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PHD TOPIC: SEMI-EMPIRICAL MODELING OF SMALL AIRCRAFT NOISE EMISSION      
USING „FIRST PRINCIPLES“ BASED AEROACOUSTICS SIMULATIONS. 



Overview of the PhD

▪ Development of very fast, reduced order, AI semi-

empirical model combining physics based and 

empirical findings, for noise assessment in existing and 

low-noise design of general aviation (GA) and 

advanced air mobility (AAM) vehicles.  

Objective

▪ Propeller installation noise for different configuration 

of propeller arrangement in small Aircraft and AAM 

vehicles. 

Research focus

Potential noise sources on a AAM vehicle (NASA) [1]
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Towards developing an AI based semi-empirical model

Propeller noise source model

▪ Selection of an appropriate 

propeller noise source model for 

CA and CAA simulations

Reduced order model for AI 

database

▪ Considering a generic installation 

case

▪ Identifying parameters affecting the 

noise emissions

AI semi-empirical model

▪ Training the physics based AI 

model using the reduced order 

model dataset

Implementing AI model into PANAM

▪ Infrastructure to implement the model into 

ground based noise assessment tool PANAM. 

Simulation dataset for AI model

▪ Creating a huge database for AI model 

based on the reduced order model 

Validation of the propeller 

noise source model
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▪ Validating the simulation data from 

noise source model with flyover data



DLR’s Unsteady free wake Panel Method (UPM)
Wake panel representation 
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▪ Assumption of Incompressible, Inviscid, Irrotational flow for the UPM solver 

▪ Mesh free solver with source/sink, double surface panels used for approximating the geometry

▪ Vortex core defined on each quad-wake filament

Numerical model of blade and wake [2] Wake development from DO-228 propeller blade.



Detailed dimensions of simplified geometry
Propeller installed with half-wing  
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Front view and Top view
Simplified approximated geometry of 

propeller installed with wing

▪ For computational efficiency a 

simplified geometry of propeller 

installed with half wing is considered. 

▪ For simplification fuselage and nacelle 

are omitted from the UPM simulations

▪ The effect of fuselage is defined using 

a wall boundary condition at the root 

of the wing. 

▪ Airfoil used for creating the blade and 

wing geometry is approximated using 

sharp trailing edge (TE)



Computational methodology
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▪ Coupling of UPM-APSIM (first principle based tools) to calculate the noise Emission at the component level

▪ Coupling PANAM to UPM-APSIM to calculate noise Immission for complete aircraft at observer location, 

considering Doppler effect and ground reflections

Level 1

Component level  

Level 2

Aircraft level  

PANAM

UPM

APSIM
Noise Emission on an acoustics 

hemisphere representing a far field

Noise Immission at observer location 

for complete aircraft



Goals of presentation
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▪ Effect of changing the number of surface panel grid on aerodynamic and aeroacoustics of 

isolated and installed propeller

▪ Effect of varying the vortex core diameter on aerodynamic and aeroacoustic simulations

▪ Effect of varying the vortex core model on aerodynamic and aeroacoustic simulations

▪ Verification of simulations of UPM-APSIM coupling with BEMT-HANSON coupling

▪ Validation of the UPM-APSIM-PANAM simulation with the flyover measurement data

Grid sensitivity study

Vortex core radius 

sensitivity study

Vortex core model 

sensitivity study

Verification

Validation



Grid refinement study: Isolated propeller
Blade surface panel grid
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Number of panels = 80 x 32 Number of panels = 80 x 60 Number of panels = 80 x 75 



Aerodynamic loading on the propeller blade
Thrust, Torque, and Surface pressure
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Effect of changing surface panel density on acoustics
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Panel grid 1 Panel grid 3Panel grid 2

Overview

▪ Surface pressure used for 

loading noise calculation and 

spatial co-ordinates for thickness 

noise in FW-H equation

▪ Acoustics hemisphere is a 

simulation grid of virtual 

microphones arranged at 

varying polar and azimuth 

angles.  

▪ No effect observed on the noise 

emitted to the far-field with 

varying the number of surface 

panels used for describing the 

geometry.

▪ Directivity remains unchanged 

over varying polar and azimuth 

angles on the acoustics 

hemisphere.

▪ Panel grid 1 is selected as an 

optimal grid.  

Acoustics hemisphere representing the far field



Grid refinement study
Propeller installed with wing

Grid 1
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Grid 3Grid 2

Number of panels = 100 x 44 Number of panels = 100 x 125 Number of panels = 100 x 180 



Aerodynamic loading on wing
Time history of lift-coefficient

Grid 1
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Grid 3Grid 2



Aerodynamic loading on wing
Surface pressure

Grid 1
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Grid 3Grid 2

▪ Increasing the panel density on the wing-span under direct influence of propeller wake shows low pressure region near LE of wing
with fluctuations in spanwise direction  

▪ Surface pressure on wing for grid 3 (most refined grid) shows fluctuation in the pressure in the spanwise direction due to interference 
between neighboring vortex defined on each quad wake panel

▪ Increased panel density in the spanwise direction specifically for those sections which are  under direct influence of tip vortex shed 
from the propeller captures the effect of wing-vortex interaction in a better way compared to less dense panel grid



Effect of changing surface panel density on acoustics
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Panel grid 1 Panel grid 3Panel grid 2

Overview

▪ Changing the surface panel 

density of the span under direct 

influence of wake from propeller 

results in increased levels by 

1dB to 3 dB.

▪ Noise directivity at 𝜱= 0°
changes as the panel density is 

increased in region influencing 

wing-wake interaction. 

▪ Surface panel grid 2 selected as 

an optimal condition for further 

analysis. 

Acoustics hemisphere representing the far field



Goals of presentation
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▪ Effect of changing the number of surface panel grid on aerodynamic and aeroacoustics of 

isolated and installed propeller

▪ Effect of varying the vortex core diameter on aerodynamic and aeroacoustic 

simulations

▪ Effect of varying the vortex core model on aerodynamic and aeroacoustic 

simulations

▪ Verification of simulations of UPM-APSIM coupling with BEMT-HANSON coupling

▪ Validation of the UPM-APSIM-PANAM simulation with the flyover measurement data

Grid sensitivity study

Vortex core radius 

sensitivity study

Vortex core model 

sensitivity study

Verification

Validation



Aerodynamic simulations
Vortex core model: Rankine
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▪ A larger vortex core defined on each filament of the wake panels results in higher oscillations of the lift-coefficient 

over time

▪ A smaller vortex core results in oscillations of lift-coefficient over time but in a more periodic manner

▪ Time history of lift-coefficient (cL) over the whole span of the wing is plotted by integrating cl for each section to 

check convergence

R0 = 10% MAC R0 = 30% MAC R0 = 50% MAC R0 = 80% MAC



Aerodynamic simulations
Vortex core model: Lamb-Oseen
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▪ Oscillations in the lift-coefficient over time are reduced for smaller vortex core compared to the case of Rankine 

vortex core model

▪ With increasing the size of the vortex core the oscillation in cl increases and periodicity is lost

R0 = 10% MAC R0 = 30% MAC R0 = 50% MAC R0 = 80% MAC



Aerodynamic simulations
Vortex core model: Kaufmann-Scully
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▪ Oscillation in the lift-coefficient over time for Scully model are reduced until R0 = 50% MAC, compared to the vortex 

core model of Rankine and Lamb-Oseen

▪ For R0 = 10% MAC & 30% MAC, oscillation are occurring in periodic manner 

▪ For R0 = 50% MAC the periodicity is lost 

R0 = 10% MAC R0 = 30% MAC R0 = 50% MAC R0 = 80% MAC



Aeroacoustics simulations
Effect of vortex core radius and core model on noise directivity

20

Noise directivity at azimuth (𝜱 = 0°) 



Validation of sensitivity study using flyover data
Spectrum plot at same immission angle
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▪ Increasing the vortex core radius from 𝑅0 = 10% to 𝑅0 = 80% increase the noise levels 

▪ All three vortex core model predicts the tone at 1st harmonics close to the tone from measured data until 𝑅0 = 50% MAC 

▪ Sudden increase in noise levels after 1st harmonics indicates the presence of interference between propeller wake panels and wing 

doublet panels in UPM-APSIM simulation 

Kaufmann Scully vortex core model Rankine vortex core modelLamb-Oseen vortex core model



Validation of sensitivity study using flyover data
Spectrum plot for Kaufmann-Scully vortex core model

▪ Tones from UPM-APSIM closely resembled the 

tones from HANSON model  

▪ Large propeller installed distance from wing 

results in tones from UPM-APSIM to closely 

resembles tones from HANSON model for 

installed case without wing

▪ Negligible backloading from wing onto the 

propeller due to large installed distance between 

propeller and wing

▪ Inclusion of wing in CAA simulation leads to 

increased levels after 2nd BPF
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Goals of presentation
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▪ Effect of changing the number of surface panel grid on aerodynamic and aeroacoustics of 

isolated and installed propeller

▪ Effect of varying the vortex core diameter on aerodynamic and aeroacoustic simulations

▪ Effect of varying the vortex core model on aerodynamic and aeroacoustic simulations

▪ Verification of simulations of UPM-APSIM coupling with BEMT-HANSON coupling

▪ Validation of the UPM-APSIM-PANAM simulation with the flyover measurement data

Grid sensitivity study

Vortex core radius 

sensitivity study

Vortex core model 

sensitivity study

Verification

Validation



Verification using HANSON model

▪ Noise source model of propeller in UPM-

APSIM and HANSON for isolated 

propeller configuration gives smooth 

contour over the acoustics hemisphere

▪ Interference observed in the case of 

installed propeller without wing towards 

the two extremes of polar angle of 

acoustic hemisphere
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Directivity on acoustic hemisphere

1st BPF HANSON model

1st BPF APSIM isolated 1st BPF APSIM installed propeller without wing



Verification using HANSON model

▪ Isolated propeller configuration simulated using 
propeller source model of UPM-APSIM shows a 
close agreement with the noise levels from 
HANSON model

▪ Installed propeller configuration without wing 
underpredicts the maximum noise level by 1 dB 
- 2 dB at Θ = 90° compared to the HANSON 
model with noise directed in downstream of the 
propeller 

▪ unreasonably high noise obtained in the 
directivity plot of installed propeller with wing 
due to higher harmonics in 1 KHz – 4 KHz range 
for mic-1 in the spectrum plot for same 
immission angle
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Noise directivity for fixed azimuth (𝜱= 0°)



Goals of presentation
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▪ Effect of changing the number of surface panel grid on aerodynamic and aeroacoustics of 

isolated and installed propeller

▪ Effect of varying the vortex core diameter on aerodynamic and aeroacoustic simulations

▪ Effect of varying the vortex core model on aerodynamic and aeroacoustic simulations

▪ Verification of simulations of UPM-APSIM coupling with BEMT-HANSON coupling

▪ Validation of the UPM-APSIM-PANAM simulation with the flyover measurement data

Grid sensitivity study

Vortex core radius 

sensitivity study

Vortex core model 

sensitivity study

Verification

Validation



Validation with flyover measurement data

▪ Installed propeller with wing configuration 

not considered for validation

▪ Absence of Installation leads to 

underprediction by 3 dB - 5 dB for 

HANSON and UPM-APSIM noise source 

model in unweighted plot

▪ Reduced influence of tonal noise at lower 

frequency by A-weighting leads to 10 dB 

underprediction by simulated data 

compared to measured data
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Level time history plot Unweighted A-weighted 



Validation with flyover measurement data
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Frequency spectrum at LA, max

▪ Close agreement observed between 

HANSON tones and UPM-APSIM tones 

for isolated and installed case without 

wing

▪ Both HANSON model and UPM-APSIM 

underpredicts the first harmonics by 2 dB 

to 4 dB

▪ Underprediction of PANAM airframe 

broadband noise compared to the 

broadband noise from measured data



Validation with flyover measurement data
Using vortex particle method in UPM for Aerodynamic simulations
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Level time history plot Frequency spectrum at LA, max



Summary and Conclusion
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▪ Increased panel density requires a smaller vortex core and with a coarser 

grid a larger vortex core could be used

▪ Vortex filament method in UPM is unable to handle the 

installation effects and gives numerical error after 2nd

harmonics. 

▪ Vortex particle method solves the problem encountered in installed 

propeller configuration

▪ A good agreement is observed between the noise levels 

obtained from coupling of UPM-APSIM compared to the 

HANSON model for isolated propeller configuration

▪ Kaufmann-Scully vortex core model shows a plausible agreement to 

the first two harmonics compared to other vortex core model  

▪ Vortex core radius defined in range of 5% to 30% of MAC of propeller

▪ Larger installation distance between propeller & wing requires larger core radius
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Validation using flyover data

1

Grid Sensitivity study

2
Sensitivity study 
Vortex core radius

3
Sensitivity study 
Vortex core model

4
Verification using HANSON 

model
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