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Crash simulation
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DLR, Institute of Structures and Design C/12024
Short History with VPS (PAM-CRASH) VPS User Conference

Dynamic Test |, dyn1v3, 23.05.95

1993 1995 2001 2004 2019 2020

Vertical drop

Rigid aircraft

Flexible fuselage
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Motivation of todays talk (FSI challenges) C/12024

VPS User Conference DLR
Target: Operation of aircraft has to be safe (even in emergency situations!)
» Ditching (CS 25.801, prepared landing on water)

FR5O i
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Source: Ditching of a B-24 Airplane into the James River

1944 https://www.youtube.com/watch?v=WjadMxpXprk 2009 us Airways A320, Januar 2009, Hudson River, New Jersey, USA

= Fuel sloshing (fuselage tanks for LH2) Braking at 0.5g to full stop
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| ® Tank volume: 2 x 25ms3
2022 DLR Climate Neutral Aircraft configuration (LH2 based) LH2 mass: 2-3t
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Few words on FPM Liquid in VPS C/i12024

VPS User Conference DLR
* Fundamentals of FPM (FPMIN /)
* Meshfree approach for fluid discretization (point cloudy
 Solves the Navier-Stokes equations for incompressible fluid FPM Solver deformation
« Adaptive point clout refinement (smoothing length)
« Implicit time integration schema = larger timesteps possible!  Imploit upto 10
« Easy model generation by definition of the free surffaceand |
the pool (tank) walls. Interior points generated automatically Apply computed pressure as external

loads on structural elements

=» small and easily adaptable input cards

I wTerioR — Exemplary FPM pool

DROPLET

FREE FLIGHT

VPS time stepping:
Explicit: 104-10%s

IRt st ]

FREE SURFACE

WALL
Get current external surface geometry

OUTFLOW and velocities as boundary conditions

Left-side wall hidden for
visualization of interior points

INFLOW
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1. Ditching research ( since ~ 2000 at DLR) C/12024

VPS User Conference DLR

Phases of Ditching =» impact on FSI methods

Approach

» Short Impact phase (<100 ms)
Moderate landing phase (~ 1 5)

» High forward velocity (~70m/s)

* FSI with complex hydrodyn. phenomena
* Nonlinear structural response

» Potential Influence of sea state

Long physical time (>30 s)
Potential influence of sea state
Potential sinking

FSI methods in VPS SPH Method partly applicable and proved SPH not / barely feasible (time

considerd at DLR (challenges due to short timestep) step)
» High potential for FPM (time step, » High potential for FPM
hydrodynamic phenomena, ...) (time step, ...)
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1. Ditching research (Impact phase)

Short period of time (<100 ms)

Detailed knowledge of local load transfer required

Characterized by high forces and structural deformation

Guided ditching tests on aeronautical panels at real velocity

in EC Project SMAES (2011-2014) and SARAH (2016-2020)

» Pressure, strain, global forces, High speed video (incl. underwater view)

Real time camera (slow motion), v =40 m/s
> FPM in aeronautics > VPS Conference, Prag, 20.06.2024
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VPS User Conference DLR

deceleration zone

~ guide track with
'y = reinforcement
A (length =~ 64m)

catapult system

water basin (length = 470m,

trolley width = 13.5m, depth = 6.5m)

Double curved
panel

Underwater video
v, = 30.6 m/s




1. Ditching research (Impact phase) C/12024

Impact phase (flat panel, FPM simulation)

» Good correlation for rigid specimen

» Good pressure gauge results / slightly too early compared to test
= Still challenges with flexible structure

(deformations too large, failure)

Flight direction

[
»
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Pressure vs Time
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1. Ditching research (Impact phase) C/12024

VPS User Conference DLR

Impact phase (flat panel, FPM simulation)
» Good correlation for rigid specimen
» Good pressure gauge results / slightly too early compared to test
=> Adaptation of model to consider flexibility of facility (current student project)

Guided trolley
(rigid track)

o T Flexible model of facility

(measured deformations in test ~5 mm)

> FPM in aeronautics > VPS Conference, Prag, 20.06.2024




c/i12024

VPS User Conference

Impact / phase (Double curved panel, FPM simulation) 4

« Cavitation observed in guided impact tests

1. Ditching research (Impact phase)
DLR

wondt

Bottom view
(underwater

video)

200

V = 26.8 m/s (almost no cavitation)

200

V = 30.6 m/s (cavitation)

V = 35.7 m/s (cavitation + ventilation)
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A. lafrati, S. Grizzi; Cavitation and ventilation modalities during ditching, Physics of Fluids 31, 052101 (2019); https://doi.org/10.1063/1.5092559
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1. Ditching research (Impact phase)

Impact /

..........

-1.5e-04

Bottom

view

PC Time:
~39h with
16 Cores

phase (Double curved panel, FPM simulation)

» FPM results with different speeds: gauge pressure att = 35 ms

PC Time:
~42h with
16 Cores

PC Time:
~31h with
24 Cores

c/i12024

VPS User Conference

DLR

TH plot Pressure Probe P17 (Filter CFC1000)

-rel_Pvapor
—v21.0_P17
—v26.8_P17
—v30.6_P17
—v35.7_P17

PC Time:
~61h with
16 Cores

10

20 30 40 50

TIME (millisec)

=» Calculated pressure in water drops below vapor pressure (~100kPa) =» cavitation to occur
=>» pressure cut-off in UCV Append

> FPM in aeronautics > VPS Conference, Prag, 20.06.2024



1. Ditching research (Impact phase) C/12024

VPS User Conference DLR

Impact / phase (Double curved panel, FPM simulation) 4

« FPM results with activated asymmetrical pressure cutoff 250 e Puanor
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1. Ditching research (landing phase) C/12024

VPS User Conference DLR

» Moderate period of time (~ 1 s) following the impact phase
» Characterized by free motion of aircraft under acting hydrodynamic forces

» Limited test data (on model tests) available for comparison with simulation results

NACA TN 2929 [1]

Model A (DLR-Model)

ALE reference [2 . : .
| | 12l =>» Student internship ongoing
[1] E.E. McBride, L.J. Fischer, NACA TN 2929, 1953

[2] C. Bisagni & M.S. Pigazzini (2017): Modelling strategies for numerical simulation of aircraft ditching, International Journal of Crashworthiness, DOI: 10.1080/13588265.2017.1328957
13 > FPM in aeronautics > VPS Conference, Prag, 20.06.2024




1. Ditching research (Impact / landing phase) C/12024

VPS User Conference DLR
Impact / landing phase (Full aircraft)
* Influence of gauge pressure cut-off at -100kPa (cavitation pressure)
SHELL =0¥
)
e
E :! “ ;. "b:‘ b ..L “ WE oo L A s
w a 5 W 7 IR i _. S L W
| J I I Ll [
2 AL Pressure cut-off
e e e I e ar e O - -100kPa
e Pecte 1058 g Procat Difference due to
static pressure?
= Pressure  21'_3940 Gaune_Pressure
N Pressure  "21'_3940 Gaune_Pressure | | | ‘
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1. Ditching research (Impact / landing phase)

Impact / landing phase (Full aircraft)
 Influence of gauge pressure cut-off at -100kPa (CAP)

FPM Model (D150)
MODE : Displacemant Z

without cut-off

FPM Model (D150)

MODE : Displacament Z
Min = 1926 43 a1 Noda 31083
Max = H3I855T at Node 2327

Lo

EEL TR (] —"—

301/ 750.000000

301 / 750.000000

Influence of pressure cut-off on aircraft kinematics
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DISPLACEMENT {mim)

c/i12024
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DLR

—— C0G Translational_Displacernen t7
—— COG Translational_Displacernen t_Z (CAP)

Aircraft immersion

400
TIME {millisec)

DISPLACEMEMT (RAD) (E-03)
] 4 .

Aircraft pitch angle

400
TIME imillisec)



1. Ditching research (Influence of rough water) /12024

VPS User Conference DLR

= With the potential of FPM (implicit flow solver, large timesteps) studies on Influence of rough
water on ditching behavior seem feasible (not performed with HiFi methods until now)

» Different scenarios may be analyzed and evaluated (future work)
» Wave characteristics, relative motion, shift of impact point

AIRCRAFT DITCHING ANALYSIS

A nose high atitude and relatively high speeds typi f: the f on larger aircraft
i Typical ditching fracture Iocauonsl e >
= L all — o
/8 A Wind-Swell-Ditch Heading
L A
5 @ CIRECTION OF
Ditching into waves can be catastrophic but if into wind in a light swell can reduce the aircrafts’ speed, lessening the water impact SWELL MOENVENT t
Wind direction - = =
r 15 R gy R GOOD — =l
GOOD

Landing parallel to the major swell

Ditching is best i by landing along the line of the swell but lateral winds can cause the aircraft to crab

=T

Wind direction B GOOQD ! T POOR!I!

Landing on the face and back of swell

[1]

a. A successful aircraft ditching is dependent on three primary factors. In order of
importance they are:

1. Sea conditions and wind.
2. Type of aircraft.
3. Skill and technique of pilot.

> FPM in aeronautics > VPS Conference, Prag, 20.06.2024 [2]



https://hubpages.com/travel/How-To-Ditch-An-Airplane
https://hubpages.com/travel/How-To-Ditch-An-Airplane
http://avstop.com/ac/aim/chap6/aim0603.html

1. Ditching research (Influence of rough water) /12024

VPS User Conference DLR

Wave generation in a water domain

» Different wave generation methods tested (e.g. piston vs. flap)

» Size and kinematics of the waves validated against wavemaker theory

= Process established in DLR process B S, UELSR00008
tool PANDORA 8 < o
m{; ‘ qu / : 117/ 11600.000000
7 Gt —
LSS S S
Step 1: Desired waves characteristics Step 2: Calculation of stimulator Step 3: stimulator definition (in VPS)
(Airy wave theory): inputs:
* Wavelength A —_
* Wave height H « Frequency o ]
- Water depth d Wa}[\rgemaker . Amplitude: ool
eory » Piston: distance (s) 500 1
 Flap: angle (a) N

T T T T T T
o 10000 20000 30000 40000 50000

> FPM in aeronautics > VPS Conference, Prag, 20.06.2024 Time (ms)




1. Ditching research (Influence of rough water) /12024

VPS User Conference DLR

Wave generation in a water domain =» validation
« Target: Calculation of input parameters to achieve waves with 30m length and 1.0m height

* Run piston and flap simulations with different FPM timestep parameter FPMDTMAX (30-60 ms!) biston: EPMDTMAX 30
Piston: FPMDTMAX 60

» Detailed analyses of wave pattern Flap: FPMDTMAX 30
« Wave length between 29 and 30 m { |
« Wave height between 0.9 and 1.0 m { - e =

* Almost no influence of FPMDTMAX {
(just computing time)

PRESSURE (GPa) (E-0E)

Pressure on the side wall / prop. to water height
> FPM in aeronautics > VPS Conference, Prag, 20.06.2024




1. Ditching research (Influence of rough water) /12024

VPS User Conference

DLR
Exemplary application of FPM for ditching, Landing phase (1/3)

Transfer to aircraft ditching on waves: 2 stage approach with adapted runtime parameters (e.g. timestep)

PANDORA
225/ 22400.001953

FPM : Transiational_Velocity Z
Min = -1,14835 at Ele 95522
07 at Ele 3193

1.2008400 Phase 1: 0<t< 30 sec

1.040e+00 a

o Wave generation phase

7.200e-01 PANDORA 369 / 30680.000000
5.600e-01 4 '

PM  Tansatonal_Velcty 2
ln = 21,734 ot Ele 216736
Max = 71.4802 at Ble 293136

4.000e-01

i \\ s Phase 2: 30 <t< 31 sec \
8.000e-02 1.040e+00 . .

8000602 8800001 Ditching phase

-2.400e-01 7:2000:01

5.600e-01
-4.000e-01
-5.600e-01
-7.200e-01

4.000e-01
2.400e-01

-8.800e-01
-1.040e+00

— 8.000e-02

— -8.000e-02

-2.400e-01

-1.200e+00 -4.000e-01
z ~43% g \

o e A S S K B B B

! -7.200e-01
X

-8.800e-01

~57%

-1.040e+00

-1.200e+00

Timestep: 30 ms (1000 Iterations) _ _
0:55 h (64 Cores) Timestep: ~ 0.8 ms (1058 Iterations)

1:13 h (64 cores)
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1. Ditching research (Influence of rough water) /12024

VPS User Conference DLR

Exemplary application of FPM for ditching / landing phase (2/3)

Evaluation of 2nd stage (ditching)

PANDORA

) . 301 /30000.001953
FPM : Translational Velocity Z

Min = -1.01482 at Ele 24135
Max = 1.14373 at Ele 9845

1.2008400 « Numerically stable solution
e « Initial position slightly too high
7.200e-01 (|0ng free ﬂlght periOd)

5.600e-01
4.000e-01

_ -8.000e-02 il e —== s i

_ -2.400e-01
— -4.000e-01 NODE — O3 NODE —o
-5.600e-01 ° — C0G Translational_Displacemer t_Z
-7.200e-01 400 aal —— COG Rotational_Displacement
-8.800e-01 : 2,
- i
-1.040e+00 = :
= E 2
-1.200e+00 : 2
& 1500 = .
z t= | Pitch angle
a T
00000 H . g
COG displacement
X -2400
nnnnn
04 306 20 302 0.4 306
TIME imillisec) (E+03) S TIME (millisec) (E+03
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1. Ditching research (Influence of rough water) /12024

VPS User Conference DLR

Exemplary application of FPM for ditching / landing phase (3/3) _

—— COG Rotational_Displacement_v
= C0G Rotational_Displacement_y
= C0G Rotational_Displacement_y

Evaluation of 2" stage (ditching) with variation of initial position /\ — |

2°”r | A Pitch angle
- =
. (Reference) | g
v = e " e ' Naam w "Wﬂ‘ Jam

PV

i |

201/ 30999.998047

XO (+ 10 m) o P 7 o5 w5 31

u TIME (rmillisecy (E+03) Pt
L D
s e = A - -1 Calm water

NODE B

—

201 /30999.998047

Xo (+20 m)

) N __ X velocity
_m - W w -l
— COG Translational _velocity_X

— C0G Translational _Welocity_X
—— COG Translational_velocity_x

—— 000G Translational _Velocity_H

=0l
201/ 30999.996094

)
T “-ﬁ - N HFW““WLW"‘

t = 30000 ms t = 31000 ms

YELOCITY {mmims)
]
(=]

Pl —

L L L L
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1. Ditching research (Influence of rough water) /12024

VPS User Conference DLR

Exemplary application of FPM for ditching / floatation phase

Investigation of the static floatation characteristics of generic aircraft model
= Development of an automated process for fixed wing aircraft /

= Automatic generation of aircraft surface
(based on common aircraft description format CPACS (www.cpacs.com))

= Positioning almost in equilibrium using analytical approach in inhouse tool PANDORA
» Prediction of the waterline state compared to the door sills

= |nfluence of different type of waves and wave heights on dynamic waterline

l 0.780
0.607
L 0433
_ 0260

— 0.087
-0.087

Evaluation of waterline (calm water)

> FPM in aeronautics > VPS Conference, Prag, 20.06.2024




2. Sloshing in LH2 tanks (since 2023) C/12024

VPS User Conference DLR

LH2 can be an alternative to fossil fuels to achieve a climate-neutral aviation

LH2 for aviation has to be stored at cryogenic temperature (~-250°C) at pressures of 2-4 bar

Therefore, special tanks have to be integrated in the fuselage (or in specific wing pylons)

LH2 tanks will consist of inner /
outer tank with isolation

- |
; .‘ KPALCEEEAEES] [ERIEAXESEE Ry Fasbi AP EEILESERAN |
Cha”enges R Py RN

roiosy oTDLRESE rea? fusel .einte ration
= LH2 tanks shall not bear /mmtegraf:niﬁ ’
. . . metal or composite tank structure
flight loads (design question) Sl conical tank

LH2 pipes outside
cryogenic condition

outer tank (20 °C)
e.g. maintenance of insulation

insulation (t = 50-100 mm)
inner tank (-253°C)

e.g. load carrying tank structure:
LH2 mass, pressure, sloshing

» LH2 tanks have to be save in
emergency situations
(e.g. crash landing)

airframe

A o
= SIOSh I ng Of the LH 2 may be a LH2 systems sloshing  fuselage production break frrt;fit;‘lr;i!elrzrmjx.(I."T".-gﬁgtggtcehraaaagt?risﬁcs
hall for t k d I d outside the tank buffles  tank feg'acgment tank mounts - & nal: longitudinal stiffeners
C a e n g e O r an eS I g n an flexible bearing dependent on tank length and mount concept
especially its attachments e st
foam high vaccuum + MLI
1 structural tank (inner tank) 2 structural tanks (inner + outer tank)

> FPM in aeronautics > VPS Conference, Prag, 20.06.2024 outer tank with ribs




2. Sloshing in LH2 tanks C/i12024

VPS User Conference DLR

Purpose of first feasibility study (in progress)

Evaluation of structural loads on realistic tank structure (at the tank attachments

Focus on structural loads / not on details of flow physics

Consideration of different load cases (e.g. rejected take-off (~40 s), crash loads )

Studies shall include:

= Evaluation of numerical methods to model FSI phenomena (SPH vs. FPM)

= Modelling of loading conditions
» rotated acceleration vector (commonly used)
» real tank movement (required for crash)

= |nfluence of baffles in the tanks

> FPM in aeronautics > VPS Conference, Prag, 20.06.2024




2. Sloshing in LH2 tanks C/i12024

Basic comparison of FPM with alternative approaches VPS User Conference DLR

» Box (rigid) of 1 x 1 x 1 min shells (coarse mesh)

* Fluid representation

= FPM:
= Just free surface definition at z = 500 mm, Smoothing length 100
= Predefined water properties in VPS
» Cube as wall definition

= Hydrodynamic solids (HS):
» Mesh of solid elements generated within tank (~50 mm edges)
» distance to tank 1 mm in all directions =» 124.251 g per element
= Water properties : Hydrodynamic solid (MAT7) with polynomial EOS
= Contact (type 34) thickness: 1mm

= SPH:

» Positioned at COG of all hydrodynamic elements (identical density)
= 124.251 g per particle

» |dentical water properties with material type 7 and polynomial EOS
» Contact (type 34) between tank and particles, contact Thickness 25.9 mm

=  Additional SPH CONTROLS card

4000 solids

4000 particles

> FPM in aeronautics > VPS Conference, Prag, 20.06.2024




2. Sloshing in LH2 tanks C/i12024

Basic comparison of FPM with alternative approaches VPS User Conference DLR

» For the three alternative fluid modelling option the following two loading conditions have
been analyzed =» total of six variations! "

tank
acceleration

= Loading 1: similar to rejected take-off (tank moves)
= Totaltime: 6 s

]
T

= Acceleration +0.4 g for 3 s (linear increase over first second)

(=]

ACCELERATION {mmims"2) {E-03)

= Deceleration of -0.2 g for 3 s (linear change over 1 second) \
=> max. velocity: ~11.4 m/s 2k | | |
=> total distance: ~42 m S

=0

= Loading 2: acceleration purely on fluid
(tank fixed) 1

= Total time: 6s

T friy (E+03)

= |dentical acceleration pulse

0 1000 2000 3000 4000 5000 6000 Q 1000 2000 3000 4000 5000 6000

> FPM in aeronautics > VPS Conference, Prag, 20.06.2024 TIHE (millizec)




2. Sloshing In LH2 tanks (comparison of FSI methods) C/i12024

A WiV N| £
PANDORA PANDORA PANDORA D LR
, , 1/0.000000 , , 1/0.000000 , , 1/0.000000
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Min = 0 at Node 1 Min = 0 at Node 1 Min = -4 0709a-08 at Ele 1205
Max = 0 at Node 1 Mazx = 0 at Node 1 Max = 4.18086e-08 at Ele 920
-
= 3
o
S o
© C e — ;1205
© = .
© b f
- 2 ' |
z z zl |
xd xt xd |
‘_t M-1 ‘_1 E+o20
PANDORA PANDORA PANDORA
. ) 1/0.000000 _ ) 1/0.000000 _ . 1/0.000000
U NODE : Translational Velocity Z NODE : Translational_Velocity Z FPM : Tmnslational_Velocity| Z
 — Min = 0 at Node 1 Min = 0 at Node 1 Min = -7 454268-06 at Ele 27
-} Max = 0 at Node 1 Mazx = 0 at Node 1 Max = 7.57287e-06 at Ele 1206
g
c
.. O
AN . i
o3
£ © |2z o d | R e . F11206
T - : '
© X< .
o C ] ]
S
8 Z Z Z:
X l l l |
I |
N-1 4_1 N-1 t ,_1
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Loading 1:

Loading 2:
Fixed tank, acc. on fluid

2. Sloshing in LH2 tanks (comparison of FSI methods)

C/i2

AW inYall NI LD

PANDORA

MODE : Translaticnal_Velocity Z
Min = -0 487105 at Node 11804
Max = 0491976 at Mode 10848

Moving Tank
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PANDORA

FPM : Translational_Velocity Z
Min = -0.605374 at Ele 935

Max = 0.587858 at Ele 24240

19 / 3600.000000

P1W3

PANDORA

FPM : Translational_Velocity Z
Min = 0556889 at Ele 1091
Max = 0.631358 at Ele 49

= O
19 / 3600.000000
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2. Sloshing In LH2 tanks (comparison of FSI methods) C/i12024

PANDORA =0 PANDORA =B PANDORA =0 DLR
) | 28/ 5400.013184 ) | 28 / 5400.000000 ) ) 28 / 5400.000000
MNODE : Translational_Velocity 2 NODE : Translaticnal Velocity 2 FPM : Translational _Velocity| 2
Min = £ .130545 at Node 11291 Min = 40.0332098 at Node 100504 Min = 40.254454 at Ele 8160
Max = 0.1584 38 at Node 11138 Max = 0.0301 449 at Node 103840 Max = 0.270604 at Ele 1882
'
B -
1 ®
(@)l o
E (@)] N-108840
T C
© =
© b o
- 2 ; %;?’;%-1 8821
z z
1 N-100504
P1W1 —_— P12 P1W3
PANDORA =0 PANDORA =0 PANDORA =B
) | 28 / 5400.017090 ) | 28 / 5400.005371 ) ) 28 / 5400.000000
-O MNODE : Translational_Velocity 2 NODE : Translaticnal Velocity 2 FPM : Translational _Velocity| 2
" — Min = 00398135 at Node 11747 Min = 40.0252484 at Node 100763 Min = 0. 1B0208 at Ele 1157
: Max = 0.0402658 at Node 10872 Max = 0.0256641 at Node 101017 Max = 0.195292 at Ele 1096
—
c
.. O
(q\| .
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£ © L
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2. Sloshing in LH2 tanks C/i12024

VPS User Conference DLR
. . . SECTION — B34
Comparison of reaction forces / computing costs ; —
x-force (inertia force)
Method | loading Iterations | Elements | Computing RTge R
/points time (laptop) 2 ;L - ' *‘r",-.'
. i -
HS Moving 344609 4000 00:01:57 ' i
HS Acc.onH20 | 347129 4000 00:02:11 f
SPH | Moving 819654 4000 01:10:19] | | & 1
z (| i
SPH | Acc.onH20| 833582 4000 01:11:02| |2 | 4 i
FPM Moving 1736 26174 00:16:25 | |#
FPM | Acc. on H20 306 23344 00:02:59 Rigid mass |
_ o HS, Moving
« HS are cheap, but considered limited to moderate flow SPH, Moving ‘ ot
(finally not usable in general) .| FPM, Moving . . it .
« SPH is very expensive compared to FPM (due to small | ‘W bt
timestep / many iterations) SPH, Acc. on Fluid
« FPM is the easiest method to set-up the model FPM, Acc. on Fluid
(just definition of free surface plane) K 1000 2000 3000 4000 5000 sace

= FPM shows highest potential (will be used for tank sloshing)
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2. Sloshing in LH2 tanks C/i12024

Reference simulation for LH2 fuel sloshing VPS User Conference DLR

Loads during LH2 sloshing at rejected take-off
(DLR-AS)

_ ]
= Volume Of F|Uld (VOF) MethOd ___!_wa-.;w;w. y;u;w;):uy:"ju ""'J'JJ;'/'»./JU'JJL"JJII '. --m
(DLR inhouse incompressible flow solver) . —

» Tank filled up to ~half of volume with LH2 T
. =76.10m/
= Considered load case 2. 00mi

Total force in x-direction

= Total time: 40s — /
= Acceleration +0.4g for 20s 3°°°'%W A }L\W Rigid Body | |

= Deceleration of -0.2g for 20s - ] T

= Max. speed: ~79.3m/s = m: |
=>» Total distance: ~2000m ) o0 ﬂ h | |
LA

time [s]

Source: HYTAZER Meeting in spring 2023 (DLR-AS)
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2. Sloshing in LH2 tanks C/i12024

Comparison with reference simulation VPS User Conference DLR

» | H2 density and viscosity as used by DLR Colleague AS
= Density: 72.20E-09 kg/mms3

= Dynamic Viscosity: 1.48E-11 GPa ms [1] Total f _ N .
(other literature quotes: 1.14E-11) otal force in x-direction

= Surface Tension: 0 (default, recommended) \ —— Slosh

3000 1 st i ‘ ——~- Rigid Bed
= Loading by rotation of acc. vector RIRVRURVAY II VIRV

I . \
(tank fixed in all DOFs) 2000 Y U * %W | Theta code, AS
| L FPM , SL100, AS prop.

1000 1

1.500e+00
1.300e+00

F x [N]
FURLE (KN)

o
I

5.000e-01
__ 3.000e-01

1.000e-01

-1.000e-01
__ -3.000e-01
-5.000e-01
-7.000e-01
-9.000e-01
-1.100e+00 —3000 1 =t

1 1 L
¥ ‘."‘:"N Aeig: [} 5 10 15 z0 z25 20 35 0
-1.300e+00 il p AN a DI T

—1000

—2000 =t

1.100e+00
9.000e-01
7.000e-01

-1.500e+00 ES e SR 0 5 10 15 20 25 30 35 40
E 4 " calc. time: 03:22:49 time [s]
Nie (128 cores)
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2. Sloshing in LH2 tanks C/i12024

Influence of baffles VPS User Conference DLR

Question: how can a baffle in the tank be modelled and what is the influence on the loads?
= A baffle is an additional wall inside the tank that suppresses the sloshing
= Avery simple model has been added to the tank

» Simulations were performed with smoothing length 100 / 200 and some volume correction

=0 PANDORA =0X
1/0.000000 1/0.000000

= Very simple wall with 12 segments FANDORA
of 300mm height have been added

= Only segments 3 to 7 have been
selected for FSI contact

= Wall is not considered in FPM
initialization (INIT_WET NO)!

PEW1 PEW2

Segments in WALL definition
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2. Sloshing in LH2 tanks

Influence of baffles

Question: how can a baffle in the tank be modelled and what is the influence on the loads?

c/i12024

VPS User Conference

PANDORA

FPM : Translational_Velocity Z
Min = -0.900687 at Ele 569225
Max = 0.590231 at Ele 451305

1.500e+00

1.300e+00
1.100e+00

9.000e-01
7.000e-01 /g

_ 500001 |

3.000e-01 |
__ 1.000e-01
_ -1.000e-01
-3.000e-01
-5.000e-01
-7.000e-01
-9.000e-01 |
-1.100e+00 \
-1.300e+00
-1.500e+00

109 / 21600.000000

1'/;

PANDORA

FPM : Translational_Velocity Z
Min = -1,86902 at Ele 58855
Max = 2.90457 at Ele 161677

109 / 21600.000000

Significant reduction of flow in tank © (SL100, Acc. Loading)
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2. Sloshing in LH2 tanks C/i12024

Influence of baffles VPS User Conference DLR

Question: how can a baffle in the tank be modelled and what is the influence on the loads?

SECTION — B3

« Significant reduction of the loads Al M &/ﬁ Q"(m ﬂAﬂ ﬂ
on the tank can be achieved with U U U U v \I UVV Uv\

the baffle

« Simulation time increased by about
15-20% (SL100 and SL200)

= 1
é ‘ Section foarce type SUPFORT Section_Foaorce_
L Section force type SUPFORT Section_Foaorce_
E Section force type SUPFORT Section_Foaorce_
f= ]
s
4| Sloshing, no baffle \
Sloshing, with baffle
Rigid fuel mass 7 7Y J TS
-30 2I() 40

TIME (millisec) (E+03)

> FPM in aeronautics > VPS Conference, Prag, 20.06.2024




2. Sloshing in LH2 tanks C/i12024

Influence of baffles VPS User Conference

Question: how can a baffle in the tank be modelled and what is the influence on the loads?

SECTION — B3z

Sloshing, with baffle
Sloshing, force on hull

FORCE (kM)

« Loads introduced by baffle can be
analyzed in detail

: Total force
Fx: Force on hull
Fx: Force on baffle

TIME {rmillisec) (E+03)
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2. Sloshing in LH2 tanks C/i12024

Influence of baffles (alternative designs) VPS User Conference DLR

Reference model from previous study (baff = reference)
Modelling of flow over baffle possible / feasible = change of baffle height (baff2 = lower)
Alternative baffle design with cut over height =» baff3 = gap

PANDORA = [0 2¢|| PANDORA =) PANDORA

= =)
1/0.000000 1/0.000000 1/0.000000

PEW2

Finally Smoothing length 100 has been used for all simulations
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2. Sloshing in LH2 tanks

Influence of baffles (alternative designs)

c/i12024

VPS User Conference

DLR
Flow in Tank after change of acceleration vector (t = 21.2 )
PANDORA =0 PANDORA =0a PANDORA =0
107 / 21200.000000 107 / 21200.000000 107 / 21200.000000

FPM : Translational_Velocity £
Min = -2 42034 at Ele 434125
Max = 2.61581 at Ele 447551

1.500e+00
1.300e+00
1.100e+00
9.000e-01
7.000e-01
5.000e-01
3.000e-01
1.000e-01
-1.000e-01
-3.000e-01
-5.000e-01
-7.000e-01
-9.000e-01
-1.100e+00
-1.300e+00
-1.500e+00

baff = reference

FPM : Translational_Velocity £
Min = -2 47856 at Ele 61720
Max = 2.64055 at Ele 445018

1.500e+00
1.300e+00
1.100e+00
9.000e-01
7.000e-01
5.000e-01
3.000e-01
1.000e-01
-1.000e-0
-3.000e-0
-5.000e-01
-7.000e-01
-9.000e-01
-1.100e+00
-1.300e+00
-1.500e+00

baff2 = lower

FPM : Translational_Velocity £
Min = -2.30434 at Ele 260454
Max = 2.28175 at Ele 187632

1.500e+00
1.300e+00
1.100e+00
9.000e-01
7.000e-01
5.000e-01
3.000e-01
1.000e-01
-1.000e-01
-3.000e-01
-5.000e-01
-7.000e-01
-9.000e-01
-1.100e+00
-1.300e+00
-1.500e+00

baff3 = gap
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2. Sloshing in LH2 tanks C/i12024

Influence of baffles (alternative designs) VPS User Conference DLR
. . 4 SECTION @
» Different baffle designs can
be modelled
3L
. . Sloshing, with baffle
» Loads acting on smg!e baffle Sloshing, with baffle2
can be analyzed easily . Sloshing, with baffle3
I —ref., Fx: Force on hull
—ref., Fx: Force on baffle
* Flow over baffle can be - baff2, Fx: Force on hull
modelled without causing i —— paMl, Fx: Force on hul
num. trouble A
= 0 ——-—;—Lr,—J—-— e s e e
AL
2+
-30 2|0 40

TIME {millisec) (E+03) P
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Summary / Outlook C/i12024

VPS User Conference DLR

= FPM incompressible flow solver could be used in several applications in Aeronautics
» The application delivers feasible results on almost all these fields

= However, further validation is ongoing for ditching and sloshing applications
(especially in Combination with thin flexible structures)

= Scientific papers are planned to be published in near future

= Next presentation with application of FPM method
D. Kohlgrtber, M. Petsch, C. Leon-Munoz, P. Schatrow, M. Waimer:
‘A Process to evaluate fuselage structural loads caused by sloshing in liquid hydrogen tanks’,
Deutscher Luft- und Raumfahrtkongress’, 30.09 — 02.10.2024, Hamburg

Thanks for your attention

Questions? = dieter.kohlgrueber@dir.de
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