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Abstract

The present study focuses on the effects of streamline curvature in curved turbulent boundary layers.
Bradshaw’s gradient Richardson number was used to identify zones of convex and concave curvatures.
A Galilean-invariant version of Richardson number (Rilocal) augmented by the direction information
of Spalart & Shur’s [43] rotation/curvature correction framework was derived. The behaviour of
the Richardson number was investigated by conducting a sensitivity study by parameterizing the
Monson’s [23] U-duct test case for varying curvature magnitude. The capability of Rilocal to identify
the sign and magnitude of curvature is demonstrated for different curvature magnitudes of U-duct
test case.

Suitable test cases (both convex and concave curvature) from the experiments in the literature
namely Monson (1990), Gillis & Johnston (1981) and So & Mellor (1972) were chosen. The ge-
ometries were built and CFD setups were developed and validated using RANS models. Using the
validation cases, rotation/curvature corrections to SA, SST were compared and the SSG/LRR-ω
was assessed for convex and concave curvatures. It was determined that SSG/LRR-ω gives better
agreement with the experimental data than SA-RC and SST-RC for the convex curved turbulent
boundary layers. For the concave curvature test case, SSG/LRR-ω gives a good agreement with the
trough region of Taylor-Görtler vortex where effects of these longitudinal vortices are minimal. The
double peak structure of Reynolds shear stress in longitudinal vortices on a concave wall was not
captured by any of the RANS models in the present work.

Moreover, different redistribution models namely Speziale-Sarkar-Gatski (SSG), Launder-Reece-
Rodi (LRR) and SSG/LRR-ω were compared for convex and concave curvatures where SSG/LRR-ω
gives the best agreement with the experimental profiles of mean-velocity, Reynolds shear stress
and Reynolds stress anisotropy. The Generalized Gradient Diffusion Hypothesis (GGDH) and the
Simple Gradient Diffusion Hypothesis (SGDH) were examined for both convex and concave turbulent
boundary layers. GGDH gives better agreement with the experimental data compared to SGDH for
different Reynolds stress models.

Based on the insights from the validation cases, prospects for curvature sensitsation of SSG/LRR-
ω were explored. Modifications to the turbulent transport term using the Rilocal were investigated
based on the comments from Zeman [56]. Trials were conducted to modify the production of length
scale Pω, thus modifying dissipation thereby and further changing the production of Reynolds shear
stress. Insights into further modification of SSG/LRR-ω for complex flows were provided.
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Chapter 1

Introduction

1.1 Motivation

Fluid turbulence is one of the most complicated topics which has kept both physicists and engi-
neers busy for several decades. Turbulent flow simulation is one of the most complex problems in
engineering simulations. These simulations come at high computational cost. In fact, fluid flow
simulation is one of the top 10 problems to consume CPU time in supercomputers all around the
world. Accurately simulating turbulence involves resolving all the scales of fluid motion down to the
smallest scale. This is expensive to several problems such as flow over an aircraft wing in high-lift
configuration. So, there is an ever-growing need to find cost-efficient techniques for simulating tur-
bulent flows. The main motivation of the present work is to make turbulence model accurate for
such flow conditions. Two important flow features of an aircraft wing in high-lift configuration are
adverse pressure-gradient (APG) flow and curved streamlines. Flows with streamline curvature are
very common in nature and curvature has considerable influence on turbulence production. Convex
surface curvature suppresses turbulence and concave curvature amplies it.

1.2 Literature review

Effects of surface curvature has been extensively studied in the history of research in fluid dynamics
dating back to Ludwig Prandtl [30] who investigated the effects of stabilizing forces on turbulence to
devise modifications to Mixing-length model. Wattendorf [53] identified strong influence of curvature
on velocity distribution, increased mixing at the outer walls of curved channels and reduced mixing
at the inner wall.

Görtler [15] identified an instability in laminar boundary layers on concave walls due to three-
dimensional perturbations. Later several experiments [39], [3] have confirmed the existence of Görtler
on concave walls even in fully turbulent flows. A detailed treatise of Görtler vortices is provided
by Saric [33]. Patel [28] performed experiments on a 90◦ curved duct and report quite significant
effects of longitudinal surface curvature on the development of turbulent boundary layer.

So & Mellor [39] performed experiments on convex and concave curved turbulent boundary layer
in an almost 150◦ curved duct with surface curvature magnitude δ/Rc (ratio of boundary layer
thickness δ to radius of the curvature Rc) of 0.075 at convex wall and 0.1 at concave wall. The drop
in static pressure was maintained at 23% of reference dynamic head at the onset of the curvature.
Distinctive longitudinal vortices were observed in the concave turbulent boundary layer at high
curvature. Ramaprian & Shivaprasad [31] investigated two-dimensional turbulent boundary layer
characteristics experimentally for mild curvatures δ/Rc ≈ 0.013 and noted that the region close to
the convex wall was not affected significantly but the outer part of the turbulent boundary layer was
sensitive to even mild curvature. Gillis & Johnston [13] performed experiments on convex curved
turbulent boundary layers using a 90◦ curved duct at δ/Rc ≈ 0.1 with static-pressure drop less
than 5% of the reference dynamic head at the onset of the curvature that makes it an almost Zero-

7



1.3. Organisation 8

Pressure-Gradient (ZPG) curvature case. Later Monson et al. [23] performed an experiment on
a U-shaped curved channel at high curvature and Reynolds number of 105 and 106 based on duct
height which was used to validate rotation-corrections of several RANS models.

Bradshaw [4] proposed an algebraic analogy between streamline curvature and buoyancy thus
giving a version of gradient Richardson number that identifies and quantifies streamline curvature.
Hellsten [16] provided a Galilean-invariant version of Richardson number using the magnitudes of
vorticity, strain-rate tensors and used it to sensitise Menter’s Shear Stress Transport (SST) model.
Ströer & Knopp [46] have derived a Galilean-invariant formulation for the Bradshaw’s Richardson
number.

In flows with streamline curvature, there exists a misalignment in the principal axes of Reynolds
stress and turbulent strain-rate tensors. Knight & Saffman [18] provided an estimation of stress-
strain misalignment angle in polar coordinates. Later, Spalart & Shur [43] developed this formulation
into a Galilean-invariant framework to modify RANS turbulence models. This rotation/curvature
correction was applied to Spalart-Allmaras (SA) turbulence model to make SA-RC which was vali-
dated using several test cases in Ref. [36]. Smirnov & Menter used the rotation/curvature correction
of Spalart & Shur [43] to propose SST-RC [38]. Durbin [10] provides a comprehensive review of rota-
tion/curvature corrections to several scalar turbulence closure models. Zeman [56] studied modelling
of Reynolds stress closures particularly for modelling turbulent wing-tip vortices in a far-field region
of vortex evolution.

Cecora et al. [7] developed the SSG/LRR-ω Reynolds stress model by blending Speziale-Sarkar-
Gatski (SSG) [44] and Launder-Reece-Rodi (LRR) [21]. Knopp [19] presented a modification to
SSG/LRR-ω model for turbulent boundary layers in adverse pressure gradient. Ströer & Knopp [45]
explored modifications to SSG/LRR-ω model using a Galilean-invariant Richardson number from
Ref. [46].

1.3 Organisation

In the present work, chapter 2 explains the governing equations of fluid dynamics, an introduction
to turbulence modelling with a few well known turbulence models in CFD and the computational
tools used.

In chapter 3, the quantitative and qualitative effects of streamline curvature, structure of curved
turbulent boundary layers and a deeper insight into turbulence in flows is streamline curvature is
discussed. In this chapter, the significance of the Richardson number is for curved flows, the cal-
culation/derivation of different versions of Richardson number is presented. Some of the prominent
curvature modifications in RANS turbulence models are explained.

In chapter 4, experiments from literature and development of simulation setup is discussed which
covers different techniques employed to replicate complex experimental setups and the validation
of geometries is shown. One of these validation test case is taken and the parameter of Richard-
son number is analysed. Sensitivity studies have been performed to understand the behaviour of
Richardson number in different types of curvatures and various curvature magnitudes which are
discussed in chapter 5.

Chapter 6 validates SSG/LRR-ω for the test cases and compares it’s performance to other promi-
nent curvature corrected RANS models like SA-RC and SST-RC. Using the profiles of mean-velocity
and turbulent shear stress from the test cases, the effect of different redistribution models for the
pressure-strain correlation and the effect of diffusion model for turbulent transport is debated. Using
the findings from test cases, some implications on how to modify SSG/LRR-ω are specified.

In chapter 7, prospects for curvature modifications to SSG/LRR-ω are understood by using
different trials to modify the turbulence model. Chapter 8 concludes the thesis by providing a
summary of the work done, main conclusions from the discussions and some future direction to work
on this problem.



Chapter 2

Physical models and Numerical
setup

The mathematical model for compressible viscous fluid flow in aerospace applications are the com-
pressible Navier-Stokes equations. These equations describe the space-time evolution of density,
momentum and energy of the fluid based on conservation laws. The solution of the Navier-Stokes
equations becomes turbulent if the Reynolds number is above some critical value. There are two
approaches for tackling the problem of turbulence.

On the one hand, there are scale resolving simulations. They resolve the turbulent motion down
to some small scale, which can be the Kolmogorov scale (Direct Numerical Simulation) or a used
defined length scale in the inertial subrange (Large-Eddy Simulation). Scale-resolving approaches are
based on the Navier-Stokes equations. Some LES methods add a so-called subgrid-scale formulation
to model physical effects smaller than the smallest resolved scales.

On the other hand, there are statistical turbulence models. They seek an approximation to a
statistically-averaged solution of the Navier-Stokes equations. The statistically averaged Navier-
Stokes equations involve an additional term, the so-called Reynolds stress tensor. Hence there are
more unknowns than equations and a closure model arises. The Reynolds stress tensor describes
the statistically-averaged effects of the fluctuating turbulent motion on the mean flow. There are
basically two approaches to account for the Reynolds stresses. The first approach uses the so called
by some closure model for the Reynolds stress tensor directly, called models based on the turbulent-
viscosity hypothesis or Boussinesq assumption. The most complete approach of practical relevance
today is to solve the system of transport equations for the Reynolds stress tensor. However, this
equation also requires for some closure models.

This chapter describes the RANS models used in this work and provides the necessary background
for the following sections.

2.1 Navier-Stokes equations for Compressible flows

This section describes the Navier-Stokes equations for compressible flows. The governing equations
for compressible Newtonian fluids can be written in tensorial form as:

∂ρ

∂t
+
∂(ρũi)

∂xi
= 0 (2.1)

∂(ρũi)

∂t
+
∂(ρũiũj)

∂xj
= − ∂p̃

∂xi
+
∂τij
∂xj

+ ρgi (2.2)

∂(ρE)

∂t
+
∂(ρũj(E + p/ρ))

∂xj
=
∂(ũiτij)

∂xj
+

∂

∂xj

(
k
∂T

∂xj

)
(2.3)

9
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p̃ = ρRT (2.4)

Here ũ and p̃ are the instantaneous velocity and pressure; gi is the body force, E is the energy,
k is the coefficient of thermal conductivity, T is the temperature, ρ is the density, R is the specific
gas constant. τij is the viscous stress tensor which is proportional to the rate of deformation in a
Newtonian fluid and is written as:

τij = µ

(
∂ũi
∂xj

+
∂ũj
∂xi

)
− 2

3
µδij

∂ũk
∂xk

(2.5)

where µ is the coefficient of dynamic viscosity. 2.4 shows the equation of state obtained through
the thermodynamic equilibrium assumption. 2.1, 2.2 and 2.3 are the equations of conservation of
mass, momentum and energy respectively.

2.2 Navier-Stokes equations for Incompressible flows

Present study concentrates on low Mach number (Ma) flows. Flows with Ma < 0.3 can be considered
as incompressible flows where the density changes are quite negligible due to the relative pressure
changes being very low. For an incompressible Newtonian fluid, ρ, µ, k are independent of tempera-
ture. Due to the continuity assumption mentioned in 2.6, momentum and energy equations decouple
when p̃

∂ũj
∂xj

= 0. For fluid dynamic application where there is negligible heat transfer, temperature

changes, the energy equation can be ignored. Therefore, we can rewrite the Navier-Stokes equations
for an incompressible Newtonian fluid as follows:

∂ũi
∂xi

= 0 (2.6)

∂ũi
∂t

+ ũj
∂ũi
∂xj

= −1

ρ

∂p̃

∂xi
+ ν

∂2ũi
∂xj∂xj

+ ρgi (2.7)

2.3 Turbulence and its modelling in fluid flows

For all kinds of flows observed in engineering, flows are stable with parallel streamlines only for low
Reynolds Number (Re = UL/ν where U is the characteristic mean flow velocity, L is the character-
istic length scale of mean flow and ν is the kinematic viscosity). When Reynolds number increases,
flow undergoes several complex stages of Transition such as distortion of Tollmien–Schlichting waves,
evolution of hairpin vortices, formation and merging of turbulent spots which finally leads to a Tur-
bulent flow. A fully turbulent flow comprises of irregular, chaotic fluid motion with velocity and
pressure fluctuations that lead to increased mixing, momentum and energy transport. The main
features of a fully turbulent flow are: Velocity fluctuations, Vorticity, Three-dimensional nature,
Mixing, Energy cascade across scales, Diffusivity and Dissipation [48].

Navier-Stokes equations can be used to simulate a fully turbulent flow. In fact, problem of
turbulence is the complete solution to these equations. But, one needs to run the discretized version
of Navier-Stokes equations using numerical methods for the finest grid of an engineering system
on massively parallel supercomputer to obtain the solution of flow field. The requirement of finest
grid poses a problem of computational labour. One needs to discretize the domain into very small
sub-domains such that all scales of fluid motion are captured. This requirement goes higher with
the Reynolds number. So, an accurate solution of flow field for a aircraft at high-lift configuration
might take more than a life time. Simulations of a turbulent flows are one of the top energy
demanding computations which are done on any supercomputer. Data centers account for more
than 200 Terawatt hours of electricity consumption globally. This pushes the need to further model
Turbulence such that one can obtain near-accurate flow fields of velocity, pressure on coarses grids
instead of resolving all scales of a turbulent flow.
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Figure 2.1: Grid generated turbulence due to the instability of shear layers downstream a plate with
square perforations. [50]

Luckily, the chaotic motion and fluctuations of a turbulent flow are statistical in nature. The av-
erages of these fluctuating quantities can be understood and modelled. When direction computation
usually referred as Direct Numerical Simulation (DNS) hit the computational capacity, engineers
and scientists got interested in modelling turbulence using statistical measurement techniques.

2.4 Reynolds-Averaged Navier-Stokes equations

In 1895, Osborne Reynolds proposed the decomposition of fluid flow velocity (ũ) and pressure into
time-averaged mean component (ūi) and a fluctuating component (u′i) [32] with an aim to obtain a
set of equations which can describe the averaged properties of a turbulent flow.

ũi = Ui + ui

U = lim
T→∞

1

T

∫ t0+T

t0

ũ dt
(2.8)

Here, the flow is assumed to have a property that the mean flow field U becomes independent of
time t0 for large time period T which is called a statistically steady turbulent flow. The ergodic
theorem states that the mean solution can be obtained by time-averaging a single flow problem. The
ensemble averaging filter has the following properties for instantaneous variables f, g:

Linearity(c ∈ R) : cf = cf

Distributive : f + g and f.g = f.g,

Projection identity : f = f

Average of fluctuations : f ′ = 0 (2.9)

Commutative :
∂f

∂x
=
∂f

∂x
and

∫
fds =

∫
fds

Average of a product : fg = (f̄ + f ′)(ḡ + g′) = fg + f ′g′
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By applying the Reynolds decomposition to the mass and momentum equations, we get:

∂(U + u)i
∂xi

= 0

∂(U + u)i
∂t

+ (U + u)j
∂(U + u)i

∂xj
= −1

ρ

∂(P + p)

∂xi
+ ν

∂2(U + u)i
∂xj∂xj

+ ρgi

(2.10)

Now, the average of entire equation is taken by drawing a bar over each term while implement-
ing the rules of averaging, we arrive at Reynolds-averaged Navier-Stokes(RANS) equations for an
incompressible Newtonian fluid:

∂Ui
∂xi

= 0

∂Ui
∂t

+ Uj
∂Ui
∂xj

= ρgi −
1

ρ

∂P

∂xi
+ ν

∂2Ui
∂xj∂xj

− ∂uiuj
∂xj

(2.11)

After invoking the continuity in convective derivative, the new term uiuj appears which is termed
as Reynolds stress. Although, this term comes from the convection part, the ensemble averaged
effect of convection is diffusive and here momentum is being diffused through this additional term
[11]. The mean flow equations(2.11) are unclosed due to more unknowns (P,Ui, uiuj : 1 + 3 + 3)
and less equations (4) which is known as the turbulence closure problem. Majority of the field of
Turbulence modelling revolves around defining the reynolds stress tensor (uiuj). For a compressible
flow, one must also account for density and temperature fluctuations. Favre-averaged Navier-Stokes
equations [12, 55] which have a similar structure to the imcompressible form (2.11) are used to
solve compressible turbulent flows. For most of the engineering problems, the intricate details of the
velocity, pressure fluctuations and fine scales of motion are not necessary. Only the overall effect
of all the fluctuations to the mean flow is required to determine quantities like Skin friction, Drag,
Heat transfer coefficients etc. So, the majority of turbulence flow computation done by engineers in
the industry were, are and will be based on RANS equations for the forseeable future. Therefore, it
is necessary to further develop RANS equations for better flow predictions and applicability in wide
range of complex engineering applications.

2.5 Turbulence models for RANS

From the Newton’s law of viscosity, stress is directly proportional to the strain-rate in laminar
flows. This results in a coefficient of proportionality which is the dynamic viscosity coefficient (µ), a
property for a fluid. In 1877, Boussinesq proposed the hypothesis of direct proportionality between
Reynolds (turbulent) stresses and mean-flow strain-rates. The coefficient of proportionality is the
turbulent viscosity or eddy viscosity(µT ), a property of the flow rather than the fluid.

−uiuj = νT

(
∂Ui
∂xj

+
∂Uj
∂xi

)
− 2

3
kδij (2.12)

where k = (u2
1 + u2

2 + u2
3)/2 is the turbulent kinetic energy per unit mass and νT = µT /ρ is the

kinematic eddy viscosity [51]. All turbulence models which try to define the turbulent viscosity
are known as Eddy viscosity models whereas the models which try to directly obtain the Reynolds
stress are known as Reynolds Stress Models (RSM). Significant efforts have been made by the CFD
research and development community to model the Reynolds stress tensor. These can be categorized
based on the number of additional transport equations one needs to solve. Readers are encouraged to
visit the NASA’s Turbulence resource website [26] for the full list of up-to-date and best performing
models for wide range of applications. Few of these turbulence models are predominantly used in
the industry.



2.5. Turbulence models for RANS 13

No. of additional transport equations Name References
Zero Mixing Length [29]
One Spalart-Allmaras [42, 1]
Two k − ε [20]

k − ω [54]
SST [22]

Seven Wilcox-RSM [55]
SSG/LRR-ω [7]

Table 2.1: List of widely used Turbulence models

2.5.1 Spalart-Allmaras model

The Spalart-Allmaras turbulence model solves one transport equation for kinematic eddy viscosity
parameter, ν̂ (here ν̂ was used instead of the original ν̃ as tilde was used for instantaneous variables
only in this chapter). It was originally developed for flows in aerospace applications which involve
a wall-bounded flows. The eddy viscosity can be calculated from the kinematic eddy viscosity
parameter by νT = ν̂fv1 where fv1 is the wall-damping function which becomes unity for high
Reynolds numbers.

∂ν̂

∂t
+ Uj

∂ν̂

∂xj
= cb1(1− ft2)Ŝν̂ −

[
cw1fw −

cb1
κ2
ft2

]( ν̂
d

)2

+
1

σ

[
∂

∂xj

(
(ν + ν̂)

∂ν̂

∂xj

)
+ cb2

∂ν̂

∂xi

∂ν̂

∂xi

]
fv1 =

χ3

χ3 + c3v1

, χ =
ν̂

ν
, Ŝ = Ωij +

ν̂

κ2d2
fv2

fv2 = 1− χ

1 + χfv1
, fw = g

[
1 + c6w3

g6 + c6w3

]
g = r + cw2(r6 − r)

r = min

[
ν̂

Ŝκ2d2
, 10

]
, ft2 = ct3exp(−ct4χ2), Ωij =

1

2

(
∂Ui
∂xj
− ∂Uj
∂xi

)
(2.13)

Here, ν is the molecular kinematic viscosity, ||Ω|| is the magnitude of vorticity, d is the distance
from the field point to the nearest wall and the list of constants are: cb1 = 0.1355, σ = 2/3, cb2 =
0.622, κ = 0.41, cw2 = 0.3, cw3 = 2, cv1 = 7.1, ct3 = 1.2, ct4 = 0.5, and cw1 = cb1

κ2 + 1+cb2
σ . The

boundary conditions are ν̂wall = 0, ν̂farfield = 3ν∞ to 5ν∞ [26]. Several modifications have been
made to this model which include negative-viscosity (SA-neg), rotation, curvature corrections (SA-
R95, SA-RC, SA-R23) and also with quadratic constitutive relation (SA-QCR) etc. Some of the
prominent modifications to the Spalart-Allmaras model will be discussed in the further chapters.

2.5.2 Menter Shear Stress Transport(SST) model

A widely used 2 equation model based on blending on k−ε and k−ω turbulence model. k−ε model
performs well in the free stream but unsatisfactory in the near-wall region inside the boundary layers
with adverse pressure gradients. and k − ω gives good predictions in the boundary layers. In 1994,
Menter proposed a blending approach in which k− ω is used inside the boundary layer and k− ε is
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used in the free stream region.

∂ρk

∂t
+
∂(ρUjk)

∂xj
= Pk − β∗ρωk +

∂

∂xj

[
(µ+ σkµT )

∂k

∂xj

]
∂ρω

∂t
+
∂(ρUjω)

∂xj
=

γ

νT
Pk − βρω2 +

∂

∂xj

[
(µ+ σωµT )

∂ω

∂xj

]
+ 2(1− F1)

ρσω2

ω

∂k

∂xj

∂ω

∂xj

Pk = τij
∂Ui
∂xj

, τij = µT

(
2Sij −

2

3

∂Uk
∂xk

δij

)
− 2

3
ρkδij , Sij =

1

2

(
∂Ui
∂xj

+
∂Uj
∂xi

)
µT =

ρa1k

max(a1ω,ΩijF2)
, φ = F1φ1 + (1− F1)φ2, F1 = tanh(arg4

1)

agr1 = min

[
max

( √
k

β∗ωd
,

500ν

d2ω

)
,

4ρσω2k

CDkωd2

]
, F2 = tanh(arg2

2)

arg2 = max

(
2

√
k

β∗ωd
,

500ν

d2ω

)

(2.14)

The constants for k−ω closure are: σk1 = 0.85, σw1 = 0.65, β1 = 0.075 and k− ε closure are: σk2 =
1.0, σw2 = 0.856, β2 = 0.0828 and SST closure constants: β∗ = 0.09, a1 = 0.31. The recommended

boundary conditions are for far-field: U∞
L < ωfarfield <

10U∞
L and

10−5U2
∞

ReL
< kfarfield <

0.1U2
∞

ReL
for

wall: ωwall = 10 6ν
β1(∆d1)2 , kwall = 0. Several updates have also been proposed to this model such as

Vorticity source term (SST-V, SST-Vm), Kato-Launder source term (SST-KL, SST-KLm) and also
the Rotation/Curvature correction (SST-RC-Hellsten, SST-RC) to the Production term for its wide
applicability in complex engineering systems.

2.5.3 Reynolds Stress model(RSM) - SSG/LRR-ω

Unlike the scalar transport models, Reynolds stress models (also known as Second Moment Closure
models) try to obtain the turbulent stresses directly using a transport equation for each component
of the tensor. Scalar transport models don’t perform well in complex flows with significant strain-
rates such as curved boundary layers, swirling flows, rotating flows, flows with significant streamline
curvature, flows with huge anisotropy in turbulent stresses and disequilibrium in rapidly changing
flow conditions [51, 11]. Reynolds stress tensor uiuj is a symmetrical tensor with 6 independent
components where 3 diagonal components constitute the normal stresses and the 3 off-diagonal
components represent the shear stresses. Anisotropic effects result in significant changes to the
shear stresses. Models such as k− ε, k− ω, SST solve k where all the normal stresses are treated as
a single term. For example, stable streamline curvature suppresses the component directed towards
the center of the curvature. Accurate estimation of the anisotropy of the normal stresses is very
essential. Solving a transport equation for each of these independent components can account for
the directional effects of the Reynolds stress field [51, 11]. One of the variants of RSM which we
concentrate in the present study is SSG/LRR-ω model which is a seven equation model which solves
six reynolds stresses and one length scale (ω).

The Speziale-Sarkar-Gatski (SSG) model is a widely recognized nonlinear redistribution model.
However, it relies on an ε-equation to determine the length-scale, which may not be optimal for
aerodynamic applications where ω-equations have demonstrated advantages. To address this, the
SSG-ε model has been combined with the LRR-ω (Wilcox stress-ω) model, particularly near walls.
This integration involves blending coefficients from the LRR values at the wall to the SSG values
further away, utilizing F1 blending function from Menter’s k-ω models. This model must be combined
with Menter’s baseline (BSL)ω-equation which changes coefficients accordingly from the wall to the
far field. Thus the SSG/LRR-ω model consequently transfers the principles of Menter’s k-ω models
into the framework of Reynolds stress transport equations [7].
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Using the notation R̂ij = uiuj , the SSG/LRR− ω turbulence model is given by:

∂ρR̂ij
∂t

+
∂(ρUkR̂ij)

∂xk
= ρPij + ρΠij − ρεij + ρDij + ρMij

∂(ρω)

∂t
+
∂(ρUkω)

∂xk
=
αωω

k

ρPkk
2
− βωρω2 +

∂

∂xk

[(
µ+ σω

ρk

ω

)
∂ω

∂xk

]
+ σd

ρ

ω
max

(
∂k

∂xj

∂ω

∂xj
, 0

)
ρPij = −ρR̂ij

∂Uj
∂xk

− ρR̂ij
∂Ui
∂xk

, ρεij =
2

3
ρεδij , ε = Cµkω

(2.15)

The production term (ρPij) is exact and the pressure-strain correlation is modeled via:

ρΠij = −
(
C1ρε+

1

2
C∗1ρPkk

)
âij + C2ρε

(
âikâkj −

1

3
âklâklδij

)
+
(
C3 − C∗3

√
âklâkl

)
ρkS∗ij+

C4ρk

(
âijSjk + âjkSik −

2

3
âklSklδij

)
+ C5ρk (âikΩjk + âjkΩik) (2.16)

where the anisotropic tensor is obtained by âij =
R̂ij
k −

2
3δij and S∗ij = Sij − 1

3Skkδij The pressure
strain correlation is a blend between the Launder-Reece-Rodi (LRR) model [21] within inner 60%
of the boundary layer and the Speziale-Sarkar-Gatski (SSG) model [44] in the outer part of the
boundary layer and the freestream. The Diffusion term (ρDij) is modeled by the Generalized
Gradient Diffusion Hypothesis (GGDH) from Daly & Harlow [9] which is given by

ρDij =
∂

∂xk

[(
µδkl +D

ρkRkl
ε

)
∂Rij
∂xl

]
=

∂

∂xk

[(
µδkl +D

ρkRkl
Cµω

)
∂Rij
∂xl

]
(2.17)

In the present work, SSG/LRR-ω has also been tested with Simple Gradient Diffusion Hypothe-
sis(SGDH) [35] for the transport term which is elaborated in Appendix A.3.1.

The flux ρMij is neglected and all the coefficients are blended similar to the Menters’s SST
Model:

φ = F1φ
(ω) + (1− F1)φ(ε), F1 = tanh(ζ4)

ζ = min

[
max

( √
k

Cµωd
,

500µ

ρωd2

)]
, (CD) = σ

(ε)
d

ρ

ω
max

(
∂k

∂xk

∂ω

∂xk
, 0

)
Cµ = 0.09

(2.18)

The near-wall / inner coefficients with superscript (ω) are given by:

α(ω)
ω = 0.5556, β(ω)

ω = 0.075, σ(ω)
ω = 0.5, σ

(ω)
d = 0

C
(ω)
1 = 1.8, C

∗(ω)
1 = 0, C

(ω)
2 = 0, C

(ω)
3 = 0.8, C

∗(ω)
3 = 0

C
(ω)
4 = 0.5

(
18C

(LRR)
2 + 12

11

)
, C

(ω)
5 = 0.5

(
−14C

(LRR)
2 + 20

11

)
,

D(ω) = 0.75Cµ C
(LRR)
2 = 0.52

(2.19)

The outer coefficients with superscript (ε) are:

α(ε)
ω = 0.44, β(ε)

ω = 0.0828, σ(ε)
ω = 0.856, σ

(ε)
d = 1.712

C
(ε)
1 = 1.7, C

∗(ε)
1 = 0.9, C

(ε)
2 = 1.05, C

(ε)
3 = 0.8, C

∗(ε)
3 = 0.65

C
(ε)
4 = 0.625, C

(ε)
5 = 0.2, D(ε) = 0.22Cµ

(2.20)

The boundary conditions for SSG/LRR − ω model are Rij,farfield = 2
3kfarfieldδij and ωfarfield =

ρkfarfield
µT,farfield

where kfarfield, µT,farfield are user defined. Usually, it is linked to the turbulence intensity
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(Ti) by kfarfield = (3/2)(Ti)2U2
farfield At solid walls, Rij,wall = 0, ωwall = 10 6ν

β
(ω)
ω (∆d1)2

where ∆d1

is the distance from the wall to the nearest field solution point. For symmetry boundaries, Reynolds
stress components should have Dirchilet conditions of zero depending on the x, y, z symmetry
planes as elucidated in [26]. It is very essential that the Reynolds stresses adhere to the realizability
conditions as elaborated in Vreman et al. [52] which are 1) For the diagonal elements: ρuiuj ≥ 0

and 2) for the off-diagonal elements |ρuiuj | ≤
√

(ρuiui)(ρujuj)

2.6 DLR TAU solver

In the present work, the Numerical flow solver, TAU was used to perform the CFD simulations.
TAU is a software system for the prediction of viscous and inviscid flows for complex geometries
from low subsonic to hypersonic region with hybrid unstructured grids. The TAU-Code demon-
strates high efficiency on parallel computers and has been optimized for cache processors through
specialized edge coloring procedures. Domain decomposition and Message Passing Interface (MPI)
make TAU more suitable for simulations of complex geometries and fine meshes. TAU mainly con-
sists of a preprocessing module, compressible and incompressible flow solvers along with adaptation
modules. The support for tetrahedral, prismatic, pyramidal and hexahedral elements facilitates the
use efficient and modern mesh generators. The adaptation module takes care of local refinement of
the hybrid grids and rearrangement of the points in structured sublayers using the flow features.
Using multigrids, vectorization and parallelization, TAU ensures efficient computation for large scale
steady or unsteady flow problems [34].

2.7 Mesh generation

Fidelity Pointwise was used to generate meshes for the testcases in present study. Fidelity Pointwise
is a standalone CFD grid generator which provides a full range of functionalities starting from model
preparation of geometry, importing CAD models from wide range of formats, mesh generation using
a variety of state-of-art grid generation techniques and the output format compatibility with broad
range of flow solvers [6].

2.8 Post Processing

In the present study, Tecplot 360 software was used for post processing of the CFD results. Tecplot
360 is a widely used, powerful post-processing tool for visualizing a wide range of technical data. It
offers line plotting, 2D and 3D surface plots in a variety of formats, and 3D volumetric visualization
etc [47].



Chapter 3

Effects of mean-streamline
curvature

This section describes the main effects of mean-streamline curvature on the turbulence.

3.1 Convex vs Concave curvature

This introduction starts with an intuitive picture of curvature effects by Bradshaw. Flow in a curved
path gives rise to a radial pressure gradient depending on the radius of curvature. This is caused by
the radially outward centrifugal force which is proportional to the momentum of fluid parcel. The
radially-outward centrifugal force is balanced by the inward pressure gradient. Consider a turbulent
boundary layer flow over a convex surface. Slow moving particles with less centrifugal force are
pushed radially inward due to the dominating pressure gradient force when they try to mix with
high momentum fluid. So, flow through a convex curvature hinders exchange of momentum, energy
thus exerting a stabilizing influence on the turbulence. And in the region of concave curvature,
this effect will be opposite where the radial pressure-gradient enhances momentum exchanges which
creates a de-stabilizing influence on the flow [39]. This intuitive picture is described in the seminal
work by Bradshaw [5]. Overall for a flow, convex curvature reduces turbulence whereas a concave
curvature enhances turbulence.

3.2 Structure of Turbulent Boundary Layers (TBL)

In this section, the changes to the structure of the turbulent boundary layer are briefly discussed.

3.2.1 Structure of convex TBL

For mild streamline curvature δ/R ≈ 0.01, the Reynolds shear stresses are slightly reduced but for
strong streamline curvature δ/R > 0.05, the Reynolds shear stresses can almost go to zero in the
outer part of the boundary layer. The inner-part of TBL, consists of significant Reynolds shear
stress and mean-shear and the outer-part of the TBL consists of non-zero mean-shear and negligible
shear stress [25].

3.2.2 Structure of concave TBL

When a flow free on non-uniformities in the straight section enters a concave curvature, the mixing
across the boundary layer is enhanced by the radial pressure gradient and the modified large eddy
structure in the turbulent boundary layer due to curvature. This brings high momentum fluid closer
to the wall thus increasing the skin friction. From spectral results, it was determined that the
increase in turbulent intensities and Reynolds shear stress in concave TBL is almost entirely due

17
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to increased energy in low-frequency, large-scale fluctuations [3]. Due to the centrifugal mechanism,
higher-velocity eddies move closer to the wall while the lower-velocity eddies move away from the
wall. This negative correlation is further enhanced within a few boundary layer thicknesses (δ).

This effect gives rise to longitudinal vortices known as ”Taylor-Görtler” vortices or simple
”Görtler” vortices in literature. As it was Görtler who identified longitudinal vortices in laminar
boundary layers of concave walls in laminar flows in Ref. [15]. These vortices increase the turbulent
shear stress on the concave walls thus altering velocity profile at different spanwise locations. Addi-
tional turbulence means more mixing and more resistance to the flow. So, the fluid moves slightly
faster closer to the convex wall due to reduced turbulence.

3.3 Richardson number

Richardson number is a non-dimensional number which expresses the ratio of buoyancy to flow shear,
quite prevalent in geophysical fluid dynamics.

Ri =
Buoyancy

F low shear
=

N2(
∂U
∂z

)2 (3.1)

Here, N is the Brunt–Väisälä frequency, U is the representative flow speed and z is the depth or
height (or z in the vertical direction).

3.3.1 Bradshaw’s Richardson number

Bradshaw [4] suggested an algebraic analogy between buoyancy and streamline curvature in a tur-
bulent shear flow. Brunt–Väisälä frequency was defined in polar coordinate system using the Az-

imuthal velocity (U) and radius of curvature (r): N =
√

2U
r2

∂(Ur)
∂r . This gives a new version of

gradient Richardson number in polar coordinates as given in equation 3.2.

Ri =
2U
r2

∂(Ur)
∂r(

∂U
∂r

)2 (3.2)

The numerator of equation 3.2 can be rearranged:

2U

r2

∂(Ur)

∂r
≈ 2U

r2

(
U + r

∂U

∂r

)
≈ 2U

r

(
U

r
+
∂U

∂r

)
(3.3)

such that the Bradshaw’s gradient Richardson number can be written solely in terms of curvature(U/r)
and shear (∂U/∂r).

RiBr =
2U
r

(
U
r + ∂U

∂r

)(
∂U
∂r

)2 (3.4)

Here the denominator is always positive and the sign of RiBr depends on the interplay between
curvature and shear in the numerator. When the shear (∂U/∂r) approaches zero, this function
yields excessively high and impractical values, which will be addressed later. Considering a ratio of
curvature (U/r) to shear (∂U/∂r), gives a dimensionless parameter S = (U/r)/(∂U/∂r) known as
Vorticity ratio 1. Equation 3.4 can be re-written in terms of the vorticity ratio (S) which results in
equation of a parabola [49].

RiBr = 2S(S + 1) (3.5)

The effect of rotation/curvature is destabilizing when −1 < S < 0 and stabilizing otherwise[49].
In other words, negative values of Richardson number denote amplifying turbulence and positive

1S is the background-to-mean shear vorticity ratio (here referred as vorticity ratio) or inverse Rossby number which
was derived by Prandtl and various authors later using classical mixing-length arguments [4, 49]
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Figure 3.1: Behaviour of Richardson number showing stable/unstable zones

values denote diminishing turbulence. As shown in figure 3.1, turbulence is amplified only for a
small set of values (green zone) which denotes flow through a concave curvature. S ∈ [0, 1] denotes
a shear-dominated convex curvature region (blue zone). Although, the flow is dominated by shear,
the same sign of curvature and shear aligns the gradients in radial direction thereby stabilizing the
flow.

∣∣∣∣Ur
∣∣∣∣ > ∣∣∣∣∂U∂r

∣∣∣∣⇒ Convex (Curvature dominated)∣∣∣∣Ur
∣∣∣∣ < ∣∣∣∣∂U∂r

∣∣∣∣⇒ {
Concave (Shear dominated, opposite sign)
Convex (Curvature dominated, same sign)

(3.6)

S < −1 andS > 1 occur only in cases with strong streamline-curvature and curvature dominated
regions always attenuate turbulence. The behaviour of the Richardson number as a function of
vorticity ratio (S) is elaborated later in chapter 5 using a test case.

3.3.2 Hellsten’s Richardson number

The definition of RiBr is limited to representation in the polar coordinate system as it is quite
difficult to obtain the radius of curvature at every point in a cartesian domain. This paved the
way for a Galiliean-invariant formula for the Richardson number. A generalized definition of the
gradient Richardson number for arbitrary three-dimensional flows was introduced by Khodak and
Hirsch [17].

Ri = −
(
k

ε

)2

||Ωij || (||Sij || − ||Ωij ||) (3.7)

Although when applied in conjunction with k − ω model, this version of Ri (shown in equation
3.7) produced reasonably good results for a two-dimensional fully developed flow rotating channel
with moderate rotation, it produced unphysically high values for k in a three-dimensional complex
problem [16]. The turbulent time scale (k/ε) in equation 3.7 which was used as a scaling factor, was
replaced with mean-flow time scale (1/|Sij | = 1/

√
2SijSij) by [16]. This resulted in a grid-point
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local and Galilean-invariant formulation for the Richardson number as shown in eq. (3.8). A factor
of 2 was introduced here for consistency with other definitions of Ri.

RiHellsten = 2
||Ωij ||
||Sij ||

(
||Ωij ||
||Sij ||

− 1

)
(3.8)

Note that, the formulae can be re-written using the ratio S = ||Ωij ||/||Sij || − 1 which results in

equation of a parabola Ri = 2S(S + 1) as shown in figure 3.1. The behaviour of S̃ was found to be
similar to vorticity ratio (S). Ri reaches very high values when ||Sij || → 0, which points out high
damping of turbulence.

According to the Boussinesq approximation, turbulent stresses tend to zero at smaller strain-rates
which fits well for the behaviour of RiBr and RiHellsten [16]. The Richardson number in equation
3.8 was used to sensitize Menter’s k−ω SST turbulence model for the effects of system rotation and
streamline curvature.

As a final comment, the use of the turbulent time scale k/ε in eq. (3.7) can be viewed as an
attempt to avoid high values of Ri when ||Sij || → 0.

3.3.3 Local Richardson number

Ströer and Knopp (2023) applied the rotation correction sensor r̃ developed by Spalart and Shur[43],
in conjunction with prior formulations of the Richardson number [17, 16], to establish a new, grid-
point local, and frame-invariant general formulation applicable to three-dimensional flows. A 180◦

U-turn curved channel test case by Monson et al. [23] was used to derive the new formulation of
Richardson number. The details of test case are elaborated in chapter 4 and 5.

The rotation-rate tensor in polar coordinates is given by:

Ωpolar
ij =

1

2

 0 −Ωz Ωφ
Ωz 0 −Ωr
−Ωφ Ωr 0

 (3.9)

=
1

2


0 −Uφr −

∂Uφ
∂r + 1

r
∂Ur
∂φ

∂Ur
∂z −

∂Uz
∂r

Uφ
r +

∂Uφ
∂r −

1
r
∂Ur
∂φ 0 − 1

r
∂Uz
∂φ +

∂Uφ
∂z

−∂Ur∂z + ∂Uz
∂r

1
r
∂Uz
∂φ −

∂Uφ
∂z 0


Here, in polar coordinates, r is the radial direction, φ is the azimuthal (or circumferential) direc-

tion, z is the axial direction. Ur and Uφ are velocities in radial and azimuthal direction respectively.
Assume that a flow through a curved channel can be approximated as 2D i.e., In the centre

plane of a curved channel of constant height and large spanwise aspect ratio. All derivatives with
respect to z (spanwise direction) can be considered zero. Moreover, it can be assumed that there
is no angular acceleration due to constant channel height and Ur is considered to be small. The
rotation-rate tensor reduces to:

Ωij =
1

2

 0 −Ωz 0
Ωz 0 0
0 0 0

 (3.10)

=
1

2


0 −Uφr −

∂Uφ
∂r 0

Uφ
r +

∂Uφ
∂r 0 0

0 0 0
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Therefore, the magnitude of rotation-rate tensor becomes:

||Ωij || =
√

2ΩijΩij =

[
2

(
1

4

(
−∂Uφ
∂r
− Uφ

r

)2

+
1

4

(
∂Uφ
∂r

+
Uφ
r

)2
)]1/2

=

(
2

1

2

(
∂Uφ
∂r

+
Uφ
r

)2
)1/2

=

((
∂Uφ
∂r

+
Uφ
r

)2
)1/2

=

∣∣∣∣∂Uφ∂r +
Uφ
r

∣∣∣∣ (3.11)

Similarly, the strain-rate tensor in cylindrical coordinates can also be reduced which is given by:

Sij =
1

2


∂Ur
∂r

1
r
∂Ur
∂φ +

∂Uφ
∂r −

Uφ
r

∂Ur
∂z + ∂Uz

∂r

1
r
∂Ur
∂φ +

∂Uφ
∂r −

Uφ
r

1
r
∂Uφ
∂φ + Ur

r
1
r
∂Uz
∂φ +

∂Uφ
∂z

∂Ur
∂z + ∂Uz

∂r
1
r
∂Uz
∂φ +

∂Uφ
∂z

∂Uz
∂z

 (3.12)

=
1

2


0

∂Uφ
∂r −

Uφ
r 0

∂Uφ
∂r −

Uφ
r 0 0

0 0 0


Therefore, the magnitude of strain-rate tensor can be written as:

||Sij || =
√

2SijSij =

[
2

(
1

4

(
∂Uφ
∂r
− Uφ

r

)2

+
1

4

(
∂Uφ
∂r
− Uφ

r

)2
)]1/2

=

(
2

1

2

(
∂Uφ
∂r
− Uφ

r

)2
)1/2

=

((
∂Uφ
∂r
− Uφ

r

)2
)1/2

=

∣∣∣∣∂Uφ∂r − Uφ
r

∣∣∣∣ (3.13)

Considering U for the azimuthal velocity Uφ and rewriting the expressions (based on eqs. (3.11),
(3.13)) in terms of Galilean-invariant terms as shown in eq. (3.14). Note that the sign +/- is used
loosely at this point. Finding the correct sign in an arbitrary flow situation is a crucial task. This
will be resolved later by defining a quantity nΩ which returns the desired +/- sign.

∂U

∂r
+
U

r
= Ωz ≈ ±||Ωij ||

∂U

∂r
− U

r
= Srφ ≈ ±||Sij ||

(3.14)

The appropriate Galilean-invariant terms can chosen for the absolute values of the quantities (shear
+ curvature) and (shear - curvature) can be chosen as follows:∣∣∣∣∂Uφ∂r +

Uφ
r

∣∣∣∣ =

{
||Ωij || if ∂U

∂r + U
r > 0

−||Ωij || if ∂U
∂r + U

r < 0∣∣∣∣∂Uφ∂r − Uφ
r

∣∣∣∣ =

{
||Sij || if ∂U

∂r −
U
r > 0

−||Sij || if ∂U
∂r −

U
r < 0

(3.15)

It is important to point out that, again the +/- symbol is used loosely. It is necessary to study
all cases of possible sign separately. This is pursued in the following table 3.1. Therefore the original
Bradshaw’s Richardson number RiBr can be rewritten in terms of absolute value combinations as
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follows:

Ri =

(
∂U
∂r + U

r

)
2U
r(

∂U
∂r

)2
= −

∣∣∂U
∂r + U

r

∣∣ (∣∣∂U
∂r −

U
r

∣∣− ∣∣∂U∂r + U
r

∣∣)
1
4

(∣∣∂U
∂r −

U
r

∣∣+
∣∣∂U
∂r + U

r

∣∣)2
= −±||Ωij || (±||Sij || − ±||Ωij ||)(

± 1
2 ||Sij ||+±

1
2 ||Ωij ||

)2 (3.16)

The final version of Richardson number in 3.16 is given completely grid-point local and Galilean-
invariant coordinates. All combinations of ’+’ and ’-’ signs can be rearranged into a parameter nΩ

which determines the value of local Richardson number. The parameter nΩ = ±1 depends the signs
and relative magnitudes of curvature U/r and shear ∂U/∂r which is elaborated in table3.1. This
is elaborated in further sections of this chapter but shown here for the sake of completeness. This
theoretical consideration is investigated by systematic numerical tests in chapter 5 in order to study
all the different cases of combinations of magnitude and sign of S separately. Note that the function
nΩ will be described in detail in section 3.4.3. The local Richardson number can be written as:

Rilocal = −nΩ||Ωij || (||Sij || − nΩ||Ωij ||)(
1
2 ||Sij ||+ nΩ

1
2 ||Ωij ||

)2 (3.17)

In the following sections, a proposal for the function nΩ will be devised. This function is based
on the Spalart & Shur’s rotation correction parameter r̂ from [43] which was the core parameter in
SA-RC model and is elaborated in further sections.
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3.4 Curvature modification of RANS models

Several modifications have been suggested for RANS models in the past few decades mainly for linear
eddy viscosity models. Mean-streamline curvature and rotation qualitatively generate a stabilizing
or destabilizing effect on a turbulent flow which leads to damping or amplifying turbulence.

3.4.1 Rotation/Curvature correction for SA, SST

A simple intuitive model was proposed by Dacles-Mariani et al. [8] for rotation correction to SA
model which reduces the eddy viscosity in the regions where vorticity exceeds strain rate. Flow
within a vortex core consists of solid body rotation where turbulence production is low. SA-R
[8] concentrated on a pragmatic improvement of eddy-viscosity based RANS models for simulating
trailing vortices on wingtips. The production term of SA is modified as shown in eq. (3.18).

cb1(1− ft2)Ŝν̂ → cb1(1− ft2)
[
Ŝ + Crotmin(0, S − Ω)

]
ν̂

S =
√

2SijSij , Sij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

) (3.18)

Spalart and Shur [43], [36] derived a Galilean invariant formulation that calculates the angle of
misalignment of stress-strain tensors which is based on the work of Knight and Saffman [18]. Spalart-
Shur’s rotation-curvature correction unifies curvature and rotation effects using a combination of
second derivatives of velocity which is given by eq. (3.19).

fr1 = (1 + cr1)
2r∗

1 + r∗
[
1− cr3tan−1(cr2r̂)

]
− cr1

r∗ =
S

Ω

r̂ =
2ΩikSjk
D4

(
DSij
Dt

+ (εimnSjn + εjmnSin)Ωrotm

)
Sij =

1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
, Ωij =

1

2

[(
∂ui
∂xj
− ∂uj
∂xi

)
+ 2εmjiΩ

rot
m

]
S2 = 2SijSij , Ω2 = 2ΩijΩij

D2 =
1

2
(S2 + Ω2), cr1 = 1.0, cr2 = 12, cr3 = 1.0

DSij
Dt

=
∂Sij
∂t

+ uk
∂Sij
∂xk

(3.19)

The function fr1 that is built on the non-dimensional quantities r∗ and r̂ (elaborated in eq.
(3.19)) is used as a coefficient to the production term of SA model such that the production term

becomes: cb1(fr1−ft2)Ŝν̂. The material derivative of
DSij
Dt is required in time-dependent simulation

such as helicopter rotor and usually the time term is omitted in the material derivative [26]. The
Ωrot term is used only if the frame of reference is rotating at rate (Ωrot). SA-RC has been one of
the most successful and widely applied rotation corrections till date.

Spalart-Shur’s rotation-curvature correction framework has been applied to Menter’s SST model
in Ref. [38] where a limited version of the function fr1 has been applied to the production terms of
k and ω as show in eq. (3.20).

fSST−RC = max [min(fr1, 1.25), 0.0] (3.20)

The production term of k equation is modified as fSST−RCPk and the production term of ω
equation becomes γPk

νt
fSST−RC . In eq. (3.20), the lower limit is introduced for numerical stability

reasons and the upper limit is to avoid the over-generation of eddy viscosity for destabilizing case
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[38]. Moreover, the D2 in eq. (3.19) is limited by D2 = max(S2, 0.09ω2) to avoid zero values in free
stream region and the following constants are calibrated to cr1 = 1.0, cr2 = 2.0, cr3 = 1.0 to get the
best agreement with the experiments [38].

Hellsten used a new Galilean-invariant Richardson number formulation for sensitisation of SST
model in Ref. [16], but it is limited to flows with moderate curvature. This is also investigated in
the chapter 5.

3.4.2 Possible candidate terms for curvature modification for RSM

The question arises as to whether a second moment closure model like the SSG/LRR-ω model
necessitates curvature modifications. Usually, a second moment closure model is inherently built
with means to capture the effect of rotation or streamline curvature (at least concerning several
aspects which were found to be important). This is because it doesn’t depend on the concept
of eddy viscosity and solves individual transport equations for the Reynolds stress tensor. So,
the misalignment angle problem of stress-strain tensor doesn’t apply to a Reynolds stress model.
Therefore, on one hand, the misalignment. Another aspect is that the production term in the
transport equation for the Reynolds stresses is exact. In curved shear flow, curvature effects arise in
the production term and can be seen to act differently on the different components of the Reynolds
stress tensor (see Ref. [11], p.163 and Ref. [10]). This cannot be accounted for if the eddy-viscosity
hypothesis is used as the constitutive law for the Reynolds stresses.

In complicated scenarios such as in adverse-pressure gradient turbulent boundary layers, SSG/LRR-
ω fails to give reasonable solutions which as investigated by Knopp in Ref. [19]. Therefore it might
be prudent to go back to the unclosed transport equation for the Reynolds stresses and to consider
all terms for which closure models are used. Closure models are needed for the turbulent transport
due to velocity fluctuations (often referred to as triple-correlations and called turbulent transport of
Reynolds stresses) and due to pressure-velocity fluctuations (often referred to as pressure transport).
Then there is the pressure-strain correlation tensor, responsible for redistribution of the Reynolds
stresses among the different components of the tensor. Finally, there is the dissipation tensor. For
the latter, two assumptions are made, On the one hand, the SSG/LRR-ω model assumes isotropic
dissipation and on the other, the model uses the solution of the transport equation for ω to infer
ε = Cµkω.

All these modelling assumptions do not account for curvature effects explicitly. However, there
is the notion by Bradshaw that curvature should have an effect on the higher order statistics.

The work by Knopp [19] on turbulent boundary layers in adverse pressure gradient indicated the
need that the modelling assumptions for the dissipation, e.g., for the omega equation, could require
modification in more complex flow situations other than flow in zero pressure gradient.

In a differential Reynolds stress model like SSG/LRR-ω, the production term is responsible to
capture the effect of increasing production in destabilizing curvature. But, in cases where the produc-
tion is weak, turbulence transport might control the balance of Reynolds stresses [46]. According to
Zeman [56], a simple gradient diffusion hypothesis (GDH) is not enough to model such complicated
scenarios because the effects of rotation and streamline curvature are neglected in the turbulence
transport term.

Production term of SSG/LRR-ω is closed unlike eddy viscosity type RANS models. The Tur-
bulent transport term comprises of a triple correlation which is approximated by gradient diffusion
hypothesis. Ströer and Knopp [45] tried to modify the turbulence transport term (due to fluctuat-
ing velocity) using the formulation of local Richardson number but no change was observed in the
mean velocity for U-duct channel and lower values of turbulent kinetic energy were observed for the
simulation of trailing vortex of a delta wing. This is further investigated in the present work.

The turbulence transport due to pressure fluctuations is usually neglected because of minimal
contribution and because its model is typically lumped together with the turbulent transport term.
The pressure-strain correlation (Redistribution) uses an algebraic model which is complicated and
requires more data to model. The dissipation term is modelled as a solution of a transport equation
of length scale (ω) in the SSG/LRR-ω. In the present work, the transport term is investigated
further using test cases of different types and magnitudes of curvature.
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3.4.3 Direction information in local Richardson number

A frame invariant quantity was obtained in eq. (3.16) which replicates the classical Richardson
number in Galilean-invariant fashion. But, the direction information which decides the ± sign is
lost due to the absolute magnitudes of vorticity and strain-rate tensor. This ± sign is of prime
importance as it decides if the curvature is convex or concave. For a boundary layer, this is obvious
from curvature of the wall which species the direction of radial vector and fluid flow orientation. But,
for a free shear flow, to obtain the sign one needs to compare the magnitudes and signs of U/r and
∂U/∂r which is not Galilean invariant. Moreover, the actual mean shear has two contributions: the
shear of the corresponding flow in the absence of curvature/rotation and the extra rate of strain U/r
caused by curvature/rotation, as the radial pressure gradient ∂p/∂r, which forces the fluid motion
to follow a curved path, is balanced by ρU2/r.

The rotation/curvature correction from Spalart and Shur [43] presents this direction information
in a fully grid-point local and Galilean-invariant fashion. According to Ref. [43], the stress-strain
misalignment is in the direction of vorticity. So, the sign of (Dα/Dt)sgn(Ωz) is represented by the
non-dimensional quantity r̂ hereafter known as rb following the convention in TAU solver. This
equivalence is show in eq. (3.21) from [43] and [46].

sgn

[
Dα

Dt
sgn(Ωz)

]
= sgn

[
U

r
sgn(Ωz)

]
= sgn(rb) (3.21)

Small positive values of rb suppress turbulence and small negative values of rb enhance turbu-
lence activity [43]. Moreover, a second step is required to obtain the direction information of local
Richardson number, because the ± sign is defined by Srφ and Ωz (see eq. (3.14)). Using different
combinations of U/r and ∂U/∂r from the table of different possible cases, a rotation function can
be obtained which is given by eq. (3.22) in Ref. [46].

frot = sgn

[
2Ωz

U

r

]
||Sij ||
||Ωij ||

= sgn(rb)
||Sij ||
||Ωij ||

(3.22)

The direction sensor for the local Richardson number can be obtained by using a tanh function
as shown in eq. (3.23) where the sign changes from 1 to -1 when frot becomes greater than 1. [46].

nΩ = tanh(1000− 1000frot) (3.23)

Note that function n Omega will be studied and illustrated for the numerical tests presented in chap-
ter 5. Using the direction information provided by eq. (3.23) using Spalart-Shur rotation/correction
framework(eq. (3.19)), the grid-point local and Galilean invariant formulation based on the table
3.1, can be written as :

Rilocal = −nΩ||Ωij || (||Sij || − nΩ||Ωij ||)(
1
2 ||Sij ||+ nΩ

1
2 ||Ωij ||

)2 (3.24)

The local Richardson number in eq. (3.24) which replicates the classical Bradshaw’s Richardson
number in eq. (3.4) can be used to senstise RANS models for mean streamline curvature and rotation
and also as a potential guiding parameter in Data-driven turbulence modelling techniques such as
Field Inversion/Machine Learning [37].

3.4.4 Necessity of a transfer function

As the Bradshaw’s Richardson number (and local Richardson number) follows the parabola shown
in fig. 3.1, it can be observed that Richardson number is bounded in the destabilizing (concave)
zone i.e. S ∈ (0, 1) with a minimum value of Ri = -0.5. In the convex and strong convex zones
where absolute value of the vorticity ratio (S) is greater than 1, Richardson number behaves as an
increasing curve. This suggests the scope for Richardson number to obtain abnormally high values
outside of concave region. Moreover, the Bradshaw’s Richardson number is built with radial gradient
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Figure 3.2: Behaviour of Richardson number in different zones with a tanh function

of velocity in denominator (see eq. (3.4)) which points out the possibility of a discontinuity (due to
a singularity) when ∂U/∂r → 0.

A transfer function is necessary to practically use the Richardson number in a robust manner
for any type of complex flow problem. Instead of directly using Ri, tanh (Ri) is used in the present
work to clip high values of Ri. Moreover, such a transfer function would prevent extremely high
values of Ri arising due to vanishing dU/dy which arises discontinuity in Ri. The stabilizing effect
from convex to strong convex cases is only marginally higher. tanh (Ri) provides a maximum value
of Ri = 1 in convex regions thus making it practically robust for sensitisation of RANS models. A
deeper investigation on the variation of Richardson number for different magnitudes of curvature in
convex and concave boundary layers in investigated in the chapter 5.



Chapter 4

Validation cases: Development of
computational setup

4.1 Description of validation cases

Few experimental test cases are available in literature for curved boundary layers. Table 2 in the
review paper by Patel and Saroupoulous gives an overview about notable experiments in this regard.
For the selection of suitable cases, following requirements were made. First, the Reynolds number
should be sufficiently high Reθ > 3000 to ensure a sufficiently thick overlap region between inner
and outer boundary layer. Recall that the SSG/LRR-ω model does not attempt to resolve the
near-wall region (which was pursued e.g. in the low-Re RSM by Jakirlic and Hanjalic). Therefore
the SSG/LRR-ω model is expected to yield good predictions only in the overlap region and in
the outer region. Secondly, the experiment needs to be fully documented regarding the geometry
and the boundary conditions. Thirdly, the flow conditions in the test-section of the experiment
should allow for a 2D computational setup. A small spanwise extent would make such a 2D setup
questionable. In the case of concave curvature, 3D Görtler vortices can arise, a topic which is
discussed in section 3.2.2. Another criterion was the availability of measurement data for the mean
velocity and for the Reynolds stresses. Other criteria were a sufficient streamwise length for flow
development in the curved section (hence no rapid curvature impulse) and to cover different values
of curvature (in terms of δ/R).

Few experiments from the literature with different curvature ratios for both Concave and Con-
vex curvatures were chosen to simulate and validate using SA-RC, SST-RC and multiple RSM
re-distribution models which are as follows:

4.1.1 Monson et al. (1990)

Experimental setup

This testcase consists of an turbulent subsonic internal flow in a U-shaped duct. The experiment
was conducted at NASA Ames High Reynolds Number Channel I (HRC I), an air blowdown wind
tunnel using unheated dry air at ambient temperature with a 180◦ Turn Around Duct (TAD). The
spanwise-width of duct was 10 times that of duct height which makes the aspect ratio, AR = 10. For
the duct height H = 3.8 cm, the duct was extended to around 22 H upstream for the development
of small Turbulent boundary layer and around 13 H downstream the curvature for recovery. The
inner radius of the bend is equal to the half-height of spanwise-wide duct which makes the curvature
ratio, δ/R ≈ 0.5 at convex bend and δ/R ≈ 0.16 at the concave bend. Due to the large aspect ratio
(AR = 10:1) and the placement of suction slots spaced H apart upstream of the bend to remove
the side-wall boundary layers, the flow is approximated as two dimensional [24]. Experiments were
performed at two Reynolds numbers, ReH = 105, 106 with a reference velocity Uref = 32 m/s and
reference Mach number Mref = 0.1. Mean velocity and Reynolds shear stress were measured using

28
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two-component Laser-Doppler Velocimetry at different streamwise locations. In the curved region,
measurements are available for the mean velocity and Reynolds shear stress only at 90◦ position
which are used for validation.
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θ = 180°

s/H = π/2

θ = 90°
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Figure 4.1: Geometry of the CFD domain of two dimensional U-duct [23] and mesh with 1070× 200
grid points.

Computational setup

The two dimensional geometry and the mesh was constructed in Pointwise with duct height H = 1
m as shown in the fig. 4.1. The configuration of high Reynolds number, Re = 106 was chosen for
the current study. From the plots of skin-friction coefficient in Ref. [23], Cf = 0.012 was chosen
approximately from the 90◦ position on concave wall. Based on the details of Uref = 32 m/s, Re =
106, H = 1 m, the wall normal spacing of first grid point away from the wall was calculated for a y+

= 0.2 as shown in eq. (4.1).

uτ =

√
τw
ρ

=

√
1

2
CfU2

∞

Re =
U∞H

ν
⇒ ν =

U∞H

Re

∆y1 =
y+ν

uτ

∆y1 =
y+
√

2H

Re
√
Cf

=
0.2×

√
2× 1

106 ×
√

0.012
≈ 2.5× 10−6 m

(4.1)

’Reservoir-pressure-inflow’ and ’Reservoir-pressure-outflow’ boundary conditions are used for in-
let and outlet in DLR-TAU and viscous-wall boundary condition was used for both inner and outer
walls. CFD simulations were performed in DLR-TAU solver with low-Mach number settings. The
reference parameters used in DLR-TAU are shown below in SI units.

References ----------------------------------------------------: -

Reynolds number: 1000000

Sutherland reference viscosity: 4.5e-5

Reference pressure: 120738.87

Reynolds length: 1.0

Reference Mach number: 0.1

CFD simulations using the turbulence models SA-RC, SST-RC and SSG/LRR-ω were performed
for the geometry validation. The geometry of Monson is fairly simple especially in the curved region.
Experimental data for the mean velocity measurements were quite cluttered in Ref. [23]. So the
mean velocity profile from the same experiment given in their preceding paper [24] were also taken
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Figure 4.2: Inlet longitudinal velocity upstream of curvature in U-duct at s = -4H

for comparison as shown in fig. 4.2. The velocity measurements were normalised using Uref as given
in [23]. The boundary layer thickness on top wall and bottom wall are slightly different in the
experiment which is known to happen sometimes in wind tunnels due to the turning vanes on the
corner before inlet. To facilitate this, the transition point was defined slightly downstream i.e. at
s = -19H for top wall and s = -22H for bottom wall (inlet position). Mean velocity profiles were
evaluated at streamwise position s = -4H as shown in fig. 4.2. The velocity profiles of RANS models
show a good agreement with that of experimental measurements.

4.1.2 Gillis & Johnston (1983)

Experimental setup

This experiment consists of a duct with flat surface followed by a 90◦ bend with constant radius of
curvature and a flat recovery region. Aspect ratio of the duct is 11:1 which makes it nomially a two
dimensional flow. After the nozzle, a development region of 259 cm with a duct height of 15.2 cm
is provided upstream of the curvature. The downstream recovery region after the end of curvature
is 97.2 cm long. The radius of curvature was constant at 45 cm for the inner wall thus making the
curvature ratio δ/R ≈ 0.1. This can be considered as a high convex curvature test case. In the
experiment, the static pressure on the convex wall was maintained constant by adjusting the outer
wall and bulging the duct. Hence, the drop in static pressure at the inner wall is compensated by
the increasing pressure due to the diverging duct. The outer wall is fitted with a porous suction
(see figure 4.3) at the start of curvature region to remove the boundary layer separation and the
formation of separation bubble at the outer wall. The changes to coefficient of pressure (Cp) were
below 0.05 which makes it a convex curved almost zero pressure gradient (ZPG) test case [14, 13].
Due to the streamwise curvature ZPG, the effects of convex curvature on the turbulence can be
well understood i.e. the effects of curvature and pressure can be separated. In the experiment,
mean velocity measurements were taken using 2 techniques: 1) accurate measurement with wall-
static pressure and pitot tubes traversed across the boundary layer in wall-normal direction; 2)
Measurement with a DISA 55M01 constant-temperature anemometer, a TSI 1076 linearizer and a
DISA 55P01 horizontal wire probe. Due to the limitations of hot wires, the pitot tube data is more
accurate especially in the curved region [13]. Measurements of Reynolds stress tensor were made
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(a) Schematic of the experimental facility

(b) Suction box located on the concave wall, near
the start of curvature

Figure 4.3: Experimental setup for the first experiment of Gillis-Johnston from Ref. [13]

using two DISA 55M01 bridges, two TSI linearizers and DISA 55P51 x-wire probe as elaborated in
ref. [13].

Computational setup

Due to ZPG on inner wall, the potential flow velocity on the inner wall was constant, Upw ≈ 16m/s
which can also be taken as the free stream velocity in the straight section. From the experimental
data of [13], at station 1 (s = -71.75 cm), momentum thickness, θ = 0.0037 m, free stream velocity,
U∞ = 16 m/s and momentum thickness Reynolds number Reθ = 3802 = U∞θ/ν which gives the
kinematic viscosity ν = 1.557 × 10−5 m2/s. Similarly, at station 2 (s = -41.27 cm), momentum
thickness, θ = 0.00439 m, free stream velocity, U∞ = 16 m/s and momentum thickness Reynolds
number Reθ = 4517 = U∞θ/ν which gives the kinematic viscosity ν = 1.554× 10−5 m2/s. Thus, the
kinematic viscosity was determined to be ν = 1.555 × 10−5 m2/s and based on the duct height, D
= 15.24 cm, the Reynolds number is calculated to be Re = U∞D/ν = 1.568 × 105. The reference
values set in DLR-TAU solver are shown below which are in SI units.

References ----------------------------------------------------: -

Reynolds number: 1.562e+5

Reynolds length: 0.152

Reference velocity: 16

Reference temperature: 298

This testcase is slightly more complicated as details of the geometry weren’t readily available
in the publications. Using the static-pressure distributions provided, an approximate 2D geometry
was constructed using Pointwise meshing software with a development length of 2.59 m and duct
height of 0.1524 m. A slight tapper was provided to the upperwall such that a zero pressure gradient
is established on the lower wall in the straight section. To reduce the pressure drop on the inner
wall, a small section of the outer wall at beginning of the curvature was assigned with an inviscid
euler wall boundary condition whereas the rest of walls were assigned with a regular viscous wall
boundary condition. The inviscid wall region mimicks the porous suction wall in the experiment as
shown in fig. 4.4. ’Reservoir-pressure-inflow’ and ’Reservoir-pressure-outflow’ boundary conditions
are used for inlet and outlet in DLR-TAU. A total of 200×748 grid points were taken in wall normal
and streamwise direction respectively with a minimum wall-normal spacing of 5 × 10−6 m that
corresponds to y+ ≈ 0.2. The positions of all measuring stations on the inner wall are described in
fig. 4.3a. The SA-RC, SST-RC and SSG/LRR-ω were mainly used to develop the geometry.

On the convex wall/inner wall, the streamwise positions s < 0 correspond to the flat development
region, s ∈ (0, 70.68) cm is the curved region and s > 70.68 cm is the flat recovery region downstream
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Figure 4.4: Geometry of the CFD domain of two dimensional Gillis-Johnston experiment [13] with
inviscid euler wall shown in orange line and viscous wall everywhere else

of the curvature. The duct was bulged in curved region by adjusting grid points of outer wall such
that static pressure changes are well below 5% on the convex wall. This was achieved using an
iterative gradient-based optimisation as elaborated in the Appendix (A.1). The resultant static
pressure distribution obtained is in good agreement with the experimental measurements as shown
in fig. 4.5. Coefficient of pressure is calculated relative to the position s = 0 using eq. 4.2.

Cp =
p− ps=0

1
2ρU

2
ref

(4.2)

The parameters in DLR-TAU solver were determined such that the simulation matches mean
velocity, boundary layer thickness (δ), skin friction coefficient (Cf ), displacement thickness (δ∗) and
momentum thickness (θ) of the experiment as shown in figure 4.6. Line profiles of Cf , δ

∗, and θ
show a constant pattern of different between the models. RSM model gives slightly higher values of
the above parameters. For the boundary layer thickness shown in fig. 4.6c, the values of SST and
SSG/LRR-ω are closer to each other while SA model produces slightly higher results. Present setup
is a compromise to match Cf , δ

∗, θ, δ99, and the profiles for mean velocity and Reynolds stresses.
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Figure 4.6: Validation of surface parameters in straight section of the duct for Gillis-Johnston case

Mean velocity and Reynolds shear stress were mainly used to validate the CFD simulation results
in the development region. In station 1 at streamwise distance of s = -71.75 cm, profiles were
extracted using wall-normal lines in DLR-TAU profiling tools. Turbulence models SA-RC, SST-RC,
SSG/LRR-ω were used in validation of the development region. Although, the rotation-corrections
of SA, SST models are only activated in the curved region, it is mentioned here for the sake of
completeness.
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Figure 4.7: Normalised Profiles of mean velocity and Reynolds shear stress for station 1 at streamwise
distance s = -71.75 cm

The profiles of mean-velocity for stations 1 and 2 show a very good agreement with the experi-
mental results. The thickness of boundary layer, peak values, profiles of Reynolds shear stress are
well captured by the turbulence models for this geometry. Results of SSG/LRR-ω and SST are
slightly closer to each other. This can be observed in the Reynolds shear stress in figs. 4.7b, 4.8b.
However, all models predict good results with respect to experimental data in the straight region of
the duct.
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Figure 4.8: Normalised Profiles of mean velocity and Reynolds shear stress for station 2 at streamwise
distance s = -41.27 cm
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4.1.3 So & Mellor (1973)

Experimental setup

In this experiment, a curved-wall tunnel was constructed with duct height of 6 inches (15.24 cm)
and spanwise width of 4 ft (122 cm) which gives an aspect ratio of 8:1. Upstream of the test
section, a 6 layer honeycomb structure is used followed by a 6:1 ratio contraction chamber. Then
the flow enters the rectangular test section. A 4 ft(122 cm) long flat section for the development
of the turbulent boundary layer followed by a curved region with varying radius of curvature and
a 90◦ bend with exit diffuser, fan and motor housing for suction as shown in fig. 4.9. The wall of
curved test section was adjusted based on the following configurations: 1) Convex ZPG, 2) Convex
APG and 3) Concave ZPG. The setup was run at Reynolds number, Re = 4.37 ×105ft−1 based on
reference entrance test velocity which is approximately equal to 1.4337 ×106 for reference length of
1 m. In the configurations of convex ZPG and APG, the inner wall was fixed and the outer wall was
adjusted to vary the static pressure distribution on the inner wall whereas the outer wall was fixed
and inner wall was adjusted for the concave test configuration. Using yaw measurements closer to
the center line of spanwise width, it was shown that the extent of secondary flows was minimal thus
making the two-dimensional assumption valid [40].

At the beginning of curvature, static-pressure increases drastically on the concave wall up to
23% of reference dynamic head and thereafter remains constant throughout the curvature region.
The inner wall was adjusted to maintain the pressure constant on the Concave wall. Radius of
curvature was continuously increased which offers a smooth transition from straight section to the
curved region. This gave a curvature ratio, δ/R ≈ 0.08 for the convex and 0.1-0.2 for concave
configurations depending on the spanwise location due to the presence of longitudinal vortices on
the concave walls. Turbulence measurements were taken using hot-wire technique and is elaborated
in Ref. [39]. There is one special design criterion for the case by So and Mellor worth mentioning. The
radius of curvature is not constant. Instead, R is continuously changing to keep δ/R approximately
constant. The values for R are given at a discrete number of streamwise positions i.e. geometry is
built using different sectors of constant radii (see Figure 4.10a).

Figure 4.9: Layout of experimental setup of So and Mellor Convex configuration from Ref. [40] with
spanwise width of 4 ft.
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(a) Experimental geometry of Concave test section
(ZPG) with measurements in cm from Ref. [41]
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Figure 4.10: Comparison of Experimental setup and Computational setup for So-Mellor Concave
test case

Computational setup

From the experimental data of Ref. [41], at station 1 (s = 0.61 m), the mean streamwise velocity
is approximately 21.5 m/s with a Reynolds number, Re = 1.437 ×106 per 1 m reference length.
Kinematic viscosity was calculated from this using, ν = U∞1m/Re = 21.6×1

1.437×106 ≈ 1.5 × 105 m2/s.
For the present geometry, with a duct height of H = 0.1524 m, Reynolds number was calculated
as Re = 21.5×0.1524

1.5×10−5 ≈ 2.2 × 105. The highest Cf was observed on the concave curvature case at
stations 4 and 5, Cf = 0.0054 from Ref. [41]. Using the formula for wall-normal spacing from eq.
4.1, with y+ = 0.4, H = 0.1524 m, Re = 2.2E + 5 and Cf = 0.0054, first grid point spacing was
calculated to be ∆y1 ≈ 5 × 10−6 m. ’Reservoir-pressure-inflow’ and ’Reservoir-pressure-outflow’
boundary conditions are used for inlet and outlet in DLR-TAU and viscous-wall boundary condition
was used for both inner and outer walls. The following reference parameter settings were used in
DLR-TAU solver for Concave configuration of So-Mellor’s experiment.

References ----------------------------------------------------: -

Reynolds number: 2.25e+5

Sutherland reference viscosity: 1.91e-5

Reynolds length: 0.1524

Reference velocity: 22.0

Reference temperature: 293.15

An approximate 2D geometry with a straight section of 1.674 m, followed by the curved section
of 150◦ bend and a 0.45 m flat recovery region was developed using Pointwise meshing software.
The fixed wall of the curved region was developed by adding sector of gradually increasing radii as
shown fig. 4.10a. The curved for adjustable wall was developed using a gradient-based optimisation
technique where design suggestions were taken for an iterative-step development of the geometries
for each configuration as elaborated in Appendix (A1). The coefficient of pressure was considered
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Figure 4.11: Comparison of Static pressure distribution of RANS models and So-Mellor experiment
(at spanwise position z = 0, i.e. centreline) where curvature starts from s = 1.5 m

mainly from 3 RANS models to finalize the geometry. A grid of 535 × 100 points was used in
longitudinal and wall-normal direction respectively. A comparison of geometries of the experiment
and computational domain are shown in fig. 4.10.

The curved region starts at streamwise position, s = 1.5 m where the static pressure raises by
almost 23% and thereafter remains constant. Experimental data from spanwise location z = 0 m,
which denotes the centre line of the duct in spanwise direction. Minor differences have been ob-
served in experimental data of static-pressure distributions on the concave wall at different spanwise
locations elaborated in Ref. [41]. SA-RC, SST-RC and SSG/LRR-ω models produce pressure pro-
files which agree well with the experimental measurements as shown in fig. 4.11 which justifies the
geometry of curved region for this testcase.
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Figure 4.12: Validation of surface parameters in straight section (at station 1, s = 0.61 m or 24
inches) of the duct for So-Mellor test case

In the straight section, the surface quantities were only available at one station (s = 0.61 m)
in the experimental data which was used to validate the current geometry and inlet development
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length. Profiles of skin-friction coefficient, displacement and momentum thickness and boundary
layer thickness show a good agreement with the experimental data as shown in fig. 4.12.
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Figure 4.13: Normalised Profiles of mean velocity and Reynolds shear stress for station 1 at stream-
wise distance s = 0.61 m (24 inches)

The normalised profiles of mean velocity from RANS models SA-RC, SST-RC and SSG/LRR-ω
in fig. 4.13a show good agreement with the experiment measurements. The development length
was varied and increased by 15 cm compared to the experimental setup to achieve a good match
for thickness of boundary layer, the overall profile of mean velocity with respect to the experiment.
Hence, the length of the flat wall inlet section was 1.674 m in the modified computational set-up.
Normalised profiles of Reynolds shear stress in fig. 4.13b show good agreement with the experimental
data with respect to the diffusion of Reynolds shear stress and also the peak values closer to the
wall.



Chapter 5

Sensitivity study of Richardson
Number

Figure 5.1: Geometries of different test cases of U-duct with varying radii of inner bend R =
D/2, 4D, 10D and 20D

5.1 Test cases with varying curvature in a U-turn

The U-duct test from [23] which was elaborated in the chapter 4 is considered to study the effects of
Richardson number with varying magnitude of curvature. The ratio of boundary layer thickness (δ)
to radius of curvature (R) is considered to perform a validation study to compare the Richardson
number by Bradshaw (see eq. (3.4)) and the local definition of the Richardson number by Ströer
(see eq. (3.24)). Five test cases of U-duct were developed with the inner radius of the bend (R) as
a function of the half-height (D) of the duct. Here, the boundary layer thickness at the end of the
development region of the duct (i.e. s = -4H) was observed to be 25% of the whole duct height. So,
δ ≈ D/2 and approximate curvature magnitudes δ/R were calculated for each test case and shown
in the table 5.1.

Keeping the duct height constant, the inner radius of the bend (R) was parameterized as a
function of the half-height of the duct (D). CFD domains of R = D/2 (strong curvature), R = D,
R = 4D, R = 10D, R = 20D (weak curvature) were developed and simulated in DLR-TAU using

39
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R/D δ/R Curvature
1/2 1 very strong
1 0.5 very strong
4 0.125 strong
10 0.05 moderate
20 0.025 mild

Table 5.1: Test cases of different U-ducts with varying curvature
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Figure 5.2: Profiles at 90◦ bend with normalized radial height in y-axis where 0 denotes inner wall
and 1 denotes outerwall

SA-Neg turbulence model with ’SA-RC’ rotation correction for the same test case parameters of
Monson [23]. The profiles at the 90◦ bend are plotted to understand how the values of Richardson
number vary with different magnitudes of curvature.

Comparison of mean azimuthal velocity in fig. 5.2a shows the bending of mean velocity in the
inviscid region in the center of duct relative to the magnitude of curvature. From the profiles of
velocity shear in fig. 5.2b, the shear rapidly turns negative away from the inner wall with increments
of curvature. The relative magnitudes of curvature (U/r) to shear (dU/dr) determine the effect of
curvature on turbulence as specified in eq. 3.6. Fig. 5.2 indicates that the potential flow velocity
outside the boundary layers is not constant in curved flows. The mean velocity gradient dUφ/dr
has two sources: 1) The viscous effects of the walls and 2) The presence of curvature. The so-called
potential flow velocity is given

Up = (1 +Ky)Upw (5.1)

Here, K = 1/Rc for convex wall and K = -1/Rc for concave wall whereRc is the radius of curvature
[27]. The computation of potential flow velocity at wall (Upw) is elaborated in Appendix A.2.
Curvature causes a radial pressure gradient dP/dr = ρU2/r (see Bradshaw’s monograph [5] p.5).
Hence the inviscid flow outside the viscous-effected boundary layers is not constant, but varying.
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Figure 5.3: Profiles for R = 20D case at 90◦ bend with normalized radial height in y-axis where 0
denotes inner wall and 1 denotes outer wall

5.2 Analysis of Richardson numbers in mild curvature case,
R = 20D

First consider the case of mild curvature (R=20D) in fig. 5.3a, moving away from the inner wall
(following blue arrow), velocity increases and further decreases. In Bradshaw’s Ri, the sign and
magnitude of S determine the effects of curvature as described in fig. 5.3b. Starting at the inner
wall, S is positive, in agreement with what is expected on a mildly convex-curved surface. However,
the shear dU/dr becomes zero at the point where S changes sign and S becomes very high. This
needs special treatment later. Starting from the outer wall, S is negative, in agreement with expected
values for mild concave curvature. Inside the boundary layer of the outer wall, S is larger than -0.5,
but S = -0.5 is reached in the core flow.

The point where velocity begins decreasing in radially outward direction is important as the shear
turns to zero or a negligibly small value. S = (U/r)/(dU/dr) and as dU/dr → 0, the vorticity ratio
(S) gives very high values leading to a discontinuity exactly at the point where shear turns negative.
The same behaviour is observed in the Richardson number profiles which indicates the necessity of
a transfer function. A mapping can be made from the zones of the 90◦ bend to the parabola of
Richardson number. The region closer to the inner wall follows the path of convex curvature (blue
arrow) and the region closer to the outer wall follows the destabilizing zone of the parabola depicting
a concave region. RiBr reaches the least possible negative value i.e. -0.5 in the concave region.

Here the reference curve is RiBr and other versions of Ri are assessed by reference to RiBr.
All Richardson numbers demonstrate the concave region very well within the lower limits of the
parabola. Rilocal perfectly aligns with RiBr in the concave region. For comparison, RiHellsten

slightly deviated. On the positive side, RiHellsten identifies the direction and magnitude correctly in
the concave region. In the convex region, Rilocal perfectly aligns with RiBr and RiHellsten has slight
deviations as it produces marginally higher values of curvature. Overall predictions of all Richardson
number is in good agreement regarding both the sign of Ri and the magnitude of Ri for the case of
mild curvature.

It is worthwhile to consider the expected sign of Ri in more detail. From a theoretical standpoint,
rotation rate (Ωz) from eq. 3.10 should denote the convex or concave curvature zone as given by
the signum function in eq. 5.2. But, it also depends on the ratio of (U/r)/(∂U/∂r) in scenarios of
moderate curvature. And this formulation is not galilean-invariant due to the radius of curvature r
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which is difficult to obtain in cartesian coordinate system.
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Figure 5.4: Comparing the effect of tanh function and performance of sgn(rb) at the bend

sgn(Ωz) = sgn

(
U

r
+
∂U

∂r

)
(5.2)

Now, we consider another indicator function for curvature; namely rb from the Spalart-Shur
rotation/curvature correction framework (see r̂ in eq. (3.19)) given in eq. (3.21) which is a galilean-
invariant framework. Fig. 5.4 demonstrates the performance of rotation-correction function for the
mild-curvature. Both convex and concave zones are accurately identified.

Finally, let us comment more on the need for a transfer function. The effect of the transfer
function tanh can be observed at the point where there exists a discontinuity in Richardson number.
The extremely high values of Ri are clipped to give practically useful values of Ri which can be
further used to modify turbulence models. Tanh(RiBr) and RiBr are in good agreement in both
concave and convex regions as the transfer function produces negligible deviations with respect to
the input values (RiBr).

5.3 Analysis of Richardson numbers in strong curvature case,
R = D/2

For the case of U-duct with very strong curvature, where the inner radius of the bend is half of the
duct half-height i.e. R = D/2, the strong effect of curvature is evident in the drastic bending on the
mean velocity profile (Uφ) due to strong radial pressure-gradient.

Similar to the previous case, first consider the vorticity ratio (S) and the resulting prediction of
curvature effects. Starting at the inner wall, S rapidly grows and reaches a maximum value close to
the wall (see fig. 5.6a). Then it changes sign as the velocity starts to decrease further in wall normal
direction. This sign change is much closer to the wall compared the mild curvature case of R =
20D. Above this maximum value, the values of S are smaller than -1, indicating the region of strong
convex curvature. Such region was not present in the mild curvature case. Starting from the outer
wall, negative values −1 < S < 0 are observed, in agreement with the value expected for concave
wall (see purple arrow in fig. 5.5).

Moving away from the outer wall, the vorticity ratio (S) continuously decreases (follow purple
arrow in fig. 5.5 surpassing the negative Ri values of parabola reaching the zone of strong-convex
curvature where the Ri is positive. The values of RiBr describe a smooth transition from the concave
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Figure 5.5: Profiles for R = D/2 case at 90◦ bend with normalized radial height in y-axis where 0
denotes inner wall and 1 denotes outer wall

curvature zone (S ∈ (0, 1)) to the zone of strong-convex curvature at S = -1 which is not same for
the transition from concave curvature to a convex curvature at S = 0.

The region S = 0 is always involves a discontinuity which is damped by the transfer function
’Tanh’. All 3 Richardson numbers capture the physics accurately in the concave region where
Rilocal perfectly aligns with RiBr and RiHellsten slightly deviates but lies within the lower limits of
the parabola.
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Figure 5.6: Zoomed Profiles for R = D/2 case at 90◦ bend and effects of signum, tanh functions

In convex region closer to the inner wall, the discontinuity of Richardson numbers due to the
change in sign of velocity shear lies very close to the inner wall which is evident from the changing sign
of vorticity ratio, S (orange dash-dot-dot line in fig. 5.5a) approximately at (r − rinner)/H < 0.05.
A regular convex region where Ri > 0, S > 0 exists closer to the inner wall similar to the case
of mild-curvature as shown in the zoomed fig. 5.6a where all 3 Richardson number give positive
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values of Richardson number in agreement with the parabola. Moreover, the Rilocal identifies both
strong-convex curvature (S < −1, Ri > 0) and regular convex (S > 0, Ri > 0) very well and is
in good agreement with RiBr. Furthermore, in fig. 5.6b, both the direction sensors sgn(Ωz) and
sgn(rb) are also in good agreement for the high curvature test case which ensures robust application
to complex wake flows.

In fig. 5.6, S becomes negative closer to the inner wall thus moving from convex to strong-convex
region in the parabola. It is at this point RiHellsten turns positive. So, RiHellsten misinterprets
the strong-convex zone (S < -1) as a concave region which is one of the drawbacks of this formula
in strong curvature cases. Even though RiHellsten remains a galilean-invariant formulation that
exhibits robustness across various coordinate systems, its applicability is limited to test cases with
mild curvature.

Finally, in fig. 5.6b, the action of tanh transfer function is demonstrated in the strong-convex
region (S < −1). tanh(Rilocal) although not shown, follows the same path because Rilocal ≈ RiBr.
So, even in the high-curvature test case, the tanh function helps to avoid abnormally large values
obtained near the S → 0 region which makes it usable for devising modifications to turbulence
models.

5.4 Analysis of Richardson numbers in moderate curvature
case, R = 10D
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Figure 5.7: Profiles for R = 10D case at 90◦ bend with normalized radial height in y-axis where 0
denotes the inner wall and 1 denotes the outer wall

The case of moderate curvature is most difficult and the effect of the sign of curvature type becomes
most subtle. For a case of U-duct with inner radius of the bend ten times of the duct half-height
(D), i.e. R = 10D, it can be considered as a moderate curvature case. Starting from the inner wall,
S grows and reaches a maximum value and then switches in sign once the velocity starts decreasing
in the wall normal direction (see blue arrow in fig. 5.7). This position near the inner wall where S
switches in sign for the case of R = 10D is higher than that of R = D/2 and lower than the case R
= 20D which shows that this position is dependent on the magnitude of curvature.

Starting from the outer wall, S reduces following the behaviour of the concave wall with negative
values of Ri. But, moving away from the outer wall, S does not venture into strong-convex region
(S < -1) but stays at S = -1 which produces Ri → 0. This suggests that for the case of moderate
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curvature (R = 10D), convex and concave effects are equally stronger away from the walls of the
duct.

All 3 Richardson numbers identify the concave region near the outer wall as shown in fig. 5.7a.
Rilocal and RiBr align very well in both concave and convex regions. Although, RiHellsten identifies
the correct direction, it underpredicts the magnitude of Richardson number in the concave region
as shown in fig. 5.7a.
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Figure 5.8: Comparing the effect of tanh function and performance of sgn(rb) at the bend

In fig. 5.8, both the direction sensors sgn(Ω) and sgn(rb) are in good agreement for the moderate
curvature case. In cases of very strong or mild curvatures, two distinct zones of convex or concave
were observed by the Richardson number and also the rotation-correction function (rb) of Spalart-
Shur [43]. But, in moderate curvature cases, a mixture of convex and concave regions are identified
near the inner wall i.e. the inner 50% of duct height comprises of alternating zones of positive and
negative Richardson number and rb. Similar behaviour was also observed for the cases of R = 4D
and R = 2D. Further work needs to be done in this direction to clearly understand the action of
turbulence in moderate curvature cases which can be achieved either by performing experiments or
scale-resolving simulations.

Finally, in fig. 5.8, closer to the inner wall when velocity starts reducing, Ri reaches abnormally
high values as S → 0. Here, the effect of tanh transfer function mitigates the discontinuity in Ri
thus providing usable values for modifying turbulence models.



Chapter 6

Validation of SSG/LRR-ω for
wall-bounded flows with significant
curvature

This section is dedicated to the validation of the RANS models SA, SST, RSM etc for the test cases
described in section 4.1.

6.1 Comparison of SSG/LRR-ω with rotation correction of
SA and SST

The performance of SSG/LRR-ω was compared to SA and SST models with and without rotation-
correction using the validation cases for both convex and concave curvatures.

6.1.1 Testcase: Monson et al. (1990)

For the test case by Monson, experimental results are available only at the position of 90◦ bend
in the curved region from Ref. [23]. The profiles of longitudinal mean-velocity and Reynolds shear
stress at this position are shown in fig. 6.1 where the positions on the Y-axis, (r− rinner)/H = 0 and 1
refer to the inner wall and the outer wall of the bend respectively (see fig. 4.1). For the inviscid
region in the center of duct, there a good agreement between the RANS solutions and experimental
measurements a shown in fig. 6.1a. In Monson’s test case, both convex and concave wall possess
strong streamwise pressure-gradients.

First consider the concave wall. Near the concave wall ((r− rinner)/H → 1 in fig. 6.1a), none
of the RANS models show a good agreement with the experimental results inside the boundary
layer. SA-RC shows a significant improvement over SA model and gives predictions closer to the
experimental data than the other RANS models near the concave wall. Comparing the mean-velocity
(in fig. 6.1a) near concave wall with respective Reynolds shear stress shown in fig. 6.1b, it can be
clearly observed that RC modification to SA model increases turbulence production in the concave
region where de-stabilizing flow occurs which brings the velocity profile closer to the experimental
data.

Similar effect is also seen in SST-RC modification where turbulent stress is increased in the
concave region. As a result, mean-velocity profile of SST-RC is marginally closer to the experimental
data compared to regular SST in fig. 6.1a. Unlike SA-RC, rotation-correction modification cannot
increase the turbulent stress too much by increasing the production term in the transport equation
for turbulent kinetic energy. Higher and lower limits for the modification of turbulence production
term have been introduced in SST-RC model. The lower limit was due to numerical stability
issues and the higher limit was to avoid over-generation of eddy viscosity in flows with destabilizing
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Figure 6.1: Mean velocity and Reynolds shear stress of U-duct for different RANS models

curvature [38]. Less increment of turbulent shear stress in fig. 6.1b from SST to SST-RC compared
to increment from SA to SA-RC is attributed to the action of limiters in production term. In Ref.
[38], authors have used Monson’s testcase for validation of SST-RC but have not shown the turbulent
shear stress profiles of the U-duct at 90◦ bend which is elaborated here in detail.

Comparing the experimental profiles of mean-velocity and turbulent shear stress in fig. 6.1b, it
can be inferred that the increase of turbulent stresses extends to the potential flow region for the
concave wall. Likewise, the reduction of turbulent stresses is observed in the convex region even
though a velocity-gradient exists away from the convex wall. This is due to the pressure gradient
in radial direction which damps and augments turbulent cross stream fluctuations at convex and
concave regions respectively [39].

In the concave region, SSG/LRR-ω profiles lie between SST-RC and SA-RC in fig. 6.1b and
produce higher uv closer to the outer wall which are not present in eddy viscosity based RANS model
simulated in the present study. This results in higher velocity closer to the wall as shown in fig.
6.1b. Moreover, the peak of uv in fig. 6.1b in the concave region which occurs at (r− rinner)/H ≈ 0.7
is only best represented by SA-RC among all RANS models in the present study which proves the
robustness of Spalart-Shur’s rotation correction in curved turbulent boundary layers with strong
streamwise pressure-gradient. Additionally, SA-RC and SST-RC show higher diffusion of turbulent
shear stress in concave boundary layer in fig. 6.1b compared to SSG/LRR-ω. Note that the test case
by Monson was used for the evaluation of the SA-RC modification [36]. Hence, strictly speaking,
the Monson case is not a validation study for SA-RC.

In the convex region (closer to the inner wall, (r− rinner)/H → 0 in fig. 6.1b), SST and SA
overpredict turbulent shear stress. Due to the stabilizing flow effect, the outer-part of boundary layer
has negligible shear stress. The effect of rotation-correction modification reduces the turbulence
production closer to the convex wall thus producing smaller Reynolds shear stress and a better
agreement with the experiment as shown in fig. 6.1b. SSG/LRR-ω produces smaller uv in the
convex region and is marginally closer to the experiment data when compared to SA-RC and SST-
RC as shown in fig. 6.1b. SA-RC and SST-RC produce very close profiles of uv due to the same
Spalart-Shur’s rotation correction [43].

It is worthwhile to add another comment. Reynolds shear stress values (uv) were calculated from
the Boussinesq hypothesis for SA and SST models i.e. using mean-strain rates whereas it can be
directly obtained from the result of transport equation in RSM. It was observed that when Reynolds
shear stress was calculated using Boussinesq hypothesis for RSM, it predicted higher values compared
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to the solution of Reynolds stress tensor especially at the convex wall. This is another indication
of the impact of the Boussinesq hypothesis. Moreover, the uv data from the experiment shown in
fig. 6.1b is shows a significant spreading/scatter in the concave region and qualitatively difficult
to compare RANS models. This could be attributed to the presence of Taylor-Görtler vortices on
the concave wall. More test cases were simulated to understand the effects of pressure-gradients,
streamline-curvature separately and validate the performance of SSG/LRR-ω in different conditions.

6.1.2 Testcase: Gillis & Johnston (1983)

For the convex curvature test case of Gillis & Johnston, 3 stations in curved region i.e. stations
4, 6 and 7 at streamwise positions s = +16.2 cm, +50.8 cm and +64.13 cm respectively are taken
into consideration. Mean velocity and Reynolds shear stress profiles normalised to respective local
potential flow velocity at wall (Upw) are shown in figs. 6.2 and 6.3 respectively. Upw was calculated
using the grid points in the inviscid region and a least-squares fit as elaborated in appendix A.2.
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Figure 6.2: Normalised mean velocity profiles at stations in curved region for Gillis & Johnston’s
test case to demonstrate the effect of rotation correction on RANS models

In fig. 6.2, the mean velocity profiles show a very good agreement with the experiment mea-
surements in the inviscid region away from the wall. The effect of rotation correction for SA, SST
models slightly modifies the mean velocity profile especially in inner-half of the boundary layer by
modifying the Reynolds shear stress. RC modifies the turbulence production term directly for SA
and SST models. In fig. 6.2, minor differences between different RANS models can be observed in
the inner-part of boundary layer at stations 6 and 7.
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Figure 6.3: Normalised Reynolds shear stress profiles at stations in curved region for Gillis & John-
ston’s test case to demonstrate the effect of rotation correction on RANS models
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The Reynolds shear stress was calculated using Boussinesq hypothesis for SA, SST models.
Normalisation was done using the local Upw for each station. For the convex curve, without rotation
correction, SST shows better agreement with experiment than SA. SST-RC shows better agreement
with experimental data than SA-RC. RSM shows better agreement with the experimental data than
both SA-RC and SST-RC. For SA and SST, the rotation correction reduces the peak values of uv
closer to the wall and this effects slowly subsides away from the wall. SA and SA-RC predict negative
values of uv at the edge of boundary layer and such behaviour was not observed with SST and RSM.
In fig. 6.3a, the RSM shows better agreement with the experimental data than SA, SST models
with rotation corrections. The response to Reynolds shear stress on the onset of curvature can be
clearly observed. RSM responds more rapidly to wall-curvature for this test case whereas SA-RC
and SST-RC come close to the experimental measurements in stations 6 and 7 as shown in fig. 6.3.
In station 7 (fig. 6.3c), RC for SA, SST gives smaller values than the experiment where RSM shows
better predictions of Reynolds shear stress.

6.1.3 Testcase: So & Mellor (1973)

The next test case considered is the curved duct by So & Mellor. It is important to highlight that
Taylor-Görtler vortices can arise for flow over concave surfaces. For the configuration of Concave
- ZPG, measurements of mean velocity and Reynolds shear stress are available at 2 streamwise
locations i.e. s = 1.78 m and s = 2.44 m and two spanwise locations at each streamwise point.
Measurements stations 2 and 3 are located at spanwise locations z = 1.7 cm and z = 3.4 cm to
measure the quantities at a crest and a trough of Taylor-Görtler vortices. Similarly, at s = 2.44 m,
stations 4 and 5 are located at z = 2.6 cm and z = 5.3 cm in the experimental setup [41].

Figure 6.4: Mean transverse velocity distribution at constant wall-normal height (Y = 0.02m and
0.025 m) at different streamwise locations, s = 0.61 (squares), 1.78 (circles) and 2.44 (triangles) m
(obtained from Ref. [41])

As the simulation domain is two dimensional, the streamwise locations are compared to different
spanwise locations of the experiment to understand the predictions of each turbulence model. When
viewed in streamwise direction i.e. a spanwise slice shows that the mean-velocity is not constant at
all spanwise locations for a wall-normal height (see fig. 6.4). Due to the formation of longitudinal
vortices, crests and troughs form in the spanwise profiles of mean-velocity. As shown in fig. 6.4,
at streamwise position x = 61 cm, the mean velocity is same at all spanwise locations (shown by
squares-sold-lines) at different wall-normal distances. But, in the curved region, the longitudinal
vortices distort the mean-velocity profiles to generate a spanwise wave like structures. The first
question to be answered is what is predicted by RANS models in a 2D simulation.
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Figure 6.5: Mean velocity profiles on So & Mellor’s concave wall in curved region

In fig. 6.5a, the mean velocity profiles match with the experiment data in the inviscid region.
The behaviour of mean velocity (from experiments) is different in both crest and trough of the
longitudinal pairwise vortices. The mean-velocity experimental profiles very close to the wall align
for stations 2-3 and stations 4-5 as shown in fig. 6.5. This exact profile closer to the wall was not
captured by any of the RANS models in the present simulation. SA-RC and SSG/LRR-ω show
profiles which are close to experiment values compared to SST-RC, SST and SA models. This can
be attributed to the robust rotation-correction of SA-RC and second moment closure advantage of
SSG/LRR-ω. As we proceed in the streamwise direction, the effect of longitudinal vortices become
more intense. Experimental stations 3 and 5 denote troughs of the vortices whereas stations 2 and
4 denote the crests of the vortices. At s = 2.44 m, the boundary layer thickness increases drastically
as shown in fig. 6.5b. SST-RC shows only a marginal improvement over SST due to limitation of
turbulence production in the model. However, SA-RC shows a strong improvement over SA for the
profiles of mean-velocity as shown in fig. 6.5.

Reynolds shear stress profiles for both streamwise locations are shown in fig. 6.6. SA-RC captures
the shear stress of the crest of the vortex (station 2) whereas SSG/LRR-ω produces the uv profile
of the trough (station 3) of the vortex as shown in fig. 6.6a. Similar behaviour is also observed for
streamwise position, s = 2.44 m in fig. 6.6b.

There is good agreement for the uv of SSG/LRR-ω with the experiments in inner part of the
boundary layer. The turbulent diffusion of SA-RC is higher than SSG/LRR-ω in the outer part
of boundary layer as can be seen in fig. 6.6. Regarding the effects of rotation-corrections, SA-RC
produces a tremendous change when compared to SA in estimating the Reynolds shear stress in
both increasing the magnitude of turbulence and turbulent diffusion on a concave wall. SST-RC
increases uv on the concave but only to a marginal extent due to the limiters of rotation-correction
in SST-RC.

Moreover, it is a challenging task for RANS to model centrifugal instabilities that lead to longi-
tudinal vortices. This was not investigated in detail as to whether or not RANS is able to capture
Görtler vortices. It would require a 3D simulation of the same concave wall. Preliminary trials were
conducted to observe such spanwise effects using a 3D spanwise-coarse version of the present So &
Mellor concave test case. But, no change was observed in the mean-velocity in spanwise direction.
A detailed investigation needs to be performed with finer grids to confirm the ability of RANS mod-
els to predict centrifugal instabilities. Nevertheless, SA-RC and SSG/LRR-ω perform reasonably
good for such complex systems. Although, SSG/LRR-ω captures the structure of turbulent bound-
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Figure 6.6: Reynolds shear stress profiles on So & Mellor’s concave wall in curved region

ary layer reasonably well compared to eddy-viscosity based RANS models, there is some room for
improvement in terms of turbulent diffusion.

‘

6.2 Study of details of second moment closure modeling:
Convex curvature

In this section, the details of the second moment closure model are changed in order to study the
sensitivity of the model predictions. The following modelling details are studied:

• The turbulent diffusion model (SGDH vs GGDH)

• The redistribution model (SSG blended with LRR, LRR and SSG)

Differential Reynolds stress model (SSG/LRR-ω) uses LRR model in the inner ≈ 60% of bound-
ary layer and SSG in the outer part of the boundary layer with ω as a blending function. To
understand the effect of re-distribution model in boundary layers with streamline curvature, SSG,
LRR and SSG/LRR-ω models are compared for different testcases of convex and concave curvatures.
In fig. 6.7 and 6.8, the mean-velocity and Reynolds shear stress profiles for the stations 6 and 7
of curved region in Gillis & Johnston’s experiment are shown. The Generalized Gradient Diffusion
Hypothesis (GGDH) was used to model the turbulent transport term for three redistribution models
SSG, LRR and SSG/LRR-ω unless specified otherwise.

6.2.1 Mean flow and Reynolds stresses

Effect of redistribution model

In the inner part of the boundary layer, the profiles of three redistribution models are very close and
agree well with the experiments but in the outer-part of boundary layer, where the stabilizing effect
of strong convex curvature is dominant, SSG/LRR-ω performs well in both predicting the magnitude
of uv and diffusion of uv (see fig. 6.8). SSG produces less diffusion of uv which can be observed by
the profiles in outer-part of the boundary layer as shown in fig. 6.8. LRR produces slightly higher
diffusion of turbulent shear stress than SSG model but SSG/LRR-ω shows a better agreement with
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Figure 6.7: Normalised mean-velocity profiles at stations in curved region for Gillis & Johnston’s
test case to demonstrate the effect of redistribution models for convex curvature with ZPG

the Reynolds shear stress profiles of the experiment. SSG/LRR-ω captures the right magnitude of
uv to estimate accurate structure of turbulence in convex curvature and a good estimate of turbulent
diffusion which is evident from the profiles in the outer-part of the boundary layer(see fig. 6.8). The
mean-velocity profiles shown in fig. 6.7 also suggest that SSG/LRR-ω provides a better agreement
with the experimental data compared to standalone SSG or LLR redistribution models.

To conclude, the blended redistribution model of SSG/LRR gives the best agreement with the
experimental data among the different redistribution models tested.

Effect of diffusion model in Transport term

LRR and SSG/LRR-ω were simulated with SGDH for the Turbulent transport term for the same
test case to understand the effect of diffusion model in transporting turbulence shear stress. SGDH
in turbulent transport for both LRR and SSG/LRR-ω models leads to higher diffusion of turbu-
lent shear stress in the boundary layer (see fig. 6.8). This suggests that the Generalised Gradient
Diffusion Hypothesis (GGDH) gives better agreement with the experimental data than Simple Gra-
dient Diffusion Hypothesis (SGDH) for modelling turbulent transport in convex curved turbulent
boundary layers.

There is some theoretical support for this observation. It is the vv component which governs
the wall normal turbulent transport in the GGDH model. The component vv is highly affected by
curvature, as described in Durbin [11] p. 164. Hence the additional physics of the GGDH using
the vv component can be expected to yield better prediction of the turbulent transport. This will
be described in detail when the Zeman modification for the turbulent transport is reviewed, see
Appendix A.3.1.
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Figure 6.8: Normalised Reynolds shear stress profiles at stations in curved region for Gillis & John-
ston’s test case to demonstrate the effect of redistribution models for convex curvature with ZPG

6.2.2 Streamwise Evolution of Reynolds stress anisotropy in convex curved
Boundary Layers
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Figure 6.9: Streamwise evolution of Reynolds shear stress anisotropy using different redistribution
models for Gillis & Johnston’s test case

To understand how different redistribution models predict turbulent shear stress distribution in
curved turbulent boundary layers, anisotropy of Reynolds shear stress (a12) was calculated using eq.
6.1 and it’s streamwise evolution was shown at different stations in fig. 6.9.

aij =
uiuj
q2
− δij

3
, ass = 0

a12 =
uv

uu+ vv + ww

(6.1)

The y-axis is shown in dimensional units to directly compare the evolution of anisotropy inside
the boundary layer with the experiment. From the experiment, in the straight section of the duct, it
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can understood that anisotropy of turbulent shear stress is almost constant at a12 = 0.15 throughout
the boundary layer and turns to zero in the free-stream where turbulence is isotropic (see fig. 6.9a.
In fig. 6.9a, all three redistribution models perform well where LRR and SSG/LRR-ω have closer
profiles which agree well with the experiment both in terms of magnitude of a12 and thickness of
boundary layer (height where a12 goes to zero).

In curved region, shown in fig. 6.9b and 6.9c, anisotropic parameter, a12 varies from ≈0.15 (at
the wall) to ≈-0.1 (outer-part of boundary layer) for convex curvature without streamwise pressure-
gradient where the largest changes have been observed in the outer-part of boundary layer. This
suggests that stabilizing curvature reduces production of turbulence energy and the overall Reynolds
stress anisotropy mainly in the middle and outer-parts of the boundary layer. This structure of
turbulent shear stress in a curved boundary layer is better captured by SSG/LRR-ω than individual
SSG and LRR redistribution models as shown in fig. 6.9b. LRR profile in fig. 6.9b shows that the
pressure-strain correlation of LRR suppresses turbulence production more than SSG and SSG/LRR-
ω.

6.3 Study of details of second moment closure modeling:
Concave curvature

This section describes the findings for the concave curvature case and gives a brief discussion of
concave curvature effects.

6.3.1 Mean flow and Reynolds stresses
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Figure 6.10: Mean velocity profiles of different redistribution models for So & Mellor’s concave wall
testcase in curved region

In figs. 6.10 and 6.11, the mean-velocity and Reynolds shear stress profiles are shown for the stations
in curved region of So & Mellor concave experiment. The three redistribution models SSG, LRR
and SSG/LRR-ω use Generalized Gradient Diffusion Hypothesis (GGDH) to model the turbulent
transport term unless specified otherwise. These models with same diffusion model in Turbulent
transport term are compared for concave curvature without streamwise pressure-gradient.
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Effect of redistribution model

uv profiles in fig. 6.11 show that SSG produces higher magnitudes of turbulent shear stress in the
middle part of the boundary layer at both streamwise locations which can be directly attributed to
the smaller diffusion in the outer-part of boundary layer. So, the same amount of turbulent shear
stress is spread across smaller region. LRR model produces uv that agrees well with experiment but
still has less diffusion in the outer-part of the boundary layer for So & Mellor’s test case. In fig.
6.12b, the uv profiles on the concave wall of Monson’s test case show similar behaviour where SSG
produces higher mangitude of Reynolds shear stress spread across smaller height which shows less
turbulent diffusion. LRR leads to lower uv than SSG with marginally higher diffusion than SSG.
So, the level of uv of LRR model is smaller compared to other redistribution models. Compared to
SSG and LRR, the SSG/LRR-ω leads to the right magnitude of Reynolds shear stress which gives a
better agreement with the experiment in inner and outer parts of the boundary layer for the same
diffusion models of turbulence transport in both test cases. Velocity profiles in figs. 6.10 and 6.12a
suggest that SSG/LRR-ω has better agreement with the experiment compared to standalone SSG
and LRR models.
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Figure 6.11: Reynolds shear stress profiles of different redistribution models for So & Mellor’s concave
wall testcase in curved region

Effect of diffusion model in Transport term

Moreover, the diffusion model of turbulent transport term in Reynolds stress transport equation
was modified to the Simple Gradient Diffusion Hypothesis (SGDH), to compare GGDH with SGDH.
SSG/LRR-ω with SGDH leads to more diffusion in the concave boundary layer than SGDH. For po-
sition, s = 1.78m in fig. 6.10a, SGDH leads to slightly higher diffusion than GGDH but SSG/LRR-ω
(with GGDH) has better match with the experimental data. This suggests that SGDH in turbulence
transport term could be inducing more diffusion than required. For the streamwise position, s =
2.44 m in fig. 6.11b, it is difficult to conclude as none of the Reynolds stress models capture the
diffusion of turbulent shear stress of the experimental data. More diffusion of turbulence transport
term is necessary to accurately estimate turbulent shear stress for this streamwise position due to
the effect of longitudinal vortices. In fig. 6.12b showing the concave region of Monson’s testcase,
similar behaviour is observed where SGDH gives marginally higher diffusion in the concave region
and more diffusion of Reynolds shear stress is necessary for this position in U-duct.
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6.3.2 Streamwise Evolution of Reynolds stress anisotropy in concave curved
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Figure 6.13: Streamwise evolution of Reynolds shear stress anisotropy using different redistribution
models for So & Mellor concave test case

In fig. 6.13, anisotropy of turbulent shear stress is shown for different stations in straight and
curved regions. From the experimental data of fig. 6.13, it can be inferred that a12 is constant in the
wall-normal direction throughout the entire boundary layer approximately at 0.15-0.18 and becomes
zero at the edge of boundary layer where the assumption of isotropic turbulence is valid. Similar to
the Gillis & Johnston’s experiment, the solution of different redistribution models produces almost
constant anisotropy in the entire boundary layer a12 ≈ 0.15 as shown in fig. 6.13a. But, in the curved
region, due to the effect of concave wall, the anisotropic parameter stays positive and increases up
to a12 ≈ 0.2 and higher. This can be attributed to the destabilizing effect of concave curvature
where turbulence production is increased to the centrifugal forces thus producing higher Reynolds
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stress anisotropy as shown in figs. 6.13b and 6.13c. The increase of the magnitude of uv in concave
curvature due to increased vv as described in Ref. [11] p. 164.

The SSG model leads to more turbulence in the inner-part of boundary layer as shown in both
curved region stations in fig. 6.13 compared to other redistribution models. In the outer-part of the
boundary layer, even though SSG and SSG/LRR-ω have the same redistribution model, there exists
marginal difference in variation of Reynolds stress anisotropy.

From the experimental data of station 4 in fig. 6.13c, the structure of Reynolds stress anisotropy
clearly represents the crest of a Taylor-Görtler vortex. In the centre region of a vortex, turbulent
shear stress reduces due to strong stabilizing effect which is evident in fig. 6.11b(see Exp. STN
4 at Y = 0.06 m). Although the turbulent shear stress was almost zero above Y = 0.07 m in
fig. 6.11b for all redistribution models, the Reynolds stress anisotropy suggests otherwise in fig.
6.13c. a12 of LRR model on the other hand turns to zero in the outer part of the boundary layer
thus returning to isotropy while proceeding in wall-normal direction. But, SSG and SSG/LRR-ω
increase in anisotropy and then decrease in the outer-part of the boundary layer and later again
starts increasing (see fig. 6.13c). This behaviour of anisotropy of SSG and SSG/LRR-ω is closer to
the experimental value of a12 although the actual values of uv are relatively very small. A deeper
investigation needs to be done about the relative magnitudes of uv compared to turbulent kinetic
energy in a 3D simulation which might reveal more information in this regard.

6.4 Implications for the modification of the SSG/LRR-ω for
flows with significant streamline curvature

According to Zeman [56], a standard gradient diffusion hypothesis is not enough to accurately model
the turbulent transport because it neglects the effects of mean-streamline curvature and rotation.

Implications for the convex wall

For the case of convex curvature without streamwise pressure-gradient (Gillis & Johnston’s test
case), the SSG/LRR-ω performs well compared to other redistribution models in estimating the
turbulence structure and turbulence diffusion in the boundary layer. Moreover, for modelling the
turbulence transport term, the Generalised Gradient Diffusion Hypothesis (GGDH) which uses the
averaged wall-normal fluctuating component vv gives a much better agreement with the experiment
compared to the Simple Gradient Diffusion Hypothesis (SGDH) which uses the Turbulent kinetic
energy. For the case of convex curvature with streamwise adverse pressure-gradient (Monson’s test
case), more data is required at different streamwise positions in the curved region to understand the
behaviour of pressure-strain correlation and turbulence transport models.

Implications for the concave wall

A large increase in turbulence was observed for the test cases of Monson and So & Mellor on
the concave walls. The destabilizing nature of a concave curvature increases the production and
diffusion of turbulence. There is a necessity for accurate experimental data at different spanwise
and streamwise locations for validation; due to the formation of Taylor-Görtler vortices. For the
case of So & Mellor, distinctive longitudinal vortices were observed at two spanwise locations. The
amplitude of the Reynolds shear stress and the region occupied for the Reynolds shear stress is
different at different spanwise locations.

In So & Mellor’s case, SSG/LRR-ω is found to be in good agreement with the turbulence structure
that occurs in the crest of longitudinal vortex but not in the trough (which has stronger turbulence)
region. The Reynolds shear stress anisotropy hints the structure of a longitudinal vortex for SSG and
SSG/LRR-ω models in the outer-part of the boundary layer where the magnitude of uv is negligible.
Anisotropic parameter, a12 could be useful in further modelling these effects in SSG/LRR-ω model.
These effects of concave curvature are enhanced further with increasing magnitude of curvature
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(δ/R). For Monson’s case, a large increase of peak turbulent shear stress spread across larger wall-
normal region is observed. Both turbulence production and diffusion needs to be increased for
SSG/LRR-ω.



Chapter 7

Prospects for Curvature
modifications to SSG/LRR-ω
model

Based on the insights from section 6.4, few attempts were made to devise modifications to different
terms in SSG/LRR-ω model which are elaborated in this section.

7.1 Modification of turbulent transport of Reynolds stresses

According to Zeman [56], in flow conditions where the production of Reynolds shear stress is weak,
the turbulent transport term may control the balance and local level of Reynolds shear stress [45].
A closer look at the third moment terms is necessary [56].
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Figure 7.1: Normalised mean-velocity profiles at stations in curved region for Gillis & Johnston’s test
case to demonstrate the effect of curvature correction (CC-1) to SSG/LRR-ω for convex curvature
with ZPG

The effect of rotation correction for SA, SST models slightly modifies the mean velocity profile
especially in inner-half of the boundary layer by modifying the Reynolds shear stress. RC modifies

59
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the turbulence production term directly for SA and SST models whereas for SSG/LRR-ω, curvature
modifications were made to the transport term denoted as CC-1 as shown in figs. 7.1 and 7.2.
For the case of convex curvature with ZPG, minor changes have been observed in the outer-part of
boundary layer for Reynolds shear stress as shown in fig. 7.2. This resulted in a minute change for
the mean-velocity profile shown in fig. 7.1.
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Figure 7.2: Normalised Reynolds shear stress profiles at stations in curved region for Gillis & John-
ston’s test case to demonstrate the effect of curvature correction (CC-1) to SSG/LRR-ω for convex
curvature with ZPG
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Figure 7.3: Mean velocity and Reynolds shear stress of U-duct showing the effect of rotation-
correction for different RANS models

For concave curvature, the modification of CC-1 was tested for the case of Monson’s U-duct and
the result of turbulent shear stress and mean-velocity at the 90◦ bend is shown in figs. 7.3b and 7.3a.
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CC-1 increases diffusion in the concave boundary layer shown in fig. 7.3b. This is accompanied by
reduction in the peak uv as the same amount of turbulence is being diffused into larger region by
the action of turbulence transport term in the Reynolds stress model. The changes of CC-1 to the
mean-velocity are only marginal on both concave and convex walls for the Monson’s case shown in
fig. 7.3a.

7.2 Trials to modify the length scale (ω) equation

Inspired from the rotation-corrections of SA-RC and SST-RC, trials were made to modify the pro-
duction of turbulence shear stress. As the production term in Reynolds stress models is exact,
the dissipation term of SSG/LRR-ω can be influenced by directly modifying the production term
of length scale (ω) equation thus changing the turbulence production indirectly. Increasing the
dissipation will suppress the turbulence production to balance the transport equation.
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Figure 7.4: Mean velocity and Reynolds shear stress of U-duct showing the effect of trials to modify
Pω(Production term of ω equation)

Concave region of the U-duct was identified using the local Richardson number discussed in
chapter 3. Trials were made to increase reduce the length scale but multiplying the production term
of ω equation by a coefficient = (1 - fr) where the value fr was modified with different values: 0.25,
0.5, 0.75, 0.95 thus giving the coefficient to the production of ω equation as: 0.75, 0.5, 0.25, 0.05
respectively. A constant coefficient was multiplied to the production of ω in the entire concave and
convex regions as shown in eq. 7.1. By reducing the factor, production of ω equation i.e. Pω is
reduced. This reduces the magnitude of length scale ω there by reducing the dissipation of Reynolds
stress, ε. As a result, the production of Reynolds stress should increase due to the reduction of
dissipation. Results of these trials are shown in fig. 7.4 where RSM-CC-fr shows different values.
As a comparison, rotation corrections to other RANS models is shown in fig. 7.4.

Pω →
{

(1− fr)Pω if Rilocal < 0.0
(1 + fr)Pω if Rilocal > 0.0

(7.1)

In fig. 7.4b, the turbulent shear stress is increased in the concave region due the influence of
length-scale production. But, the peak of uv still doesn’t align with that of experiment like SA-
RC does. This is because of multiplication of a constant coefficient to the entire boundary layer on
concave wall. But, this aspect can be fixed by inducing more diffusion of turbulence in the boundary
layer. However, the increase of Reynolds shear stress in the concave region shows a better agreement
with the experimental values. The profiles of mean-velocity approach the experimental values with



7.2. Trials to modify the length scale (ω) equation 62

increase in the fr value of CC-fr (see fig. 7.4b). By parameterizing this effect using a blending
function, desired Reynolds shear stress can be achieved on the concave region. A coefficient which
is a function of wall-distance or the local Richardson number directly would be a topic of interest
for further research. A combined modification with both length-scale production and turbulence
transport would be highly influential in modifying Reynolds shear stress on concave walls.



Chapter 8

Conclusion

8.1 Summary

A deeper investigation was conducted to understand and quantify the effects of streamline curva-
ture in curved turbulent boundary layers. Bradshaw’s work of gradient Richardson number which
identifies the nature and magnitude of curvature was studied in detail to understand the zones of
convex and concave curvatures for turbulence subjected to mean-streamline curvature.

This was used to further develop a Galilean-invariant version of Richardson number. Inspired
from Hellsten’s Richardson number, a grid-point local Richardson number Rilocal augmented by the
direction information from the Spalart-Shur’s rotation/curvature correction framework was derived.
Different possible cases of Rilocal based on the nature of sign and relative magnitudes of curvature
(U/r) and shear (∂U/∂r) were elaborated to finalize the Galilean-invariant formulation for Rilocal.
The behaviour of each Richardson number formulation was investigated by conducting a sensitivity
study on the Monson’s U-duct test case.

Suitable test cases from literature namely Monson (1990), Gillis & Johnston (1981) and So &
Mellor (1972) were chosen and CFD setup was developed and validated from the experimental data.
Using these validation test cases, the effects of rotation/curvature corrections to SA, SST model
was understood and SSG/LRR-ω was validated for test cases with and without streamwise pressure-
gradient. Different redistribution models for the pressure-strain correlation of RSM and different
diffusion models for the turbulent transport term of RSM were compared for both convex and concave
curvature test cases using the profiles of mean-velocity, Reynolds shear stress and anisotropy.

Prospects for curvature sensitsation of SSG/LRR-ω were explored. Turbulent transport term in
SSG/LRR-ω was modified using the Galilean-invariant formulation of Richardson number Rilocal and
the result of this modification was studied for the validation cases. Trials to modify the production
of length scale ω equation (Pω) were elaborated. Its effect on the dissipation of Reynolds stress
thus changes to the turbulence production were examined. Insights into further modification of
SSG/LRR-ω for complex flows were provided.

8.2 Conclusion

In the present work, the main objective was to further develop the Galilean-invariant formulation
of Richardson number, to assess the predictive accuracy of the SSG/LRR-ω model with respect to
wind tunnel experiments and to devise modifications to SSG/LRR-ω using the local Richardson
number. The take-home messages from this work are as follows.

8.2.1 Study of Richardson number

• Support for the failure of RiHellsten for strong curvature was provided from the sensitivity
study of Richardson numbers in chapter 5.
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• The capability of Rilocal by Ströer & Knopp [46] for various curvature magnitudes was demon-
strated.

• Rilocal is recommended for use as a flow feature in Machine Learning for improvement of
turbulence models.

8.2.2 Situation and set-up of validation cases

The following conclusions can be drawn from the development of the validation test cases in the
present work.

• Overall situation of various test cases:

– Most of the suitable experiments for studying streamline curvature were performed before
1990s. There is a lack of recent experiments. For the case of turbulent boundary layers
in APG, there are very few experiments until 1990 but has grown in the community since
2010.

– Lack of DNS and LES data even for moderate Re flow conditions should be noted.

• Importance to consider different sources of uncertainties when comparing experiment data and
simulation data:

– Inflow conditions such as position of inlet boundary as the boundary layer thickness is
larger than zero at the beginning of the test-section. As a remedy, the development
length was modified in the CFD setup to match the experimental data of boundary-layer
thickness, skin-friction coefficient etc at reference position upstream of the curvature
region.

– Definition of the geometry: For convex case, outer wall was adjusted to match the static-
pressure distribution on the inner wall and vice versa for concave wall.

– Uncertainty about effects of the spanwise side wall of the wind tunnel, in contrast to a
2D setup of the flow in the centre plane of the wind tunnel.

• Measurement errors:

– In Gillis & Johnston’s test case, different means of experimental techniques were used to
measure the mean-velocity profiles in curved region. The pitot-tube measurements seem
to be more accurate than the single-wire measurements.

– For flow over concave walls, there is clear need to measure the mean velocity and Reynolds
stresses at different spanwise positions (with a spacing accounting for the size of the
Görtler vortices) and to carefully document the data at the different spanwise positions.
For Monson’s test case, the Reynolds shear stress profiles were only available at the
90◦ position. Moreover, significant influence of measurement accuracy on convex and
concave walls is evident from the scatter of the Reynolds shear stress measurements (see
fig. 6.1b). Although, this test case has a simple geometry for CFD setup, it is not
suitable as a validation. This shortcoming in the experimental data by Monson seems
to be in contrast with the observation that this case was widely used to validate several
rotation/curvature corrections to RANS models such as SA-RC [36], SST-RC [38] (see
Durbin’s review paper [10]).

• Design of computational setup:

– The geometries of the curved section of the test cases like Gillis & Johnston and So &
Mellor are not readily available in the respective literature.

– Geometries for CFD setup were developed from scratch using simple design tools based
on iterative shape optimisation which are elaborated in the Appendix A.1.
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– In the experiment of Gillis & Johnston, the pressure drop at the onset of curvature i.e.
streamwise static pressure-gradient dp/dx between the flat region and curved region was
kept as low as possible by employing a special treatment of the opposite wall.

– The attempts to expand the duct in the curved region to reduce static pressure changes
are encountered with flow separation. Euler wall boundary condition could be used in
CFD setup (see fig. 4.4) to avoid flow separation. The occurrence of flow separation
brings problems for the method to determine the geometry. The form of separation
region depends on the RANS model used, leading to different final geometries for different
turbulence models. This issue can be reduced significantly if an Euler wall is used. One
can either use the Euler wall boundary condition for some part of the curved outer wall
or the entire outer wall depending on the conditions of the experiment.

• Part 1: Cases with convex curvature

– The test case by Gillis & Johnston is a suitable validation case, but requires development
of the computational setup. A suitable computational setup was developed using shape-
optimisation and validation using RANS models.

• Part 2: Cases with concave curvature

– So & Mellor’s concave setup is a suitable validation case, but requires one to develop the
geometry. This was successfully achieved.

– The situation in the wind tunnel is 3D with spanwise variation due to Görtler vortices.
Measurements were only available at 2 stations in the curved region. But, the experimen-
tal data was very clear without any scatter.

– If the 2D RANS is compared to the minimum and maximum values of the Reynolds shear
stress, it can observed that the dual peak structure of turbulent shear stress that occurs
in a Görtler vortex is not captured by RANS models in the present work. Whether RANS
models can simulate Görtler vortices is an open question that requires a 3D investigation.

8.2.3 Validation of RANS models in curved regions

• Part 1: Eddy viscosity models

– For the test case of Gillis & Johnston, SA-RC and SST-RC give similar results.

– For the concave wall in So & Mellor’s test case, SA-RC has more pronounced effect on
the increase of Reynolds shear stress than SST-RC. One reason is the limiters of RC
modifications in SST-RC which is not used in SA-RC

• Part 2: Reynolds stress models

– Model ingredients of SSG/LRR-ω (modelling of turbulent transport term using General-
ized Gradient Diffusion Hypothesis (GGDH), modelling redistribution using the blending
of Launder-Reece-Rodi (LRR) and Speziale-Sarkar-Gatski (SSG) gave the best agreement
with the experiment data compared to Simple Gradient Diffusion Hypothesis (SGDH) for
transport and LRR, SSG for redistribution.

• Convex curvature

– For the case of Gillis & Johnston, SSG/LRR-ω gives better agreement with the exper-
imental data than Eddy-viscosity models with rotation/curvature corrections in profiles
of mean-velocity, Reynolds shear stress and Reynolds stress anisotropy (a12).

• Concave curvature

– SSG/LRR-ω gives good agreement with Reynolds shear stress when compared to the
experimental data from the trough region of a Görtler vortex where the effect of these
longitudinal vortices is minimal.
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– As a result of Görtler vortices, a double peak structure is formed in the Reynolds shear
stress (see fig. 6.5b). This double peak structure representing a longitudinal vortex was
not captured by any of Reynolds stress models or Eddy-viscosity based RANS models.

• The test case by Monson is not suitable for validation of RANS turbulence models due to a
large measurement uncertainty, as seen in the scatter of Reynolds shear stress profiles.

• At the concave wall of the Monson’s experiment, a large diffusion of Reynolds shear stress was
observed but no structure suggesting the existence of longitudinal vortices (as observed for So
& Mellor’s experiment) was present.

8.3 Future scope

There are still several open questions in the present work which leaves scope for future researchers
which are as follows:

• A direction sensor for Richardson number based on wall-normal gradients of total pressure is
being developed. So, one can avoid the calculation of second derivatives of velocity for the
Spalart-Shur’s [43] rotation/curvature correction.

• New data generation using wind tunnel experiments for validation of RANS:

– New data generated with state-of-art experimental measurement is required for curved
turbulent boundary layer test cases with and without streamwise pressure-gradient i.e
both APG and ZPG cases.

– Measurements should be made at multiple locations upstream, at the onset of curva-
ture, curved region at several (equally distant) spanwise locations to clearly observe and
understand the effect of longitudinal vortices on concave walls.

– It is better to have an aspect ratio of higher than 10 to avoid the effect of secondary flows
in the test section.

– Experiments with moderate to high Reynolds number are necessary to devise modifica-
tions to RANS models to equip them for accurate simulations of aircrafts.

• New data generation using scale-resolving simulations:

– Scale-resolving simulations such as Direct Numerical Simulations (DNS) and Large Eddy
Simulation (LES) are very expensive for high Re flow conditions.

– There is a lack of DNS, LES validation data for flows with streamline curvature with and
without streamwise pressure-gradient.

– DNS of flow conditions with at least moderate Re(or high Re if possible) should be
generated for high curvature and moderate curvature cases for both convex and concave
walls. These are very essential in understanding the turbulence inside a vortex and
modelling trailing vortices arising from aircraft wingtips.

• Three dimensional simulations of RANS models need to be performed to answer the question
whether or not RANS models can capture Görtler vortices.

• In the So & Mellor’s experiment, there are also convex constant-pressure and varying-pressure
configurations which could be simulated for a deeper insight into pressure-strain correlation of
Reynolds stress models.



Appendix A

Appendix

A.1 Gradient-based offline shape optimisation

In the present work, for the test cases of Gillis-Johnston and So-Mellor it was necessary to achieve a
specific pressure-gradient on a fixed wall by increasing/decreasing the duct height. The locations of
grid points representing the adjustable wall were moved in every design iteration. To reduce the CP
on the fixed wall, the duct height was reduced and vice versa. In each design iteration, it is difficult
to manually estimate the amount to change required at a location based on the it’s agreement with
the pressure-distribution in experimental data. An offline calculation was performed by using the
last two design iterations to modify shape for the next iteration.

∆D =
∆D

∆CP
(CP − CexpP )

Dn+1 −Dn =
Dn −Dn−1

CnP − C
n−1
P

(CexpP − CnP )

Dn+1 = Dn +
Dn −Dn−1

CnP − C
n−1
P

(CexpP − CnP )

(A.1)

Here, ’D’ be the height of the duct and superscript ’n’ refers to the iteration. n, and n-1
represent the previous 2 iterations and n+1 represents the next iteration for which target curve is
to be generated. The formula given in eq. A.1 is local to each grid point and can be used to apply
changes to the x and y coordinates of a grid point separately as elaborated in eq. A.2.

xn+1 = xn +
xn − xn−1

CnP − C
n−1
P

(CnP − C
exp
P )

yn+1 = yn +
yn − yn−1

CnP − C
n−1
P

(CnP − C
exp
P )

(A.2)

In a two-dimensional simulation, both coordinates can be altered after every iteration based on
it’s agreement with the target CP curves from the experiment. The change at each grid point can
be distributed at neighboring grid points increase the smoothness of the curves i.e. to avoid any
discontinuities. In the present work eq. A.2 was used to obtain design suggestion for the next
iteration. The x, y obtained from SA-RC, SST-RC and SSG/LRR-ω model were averaged to decide
the curve for next iteration. So, the optimisation was done mainly using these 3 RANS models. The
curve obtained from eq. A.2 was later imported into the Ponitwise mesh generation software to edit
the mesh for the present test case. Example of a result of this technique is shown in fig. A.1 where
the fixed wall onto which a certain desired CP is obtained by modifying the adjustable wall. The
pressure distribution at 2 previous iterations n and n-1 is required to calculate the n+1 curve using
the simple gradient-based optimisation technique.
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Figure A.1: An example showing fixed wall and the curve suggestion for the adjustable wall using
gradient-based technique

A.2 Calculation of Potential flow velocity at wall for scaling

A proper scaling technique is required to compare different models with experiment in curved bound-
ary layers. One can use the reference velocity to normalize the mean-velocity and turbulent shear
stress. Outside of the boundary layer, inviscid region exists where the potential flow approximation
is valid. In this region the effect of wall shear is negligible as a result the mean velocity is constant
in wall-normal direction in the central region of the duct. Usually the boundary layer thickness is
also calculated using the free-stream velocity i.e. constant in the potential flow region. Boundary
layer thickness is decided when the mean-velocity reaches 99% of the potential flow velocity.

In straight section of a duct, the mean-velocity in the centre of duct or the free-stream velocity is
constant in wall-normal direction in the potential flow region. When a line is drawn using these the
points in the potential flow region, this line is perpendicular to the wall. But, in flows with mean-
streamline curvature, this particular line is bend at a certain angle depending on the magnitude of
the curvature. In fig. 5.2a, this can be observed for U-ducts with different radius of curvature.

A well-known scaling technique in curved boundary layers in literature is to use the potential flow
velocity at wall. Irrespective of straight and curved regions, this technique can be used by drawing
a line from the potential flow region on to the wall as shown in fig. A.2. In fig. A.2, mean-velocity
is shown at station 6 (in curved region) obtained using SSG/LRR-ω model for the Gillis-Johnston’s
test case. The velocity at grid points above Y = 0.055 m was considered to perform a least-squares
fit using the ’numpy.linalg.lstsq’ function from the Linear Algebra library of Python-Numpy. The
line obtained from the least-squares fit is extended on to the wall thus obtained the potential flow
velocity at wall.

Another way to obtain the potential flow velocity at from Ref. [39] is by using an inviscid
approximation given by the eq. A.3.

Ptotal,∞ = Pstatic, wall +
1

2
ρU2

pw (A.3)

For a duct, the total pressure (or stagnation pressure) remains constant throughout the entire
duct particularly in the potential flow region. This constant total pressure along with the static
pressure on the wall can be used to obtain the potential flow velocity at wall as shown in eq. A.3.
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This technique is based on the inviscid approximation stemming from the Bernoulli’s equation in
fluid mechanics. Although, this is a simple technique, the method of least-squares fit is more robust
and realistic to viscous flow. So, the least-squares fit of points in the potential flow region was used
for both computational and experimental data in the present work.
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Figure A.2: Mean-velocity profile of Gillis-Johnston’s test case at station 6(in curved region) calcu-
lated by SSG/LRR-ω model and Upw calculation using the least-squares fit.

A.3 Modification of higher order correlations and their mod-
elling

A.3.1 Turbulent diffusion of momentum

Usually, the Reynolds stress diffusive fluxes are assumed to be proportional to the gradient of
respective Reynolds stress component. Two well-known models for gradient diffusion are SGDH and
GGDH which are elaborated as follows.

Simple Gradient Diffusion Hypothesis (SGDH)

In SGDH, the diffusive coefficient is a scalar where the turbulent contribution is proportional to an
equivalent eddy viscosity as shown in eq. A.4 [35].

Dij =
∂

∂xk

[(
ν +

D

Cµ

k2

ε

)
∂Rij
∂xk

]
(A.4)

Generalized Gradient Diffusion Hypothesis (GGDH)

In GGDH, the diffusion coefficient is a tensor where the turbulent contribution is proportional to
the Reynolds stress tensor as shown in eq. A.5 [9].

Dij =
∂

∂xk

[(
νδkl +D

kRkl
ε

)
∂Rij
∂xl

]
=

∂

∂xk

[(
νδkl +D

Rkl
Cµω

)
∂Rij
∂xl

]
(A.5)

Consider the boundary layer approximation with largest gradients in the wall-normal direction.
Assume that x1 is in the wall-parallel direction and x2 is in the wall-normal direction. (Loosely
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speaking, x2 is the radial direction and x1 is the circumferential direction.) Then setting k = l = 2
yields

Dij =
∂

∂x2

[(
νδ22 +D

kR22

ε

)
∂Rij
∂x2

]
=

∂

∂x2

[(
ν +D
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ε

)
∂Rij
∂x2

]

=
∂

∂x2
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ν +D(k/ε)v′2

) ∂Rij
∂x2

]
=

∂

∂x2

[(
ν +Dτv′2

) ∂Rij
∂x2

]
(A.6)

with the turbulent time scale τ = k/ε.

Turbulent transport model by Zeman

Zeman starts with writing the unclosed second-order moment equation in cylindrical coordinates.
Zeman studies the third moments Tijk in the Reynolds stress equation. Zeman argues that in
votex flow the turbulence production mechanism is weak, and that the turbulent transport becomes
important. Moreover, he points out that third moment terms Tijk/r, that are not in flux-divergence
form, appear in the second-order moment equations. He writes that they can be important in the
vortex core.
Zeman arrives at the following relation for the turbulent viscosity for the radial transport (in the
r-direction) by considering linearized equations for fluctuating Lagrangian velocities

νt,r =
c1τv′

2

1 + (c2τ)2(K2
z )′/2r3

(A.7)

Equation (A.7) can be seen as a modification of (A.6). Note that Zeman defines τ = q2/ε = 2k/ε,
as q2 = 2k. The prime (′) denotes the derivative in radial direction and Kz = Ur = Γ/(2π) is the
mean angular momentum in the z-direction, and c1 and c2 are adjustable constants that describe
the relation between an effective time scale TL associated with Lagrangian correlations arising in
the derivation of (A.7) and the turbulence time scale τ = q2/ε.
Then a gradient Richardson number is used as a streamline curvature parameter

Ric =
(K2

z )′/r3

U ′2
=

(K2
z )′/r3(
∂U
∂r

)2 (A.8)

It is worth to hold on for the moment and to compare this definition of Ric with the previous
definitions
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(A.9)

Then we can proceed and study the formula for νt,r further. Substitution of (A.10) after rearranging
as

Ric

(
∂U

∂r

)2

= (K2
z )′/r3 (A.10)
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into (A.7) yields

νt,r =
c1τv′

2

1 + (c2τ)2 1
2Ric

(
∂U
∂r

)2 (A.11)

Note that Launder proposed the idea that the mean-flow time scale [∂U/∂r]
−1

can be replaced by
the turbulent time scale τ = k/ε in the nominator of the definition of Ric, as described in equation
(25) in Hellsten. Using τ = k/ε (without factor 2 due to the use of q2 instead of k) yields

νt,r =
c1τv′

2

1 + (c2τ)2 1
2Ric

(
∂U
∂r

)2 =
c1τv′

2

1 + c22
(
k
ε

)2 (∂U
∂r

)2 1
2Ric

(A.12)

In the last equation, the mean-flow time scale and the turbulent time scale might be canceled out
and then only Ric arises in the denominator.

νt,r =
c1τv′

2

1 + c22
1
2Ric

(A.13)

Using τ = k/ε in the nominator gives

νt,r =
c1
k
ε v
′2

1 + c22
Ric
2

, with Ric = 2S(1 + S) (A.14)

Modification of the turbulent transport model by Zeman

The effect of curvature is scaling linearly with Ric. One might think that such linear relation is
appropriate only for small values of Ric. For small Ric, the effects are described by

f = c23
Ric
2

(A.15)

which needs modification for large values of Ric. For this purpose a modified transfer function f(Ric)
needs to be designed. Consider two extreme cases. For strong concave curvature, the parabola Ric =
2S(1+S) takes a minimum value of Ric = −1/2 at S = −1/2. For concave curvature, an increase of
the turbulent transport is observed (see Arolla & Durbin [2]). For the present modelling, an increase
corresponding to 1 + f(Ric) = 1 + cDcc = 0.33 is assumed. For convex curvature, a reduction of the
turbulent transport by a factor of 3 is assumed, corresponding to 1 + f(Ric) = 1 + cDcv = 3. The
third condition is 1 + f(0) = 1.

νt,r =
c1
k
ε v
′2

1 + f(Ric)
, with Ric = 2S(1 + S) (A.16)
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and Christian J Kähler. Modification of the ssg/lrr-omega model for turbulent boundary layer
flows in an adverse pressure gradient. Flow, Turbulence and Combustion, 111(2):409–438, 2023.

[20] B.E. Launder and D.B. Spalding. The numerical computation of turbulent flows. Computer
Methods in Applied Mechanics and Engineering, 3(2):269–289, 1974.

[21] Brian Edward Launder, G Jr Reece, and W Rodi. Progress in the development of a reynolds-
stress turbulence closure. Journal of fluid mechanics, 68(3):537–566, 1975.

[22] Florian R Menter. Two-equation eddy-viscosity turbulence models for engineering applications.
AIAA journal, 32(8):1598–1605, 1994.

[23] D Monson, H Seegmiller, and P McConnaughey. Comparison of experiment with calculations
using curvature-correctedzero and two equation turbulence models for a two-dimensional u-duct.
In 21st Fluid Dynamics, Plasma Dynamics and Lasers Conference, page 1484, 1990.

[24] DARYL MONSON, HLEE SEEGMILLER, and PAUL MCCONNAUGHEY. Comparison of ldv
measurements and navier-stokes solutions in a two-dimensional 180-degree turn-around duct.
In 27th Aerospace Sciences Meeting, page 275, 1989.

[25] KC Muck, PH Hoffmann, and P Bradshaw. The effect of convex surface curvature on turbulent
boundary layers. Journal of Fluid Mechanics, 161:347–369, 1985.

[26] Nasa turbulence modeling resource. https://turbmodels.larc.nasa.gov/, 2024. Accessed:
January 31, 2024.

[27] VC Patel and F Sotiropoulos. Longitudinal curvature effects in turbulent boundary layers.
Progress in Aerospace Sciences, 33(1-2):1–70, 1997.

[28] Virendrakumar Chaturbhai Patel. The effects of curvature on the turbulent boundary layer.
1968.

[29] Ludwig Prandtl. 7. bericht über untersuchungen zur ausgebildeten turbulenz. ZAMM-Journal
of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik,
5(2):136–139, 1925.

[30] Ludwig Prandtl. Effect of stabilizing forces on turbulence. Technical report, 1931.

[31] BR Ramaprian and BG Shivaprasad. Mean flow measurements in turbulent boundary layers
along mildly curved surfaces. AIAA Journal, 15(2):189–196, 1977.

[32] Osborne Reynolds. Iv. on the dynamical theory of incompressible viscous fluids and the de-
termination of the criterion. Philosophical transactions of the royal society of london.(a.),
(186):123–164, 1895.
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