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Abstract: Since active flutter suppression technologies could lead to more efficient aircraft,
they are acquiring increasingly importance and research activities relying on wind tunnel demon-
strators are flourishing to gain experience and knowledge. Aeroelastic models employed for
control activities are traditionally based on Generalized Aerodynamic Forces (GAFs) computed
through DLM in reduced frequency domain. The main limitation of this approach is that com-
pressible flow exhibits nonlinearities which are not captured by DLM. To overcome this short-
coming, this paper solves the governing equations of motion in time domain coupling a struc-
tural dynamic solver and CFD Euler aerodynamics. The aeroelastic system is excited to identify
the CFD GAFs which are coupled with the structural matrices yielding a more accurate state
space realization of the aeroelastic system suited for control design activities. The state space
realizations are then exploited to design H∞-based flutter suppression controllers, which are im-
plemented in the fully coupled computational fluid/structural dynamics solver to demonstrate
the damping augmentation capabilities of the compensators. The approach is demonstrated on
a realistic aeroelastic system and comprehensive nonlinear computations using controllers syn-
thesized based on GAFs either computed via Euler CFD or uncorrected DLM are presented.
Differences in the results, even at subsonic Mach numbers, will be explained based on com-
parative analyses of the different pressure fields, highlighting the benefits of using high-fidelity
aerodynamics.

1 INTRODUCTION

Aeroelastic flutter is a type of instability that involves the adverse interaction of unsteady aero-
dynamics with structural dynamics and produces an unstable oscillation that often results in
structural failure [1]. Conventional aircraft are designed in compliance with the Federal Avia-
tion Administration (FAA) [2] and the European Aviation Safety Agency (EASA) certification
specification 25.629 [3] such that flutter does not occur within the range of their operating con-
ditions. A comprehensive overview on active flutter suppression (AFS) activities is provided
in [4].

To date, the majority of the experimental activities that successfully demonstrated flutter sup-
pression relied on classic or robust control methodologies which require the equations of motion
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(EOMs) of the aeroelastic plant to be cast in a linear time-invariant (LTI) state space form. State
space realizations are derived either from theoretical principles or numerically via Finite Ele-
ment (FE) models coupled with vortex-lattice method (VLM)\doublet-lattice method (DLM)
aerodynamics [5, 6]. The former modelling approach was employed by Schildkamp et al. [7]
to demonstrate AFS on a wing apparatus that resembles the two-dimensional wing section of
Theodorsen [1], as well as within the NASA Benchmark Active Controls Technology (BACT)
program [8–10]. In this program, the EOMs describing the dynamics of a rigid rectangular
straight wing, capable of plunging and pitching, were refined by substituting the unsteady aero-
dynamic coefficients with their identified values. This refinement aimed to better capture the
aeroelastic behavior in the transonic regime.

When dealing with more elaborate configurations such as Unmanned Aerial Vehicles (UAVs) or
complete aircraft wind tunnel models, the modelling approach based on FE models and DLM
aerodynamics stands out as the most convenient option. This approach paved the way for the
synthesis of a large variety of flutter suppression controllers within the experimental campaigns
carried out on the X-DIA and F-XDIA models in Politecnico di Milano within the last 15
years [11–14]. In-flight demonstrations of AFS that relied on a similar modelling approach for
the synthesis of the compensator are the activities carried out on the X-56A research vehicle
developed in a joint effort between NASA centers and Boeing [15,16], and in the context of the
European FlexOp [17] and FliPASED1 projects.

The common denominator of the above mentioned demonstrators is that they are immerse in
subsonic incompressible flow, whose dynamics is properly captured by potential solvers such
as DLM that is the state-of-the-art method used for predicting unsteady airloads. It is based on
potential theory for thin wing geometry. Therefore, it cannot account for the wing thickness
or capture recompression shocks and boundary layer separation. To overcome these limitations
typical of the transonic regime, DLM corrections based on wind tunnel data or computational
methods of higher fidelity can be employed. Flutter suppression controllers derived from higher
fidelity aerodynamics have been synthesized in multiple numerical investigations [18, 19]. Par-
ticularly relevant is the work carried out by Weite et el. [20], where Reynolds-averaged Navier-
Stokes (RANS) equations were simulated to train reduced-order models (ROMs) to be used
for control synthesis. The synthesized controllers are afterwards tied to the RANS solver to
demonstrate AFS within a computational aeroservoelastic (ASE) model that uses a nonlinear
aerodynamic solver on a realistic airplane configuration. However, these endeavors remained
limited to numerical investigations. Since wind tunnel experiments focusing on AFS at high
Mach numbers are thriving (e.g. the American sub-project IAWTM [21] and DLR project
ACTIVATE), the development of generalizable ASE modelling and analyses methodologies to
support testing in compressible flows assumes a key role.

The goal of this work is to demonstrate a workflow ranging from the generation of ASE state
space realizations based on computational fluid dynamics (CFD) data up to AFS controller
synthesis, and post-synthesis verification of the closed-loop (CL) performance in a nonlinear
simulation framework. The simulation environment utilized in this study is PyCSM, a soft-
ware developed by Neumann [22] that solves the EOMs in time domain by embedding the
DLR TAU-Code [23] for the prediction of unsteady airloads and by carrying out all the nec-
essary CFD-Computational Structural Mechanics (CFD-CSM) couplings. PyCSM is further
enhanced with a mesh deformation module to permit control surface deflections, along with a
simplified actuator dynamics that includes amplitude and rate saturation as elaborated in [24].

1https://www.dlr.de/en/latest/news/2023/03/scientists-tame-dreaded-aviation-phenomenon
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The enhanced software is named PyCSM-ASE. To demonstrate the feasibility of the proposed
workflow and the capabilities of PyCSM-ASE, the application of the TAU-Code is restricted to
solving Euler aerodynamics. This decision is made to circumvent complexities associated with
selecting turbulence models and defining boundary layers.

The structure of the manuscript reflects the steps of the proposed workflow. The theoretical
principles for the linearization of the generalized aerodynamic forces (GAFs) and the genera-
tion of ASE state space realizations based on CFD data are discussed in Section 2. Section 3
formulates the control objective pursued in this study and details the structure of the controller
utilized to address it. An overview of the process flow of PyCSM-ASE is elucidated in Section
4. Numerical investigations are conducted replicating the characteristics of the BACT wind-
tunnel model which is representative of a generic aeroelastic plant. Its geometry is described in
Section 5, which also encompasses comparisons between state space realizations generated via
Euler CFD and those obtained through uncorrected DLM at varying Mach numbers, alongside
numerical results derived from nonlinear simulations in PyCSM-ASE. Concluding remarks are
provided in Section 6.

2 AEROSERVOELASTIC MODELLING

The nonlinear time EOMs that describe the dynamics of a flexible aircraft expressed in its modal
coordinates read

Mhhüh(t)+Bhhu̇h(t)+Khhuh(t)+Mhcδ̈(t) = ϕT
ghϕ

T
jgfj(t,uh, u̇h, üh, δ, δ̇, δ̈,wg,p, geometry)︸ ︷︷ ︸

fh(t,uh,u̇h,üh,δ,δ̇,δ̈,wg,p,geometry)

(1)
where Khh, Chh, and Mhh denotes the generalized stiffness, damping and mass matrices respec-
tively, Mhc is the generalized coupling mass matrix which enables to account for the inertial
forces due to a control surface deflection, uh, u̇h, and üh (δ, δ̇, and δ̈) are the generalized co-
ordinates (control surface deflections) and related derivatives. The vector fj(·) describes the
aerodynamic forces which are computed at the aerodynamic degrees-of-freedom (DOFs) de-
fined either by the corner of the CFD mesh that models the wet surface of the configuration or
the 3/4 points of the DLM panels. This set of DOFs is denoted as the j-set. The projection of
fj(·) on the modal DOFs, i.e. the h-set, yields the modal aerodynamic forces fh(·). The projec-
tion is accomplished by means of the matrix of eigenvalues ϕgh and the CFD-CSM coupling
matrix ϕjg which is necessary to transfer the displacements from the structural DOFs defined
by the FE model, i.e. the g-set, to the aerodynamic DOFs according to uj(t) = ϕjgug(t)

2. The
vectors wg and p serve to describe the dependency of the aerodynamic forces from the wind
speed, namely perturbations of the steady flow, and the parameters that describe the flow con-
ditions, e.g. asymptotic Mach number M∞, dynamic pressure q∞, fluid viscosity µ∞, Reynolds
number Re, etc.

In Eq. (1) the nonlinearity originates from the non homogenous term, as the unsteady aerody-
namic forces fj(·) are in general a nonlinear function of the various parameters. Equation (1)
is further augmented with the actuators dynamics which is described by a set of differential
equations of the form

{δ, δ̇, δ̈} = fact(t, δc) (2)

2Based on the principle of virtual work one can show that also the forces are transferred through the coupling
matrix according to fg(·) = ϕT

jgfj(·)
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where fact(·) denotes a nonlinear set of functions which depends on the specific actuator dynam-
ics as well as on its kinematic chain, whereas δc is the vector of commanded control surface
deflections. Common nonlinearities which are modelled by fact(·) and have an influence on the
overall ASE performance comprise backlash, free play, or rate and deflection limits [24]. Gen-
erally, an additional set of differential equations which describes the sensor dynamics is also
added. This set of equations reads

y = fsens(t,uh, u̇h, üh, δ, δ̇, δ̈,p,wg) (3)

where the dependency on p is necessary to model pressure transducers and wg is necessary for
the numerical modelling of lidar-based sensors. Finally, sensor measurements are elaborated by
the specific controller f̂(·) which provides the new commanded deflection to be delivered to the
actuators to achieve the specific control target, namely

δc = f̂(t,y, δtrack) (4)

where δtrack describes the pilot command to be tracked. The connection of Eqs. (1), (2), (3),
and (4) provides the most general description of an ASE system and they are solved through
PyCSM-ASE as detailed in Section 4. Figure 1 provides an illustration of the interconnection
between these equations.

fact(·) f̂(·) fsens(·)

Mhh,Bhh,Khh, fh(·)

p,wG

δtrack

δc y

uh, u̇h, ühδ, δ̇, δ̈

Actuators Controller Sensors

Aeroelastic plant

Aeroservoelastic system

Figure 1: Schematic interconnection of equations.

2.1 Linearization of Unsteady Aerodynamic Forces
To be suitable for control activities, Eq. (1), (2), and (3) must be formulated in a LTI form.
Whereas linear identification techniques for the characterization of fact(·) and fsens(·) are broadly
employed, the linearization of the term fh(·) that describes the unsteady aerodynamic flow over
the aeroelastic configuration represents a main hurdle. Typically, fh(·) is characterized by means
of its frequency response which is computed running forced motion simulations using harmonic
excitations for the mode shapes or control surfaces of interest. In subsonic flows this is carried
out through DLM that is founded on linear potential theory. Based on the linearity of the
method, the superposition principle is applied to split the unsteady aerodynamic forces into
their basic contributions as

fh(·) = fh
aero(t,uh, u̇h, üh,p, geom.) + fh

cs(t, δ, δ̇, δ̈,p, geom.) + fh
ext(t,wg,p, geom.) (5)
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where fh
aero(·), fh

cs(·), and fh
ext(·) are the time dependent aerodynamic forces due to structural

modes, control surface deflections and atmospheric perturbations, respectively. The frequency
responses are then approximated as

fh
aero(ik,M∞, q∞) = q∞Qhh

DLM(ik,M∞)uh(ik)

fh
cs(ik,M∞, q∞) = q∞Qhc

DLM(ik,M∞)δ(ik)

fh
ext(ik,M∞, q∞) = q∞Qhg

DLM(ik,M∞)wg(ik)

(6)

where k is the reduced frequency, Qhh
DLM, Qhc

DLM, and Qhg
DLM are the generalization of

fh
aero(·), fh

cs(·), and fh
ext(·) respectively, i.e. the so-called Generalized Aerodynamic Forces

(GAFs). In the DLM framework the dependency of fh
aero(·), fh

cs(·), and fh
ext(·) from p boils

down to the asymptotic Mach number M∞ and dynamic pressure q∞. Since DLM describes an
inviscid and irrotational flow, phenomena such as shock effects and boundary layer separations
are not accounted. Effects of lifting surfaces thickness are also not captured, whereas twist and
camber characteristics can be modelled correcting the direction of the normal vectors of the
panels. However, these corrections are reliable only for limited degrees of twist and camber,
hence being unsuitable for accurately modeling highly curved or intricate geometries. Despite
that, DLM is state-of-the-art for the linearization of unsteady aerodynamic loads in industrial
aeroelastic analyses and it is here employed as a reference. Specifically, the DLM formulation
employed in this manuscript is the one from the aeroelastic software package ZAERO [25].

To enhance the accuracy of GAFs computations, this work proposes to run forced motion sim-
ulations in the time domain within a CFD framework that solves Euler equations. The aerody-
namic frequency response can then be calculated assessing the frequency content of the time
domain forces through a Fast Fourier Transform (FFT) algorithm. To generalize fh in a form
consistent with Eq. (5), the modes of the system, as well as the control surfaces, are excited via
mesh deformation with a pulse excitation of the form

uhi(t) =

4 · ui

(
t
t0

)2

e

(
2− 1

1− t
t0

)
if 0 ≤ t < t0

0 if t ≥ t0

δi(t) =

4 · δi
(

t
t0

)2

e

(
2− 1

1− t
t0

)
if 0 ≤ t < t0

0 if t ≥ t0

(7)

where ui and δi define the amplitude of the excitation and t0 the duration of the signal correlated
to its frequency content. Lower values of t0 lead to broader frequency spectra. Since most of the
aeroelastic phenomena of interest are happening at low frequencies, the value of t0 is adjusted
depending on the flow conditions to achieve an excitation with a spectrum that has 98% of its
content below k = 2.0. The values of the Euler-based GAFs Qhh

Eul and Qhc
Eul are computed

column by column as

Qhh
Eul[:, i] =

fft
[(
fh(t, . . . )− fsteady

)
/q∞

]
fft(uhi(t))

Qhc
Eul[:, i] =

fft
[(
fh(t, . . . )− fsteady

)
/q∞

]
fft(δi(t))

(8)

where Qhh
Eul[:, i] (Qhc

Eul[:, i]) denotes the ith column of Qhh
Eul (Qhc

Eul) and fsteady is the con-
verged state of a precomputed static aeroelastic simulation. The so-computed GAFs are able to
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capture compressibility and general complex geometries, namely

Qhh
Eul = Qhh

Eul(ik,M∞, ρ∞, geometry)

Qhc
Eul = Qhc

Eul(ik,M∞, ρ∞, geometry)
(9)

The main steps for the computation of Qhh
Eul and Qhc

Eul are summarized in Algorithm 1. The
computation of the frequency response fh

ext(ik) that appears in Eq. (6) can be accomplished
adopting the methodologies presented by Kaiser et al. [26]. However, this manuscript intro-
duces the excitation term as a direct time excitation fh

ext(t) in accordance with Eq. (5) to facil-
itate the comparison of the DLM and CFD performance in CL during the nonlinear simulation
assessments.

Algorithm 1 Computation of GAFs based on iterative CFD-CSM simulations.
Inputs:

• Generalized structural stiffness Khh, damping Bhh, and mass matrices Mhh

• Matrix of structural eigenvectors ϕgh and FE model geometry xg

• CFD mesh and coordinate of the wet surface xj

• Vector of parameters with simulated flow conditions p
• Amplitude of modal displacements ui and control surface deflection δi

Outputs:
• Euler-based GAFs Qhh

Eul(ik,M∞, ρ∞, geometry) and Qhc
Eul(ik,M∞, ρ∞, geometry)

Body algorithm:
1. Splining: Computation of the CFD-CSM coupling matrix ϕjh through the so-called scat-

tered data interpolation methods based on radial basis functions as proposed by Beckert
and Wendland [27]. Based on the interpolation approach, uj = ϕjgug and fg = ϕT

jgfj .
2. Trim: Computation of the trim state fsteady for the set of simulation parameters p by means

of the iterative algorithms presented by Farhat and Lesoinne [28].
3. Unsteady CFD-CSM simulations and GAFs identification:

for i := 1 : nh

➣ Impose uui (δi) according to Eq. 7.
➣ Solve for fh(t) in Eq. 1 through the iterative CFD-CSM procedure [22].
➣ Computation of Qhhi

Eul (Qhci
Eul) according to Eq. 8.

end for
where nh is the number of modes.

2.2 Linear Models for Control Activities

Regardless of whether the DLM or the proposed CFD-based procedure is employed, the aero-
dynamic models describing the flow over the aircraft are provided within the frequency domain
in tabular form and cannot be arranged in a LTI state space form by a direct application of the
inverse Laplace transform. In this manuscript, the LTI representation is accomplished through
vector fitting routines [29–31] which are applied to the GAFs computed in reduced frequency
domain yielding

Q(s) =
[
Qhh(s),Qhc(s)

]
≈ C

(
sI−A

)−1
B+D+ sE (10)

where s is the reduced Laplace variable computed as s = sL/V∞ consistently with the definition
of k. L represents a reference length of the aeroelastic system and V∞ the asymptotic true-air-
speed. The explicit state space realization that describes the input-output relationship between
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fh(·) and
{
uh, u̇h, δ, δ̇, fh

ext(t)
}

is derived from Eqs. (5) and (10) yielding

ξ̇a(t) = (V∞/L)A︸ ︷︷ ︸
Aa

ξa(t) + (V∞/L)B︸ ︷︷ ︸
Ba

{
uh(t), δc(t)

}
fh(t) = q∞C︸︷︷︸

Ca

ξa(t) + q∞D︸︷︷︸
Da

{
uh(t), δc(t)

}
+ q∞(L/V∞)E︸ ︷︷ ︸

Ea

{
u̇h(t), δ̇(t)

}
+ fh

ext(t)
(11)

where ξa(t) are the aerodynamic lag states that model the aerodynamic lag effects due to the
unsteadiness of the flow and matrix Ba is partitioned as Ba = [Bh,Bcs] likewise Da and Ea.
The realization defined by Eq. (11) is included in Eq. (1) to provide the state space model of the
aeroelastic system Sae. Explicitly

u̇h(t)
üh(t)

ξ̇a(t)

 =

 0 I 0
−M−1

hh Keq −M−1
hh Beq MhhCa

Bh 0 Aa


︸ ︷︷ ︸

Aae


uh(t)
u̇h(t)
ξa(t)

+ ...

...

 0 0 0 0
M−1

hh Dcs M−1
hh Ecs −MhhMhc M−1

hh I
Bcs 0 0 0


︸ ︷︷ ︸

Bae


δ(t)

δ̇(t)

δ̈(t)
fh(t)



uh(t)
u̇h(t)
üh(t)

 =

 [
I 0 0

]
I[

I 0 0
]
Aae[

I 0 0
]
A2

ae


︸ ︷︷ ︸

Cae


uh(t)
u̇h(t)
ξa(t)

+

 0
0[

I 0 0
]
AaeBae


︸ ︷︷ ︸

Dae


δ(t)

δ̇(t)

δ̈(t)
fh(t)



(12)

where Keq = Khh−Dh and Beq = Bhh−Eh. Finally, Eq. (12) is concatenated with the actuator
dynamics which is identified from Eq. (2) as Sact = [Aact,Bact,Cact,Dact] and the linearized
sensors dynamics Ssens = [Asens,Bsens,Csens,Dsens] to provide the state space realization of the
aeroelastic plant Spl to be controlled. In this work, only ideal accelerometers that measure
the accelerations in vertical direction are employed for the numerical realization of the sensor
dynamics. The realization of such ideal sensors is provided by

azi(t) = ϕgh[zi, :]üh(t) (13)

where zi denotes the index of the vertical DOF of point i. Further sensors might be selected
for feedback including displacements, velocities, accelerations, grid point forces, and sectional
loads.

3 CONTROL DESIGN METHODOLOGY

The aeroelastic plants generated as described in Section 2.2 are now employed for the syn-
thesis of flutter suppression controllers. The control strategy employed in this manuscript is
based on a simplified version of the H∞-control framework for modal damping attenuation pre-
sented by Theis et al. [32]. This framework enables to augment the damping of critical flutter
modes, while providing robustness against model uncertainty. Robustness is a key concern in
this manuscript to ensure that the controller works also in the fully nonlinear environment de-
scribed in Section 4. This H∞ framework tackles the flutter suppression problem considering
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the generalized CL shown in Fig. 2 where K(s) represents the generic LTI controller that elab-
orates the sensor measurements y ∈ Rny and feed them back as a commanded control surface
deflections δc ∈ Rnu , whereas We(s), Wu(s), and Wz(s) are weighting filters to be tuned
for mixed-sensitivity loop shaping. The performance output z ∈ Rnz depends on the specific
control objective.

Spl

K(s)

Wz(s)

Wu(s)

We(s)
z1

z2

z3zw

yδc

Figure 2: Illustration of the generalized closed-loop architecture for control design.

In this work, given an aeroelastic plant Spl operating under a specific flow condition ptest, cho-
sen to correspond to a flutter point, the design objective is to find a LTI controller K(s) that
accomplishes the following:

1. Performance requirement: stabilizes the aeroelastic plant Spl at ptest

2. Robustness requirement: ensure robustness with respect to modelling errors and neglected
dynamics

3. Rejects the disturbance w entering at the plant input
4. Posses roll-off characteristics to avoid high frequency modes excitation and noise ampli-

fication
5. Preserves the low-frequency behaviour of the aeroelastic plant to avoid deflection of the

control surfaces in steady-state
6. Generates control actions that remain within the saturation limits of the actuators.

Specifically, the CL system is considered stable when multi-input disk margins of 6 dB|45
deg are satisfied. These margins are also an additional metric for robustness verification. It
is to be noted that the problem is framed as a regulation problem, where tracking capabilities
are irrelevant and the output y serves as an error signal. Deterioration of stability for flow
conditions that are already stable is here not required to facilitate the synthesis of K(s) and the
illustration of the proposed workflow.

The performance requirement is fulfilled assuming the modal velocity of the flutter modes ξ̇
as the performance output z and penalizing the H∞-norm of the transfer function between w
and z3 = Wz(s)ξ̇. This approach directly increases damping of the flutter modes as already
demonstrated in the literature [24, 32]. Since the modal velocities ξ̇ already targets the specific
narrow frequency range of the aeroelastic modes, Wz(s) is selected as a diagonal static gain
such that ξ̇ is normalized to a magnitude of one. The weighting filter We(s) affects the rela-
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tionship z1 = WeHyw(s)S(s)w, thus shaping the disturbance sensitivity Hyw(s)S(s), where
S(s) = (I − K(s)Hyw(s))

−1 is the input sensitivity of Spl and Hyw(s) denotes its transfer
function from w to y, namely y(s) = Hyw(s)w(s). Since a peak sensitivity of less than two
implies a gain margin of at least 6 dB [33], We(s) is selected as a static gain of the form
We(s) = diag

(
We,1,We,2, . . . ,We,nz

)
with We,i ≤ 0.5 to limit sensitivity degradation to a

factor of two. The weighting filter Wu(s) distributes control authority across the frequency. It
is taken as a diagonal matrix with single elements parametrized as

Wu,i = Vu,i

(
s+ωL,i

s+0.01ωL,i

)2 ( s+ωU,i

0.01s+ωU,i

)2

(14)

to confine the control activity of the ith input in the frequency range between ωL,i and ωU,i,
whereas the value of Vu,i bounds the maximum controller gain. With this parametrization,
tuning is mainly performed through the static weights We,1 and Vu,i as the values of ωL,i and
ωU,i are imposed by the bandwidth requirements and require only minor modifications. Section
5 details the application of this controller to achieve stabilization of the BACT wing beyond the
flutter threshold across various Mach numbers.

4 NONLINEAR CFD-CSM-AFS COUPLING PROCEDURE

To evaluate robustness of the controller with respect to model variations and unmodelled dy-
namics, a verification in a simulation environment that includes actuator and aerodynamic non-
linearities is carried out. The environment is built upon the PyCSM software [22], which has
been enhanced to incorporate actuator dynamics and a mesh deformation module for imple-
menting flap deflections based on the aileron deflections provided by the actuators δ(t), thereby
evolving the software into a new version termed PyCSM-ASE. The PyCSM-ASE workflow is
illustrated in Figure 3. Note that the structure depicted in Figure 3 closely resembles that of
Figure 1. Specifically, PyCSM-ASE operates based on a sequential logic and for each time step
the following operations are carried out until the pre-defined simulation time is reached:

1. (Only at t = 0) The initial state of the ASE simulation is set to that of a pre-computed
trim state.

2. A disturbance in the form of a direct mode excitation of the FE model is introduced.
3. PyCSM (light blue box in Figure 3) simulates the system aeroelastic response to the input

by calculating modal accelerations for each structural mode and the overall pressure field
on the wet surface.

4. The computed data are elaborated by the sensors block that provides the new measure-
ments y to be used for feedback. In this study, the sensors block receives only modal
accelerations that are converted into physical measurements according to Eq. 13.

5. The H∞ controller reads the physical acceleration history and generates the new com-
manded control surface deflections δc, which are processed by the actuators’ dynamics to
generate the new deflection angles δ.

6. The mesh module deforms the mesh based on the new control surface deflection δ, thus
preparing the data for the successive time steps.

Note that the computation of Qhh and Qhc, as detailed in Section 2.1, solely pertains to unsteady
aerodynamic calculations. Therefore, only the CFD and the mesh deformation modules are
necessary to perform these computations.
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Mesh deformation FE model CFD aerodynamics

Actuators Controller Sensors

Mode excitation

Control module

PyCSM

PyCSM-ASE

Figure 3: Block diagram of the PyCSM-ASE software for nonlinear aeroservoelastic simulation.

5 NUMERICAL MODEL AND RESULTS

5.1 The BACT model

The aeroelastic benchmark employed to illustrate the proposed workflow is the NASA BACT
wing that was conceived to validate ASE computational models and at demonstrating flutter
suppression in transonic regime [8–10]. The model consists of a rigid rectangular straight
wing with a NACA 0012 airfoil section that is immersed in the air flow of the NASA Lan-
gley Transonic Dynamics Tunnel (TDT) [34]. The wing is mounted to a device called the
Pitch and Plunge Apparatus (PAPA) which permits vertical translation (plunge motion) and
rotation around the wing axis (pitch motion). Four accelerometers located at each corner of
the wing measure accelerations in the plunge direction and are used for feedback, namely
y = {alei, atei, aleo, ateo} where the subscripts denotes the sensor location as illustrated in Fig.
4, whereas the control action for flutter suppression is realized by a trailing edge flap actuated
through an hydraulic actuator.

Based on the numerical data provided by Waszak [35], a Nastran FE model is generated to
compute Khh,Chh,Mhh,Mhc, as well as the modal matrix ϕgh, which will be used as a modal
basis for the generalization of the aerodynamic forces. The geometry of the wing is discretized
by 800 aerodynamic panels for DLM computations as well as replicated with an unstructured
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Figure 4: BACT wing representation with the PAPA mount as well as locations of the accelerometers ( ) and the
trailing edge flap ( ) used for active flutter suppression.

mesh for CFD computations. The CFD mesh approximates the wet surface of the wing with
26.767 points and the farfield is modelled as a hemisphere closed by a symmetry plane. The
DLM panneling along with the CFD mesh is depicted in Fig. 5. Furthermore, the model is

X
Y

Z

(a) DLM panels

X
Y

Z

(b) CFD mesh

Figure 5: Aerodynamic models employed for the computation of the GAFs with deflected trailing edge flap.

augmented with the actuator dynamics of the 2nd order identified in [35], whereas sensors are
modelled adopting Eq.(13). The position limit for the trailing edge flap amounts to 12 deg,
whereas the hydraulic actuators present rate saturation, but at values that are not in the range
of interest. The perturbation term fh

ext(t) is modelled as a pulse of the form of Eq. (7) and it
impinges the pitch mode of the wing.

5.2 Unsteady aerodynamics

Unsteady aerodynamic loads are calculated for the BACT wing according to the methodology
described in Section 2.1. While unsteady loads from DLM do not depend on the steady flow
conditions, the procedure for the computation of Euler-based GAFs is affected by the angle of
attack in trim state. In this case, the angle of attack is equivalent to the pitch angle, and its value
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in steady-state is denoted as θ0. In order to have a direct comparison all the CFD computations
are carried out with θ0 = 0 deg. Furthermore, the set of the dynamic pressure is adjusted to 80%
of the flutter dynamic pressure qfl at the specific Mach number. The selection of this value is
only meant to ensure convergence of the CFD computations, but it does not affect the numerical
values of Qhh

Eul(ik,M∞, ρ∞, geometry) and Qhc
Eul(ik,M∞, ρ∞, geometry).

GAFs are evaluated for a set of 31 reduced frequencies distributed in the frequency range k =[
0.001, 1.5

]
as well as seven Mach numbers equally spaced in the range M∞ =

[
0.4, 0.7

]
.

The terms of Qhh(ik) and Qhc(ik) that describe a moment contribution are given about the
middle axis. The values of the GAFs are displayed only for the reference Mach numbers of
0.4 and 0.7 in Figs. 6 and 7, respectively, which represent slight and high compressible flow.
The plots reveal a good correspondence between the calculated GAFs at M∞ = 0.4, whereas
discrepancies emerge notably at M∞ = 0.7 as a result of the compressibility and geometrical
effects that the DLM fails to capture.
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Figure 6: Calculated GAFs at Mach 0.4 (slight compressible flow).

5.3 Accuracy of Aeroelastic Plants

The GAFs presented in Section 5.2 are approximated through vector fitting routines. The
achieved fitting is connected to the structural model according to Eq. (12), and the state space
model is further augmented with actuators’ and sensors’ dynamics to obtain a representation
of the aeroelastic plant in a state space form. Figures 8 and 9 show a comparison of the fre-
quency response Hy(1)u(s) = Haleiu(s) of the so-derived linear system at 80% and 120% of the
flutter dynamic pressure for each specific Mach number. Figure 9 clearly illustrates different
responses at the unstable point, namely at q∞ = 1.2 · qfl, across the pitch mode frequency range,
specifically 25 − 30 rad/s. This discrepancy stems from the different pressure fields predicted
by the two unsteady aerodynamic methods. To clarify this point, Fig. 10 provides a comparison
of the fields due to a sinusoidal flap excitation of 10 deg and ω = 27 rad/s at q∞ = 0.8 · qfl

and M∞ = 0.703. It is evident from the arrows that the flap deflection generates a higher lift
3The incremental pressure distribution from DLM was computed by fitting the half-generalized aerodynamic

forces Qjh instead of Qhh. This approach, not essential for flutter computations, was already proposed by Kier and
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Figure 7: Calculated GAFs at Mach 0.7 (high compressible flow).

10 15 20 25 30 35 40 45 50

15

20

25

30

35

40

45

50

55

60

(a) Euler-based

10 15 20 25 30 35 40 45 50

15

20

25

30

35

40

45

50

55

60

(b) DLM-based

Figure 8: Magnitude of the transfer function between δc and aleo at q∞ = 0.8 · qfl.

distribution according to Euler CFD, whereas DLM predicts a higher moment. Consequently,
the wing exhibits a higher pitching tendency according to DLM, with the pitch contribution θ̈
playing a more significant role than the plunge contribution ḧ for the LEO sensor. Therefore,
the frequency response from DLM is higher at w = 27rad/s, occurring just after the second
peak in the frequency response. At higher dynamic pressures, this effect becomes more pro-
nounced, leading to more evident differences as illustrated in Fig. 9. Conversely, for excitation
frequencies preceding the peak, the situation is reversed.

In order to quantify the accuracy of the linear models, a reference response Href(ω) is derived
commanding the flap of the wing in PyCSM-ASE with sinusoidal inputs of varying frequencies

Looye [36]. CFD results are sourced directly from PyCSM-ASE.
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Figure 9: Magnitude of the transfer function between δc and aleo at q∞ = 1.2 · qfl.
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Figure 10: Incremental pressure field P (x) due to a sinusoidal aileron deflection of 10 deg at q∞ = 0.8qfl and
M∞ = 0.70. The pressures are normalized to 0.1.

and the OL responses were computed for each excitation applying Eq. (8) between δc and the
computed acceleration values. Figure 11 shows a direct comparison between the transfer re-
sponse of the linear models and the high fidelity baseline from PyCSM-ASE at Mach number
M∞ = 0.70. The approximation error of the LTI models is computed as

Relative error =
∥Href(ω)∥ − ∥HLTI(ω)∥

∥Href(ω)∥
(15)

where HLTI(ω) denotes the response of the LTI models derived either from DLM or Euler-CFD.
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The resulting errors are shown in Fig. 12 for the considered Mach numbers. Given that the
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Figure 11: Transfer response of Fig.8 at M∞ = 0.7
including PyCSM-ASE comparison.
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Figure 12: Relative error between linear models
and PyCSM-ASE results.

state space models derived from Euler CFD were intended to capture more of the nonlinear
effects than the DLM, the results derived from them were expected to align more closely with
the higher-fidelity results from PyCSM-ASE. However, this is not as evident as expected. The
Euler-based models appear to perform generally better at all the Mach numbers at frequencies
in the 23 − 26 rad/s range, in the low frequency range, i.e. ω ≤ 20 rad/s, and in the high
frequency range i.e. ω ≥ 30 rad/s. These intervals do not cover the frequency range where the
system exhibits peaks in its frequency response, which is where the two aeroelastic poles of the
configuration lie. It can be seen that neither the Euler-based model nor the DLM-based model
is able to properly capture the magnitude of the first peak of the response. In the region of
the second peak, where the frequency response changes abruptly, no conclusions can be drawn,
as the accuracy of the model depends on the specific frequency and Mach number selected.
Furthermore, these trends cannot be extended to the response at q∞ = 1.2 · qfl, where the state
space models exhibit greater differences, and a comparison with PyCSM-ASE results is not
possible due to the challenges in computing a diverging response over a sufficient time frame
using CFD. Based on the above considerations, it is not possible to conclude that the Euler-
based state space modes clearly outperform the DLM-based in the compressible flow regime.

5.4 Control Synthesis and Nonlinear Simulations

To demonstrate AFS, the system is considered at the specific flow conditions

ptest(1) =(M∞, q∞) = (0.4, 8.3 kPa)

ptest(4) =(M∞, q∞) = (0.7, 8.9 kPa)
(16)

where the value of the dynamic pressures corresponds to 120% of qfl for the respective Mach
number. The generalized velocity ξ̇ of the flutter mode is added as a performance output z.
The frequency response from fext(t) to ξ̇, namely Hzw(iω), is depicted in Fig. 13 Based on
the displayed response, it is decided to restrict control authority in the frequency range of
(ωL, ωU) = (15, 125) rad/s at ptest(1) and (ωL, ωU) = (10, 125) rad/s at ptest(2). The value
of ωL is adjusted to cope with the frequency shift observed at the peak of Hzw(iω), while
ωU = 125 rad/s represents a fraction of the actuator bandwidth and it is here assumed as the
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Figure 13: Magnitude of the transfer function between fext(2) and ξ̇ at q∞ = 1.2 · qfl.

available bandwidth of the CL system. The values of We,i and Vu are adjusted based on the flow
condition to ensure that both the Euler and DLM-based models meet the multi-input disk mar-
gin requirement outlined in Section 3. Specifically, the weight values remain constant during
the controller synthesis for a given flow condition, allowing for comparability between the Eu-
ler and DLM-based controllers. Given the values of ωL, ωU , We,i, and Vu, MATLAB® hinfsyn
routine was employed to synthesize the here presented controllers.

Differences between the Euler and DLM-based controllers become more apparent at this stage.
The damping augmentation achieved through the synthesized controllers is depicted by the
reduction of ∥Hzw(s)∥∞ compared to its open-loop (OL) value in Fig. 14. The sharp peak in
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Figure 14: Magnitude of the transfer function between fext(2) and ξ̇ at q∞ = 1.2 · qfl.
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Hzw(iω) is reduced more when the aeroelastic plant based on DLM is employed. This is because
the trailing edge flap is more efficient in altering the dynamics of the wing, as displayed by the
transfer functions depicted in Fig. 9.

In order to evaluate the real performance of each controller, they are implemented in PyCSM-
ASE, and the response of the resulting CL systems are simulated according to the workflow
described in Section 4. The Euler solver implemented in the TAU code was employed for the
simulation of unsteady aerodynamic effects. For comparison purposes, both the Euler-based
and DLM-based plants are augmented with their respective controller and the resulting CL
plants are simulated in a linear framework by means of the LSIM-H algorithm [37]. The time
responses displayed in Fig. 15 and Fig. 16 correspond to a unit pulse excitation of the pitch
mode, which impacts the system at τ = 0.04 s. The steady-state pitch angle of the wing is set
to θ0 = 0 deg. While both controllers effectively stabilize the system, it is evident from the
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(b) Nonlinear results from PyCSM-ASE

Figure 15: Time response of the CL system at ptest(1) due to a unit pulse fh
ext(2) of the form of Eq. (7) with

t0 = 0.1 s, delay τ = 0.04 s, and θ0 = 0 deg.

nonlinear results shown in Fig. 15(b) and Fig.16(b) that the Euler-based controller outperforms
the DLM-based, as the rate of acceleration decay in the former is faster. This is contradictory
to the linear results displayed in Figs. 15(a) and 16(a), which are consistent with the magnitude
of Hzw(s) shown in Fig. 14. This is presumably because of the Euler-based plant ability to
capture nonlinear aerodynamics that are beyond the DLM ability to predict. Furthermore, the
nonlinearities that are present at the selected flow conditions with the wing at null pitch angle
in steady-state are not strong enough to affect the stability of the CL system.

Figure 17 displays results of nonlinear simulations for varying steady-state pitch angle at ptest(2).
A perturbation of the initial state can be considered as the effect of atmospheric perturbations
or wind tunnel turbulence. In these simulations, saturation on |δ(t)| is intentionally deactivated
to concentrate on the effects of nonlinear aerodynamics. While the Euler-based controller can
withstand the external perturbation for both θ0 = 0.5 deg and θ0 = 0.75 deg, the DLM-based
controller leads to significantly high flap deflections for θ0 = 0.75 deg, resulting in a lack of
convergence in the unsteady aerodynamic solver. Therefore, stability cannot be guaranteed.
This analysis proves that the CFD-based controller also is more robust than the DLM-based
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Figure 16: Time response of the CL system at ptest(2) due to a unit pulse fh
ext(2) of the form of Eq. (7) with

t0 = 0.1 s, delay τ = 0.04 s, and θ0 = 0 deg.
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Figure 17: Time response of the CL system at ptest(2) due to a unit pulse fh
ext(2) of the form of Eq. (7) with

t0 = 0.1 s, delay τ = 0.04 s, and varying θ0. Results are obtained using PyCSM-ASE.

controller to external perturbations [24, 38, 39].

6 CONCLUSIONS AND FUTURE WORK

In this paper, we have presented a complete end-to-end workflow ranging from the construction
of LTI aeroelastic models with aerodynamics based on Euler CFD up to the post-synthesis veri-
fication of AFS feasibility in a nonlinear simulation environment (PyCSM-ASE). The workflow
is illustrated using the BACT wing, an aeroelastic benchmark from NASA for ASE activities.
Since this benchmark is representative of a generic wind-tunnel configuration and data used are
in standard format, the methodologies illustrated are applicable to real-life wind-tunnel prob-
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lems.

Specifically, GAFs were derived from Euler-CFD and compared with DLM GAFs showing
a good agreement of the results in the low subsonic region, whereas discrepancies arise with
increasing Mach number due to compressibility effects. LTI models in a state space form were
constructed by approximating both the Euler and DLM GAFs using vector fitting routines. A
comparison of the frequency response of the resulting state space models with the results derived
from PyCSM-ASE did not indicate superior performance of one LTI realization over the other.
The state space realizations were further employed to synthesize H∞ controllers aiming at AFS,
and the CL systems were simulated both in a linear and a nonlinear ASE environment. At this
stage, the nonlinear simulations clearly show that the Euler-based controller outperforms the
DLM-based controller in terms of both performance and robustness. Remarkably, the linear
simulations predict an opposite trend, highlighting the importance of conducting post-synthesis
verification in an appropriate nonlinear ASE environment.

Future directions of research include (i) analyses of the system at higher Mach numbers where
nonlinearities typical of transonic flows might more strongly influence the solution, (ii) en-
hancing the synthesis to ensure the functionality of the controller over a large range of flow
conditions, and (iii) further developing PyCSM-ASE to include noise measurements and delays
in the closed-loop. The use of RANS-based GAFs is also envisaged.
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