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Optimization algorithm for minimizing
railway energy consumption in hybrid
powertrain architectures: A direct method
approach using a novel two-dimensional
efficiency map approximation

Rahul Radhakrishnan and Moritz Schenker

Abstract
SEnSOR (Smart Energy Speed Optimizer Rail) is a direct method based optimization algorithm developed at DLR for
determining minimum energy speed trajectories for railway vehicles. This paper aims to reduce model error and improve this
algorithm for any alternative powertrain architecture. Model simplifications such as projecting the efficiency maps of different
train components onto one-dimensional space can lead to inaccuracies and non-optimalities in reality. In this work, 2D
section-wise Chua functional representation was used to capture the complete behavior of efficiency maps and discuss its
benefits. For this purpose, a new smoothing method was developed. It was observed that there is an average of 6% error in the
energy calculation when both, 1D and 2D, models are compared against each other. Previously, solving for different
powertrain architectures was time consuming with the requirement of manual modifications to the optimization problem.
With a modular approach, the algorithm was modified to flexibly adapt the problem formulation to automatically take into
account any changes in powertrain architectures with minimum user input. The benefit is demonstrated by performing
optimization on a bi-mode train with three different power sources as developed within the EU-project FCH2RAIL. The
advanced algorithm is now capable to adapt to such complex architectures and provide feasible optimization results within a
reasonable time.
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Introduction

Compared to diesel engines, electric motors are more ef-
ficient, require less maintenance and allow for more
environmental-friendly operation of railway. Thus, diesel-
powered trains which previously covered non-electrified
railway sections are more and more replaced by electric
solutions. If overhead line electrification is not an option
due to economic or technical constraints, train architectures
with onboard energy storage are required. Currently, dif-
ferent topologies are being developed, for example con-
sisting of batteries, fuel cells, capacitors and sometimes
additional overhead line power supply.1

Even with electrified operation, there is still a need to
reduce energy demand and corresponding costs, as the
transformation to sustainable power supply requires heavily
increased amounts of renewable electricity and green hy-
drogen in all sectors.2 Thus, to reduce energy demand in
railway transport, Scheepmaker et al.3 highlight four main
approaches: minimum energy train control, energy-efficient
timetabling, efficient components and demand analysis.

Focusing on optimal control, they found Pontryagin’s
Maximum Principle (PMP) to be intensively applied to de-
termine energy-efficient train operation regimes. The optimal
switching points between these regimes and hence the optimal
trajectory are then usually obtained by other numerical al-
gorithms such as Gradient Search, Dynamic Programming
(DP) or Genetic Algorithms. The application of Direct
Methods (DM) to such problems is still rare in the literature.

Macian et al.4 found that using DM for combined energy
management and trajectory optimization on a diesel-electric
train yields similar results in comparison to that obtained by
DP and PMP, while requiring heavily reduced computa-
tional time and memory. This motivated the development of
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SEnSOR (Smart Energy & Speed Optimizer Rail) for
combined offline energy management and speed profile op-
timization of hybrid electric trains. Schenker et al.5 and
Kühlkamp et al.6 extended the method to battery and fuel cell
electric trains and improved upon the approach of Macian
et al. by including detailed train models and flexible handling
of electrification patterns in their optimization tool SEnSOR.

The following paper poses the question if SEnSOR is
able to handle any kind of electric power train architecture
in a flexible and straight-forward manner. At the same time,
it aims to demonstrate that utilizing the possibility of DM to
include high-complexity constraints enables us to reduce
model inaccuracies significantly. It is expected that the gains
in flexibility and model accuracy will increase the overall
computational time taken by the algorithm. However, this
paper shows that the benefits may outweigh this aspect.

The first section provides a brief overview of the current
algorithm and its implementation objectives. Afterwards
the models and implementation methods are described in
detail, including the derivation of our 2D efficiency map
smoothing method. The subsequent section illustrates and
discusses example results, concluding with the most sig-
nificant findings.

Background - The SEnSOR algorithm

SEnSOR is a DM-based optimization algorithm for cal-
culating minimum energy trajectory for various railway
vehicles, implemented in MATLAB. In particular, it opti-
mizes speed profile and energy management simulta-
neously to guarantee a tailored solution for a given train
type. It automatically transforms a standardized input of
vehicle and track parameters into objective functions,
nonlinear constraints and boundary conditions of the op-
timization. To find the mathematical optimum, SEnSOR
uses an interface for IPOPT (Interior Point OPTimizer),7

which implements interior point line search filter method to
find a local solution of a nonlinear optimization problem.

With its current capabilities,6 SEnSOR still faces chal-
lenges to account for all realistic features. Most importantly,
it uses simplified 1D load-dependent efficiency character-
istics for all components. For some of them however, the
efficiency has a significant dependency on more than power
throughput, for example speed. This simplification can
cause inaccuracies. An optimized control obtained by this
model can be non-optimal in reality, if used directly.
Shifting to a multidimensional model may prove compu-
tationally expensive. In this study, we will try to answer
what is the benefit of transitioning to such a more realistic
model by performing simulations on a test track.

Secondly, SEnSOR shall be flexible to account for any
changes in components or the entire train architecture.
Currently, each time a change is to be made, the optimal
control problem (OCP) has to be manually reformulated.
This can be very time consuming and sometimes lead to
model and human-induced errors. For this study, we will
remove the requirement of hard-coding the optimization
problem by the user, introduce additional modularity into
SEnSOR’s implementation and analyze its benefits. To
demonstrate the adaptability to different train architectures,
we will then optimize the energy management control of a

complex bi-mode powertrain architecture. This is part of the
FCH2RAIL project,8 in which this novel train type is de-
veloped and tested. One of the goals within the project is to
optimize the energy management strategy of the bi-mode
train to reduce energy consumption, both electric and hy-
drogen. In this paper, this was done by running simulations
using a generic train model on a long real world track.

Models and methods

Two-Dimensional modeling of efficiency maps

The objective function and constraints of the OCP in
SEnSOR comprises of functions that use the efficiency
maps of different train components. These maps are often
available in the form of two-dimensional numerical tables,
that is, values of efficiency at discrete values of wheel
speeds and power control settings. In SEnSOR, this map
was to be modified to compute the power loss of the
component by taking the normalized power p and the speed
of the train v as input arguments to directly give the nor-
malized power as output. It is now a choice how one
chooses to handle the discrete data. One natural idea would
be to use them by interpolation. However, IPOPT requires
that the objective functions and constraints are at least twice
continuously differentiable to guarantee the local optimality
of the solution. In order to incorporate them into the ob-
jective function and constraints and solve the problem using
IPOPT, these maps were to be represented by an explicit
analytical function, f :R2 →R such that f 2 C2. Having an
explicit form that fits the given data can prove to be more
convenient than using a higher order interpolation as it is
less computationally expensive and enables to perform
standard mathematical operations on them.

For simplification, the task was previously reduced to
finding an approximation of f (p, v),bf :R→R, by averaging
the values of efficiency along the dimension of speed, using
one-dimensional canonical piecewise-linear models, de-
veloped by Chua and Kang.9 This model is equivalent to a
1D linear interpolation, but has a compact mathematical
representation. A smoothing procedure to ensure differ-
entiability of such models was developed by Jimenez-
Fernandez et al.10 The combination of both appear to be
far more performant than any state of the art interpolation
methods with the added benefit of providing an analytical
representation of the data. By using these methods, the
required function can be represented as follows:

bf ðPÞ ¼ Aþ BP þ
XσP
j¼1

C ln
�
1þ e�αpjðP�βpjÞ� (1)

Where βpj’s and αpj’s are the breakpoints and the
smoothing parameters that control the level of smoothing at
each breakpoint in the P-direction, σp is the total number of
breakpoints, A, B and C are data-dependent model coeffi-
cients. Thus, the objective function and constraints of the
OCP were effectively reduced to be only dependent on the
train power control setting.

While this procedure simplifies the problem and results
in a robust solution, it introduces a significant model error in
the energy transmission between different train components.
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The effect of averaging of efficiencies may under/over-es-
timate the power losses depending on the available data and
thus cause inaccuracies in the final solution. An optimal
control solution using such a simplified model can be non-
optimal with realistic energy transmission. Thus, it may be
crucial to consider the multidimensional dependence of ef-
ficiencies. We will analyze and discuss the benefits and
drawbacks of shifting to a more realistic implementation. For
this, an explicit 2D function f is required as detailed above.

Chua and Kang9 developed a section-wise piecewise-
linear models to also fit multi-dimensional data. In this case,
1D canonical piecewise-linear representation were used in
each dimension by fixing the other dimensions. This is
mathematically equivalent to a bilinear interpolation in 2D
with the additional benefit of having a compact analytical
representation of the given 2D data. However, unlike the
1D case, there exists no formal smoothing procedure for
such a model. In this study, we extend the work of
Jimenez-Fernandez et al.10 by deriving a transformation
formula for smoothing 2D section-wise piecewise-linear
functions.

Smoothing method for functional
2D-Representations

The section-wise piecewise-linear representation of a given
2D dataset is obtained by using a 1D chua piecewise linear
representation in one dimension, while holding the other
dimension fixed.

f ðx, yÞ ¼ a1 þ b1yþ
Xσy
i¼1

c1i
��y� βyi

��
þ
�
a2 þ b2yþ

Xσy
i¼1

c2i
��y� βyi

���x
þ
Xσx
j¼1

�
a3j þ b3jyþ

Xσy
i¼1

c3ij
��y� βyi

�����x� βxj
��
(2)

where βxj’s and βyi’s are the breakpoints in x-direction and
y-direction respectively, and σx and σy represent the total
number of such points in each direction. Given the data
points, the coefficients {a1, b1, c1i, a2, b2, c2i, a3j, b3j, c3ij},
are determined by solving a system of linear equations.9

Twice continuous differentiability of this function is
ensured by applying a smooth approximation of the ab-
solute value terms.10 For the detailed derivation of the
transformation formula, see the Supplementary Material.
For clarity, the final transformation formula is re-written:

bf ðx, yÞ ¼ A1 þ B1yþ
Xσy
i¼1

C1i lnð1þ e�αyiðy�βyiÞÞ

þ
�
A2 þ B2yþ

Xσy
i¼1

C2i lnð1þ e�αyiðy�βyiÞÞ
!
x

þ
Xσx
j¼1

�
A3j þ B3jyþ

Xσy
i¼1

C3ij lnð1þ e�αyiðy�βyiÞÞ
!

lnð1þ e�αxjðx�βxjÞÞ
(3)

where, {A1, B1,C1i, A2, B2,C2i, A3j, B3j,C3ij} can be defined
as the parameters of the 2D piecewise smoothed function as
follows:

A1 ¼ a1 �
Xσy
i¼1

c1iβ1i �
Xσx
j¼1

 
a3j �

Xσy
i¼1

c3ijβyi

!
βxj

A2 ¼ a2 �
Xσy
i¼1

c2iβyi þ
Xσx
j¼1

 
a3j �

Xσy
i¼1

c3ijβyi

!

A3j ¼ 2

αxj

 
a3j �

Xσy
i¼1

c3ijβyi

!

B1 ¼ b1 þ
Xσy
i¼1

c1i �
Xσx
j¼1

 
b3j þ

Xσy
i¼1

c3ij

!
βxj

B2 ¼ b2 þ
Xσy
i¼1

c2i þ
Xσx
j¼1

 
b3j þ

Xσy
i¼1

c3ij

!

B3j ¼ 2

αxj

 
b3j þ

Xσy
i¼1

c3ij

!

C1i ¼
Xσy
i¼1

2

αyi

 
c1i �

Xσx
j¼1

c3ijβxj

!

C2i ¼
Xσy
i¼1

2

αyi

 
c1i þ

Xσx
j¼1

c3ij

!

C3ij ¼ 4c3ij
αyiαxj

where, i ¼ 1,…, σy, j ¼ 1,…, σx

(4)

The parameters α control the smoothness of the function
at breakpoints, that is how much the function deviates from
the specified breakpoint. More formally, like in the 1D
case,10 we can state the following theorem:

Theorem 1. Any two-dimensional canonical section-
wise piecewise linear function that is characterized by
σx and σy breakpoints, respectively in each direction, can
be transformed into a section-wise linear smooth-
piecewise function expressed as in eq. (3), where the
set of (σxσy + 2σx + 2σy + 4) parameters can be de-
termined with eqns. (4) and the (σy + σx) parameters
{αxj, αyi} for i 2 [σy] and j 2 [σx] can be used to preserve
a smoothness at any breakpoint location. As the values
of α approach ∞, eq. (3) approaches eq. (2).

For a detailed proof of this theorem, see the
Supplemental Material provided. In the next subsection, we
discuss how a suitable smoothing parameter was choosen to
construct these smoothed functions for our objective
functions and constraints.

Implementation

From Theorem, 1 it is clear that we need to choose the
smoothing parameters as high as possible to reduce the
approximation error with the data points. However, with
increasing values of the smoothing parameters αi there is a
reduction in function smoothness. We already discussed
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that IPOPT requires the objective and constraints to be at
least twice continuously differentiable. Therefore, it is
essential to choose a smoothing parameter that is suffi-
ciently big to have a low approximation error, but at the
same time not too big, such that the functions and their
derivatives, in particular the second derivative, do not exist
and are unbounded. The following algorithm was im-
plemented to do this task efficiently.

Algorithm 1: Smoothing 2D section-wise canonical piecewise-
linear functions

Input: Dataset, D ¼ ðPbj , vbi , Pout�bkÞ forbi ¼ 1,…, σv þ 2,bj ¼ 1,…, σP þ 2, bk ¼ 1,…, ðσP þ 2Þðσv þ 2Þ
Output: bf
1 compute {A1, A2, A3j, B1, B2, B3j, C1i, C2i, C3ij} from equation (4) for
i = 1, …, σv, j = 1, …, σP

2 Initialize αPj, αvi = 10000
3 while N : ¼ f∂PPbf ðP, vÞ, ∂Pvbf ðP, vÞ, ∂vvbf ðP, vÞg are unbounded or
are not defined do

4 determine i’s and j’s that make elements of N not defined
5 αPj = 0.99αPj, αvi = 0.99αvi for i’s and j’s from step 4
6 compute bf with updated values of αPj’s and αvi’s

The fourth step of the algorithm can be efficiently done by
identifying the terms inside the different summations in
equation (3), whose second derivatives are unbounded or are
not defined. The value of αi are chosen in such away that these
derivative terms remain well-defined and bounded at any
given point. The choice of αi depends on the distance between
the point of interest and the breakpoints. Since the terms to
approximate each piecewise-linear sections of the whole
functions are either monotonously in- or decreasing, the
critical values are on the boundary of the domain. Hence, it is
most efficient to check only at boundaries if the derivative
terms are defined and lower the respective α if they are not.

Modular, flexible power train architecture

Following the approach to a more realistic representation of
the system, the next step after modeling the efficiencies in a
2D-manner is to depict all components more realistically.
The previous implementation6 represented the train archi-
tectures in a hard-coded way within the constraints and
objective functions. As long as the power train architecture
is exactly the same as in this representation, no model error

will occur. However, if the train architecture or the type of
some of the components changes, either the model has to be
adapted within the code or a simplified approximation to fit
the current model has to be made which introduces an
additional model error. To avoid this, the tool was revised to
account for a flexible and modular approach in the power
train architecture. First we will show the details and ca-
pabilities of the new implementation, afterwards we
demonstrate that the tool is able to optimize any train’s
energy consumption in a straightforward way by applying it
to a complex powertrain architecture.

Implementation

The idea behind making the tool adaptable to different
powertrain architectures was to minimize the time required in
building the objective functions and constraints, and the
probability of occurrence of human-induced errors associated
with it. This task was particular complex, since the automated
generation of Jacobian and Hessian for faster optimization
requires an additional symbolic representation.11

A more efficient way to achieve this is to allow the user
to define the architecture once before running the simulation
and let the tool automatically construct the OCP. In order to
achieve this level of automatization, different components
of the train are now grouped together and defined as
modular branches based on their functions. As an example,
Figure 1 shows the division of the powertrain architecture
we use into different branches. Inside each of these
branches, one can flexibly add or remove components as
needed. Then, the tool automatically uses the components
defined in the overall architecture to construct the required
OCP. This automation of constructing the OCP was done by
recognizing patterns within the problem formulation. We
found that there were two inherent patterns in the formu-
lation that could be taken advantage of:

1. Nested Functions (N-Branch). Total power trans-
mission of some branches are computed by a series
of function composition operations. Each compo-
nent within the branch transmits its power to the next
component in the branch taking into account its
efficiency (calculated from efficiency models dis-
cussed in previous section).

Figure 1. Schematic representation of N-Branches and A-Branches. The total power transmission across an N-Branch is calculated by a
nested composition of the individual power loss functions of the components inside the branch. The arrows represent the direction of
power transmission at any moment of time during the train’s journey. On the other hand, the total power transmission across an A-Branch
is the sum of power transmitted by the components or branches defined inside it.
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2. Addition of contributions (A-Branch). The total
power transmission of some branches are computed
by summation of the power passed through indi-
vidual components or different N-Branches.

Through combinations of these two branch types, the
construction of the symbolic representation of objective
functions and constraints can be fully automated. After
automatically generating symbolic derivative matrices in
form of the Jacobian and Hessian for faster optimization, all
symbolic representations are then transformed into MAT-
LAB function handles. This eliminates all human effort
required to manually calculate and define them.

Example: Powertrain with Bi-Modal operation

To demonstrate the capabilities of the new implementation,
a complex powertrain architecture was chosen for opti-
mization. Bi-mode trains as developed for example within
the FCH2Rail EU-project8 pose a particular challenge in
modeling and optimization due to the combination of three
power sources, that is hydrogen fuel cell, a battery and
overhead power supply via pantograph (see Figure 2). For
these trains, optimization is of high interest as an efficient
energy management strategy is complex to determine and
thus energy consumption may be unnecessarily high with
an unsuitable control.

In order to optimize the energy consumption of a bi-
mode train, there is a distinction from the objective func-
tions used for Battery Electric Multiple Units (BEMUs) or
Fuel Cell Electric Multiple Units (FCEMUs), as power
drawn from two external sources has to be reduced in
parallel. Thus, the objective function has to account for both
catenary (Pcat) and fuel cell consumption (PFC,chem):

min
xðtÞ

f ðxðtÞÞ,
where

f ðxðtÞÞ ¼
Z

PcatðxðtÞÞ þ w � PFC, chemðxðtÞÞdt (5)

All power drawn over the system boundary is summed
up, which in the case of the overhead line is electrical
energy and in case of the fuel cell chemical energy, both in

kWh, with w being a weighting factor between the two
energy sources. A w > 1 indicates that that the hydrogen
energy is ”more valuable” as it is limited in the onboard
storage and leads to a more flexible operation, since higher
range is enabled when utilizing more power from the
overhead line. Because the optimization does not consider
detailed costs for now, a w of two was chosen. The energy
drawn from the battery is optimized implicitly, because a
charge-sustaining operation is enforced through boundary
conditions. This means the initial state of charge has to be
met in the end of the simulation, forcing the battery to be
recharged by either power source which are part of the sum
in the objective function.

Furthermore, the power balance has to be fundamen-
tally adapted in order to represent the power distribution on
the DC-link according to the more complex structure of
the bi-mode power train. In comparison to previous
implementations,5,6 the blending factors θ and ϵ have been
removed and replaced by a more efficient power balance
constraint on the DC-link, considering all consumers
PDC�link,i on the DC-link.X

i

PDC�link, i ¼ 0 (6)

For the bi-mode train, the equation has to be slightly
adapted due to the existence of two separate DC-links:

Pcat, DC�link, 1

þηDC=DCðPbat, DC�link, 2 þ PFC,DC�link, 2Þ ¼ 0 (7)

Here η is the functional representation of the power
transformation of the DC/DC-converter between the two
links. The new implementation allows for straight-forward
adaptation of the power balance constraint by defining the
branches correctly (see previous section).

Use and test case parameters

For all analyses, a generic regional vehicle is used as a basis.
To analyze the overall performance of 2D efficiency model
on SEnSOR, different train types were considered:

· a generic ElectricMultiple Unit (EMU) with catenary
power supply,

Figure 2. Schematics of bi-mode train architecture, consisting of fuel cell, battery and overhead line power sources.
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· a Battery Electric Multiple Unit (BEMU) with cat-
enary and battery as power sources,

· and a Fuel Cell Electric Multiple Unit (FCEMU)
with a fuel cell and a battery.

Each vehicle type has slightly different component sizes
with regards to battery and fuel cell, but the train hull is the
same. Key parameters of the vehicles are given in Table 1.

For the performance of the efficiency representation, a
short 20 km test route with five stops as developed in 5 is
used, to generate multiple results quickly. In this case
relative comparison is of higher interest than absolute
consumption values. The main optimization use case with
the bi-mode train is then run on a hilly regional track be-
tween Plattling - Bayrisch Eisentsein - Plattling in Germany.
Except for the assumption of additional electrification, this
route is adopted from Kühlkamp.6 Additional electrification
was placed in the form of charging points at the junctions in
Gotteszell (33 km) and Zwiesel (58 km), as well as a 3 km
long section at the turning point in Bayerisch Eisenstein.
The key characterists of this long track are given in Table 1
as well.

Results and discussion

Modeling and approximation error estimates

In the beginning of the paper, we postulated that the 1D
approximation assuming a uniform behavior across all
speed levels creates a significant model error and thus a
more detailed representation in for of the 2D approximation
is required. We verify this hypothesis using validated,
generic component model data from the EU project FINE-
112 (relevant components: motor and traction inverter). The
upper part of Table 2 summarizes the error of the 1D

functions in approximating the original 2D data points. The
quality of fit of the analytic functions to the given data
points were estimated using set of metrics:

· Root mean square error (ΔRSME) between the values
at the given discrete 2D data points and the function
evaluated at these points

· L1 error (ΔL1) as normalized integrated difference
between the constructed function and multi-linear
interpolated function over whole 2D domain

A more detailed definition of these metrics can be
found in the Supplementary Material provided. One can
see that the averaging effect of the efficiency introduce
significant errors of almost 5% in the L1 error over the
whole domain.

As expected, the errors of the 2D model are well below
these numbers, as shown in the lower of Table 2. The
modeling error in the first line indicates the approximation
error of the 2D functions in fitting the 2D data points. Here,
the 2D section-wise Chua functions reaches a similar
quality of fit than it was possible with the previous 1D
model. This highlights the power of the Chua functional
representation in approximating given data points. With the
L1 error, one can see that the major part of the error stems
from smoothing. However, even after smoothing, the error
between MATLAB’s non-smooth interpolated functions
and the constructed smoothed section-wise Chua functions
are lower than 0.01%. This is because the smoothing
procedure only introduces errors very close to the sharp
corners. Figure 3 shows the effect of smoothing procedure
at non-smooth regions of a section-wise linear Chua
function. Despite introducing errors at non-smooth region,
it captures the overall structure of the data very well.

Table 1. Vehicle and track parameters.

Characteristic Value

Train
Length 55 m
Static mass 124 t
Rotating mass 6 t
Nominal axle load 15.5 t
Max. Speed 140 km/h
Max. de-/acceleration 1 m/s2

Max. Power for traction and recuperation 1 MW
Auxialiary loads 50 kW
Davis coefficients A, 2 kN
B, 5 N/(km/h)
C 0.2 N/(km/h)2

Max. Power fuel cell 240 kW
(Bi-mode and FCEMU)

Energy content battery 177 kWh (bi-mode)
310 kWh (FCEMU)
354 kWh (BEMU)

Route Test track Use case: Plattling - Bayrisch Eisentsein

Length 20 km 143.3 km
Journey time with stops 26 min 10 s 150 min
Number of stations 5 21
Net elevation gain (one way) 5 m 400 m
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Effect of 2D efficiency model implementation on
optimization results

In order to fully understand how significant the model errors
are to the optimization, the effect of the efficiency models
on SEnSOR results needs to be estimated. This was done by
running simulations on the 20 km test route. The results of
the optimization runs with 1D and 2D efficiency models are
summarized in Table 3 for multiple powertrain
architectures.

The difference in the optimization result indicates var-
ious inaccuracies caused by the simplification of using a 1D
model. The analysis in the previous section showed that the
2D model results are more accurate with regard to the
specified component efficiencies. The model error of the 1D
model thus causes two issues in the optimization, which are
of main interest: Non-optimality of the solution as a result of
the simplification, and under-/overestimation of the total
energy consumption even in case of optimal controls.

Detailed comparison of the solution variables shows that
both issues are present: The 1D solution variables yield a
non-optimal result if plugged into the 2D efficiency cal-
culation and the 1D model overestimates the energy con-
sumption, when applied on the 2D solution variables. The
overall difference including both of these inaccuracies
shows higher energy consumption for all train types when
using the simplified 1D efficiency model. The difference
increases from just below 5% for the EMU to over 7% for
the FCEMU, thus with complexity of the powertrain

architecture. The differences between the train types may be
due to the fact that in BEMU and FCEMU there is addi-
tional power transfers within the train back and forth from
the onboard energy storage. Due to the additional power
losses, inaccuracies in the model are propagated and
multiplied. With increasing complexity (e.g. number of
components), this issue is amplified. Therefore, the new
implementation shows greater benefit in BEMU and
FCEMU than in EMU.

One of the disadvantages of shifting to a 2D efficiency
model is an increase in the optimization time. Table 4 shows
the summary of total optimization time required for each
train type and for both the efficiency models. All compu-
tations were carried out serially on aWindows 64 bit system
- Intel 5th Generation eight-core processor @ 2.40 GHz,
8 GB RAM. One can see that the time taken to optimize
increases for all train architectures, above 50% for EMU
and minimum of around 34% for FCEMU. With significant
differences in the optimization results, indicating higher
accuracy of the 2D, one has to decide depending on the
application if the advanced 2D model shall be applied, as a
trade-off between computational time and accuracy. For
offline optimization and generation of benchmark results,
the suggestion is to utilize 2D efficiency models, as
computational performance is not of criticality. Currently,
the initial guess for the battery and fuel cell variables are
obtained using simplified calculations. It is expected that
part of the computational time can be compensated by
providing an improved initial guess which was out of scope

Table 2. Upper part: Approximation errors of the 1D power loss function when compared to the original 2D data points. Lower part:
Errors of the 2D section-wise linear Chua functions in approximating the 2D data points and the contribution of error arising due to the
smoothing procedure.

Motor Traction inverter

1D approximation error ΔRSME (kWh) 0.063 0.02
ΔL1 (%) 4.702 1.302

2D error estimates ΔRSME (kWh) 0.009 0.002
Before smoothing ΔL1 (%) 2.75 �10�12 2.29 �10�13

After smoothing ΔL1 (%) 0.005 0.0004

Figure 3. The smoothed 2D section-wise linear Chua function fitted onto 2D power loss data of induction motor. The upper right hand
corner shows the zoomed-in part of the smoothed function at a location that has sharp step change (marked region). This same location is
shown without smoothing in the lower left corner.
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for this study. A better initial solution leads to faster
convergence of IPOPT to the optimal solution.

Results of the modular, flexible powertrain
implementation: Bi-Mode train

As described in the implementation section, the bi-mode
powertrain is chosen to demonstrate the capabilities of the
new implementation. This, in particular, was done by
running the simulation on a real route between the Plattling
- Bayrisch Eisentsein - Plattling in Germany. We were able
to implement the complex powertrain architecture in a
straight-forward way and gain converging optimization
results. With a computational time of around 16 min, the
model results in an energy demand of roughly 315 kWh at
the catenary and 10.8 kg hydrogen for this specific scenario
and the combination of the chosen track and vehicle.

Figure 4 shows the results of the optimization. In the
upper graphic, the speed and power control setting (throttle
demand) are shown. The lower one illustrates the power

split on the main DC-link. Both are for a specific uphill
segment of the track. During the acceleration and cruising
phase (approx. between minute 17 and 24), the fuel cell is
running around maximum power to provide the base load,
while the battery follows the remaining power request.
Where possible, the fuel cell also slightly reduces its power
to operate in a more efficient operating point. In the coasting
section without traction demand (minute 24 to 26), the
auxiliaries are covered directly by the fuel cell and the bat-
teries are not used. Then, during braking and standstill phase
(minute 26 to 30), which is partly under catenary, the fuel cell
operates in idle mode. First, the battery stores the recuperative
energy from the electro-dynamic brakes (just after minute 26).
Afterwards, it is recharged at maximum power by the
overhead line, which also supplies the auxiliaries required in
standstill. Finally, the catenary supports the acceleration
process of the next section, before the behavior repeats again
in the non-electrified part of the section. The power split
fulfills the given physical constraints and follows a logical
behavior, thus giving the expected results.

Table 3. Energy consumption per km for different train types for 1D and 2D efficiency model, as well as the calculation difference caused
by the application of the different models.

1D model 2D model Difference in %

EMU (kWh/km) 5.096 4.871 �4.62
BEMU (kWh/km) 5.600 5.249 �6.69
FCEMU (kg/km) 0.3058 0.2854 �7.15

Table 4. Time taken by SEnSOR to achieve the optimal controls for a given train type and compute the resulting energy consumption.

1D (in s) 2D (in s) Change (%)

EMU 18.62 29.1 56
BEMU 30.36 42.4 40
FCEMU 28.49 38.16 34

Figure 4. Results of bi-mode train optimization: power demand at the DC-link and split between the different power sources in MW for a
specific section between minute 16 and 34 of the track.

8 Proc IMechE Part F: J Rail and Rapid Transit 0(0)



Figure 5 shows the cumulative energy demand over
time. For the battery, the energy fluctuates around zero due
to recharging processes on the route, with a maximum
discharge of around 100 kWh. The final value settles at
0 kWh, since charge-sustaining operation is enforced. Thus,
the total energy consumption consists of electric power
from the catenary and hydrogen energy. Naturally, the
energy drawn from catenary only grows in the electrified
sections of the track and otherwise stays constant, while the
hydrogen consumed by the fuel cell has a steady increase.
Both reach final values of between 300 and 400 kWh, with
slightly higher value for hydrogen.

The total runtime remains almost the same with the new
modular implementation. This comparison does not include
the amount of manual pre-processing and debugging time
required that goes into changing the OCP formulation with
each change in the powertrain architecture. Therefore, the
benefits are not objectively quantifiable, but noticeable in
terms of effort required to optimize a new powertrain
architecture.

Conclusions and future scope

The use and test cases demonstrate that the main goals
achieved and the research question could be answered
positively: integrating high-complexity constraints to re-
duce model errors and enabling highly modular flexibility
to represent any powertrain architecture in the DM opti-
mization algorithm SEnSOR. The first goal was analyzed
with the implementation of two dimensional efficiency
maps. Chua’s functional representation is computationally
efficient and accurate in terms of approximating given data
points. The availability of an analytic representation allows
to easily perform mathematical operations on the repre-
sented data. Furthermore, the representation can be made
smooth without significant information loss of the given
data points (less than 0.01%). Sufficient smoothness is
usually favorable to guarantee optimality of solutions ob-
tained using higher order optimization procedure. Hence,
this makes it a suitable choice in modeling OCPs. An
enduring limitation is assumption of section-wise linearity
between the data points. This strong assumption about
efficiency maps may introduce significant model errors if
the data set is coarse. For future works, it would be

interesting to explore further approximations such as
B-splines to study the robustness of the solutions to such
changes.

The overall effect of approximation of the original data
points onto lower dimensional space on the quality of
solution is clearly evident from the results. The results
suggest that the 1D approach overestimates the overall
energy consumption and also yiels non-optimal results,
especially in BEMU and FCEMU trains, with differences
between 4 and 7%. With almost 45% average increase in
computational time, the computational performance of the
2D-approach is lower than for the 1D-approximation as
expected in the hypothesis. However, the decrease in model
error is sufficiently high to justify the change in the model.
Based on the modeling goal, one could choose to either use
the 1D-approach for a quickly converging estimation. For
all train types but the EMU, if accuracy is of higher im-
portance, it is suggested to use the more complex model.

The second overarching goal of a modular, flexible al-
gorithm structure to be able to handle a wide range of
powertrain architectures and application cases was dem-
onstrated with the successful optimization of the speed
profile and energy management for a bi-mode train. The
power distribution between three sources was implemented
in a straight-forward way into SEnSOR. The results show
convergence of a real world railway route within 16 min,
minimizing hydrogen and overhead line electricity con-
sumption at the same time. The power split between all
power sources follows a reasonable behavior, with the
battery covering peak loads and utilizing regenerative
braking energy, as well as the catenary continuously re-
charging the battery and primarily covering traction de-
mand. The fuel cell is used to cover base load and otherwise
hold steady in a high-efficiency operating point. For op-
timization of operation, energy from overhead line and
hydrogen could also be weight differently, if one of the
power sources is preferential, for example with a cost
model.

We showed the potential of DM optimization algorithms
in offline railway simulation to reduce energy demand.
Highly complex powertrain architecture are integrated
easily and optimized within reasonable computational time.
Future activities will focus primarily on further improving
computational performance and thus potential applicability

Figure 5. Energy consumption profile over the course of the complete track in kWh for each power source of the bi-mode train.
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into real-time train control to offer optimized driving advice
and energy management on the train.
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