QaR
and QaSRP

can be treated

as steady-state covariance values of the GM parameters [40]. That is,

E�ηRη⊤R� �
QR

2ξR
� QaR

E�ηSRPη⊤SRP� �
QSRP

2ξSRP
� QaSRP

(30)

from which QSRP and QR can be computed. The complete process

noise covariance matrix is Q:

Q � diag�03x3; 03x3;QR;QSRP� (31)

B. Measurement Model

One of the contributions of the work is to present a novel meas-

urement model for deep-space triangulation. The exploited measure-

ment model expresses the position of the observations in pixel

coordinates in the camera reference frame C. Moreover, it embeds

the light effects and their dependencies, which are described with

respect to the planet and spacecraft state.
In the existing literature, external observations are frequently

modeled as LOS directions or angular coordinates, such as azimuth

and elevation [8,19,42]. This conventional approach involves

manipulating raw camera measurements (i.e., pixel coordinates),

resulting in a non-Gaussian error distribution compared to the origi-

nal raw data. Moreover, prior studies have attempted nonlinear

correction of light-aberration effects on the observations by employ-

ing the a priori estimate of velocity. However, this method couples

measurement and process noise, thus violating the Kalman filter

assumption [9,19]. Furthermore, light-time delay is typically evalu-

ated in the literature using an iterative approach, which increases the

computational time required to achieve an optimal solution.
In contrast, the developed measurement model uses pixel coordi-

nates to represent observations and incorporates light effects within

the model itself to enhance correlations and improve linearity, thus

avoiding coupling between measurement and process noises. Even-

tually, the light-time delay is derived through a linear approximation

of the equation describing the light-time effect.

1. Evaluation of Time Delay

To proceed with the implementation of the light-time correction, it

is first necessary to evaluate the time delayΔt. As the initial step, the
equation representing the light-time effect can be written as [9]

L ≔ c2�t − τ�2 − �rpl�τ� − r�t��⊤�rpl�τ� − r�t�� � 0 (32)

where τ is the time at which the light is emitted by the planet and t
is the time of measurement.
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Equation (32) is a constraint that links the spacecraft state with the

planet position. Moreover, as the planet motion does not have an

analytical solution, the value of τ cannot be solved analytically to

implicitly include this effect in the measurement. Yet, it is possible

to linearize the constraint in Eq. (32) with respect to Δt under the
assumption that the time delayΔt � t − τ is small with respect to the

orbital period. Thus, the planet motion can be approximated by a

linear motion with constant velocity as follows:

rpl�τ� ≃ rpl�t� �
drpl
dτ τ�t

�τ − t� � rpl�t� −
drpl
dτ τ�t

Δt

� rpl�t� − vpl�t�Δt (33)

Therefore, Eq. (32) can be linearized as well, as follows:

L ≃ c2Δt2 − �rpl�t� − vpl�t�Δt − r�t��⊤�rpl�t� − vpl�t�Δt − r�t��
� �c2 − vpl�t�⊤vpl�t��Δt2 � 2vpl�t�⊤rpl∕sc�t�Δt

− rpl∕sc�t�⊤rpl∕sc�t� �34�

where rpl∕sc�t� � rpl�t� − r�t�. Thus, the solution Δt is obtained by

solving a second-order polynomial equation:

Δt� 1

c2 −vpl�t�⊤vpl�t�
−rpl∕sc�t�⊤vpl�t�

� rpl∕sc�t�⊤rpl∕sc�t��c2 −vpl�t�⊤vpl�t��� �rpl∕sc�t�⊤vpl�t��2

(35)

Equation (35) shows that two solutions are possible, given the

geometry between the planet and the spacecraft. It is important to

understand which solution is the correct one to uniquely solve forΔt.

By defining βpl�t� �
vpl�t�
c

and the angle between rpl=sc�t� and vpl�t�
as the planet flight-path angle ϵ, the approximated solution for the

light-time correction is

Δt �
−c krpl∕sc�t�kkβpl�t�k cos ϵ � c krpl∕sc�t�k kβpl�t�k2�cos2 ϵ − 1� � 1

c2�1 − kβpl�t�k2�
(36)

Recall that the correct solution is the one providing Δt ≥ 0 as the
light departs from the planet before arriving at the spacecraft camera.

As a consequence, the solutionwith the plus sign is the one providing

the correct time delay. Thus,

Δt � krpl∕sc�t�k
c�1 − kβpl�t�k2�

−kβpl�t�k cos ϵ

� kβpl�t�k2�cos2 ϵ − 1� � 1 (37)

Since kβpl�t�k ≤ 1, 1 − kβpl�t�k2 ≥ 0 ∀ βpl�t� and kβpl�t�k2
�cos2 ϵ − 1� � 1 ≥ 0 ∀ βpl�t� and ∀ ϵ. Note that cos ϵ ≥ 0 ∀ ϵ by

the flight-path angle definition. Equation (37) provides an analytical

solution at first order for the light-time delay which can be exploited

to include light-time correction in the filter update.

2. Definition of Measurement Model Equation

OnceΔt is computed, the planet LOS can be expressed as the unit

vector for the spacecraft position at time t to the planet position at

time τ. Thus,

lpl∕sc �
rpl�t − Δt� − r�t�

k�rpl�t − Δt� − r�t��⊤�rpl�t − Δt� − r�t��k (38)

This unit vector is warped by relativistic light aberration as the
spacecraft is not fixed with respect to the inertial reference frame. At
first order, this effect can be expressed as follows [43]:

laberrpl∕sc � lpl∕sc � lpl∕sc × �βsc × lpl∕sc� (39)

where βsc �
v

c
. Note that higher orders are not detectable from the

image processing pipeline as they are orders of magnitude below
15 arcs [44], which is the attitude determination performance.
Finally, the warped line of sight is projected in the camera refer-

ence frame C,

C
h rpl � Kcam Acorrl

aberr
pl∕sc (40)

Crpl �
1

C
h rpl;�3�

C
h rpl;�1�
C
h rpl;�2�

(41)

where C
h rpl is the projection of the planet line of sight in the image

plane in homogeneous coordinates, Crpl represents the planet loca-

tion in pixel coordinates, Ch rpl;�i� is the i-esimal coordinate of vector
C
h rpl, Kcam is the camera intrinsic matrix, and Acorr is the rotation

matrix corrected for the stars light aberration from the inertial refer-
ence frame I to the camera reference frame C.

3. Definition of Jacobian of Measurement Model

In this section, the measurement model derivatives with respect to
the filter state and all other possible sources of errors are computed by
variational analysis. The considered error sources include the space-
craft attitude and planet state. Once variations are computed, it is
possible to use the derivativeswith respect to the state to construct the
measurement model Jacobian matrix. Moreover, by using the deriv-
atives of the measurement with respect to the other error sources,
it is possible to inflate the measurement covariance matrix to account
for uncertainties in the spacecraft attitude and planet ephemerides.

To perform the variational analysis, the variation of each parameter
is considered, and its nonlinear mapping is approximated with a
linear function leveraging its first derivatives. This leads to determin-
ing the mapping between the variation of the output parameter with
respect to the variation of the parameters under analysis. Note that
δ�⋅� is the variation of the considered parameter. Thus,

δ Crpl �

1
C
h rpl;�3�

0 −
C
h rpl;�1�
C
h r

2
pl;�3�

0
1

C
h rpl;�3�

−
C
h rpl;�2�
C
h r

2
pl;�3�

δCh rpl (42)

δCh rpl � KcamAcorr δlaberrpl∕sc � 2�laberrpl∕sc�∧δqv (43)

where qv is the vectorial part of the quaternion qC∕I representing the

rotation from the inertial reference frame I to the camera reference
frame C.
The variation of the aberrated line of sight laberrpl∕sc is computed

by exploiting the triple vector product identity a × �b × c� �
�a ⋅ c�b − �a ⋅ b�c,
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δlaberrpl∕sc � I3x3 � 2 βscl⊤pl∕sc − l⊤pl∕scβscI3x3 − lpl∕scβ⊤sc δlpl∕sc

� l⊤pl∕sc lpl∕scI3x3 − lpl∕sc l
⊤
pl∕sc δβsc �44�

where δβsc �
δv

c
and δlpl∕sc is

δlpl∕sc �
I3x3

k�rpl�t − Δt� − r�t��⊤�rpl�t − Δt� − r�t��k�

−
�rpl�t − Δt� − r�t���rpl�t − Δt� − r�t��⊤

k�rpl�t − Δt� − r�t��⊤�rpl�t − Δt� − r�t��k3

× �δrpl�t − Δt� − δr�t�� (45)

The variation of the observed LOS from the camera can be gathered as

δrpl�t − Δt� � δrpl�t� − Δt δvpl�t� − vpl�t�δΔt (46)

where

δΔt� 1

c2 − vpl�t�⊤vpl�t�

×
�c2 − vpl�t�⊤vpl�t��rpl∕sc�t�⊤ � rpl∕sc�t�⊤vpl�t�vpl�t�⊤

rpl∕sc�t�⊤rpl∕sc�t��c2 − vpl�t�⊤vpl�t�� � �rpl∕sc�t�⊤vpl�t��2

− v⊤pl�t� �δrpl�t�− δr�t��

� rpl∕sc�t�⊤vpl�t�rpl∕sc�t�⊤ − rpl∕sc�t�⊤rpl∕sc�t�vpl�t�⊤

rpl∕sc�t�⊤rpl∕sc�t��c2 − vpl�t�⊤vpl�t�� � �rpl∕sc�t�⊤vpl�t��2

� 2vpl�t�⊤
c2 − vpl�t�⊤vpl�t�

− rpl∕sc�t�⊤ δvpl�t� (47)

Finally, by combining Eqs. (42–47), the linear mapping between

the variation of Crpl and the variation of rpl, vpl, r, and qv can be

established,

δCrpl �
∂Crpl
∂r�t�

∂Crpl
∂v�t�

∂Crpl
∂qv

∂Crpl
∂rpl�t�

∂Crpl
∂vpl�t��

δr�t�
δv�t�
δqv

δrpl�t�
δvpl�t�

�

1
C
h rpl;�3�

0 −
C
h rpl;�1�
C
h r

2
pl;�3�

0
1

C
h rpl;�3�

−
C
h rpl;�2�
C
h r

2
pl;�3�

KcamAcorr Rsc Vsc Qatt Rpl Vpl

δr�t�
δv�t�
δqv

δrpl�t�
δvpl�t�

(48)

where matrices Rsc, Vsc, Qatt, Rpl, and Vpl are reported in

Appendix A.

Equation (48) provides the linear mapping between the projection

of the planet in the image plane as a function of the spacecraft

state, the spacecraft inertial attitude, and planet ephemeris. Note that

matrices
∂Crpl
∂r�t� and

∂Crpl
∂v�t� are used to build the measurement model

Jacobian H employed in the extended Kalman filter. Moreover,
∂Crpl
∂qv

,
∂Crpl
∂rpl�t�, and

∂Crpl
∂vpl�t�� may be used to inflate the measurement covari-

ance matrix taking into account attitude determination uncertainty

from the attitude filter and the planet ephemeris uncertainties induced

by an onboard implementation of the planet motion.
Note that the advantages of the proposed measurement model are

threefold. First, the centroid measurement from the camera raw

image is directly provided to the filter without any calculation.

Indeed, any operation could increase the nonlinearity of the meas-

urement error distribution, leading to less linear behavior of the filter

posterior estimates. This is particularly true when trigonometric

functions are used as in previous work [9,19]. Second, the expression

found in Eq. (37) is analytic, leading to no optimization being

necessary onboard to compute the light time delay. This is in contrast

with state-of-the-art techniques that use Newton–Raphson’s method

to find the light-time correction [9,19,45]. Third, as the light-time

correction is embedded in the measurement model, uncertainties

arising from the planets ephemeris and correlations with spacecraft

state can be taken into account as shown in Eq. (48).
When only light-time correction is included in the measurement

model (as in Sec. V for comparison analysis), Eqs. (39) and (44) are

not used, and Eqs. (40) and (43) simply become

C
h rpl � KcamAcorrlpl∕sc (49)

δCh rpl � KcamAcorr�δlpl∕sc � 2�lpl∕sc�∧δqv� (50)

C. Selected Filtering Strategy for Vision-Based Navigation Algorithm

A nondimensionalized EKF is selected as the most appropriate

filtering approach for the development of a VBN algorithm for

CubeSat applications. The selection has been performed by Andreis

et al. [9], where the behavior of five different EKFs is analyzed in

terms of estimator numerical stability and computational perfor-

mance. Indeed, it is worth recalling that the autonomous VBN

algorithm has to be deployed on a miniaturized processor character-

ized by limited computation capabilities comparable to the one of a

Raspberry Pi.§ The implemented scheme is reported in Table 1,where

all the terms are already nondimensionalized following the approach

discussed by Andreis et al.
Recall that xpk

is the predicted state vector with error covariance

matrixPpk
at epoch k,Kk is theKalman gain, xck is the corrected state

vector with error covariance matrix Pck , F is the Jacobian of the

dynamicsmodel equation,h is themeasurementmodel equationwith

JacobianHk, νk is themeasurementwhite noise, andyk is the external
measurement vector rplk.
The initial probe state vector is perturbed by applying the 3σ

standard deviation rule,

Table 1 Filtering strategy

System state space

_x � f�x�t�; t� �w
yk � h�xk� � νk

_P � FP� PF⊤ �Q

Propagation block xpk
� xck−1 � ∫ tk

tk−1f�x�t�; t� dt xc0 � E�x0�
Ppk

� Pck−1 � ∫ tk
tk−1

_Pdt Pc0 � E�x0x⊤0 �

Correction block Kk � Ppk
H⊤

k �HkPpk
H⊤

k �Rk�−1
xck � xpk

�Kk�yk − h�xpk
��

Pck � �I −KkHk�Ppk
�I −KkHk�⊤ �KkRkK

⊤
k

§Data available online at https://www.raspberrypi.com/products/raspberry-
pi-4-model-b/ [retrieved 25 Jan. 2024].
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x0 � ~x0 � 3 P0k (51)

where ~x0 is the probe nominal state and k is a random scalar drawn
from the standard distribution. The square root operates on the
elements of the initial error covariance matrix P0, which is defined as

P0 � diag�σ2r I3x3; σ2vI3x3; σ2ηR I3x3; σ2ηSRP I3x3� (52)

where σηi is the standard deviation of the respective covariancematrix

Qηi . Eventually, two additional procedures are implemented in the

navigation filter to face the errors of the IP algorithm:
1)When observations are not acquired due to an IP failure, the state

vector and its error covariance matrix are simply propagated until the
next step.
2) An innovation-based outlier detection method is applied to

reject false positives [46]. In particular, when the absolute value
of the innovation term kyk − h�xpk

�k is greater than k Mii

p
with

M � HkPpk
H⊤

k � Rk and k � 3, the innovation term is set to

zero, and the filter correction step is not performed. Indeed, it is
preferred to keep an old but good prediction so as not to worsen the
estimation.

V. Results

In this section, primarily, the performance of the IP is tested on a set
of randomly generated scenarios. Specifically, a sensitivity analysis
is carried on to analyze the IP behavior as the uncertainty on the probe
position rises. Following this, the light-time delay analytic equation is
verified, and theVBN filter is tested on an interplanetary trajectory. In
particular, the impact of light time and light aberration on state
estimation is assessed.

A. Image Processing Performance

To validate the IP algorithm performance before adopting it inside
the VBN filter, four Monte Carlo (MC) campaigns are carried out to
assess the robustness of the pipeline to the variation of the initial
spacecraft pose uncertainty. The initial standard deviation of the
probe position σr, which is used to compute the initial filter error

covariance matrix [see Eq. (52)], is set to 104, 105, 106, and 107 km
for the four campaigns. In each campaign, the extraction of the
beacon location is run for 1000 cases. In each scenario, the x and y
components of the spacecraft position are sampled from uniform
distribution U�−3; 3� AU, while the z component is sampled from
U�−0.07; 0.07� AU. Note that a translation is then applied to center
the spacecraft position in the origin of I (i.e., the solar system
barycenter). The z component of the probe position is chosen in a
narrower interval as the spacecraft is supposed to lie close to the
ecliptic plane. Similarly, the orientation of the probe is determined by
sampling Euler angles from a uniform distribution. In particular, the
right ascension α is sampled from U�0; 2π�, the declination δ from
U�−0.6; 0.6�, and the twist angleϕ fromU�0; π�. The declination δ is
chosen in a narrower interval as planets are distributed close to the
ecliptic plane. The images used to assess the IP performance are
generated by adopting an extended and improved version of the sky-
field rendering engine illustrated by Bella et al. [47]. In the image
simulator, various effects coming from both external and internal
sources are modeled and added to deep-space images, such as light
effects and detector noises. For what concerns the planet identifica-
tion step, σqv is set equal to 20 arc seconds as a result of a statistical
analysis conducted on the error obtained in the attitude determina-
tion. The planet position uncertainty σrpl is assumed equal to zero

because of the high accuracy with which the planets ephemeris are
known. Note that, when other celestial objects are observed to
navigate (e.g., asteroids [25] for deep-space applications or debris
[48] for Earth-based ones), their position and velocity uncertainties
may be taken into account in the formulation by using Eq. (48). To
assess the algorithm behavior, the performance indices adopted for
their assessment are the angular error for the attitude determination
and the beacon location error for the planet identification step. In
detail, the attitude determination error is evaluated by the procedure

adopted by Mortari et al. [33]. About the cross-boresight directions,
the angular error is determined as

σErrcb � cos−1 �Cz⊤Ae
Cz� (53)

where Ae � AcorrA
⊤
true is the error attitude matrix between the

estimated and the real attitudes and Cz is the boresight direction that
corresponds to the body frame third axis. Conversely, the minimum
and maximum values of the attitude determination error about the
boresight direction are defined as

σErrbmin
� cos−1�w⊤Aew� (54)

σErrbmax
� cos−1

trace�Ae� − 1

2
(55)

where

w �
Cz × �Cz × e�
kCz × ek (56)

with e being the principal axis of the error attitude matrix Ae.
For what concerns the planet centroid error, the latter is found by

evaluating the difference between the position of the centroid iden-
tified as planet and the real planet position in the image.
The probability density function (PDF) along with the 3σ ellipsoid

of the best-fit Gaussian distribution for σr � 104 km, σr � 105 km,

σr � 106 km, and σr � 107 km are shown in Figs. 2a–2d, respec-
tively. Note that the planet location is detected with a subpixel 3σ
accuracy for all the values of σr. In other terms, the error on the
estimated planet location is not dependent on the probe position
uncertainty but only on the attitude determination and centroids
computation errors. The 3σ error ellipses in Fig. 2 are obtained from
the mean and covariance values reported in Table 2.
The four covariance matrices are characterized by a similar deter-

minant, which is proportional to the area of the ellipse, implying that
the accuracy in the estimation of the planet location is not dependent
on the uncertainty of the spacecraft position. This feature is one of the
key aspects of the adopted pipeline. The results of the IP robustness
and attitude determination error are shown in Table 3. The algorithm
succeeds in determining the probe attitude in over 98% of the
scenarios, independently of the probe position uncertainty. The slight
variability observed in the no-attitude-determination cases is due to
the random behavior of the RANSAC algorithm. The attitude deter-
mination is considered wrong when σErrbmax

> 1 deg . Conversely,
the percentage of off-nominal scenarios during planet identification
greatly depends on the probe position uncertainty. Indeed, when σr
increases, the expected planet location is farther from the real one,
and its covariance ellipse gets larger, leading to a higher probability of
planet misidentification. Moreover, the percentage of off-nominal
scenarios in planet identification also depends strictly on the success
of the attitude determination. Indeed, when attitude determination
provides the wrong solution, planet identification fails consequen-
tially. In Table 3, the fifth column represents the percentage of correct
planet identificationwhen the attitude determination converges to the
right solution. The failure percentage of the beacon identification
procedure, when the probe attitude is correctly determined, remains

below 2% even with a probe position uncertainty of up to 105 km.
In conclusion, the precision of the proposedmethod is independent

of the probe position uncertainty, and it relies only on the center-
finding performance (i.e., 0.1 pixels), whereas the robustness of the
IP depends on the attitude determination performance and the probe
position uncertainty. Indeed, the planet identification technique pre-
cision is not affected by the planet position determination, while its
recall is affected by the increase in position uncertainty. It is worth
noting that the recall degrades for a high value of the position
uncertainties (i.e., 0.01 AU). For the sake of completeness, Fig. 3
shows some scenarios found during the IP performance assessment
where the procedure fails in planet identification. In particular, in
Figs. 3a–3c, the planet is not found in the image, whereas in Fig. 3d,
the planet is wrongly determined. Regarding Figs. 3b and 3d, the
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off-nominal cases may be mitigated by applying the RANSAC pro-

cedure and the innovation-based outlier detection method, respectively.

B. Filter Results

1. Assessment of Analytical Formulation of Light-Time Delay

This paragraph specifically investigates the computational time

needed to implement the linear model in Eq. (37) and the resulting

accuracy in the location of the planet affected by light time. Indeed, it is
important to assess the performance of the novel proposed methodol-
ogywith respect to state-of-the-art techniques in terms of accuracy and
computational time. In the analyzed scenario, the light-time effect on
the location of the first five planets with respect to an observer at the
solar system barycenter in the J200 reference frame is evaluated with
the proposed approach and the iterative state-of-the-art solution
[9,19,45]. The computed locations are then compared to the values
found by Spacecraft Planet Instrument C-matrix Events (SPICE),¶

Table 2 Mean and covariance of the planet location errors

when the probe position uncertainty is knownwith an accuracy

of 104, 105, 106, and 107 km

σr, km Perr; px
2 μerr, px det�P�; px4

104 0.008 0.0001

0.0001 0.008 �−0.0007; 0.0045� 5.8715e − 05

105 0.008 0.0001

0.0001 0.008 �−0.0012; 0.0046� 5.8778e − 05

106 0.008 0

0 0.007 �−0.0011; 0.0052� 5.6399e − 05

107 0.008 −0.001
−0.001 0.007

�−0.0011; 0.0049� 5.4618e − 05

Fig. 2 Probability density function of the planet location errors with 3σ bounds.

Table 3 Performances of the IP procedure in attitude determination

and beacons identification

σr,
km

σErrcb∕σErrbmax
,

arcs

Wrong attitude
determination,

%

No attitude
determination,

%

Correct beacon
identification,

%

104 2/13 0.5 0.8 98.75

105 2/13 0.5 0.6 98.75

106 2/13 0.5 0.9 98.24

107 2/14 0.5 1.1 81.28

¶Data available online at https://naif.jpl.nasa.gov/pub/naif/toolkit_docs/
IDL/icy/cspice_spkezr.html [retrieved 6 Feb. 2024].
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which is used as reference.The resultingaccuracy in the planet location
and the computational time required to evaluate the light-time delay
with the method proposed in this work are reported in the second and
third columns of Table 4. It is worth noting that the computational time
is not computed to assess the real performance of the algorithm in
flight, but merely for the sake of comparison, given the MATLAB®

implementation. To fairly compare the performance of the proposed
method with the state-of-the-art iterative Newton–Raphson’s
approach, the number of iterations required to achieve the same order
of accuracy in planet location is evaluated and reported in the sixth
column of the table. Furthermore, the computational time needed to

compute the light-time delay is outlined in the fifth column. Note that
computational times have been computed by taking the average values
over 1000 runs in both methods. By comparing the computational
times, the proposed approach performs always better than the iterative
one. Consequently, with equivalent accuracy, the proposed approxi-
mation proves to be significantly more computationally efficient than
the iterative method. For the sake of completeness, the computational
time needed to achieve a less stringent accuracy level of 0.04 pixels
(i.e., one order below the accuracy of the IP) is also computed for the
Mars case. The iterative method still takes 5 ms with 18 iterations,
further supporting the preference for the proposed approach.

a) The spike related to the planet location falls outside
the 3σ ellipse

b) The attitude is wrongly determined; the planet is
mistaken for star 1562

c) The centroiding algorithm resolves only one centroid,
instead of two

d) Planet wrongly identified; the planet is associated
with a wrong spike

Fig. 3 Scenarios in which the IP pipeline fails in the planet identification. represents the real planet location, represents the expected planet location,

and represents the found spikes.

Table 4 Obtained accuracy in the estimation of the planet position affected by light time and required computational time to

compute the time delay with the proposed method and the iterative approach

Proposed method Iterative approach

Accuracy, pixels CPU time, ms Accuracy, pixels CPU time, ms N iterations

Mercury 2.32e-05 0.019 2.32e-05 3 18
Venus 8.15e-07 0.1 8.18e-07 48 23
Earth 4.37e-07 0.086 4.38e-07 53 24
Mars 1.28e-06 0.025 1.28e-06 6 21
Jupiter 5.42e-05 0.088 5.19e-05 37 22
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2. Navigation Concept of Operations

In the study case, a CubeSat estimates its position and velocity by
tracking visible planets over an interplanetary transfer. The spacecraft
alternates observation windows, where an asynchronous tracking
of the optimal pair of planets is performed, to only-propagation
windows, where the filter only propagates the probe state as no
external observations are acquired. The navigation concept of
operations (CONOPS) is shown in Fig. 4. The probe tracks the first
planet of the optimal pair, which is selected at the beginning of the
navigation cycle, then performs a slew maneuver to point to the
second planet, during which no observations are acquired, and it
observes this later. Eventually, the estimation is propagated until the
following observation window starts.
At every time step of the planet observation, an image is generated

using an improved version of the deep-space sky simulator by Bella
et al. [47]. The simulator models the effects caused by the lights (i.e.,
light-time and light-aberration effects) on the centroids positions and
by the impact of cosmic rays hitting the sensor frame. The sky
simulator renders the image by taking into input the true probe pose
and velocity. Because the attitude control system is not simulated in
this work, the true probe orientation is computed by evaluating the
desired pointing direction needed to acquire the planet at the center of
the image and adding a randomperturbation to it, which simulates the
spacecraft jitter effect and the attitude knowledge error. Because the
probe position is knownwith a given uncertainty (up to 105 km in this
work), the beacon location will be not perfectly centered in the image
but still be contained in it, which is a sufficient condition to let the
IP pipeline extract the planet observation.

3. Simulation Settings

TheVBN filter proposed in this work is tested on an interplanetary
high-fidelity ballistic trajectory between Earth and Mars [49]. The
dynamics of the reference true trajectory include the SRP perturba-
tions, the main attractor acceleration, third-body accelerations due to
all the planets in the solar system, and relativistic perturbations. Note
that the dynamic model selected for the filter [Eq. (24)] is a lower-
fidelity one, implying that the unmodeled accelerations are captured
by the GMprocesses. Figure 5 shows the analyzed leg of the nominal
probe trajectory. Note that this is an improvement with respect to the
work of Andreis et al. [9] in which simpler dynamics models are used
in the filter and in the truth simulation.
Starting from t0, the estimation procedure begins. Each planet is

tracked for an hour with a frequency of 0.01 Hz, the slew maneuver
lasts 30 min, and the window in which the state is only propagated is
10 days. Therefore, only 2 h every 10 days are reserved for correcting
the state estimate. Over the interplanetary trajectory, 10 navigation
legs of 10 days 2 hours, and 30 min each are repeated.
For image generation, the onboard camera is assumed to have the

characteristics reported in Table 5, where F is the f number,Qe is the
quantum efficiency, Tlens is the lens transmission, σd is the defocus
level, and nCR is the number of single pixels that are turned on for
simulating the presence of hitting cosmic rays. Figures 6a and 6b are
two of the rendered deep-space sky images adopted in the filtering
procedure. For what concerns the IP, the parameters adopted in the
thresholding step and the RANSAC are detailed in Table 6. In detail,
kthr is the tuning parameter of the Niblack’s method, nR is the total
number of samples considered, mR is the number of centroids for
each sample, and tR is the threshold value considered for data fitting.
More details about the RANSAC procedure can be found in thework
by Andreis et al. [24].
The initial standard deviations of the state adopted in Eq. (52) are

reported in Table 7.

Note that the values are selected following a conservative
approach, taking into account that in deep space the initial position
and velocity are usually known with an accuracy better than 104 km
and 0.1 km∕s, respectively. However, even if the performance of the
IP procedure degrades by increasing the probe position uncertainty,

this has been tested to work up to σr � 106 km with a success rate
higher than 90% in planet identification. Then, the performance of the

IP worsens to 70% when σr � 107 km (see Sec. V.A). For what
concerns the OD, in the work by Andreis et al. [9], the algorithm is

tested to work up to σr � 107 km. Over this value, the OD algorithm
is not able to select the optimal targets.
The SRP has been modeled with a steady-state standard deviation

of 10% of the nominal value as in the work by Yárnoz et al. [50],
which corresponds approximately to 10−11 km∕s−2 at the beginning
of the trajectory and with 10 days of correlation time. Eventually,
residual accelerations, which include also errors due to attitude
control maneuvers, have been modeled with a steady-state standard

deviation of 10−11 km∕s−2 and a correlation time of 1 day [50].
Moreover, the standard deviation of the measurement error is set to
σstr � 0.1 px, considering the results of the Monte Carlo runs in the
extraction of the planet centroid reported in Sec. V.A. Eventually,
only planets whose apparent magnitude is lower than 7 and whose
SEA is greater than 20 deg are assumed to be visible by the camera.
Therefore, they are the only ones considered available for the optimal
beacon selection process. It is worth noting that all the planets have
been considered in the image simulation, implying that the ones not
fulfilling the mentioned conditions could be identified as outliers and
degrade the IP performance.

4. Filter Performance

To evaluate the filter performance, a Monte Carlo simulation of
100 samples is performed. The lower number of simulations is due to
the need to simulate long propagation arcs and the large number
of images for every Monte Carlo sample. Figures 7 and 8 show the
position and velocity error profiles and 3σ covariance bounds in
the J2000 ecliptic reference frame on the studied trajectory leg. The
sample error profile is displayed with blue solid lines, whereas the

First Planet Acquisition
Observation window

Slew Maneuver
Only-Propagation Window

Second Planet Acquisition
Observation window Only-State-Vector Propagation

Fig. 4 Navigation concept of operations.

Fig. 5 Ballistic interplanetary reference trajectory.

Table 5 Onboard camera characteristics

FOV,
deg F T, ms

Image size,
pixels f, mm Qe × Tlens

σd,
pixels nCR SEA

20 2.2 400 1024×1024 40 0.49 0.5 3 20
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orange solid lines and the dashed ones define the 3σ covariance

bounds of the samples and the filter, respectively.

At the end of the trajectory leg, the filter estimates the spacecraft

position and velocity with a 3σ accuracy of 3200 km and 0.8 m/s,

respectively. The 3σ sample and filter covariance profiles are mostly

overlapped, which suggests that the filter and its covariancematrices,

in particular R, are well tuned. This underlines that the planet

centroids are extracted with a 3σ accuracy lower than 0.3 px as
found in the Monte Carlo campaigns conducted in Sec. V.A. For
the 100-sampleMonteCarlo run, the total number of outliers detected
by the algorithm is 4. Considering that 740 images are processed for
each sample, this means that in 0.005% of the cases an outlier is
found. The planets observed during the interplanetary transfer are
Earth, Mars, and Venus. Their object-to-pixel ratio is checked to be
below 1 over the entire tracking period to respect the assumption of
navigation with unresolved planets. The performance of the filter
detailed previously where both light effects acting on the position of
the planets are corrected is labeled MC1 in the following discussion,
and it is compared with the other 4 cases, which are the following:
1) ForMC2, there is only a correction of the light-time effect acting

on the position of the planets. The measurement model is defined by
Eqs. (49) and (50);
2) For MC3, there only a correction of the light-aberration effect

acting on the position of the planets. Therefore,Δt � 0 and δΔt � 0
in Eqs. (37) and (47);
3) For MC4, there is no correction of the light effects acting on the

position of the planets. The measurement model is defined by
Eqs. (49) and (50) with Δt � 0 and δΔt � 0 in Eqs. (37) and (47);
4) For MC5, there is a correction of the light-time effect acting on

the position of the planets. Hence, the measurement model is defined
Fig. 7 Estimated errors for each position component with related 3σ
bounds.

Fig. 8 Estimated errors for each velocity component with related 3σ
bounds.

a) Image taken during Earth observation in LIS mode b) Image taken during Mars observation in LIS mode

Fig. 6 Generated sky-field images. The planet is outlined with a green marker, and identified stars are outlined with a white marker.

Table 6 Parameters of

the RANSAC and

thresholding procedures

kthr, - nR, - mR, - tR, arcs

10 30 3 100

Table 7 Accuracy of the state

components at t0

σr, km σv, km/s σηSRP , km∕s2 σηR , km∕s2

104 10−1 10−11 10−11
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by Eqs. (49) and (50). Furthermore, the stellar light aberration is not
corrected in the IP.
Note that in the first four Monte Carlo simulations (i.e., MC1,

MC2, MC3, and MC4), the stellar aberration correction is always
implemented in the IP (see Sec. III.B) despite what is implemented in
the measurement model. This assumption was performed to general-
ize the analysis to the case in which an attitude estimation already
compensated for light aberration is provided to the filter either by the
attitude determination and control system or directly from a star
tracker. Moreover, an uncorrected attitude would induce a constant
bias in the filter, leading to an unfair comparison among the different
implementations. Therefore, the analysis is focused on the potential
implications if the planets locations remain uncorrected for light
effects. Conversely, the last MC study is relevant when the same
optical camera exploited for navigation serves for attitude determi-
nation. In this case, the option to not compensate for stellar aberration
exists, potentially yielding an aberrated attitude value. Hence, this
scenario explores situations where neither stellar nor planetary aber-
rations are corrected.
The root-mean-square error is chosen as the performance index to

measure the estimation accuracy of the differentmodels for the selected
dataset as it captures effects due tomean (e.g., biases) and covarianceof
the estimated solution. The latter comprises 100 initial state vectors and
740 images for simulation representing the scenarios observed during
the interplanetary transfer. The filter and camera settings are unchanged
with respect to MC1 for the sake of comparison.
Figure 9 shows the results of the analysis. The most significant

deviation from the nominal value, represented by MC1 and whose
components are shown in Figs. 7 and 8, occurswhen both light effects
corrections are not taken into account in the filter (MC4). Between the
two effects, the greatest deviation from the nominal value is obtained
when the light-aberration effect remains uncompensated (MC2),
compared to the scenario where the light-time effect is corrected
(MC3). When the light aberration correction is not applied on both
the stars and planets centroids, the probe state estimation is affected
by a negligible deviation (MC5). This occurs because, with the
attitude adopted in the measurement model equation being deter-
mined directly from the image, the light aberration affects similarly
the measurement model and the external observation. Therefore, is
evident that when the same optical sensor is adopted for attitude
determination and navigation the light-aberration correction may not
be necessary, saving computational time.
Eventually, validation of the VBN filter performance can be

achieved by comparing results with those obtained from a concurrent
in-flight demonstration of celestial triangulation with distant planets.**

This validation repeats the simulation on the ballistic Martian corridor
by setting position and velocity uncertainties to values matching those
used in the in-flight testing (i.e., σr � 105 km and σv � 1 km∕s).
During the demonstration, observations of Jupiter, Mars, and Saturn
were made eight times, once, and seven times, respectively, with
measurement errors set at 0.5, 0.75, and 0.25 pixels. To accurately
model the measurement error covariance matrix in the implemented
filter, unit measurement uncertainty is set to σstr � 0.2 �
0.4 	 36.6∕67, considering an weighted average value for the meas-
urement error in pixels (i.e., 0.4 pixel) multiplied by the camera
Instantaneous field of view (iFoV) specified by Krause et al. ** (i.e.,
36.6 arcs) and divided by the camera iFoV employed in the current
simulation (i.e., 67 arcs). This is done to compare measurements with
the same angular error despite the camera carried onboard and eventual
calibration residual errors. Additionally, the implemented filter
assumes to acquire only 16 observations throughout the trajectory to
match the number of images adopted in the in-flight testing. At the end
of the trajectory, the filter estimates position and velocity with a 3σ
accuracy of 12,000 km and 2.15 m/s respectively. The order of
magnitude of the obtained residuals is consistent with the one found
byKrause et al. (i.e., 60000 km and 5m/s). Further analysis to validate

the vision-based navigation algorithm will include hardware-in-the-
loop simulations. Preliminary results have already been obtained
through, first, the validation of the orbit determination algorithm with
processor-in-the-loop simulations [9] and, second, with the validation
of the image processing pipeline with the optical facility in the loop
[51–54]. More details about the validation and verification procedure
carried on to increase the technology readiness level of the navigation
algorithmwithin the EXTREMA project are reported in [55] and [56].

VI. Conclusions

This paper develops an autonomous vision-based navigation algo-
rithm for interplanetary transfer with an application for CubeSats
missions. An extended Kalman filter adopting the planet location as
external observation is chosen by considering the limited processing
capabilities of a standard miniaturized processor. Moreover, the mea-
surements exploited for the estimation correction are directly extracted
from images generated with a deep-space rendering engine. This
procedure allows for obtaining a more faithful value of the measure-
ment error and its influence on the filter solution. At the end of the
Earth–Mars trajectory, the filter estimates the spacecraft position and
velocitywith an accuracy of 3200 km and 0.8m/s, respectively. Future
analysis should examine the performance of the filter over low-thrust
trajectories, which are desirable in CubeSats applications. Moreover,
this work determines the probe attitude from deep-space images with
state-of-the-art star identification and attitude determination algo-
rithms. Integrating the attitude filter in the proposed vision-based
navigation algorithm is also object of future investigation.

a) Position RMSE

b) Velocity RMSE

Fig. 9 Comparison of the performance of the filter under various light

effects.

**Krause, M., Thrasher, A., Soni, P., Smego, L., Isaac, R., Nolan, J.,
Pledger, M., Lightsey, E. G., Ready,W. J., and Christian, J., “LONEStar:
The Lunar Flashlight Optical Navigation Experiment,” arXiv preprint 32
arXiv: 2401.12198, Jan. 2024.
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Appendix:

A. Useful Matrices to Compute Derivatives of Measurement Model

Rsc � �I3x3 � 2 βsc l⊤pl∕sc − l⊤pl∕scβscI3x3 − lpl∕scβ⊤sc�
I3x3

k�rpl�t − Δt� − r�t��⊤�rpl�t − Δt� − r�t��k�

−
�rpl�t − Δt� − r�t���rpl�t − Δt� − r�t��⊤

k�rpl�t − Δt� − r�t��⊤�rpl�t − Δt� − r�t��k3
vpl

c2 − vpl�t�⊤vpl�t�

�c2 − vpl�t�⊤vpl�t��rpl∕sc�t�⊤ � rpl∕sc�t�⊤vpl�t�vpl�t�⊤

rpl∕sc�t�⊤rpl∕sc�t��c2 − vpl�t�⊤vpl�t�� � �rpl∕sc�t�⊤vpl�t��2
− v⊤pl�t� − I3x3 (A1)

Vsc �
1

c
�l⊤pl∕sc lpl∕scI3x3 − lpl∕sc l

⊤
pl∕sc� (A2)

Qatt � 2 laberrpl∕sc
∧ (A3)

Rpl � �I3x3 � 2 βscl⊤pl∕sc − l⊤pl∕scβscI3x3 − lpl∕scβ⊤sc�
I3x3

k�rpl�t − Δt� − r�t��⊤�rpl�t − Δt� − r�t��k�

−
�rpl�t − Δt� − r�t���rpl�t − Δt� − r�t��⊤

k�rpl�t − Δt� − r�t��⊤�rpl�t − Δt� − r�t��k3 I3x3 � −
vpl

c2 − vpl�t�⊤vpl�t�

�c2 − vpl�t�⊤vpl�t��rpl∕sc�t�⊤ � rpl∕sc�t�⊤vpl�t�vpl�t�⊤

rpl∕sc�t�⊤rpl∕sc�t��c2 − vpl�t�⊤vpl�t�� � �rpl∕sc�t�⊤vpl�t��2
− v⊤pl�t� (A4)

Vpl � −�I3x3 � 2 βsc l⊤pl∕sc − l⊤pl∕scβscI3x3 − lpl∕scβ⊤sc�
I3x3

k�rpl�t − Δt� − r�t��⊤�rpl�t − Δt� − r�t��k�

−
�rpl�t − Δt� − r�t���rpl�t − Δt� − r�t��⊤

k�rpl�t − Δt� − r�t��⊤�rpl�t − Δt� − r�t��k3 ΔtI3x3 �
vpl

c2 − vpl�t�⊤vpl�t�

rpl∕sc�t�⊤vpl�t�rpl∕sc�t�⊤ − rpl∕sc�t�⊤rpl∕sc�t�vpl�t�⊤

rpl∕sc�t�⊤rpl∕sc�t��c2 − vpl�t�⊤vpl�t�� � �rpl∕sc�t�⊤vpl�t��2
� 2vpl�t�⊤

c2 − vpl�t�⊤vpl�t�
− rpl∕sc�t�⊤ (A5)
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