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Abstract: Temperate forests are particularly exposed to climate change and the associated increase
in weather extremes. Droughts, storms, late frosts, floods, heavy snowfalls, or changing climatic
conditions such as rising temperatures or more erratic precipitation are having an increasing impact
on forests. There is an urgent need to better assess the impacts of climate change and extreme weather
events (EWEs) on temperate forests. Remote sensing can be used to map forests at multiple spatial,
temporal, and spectral resolutions at low cost. Different approaches to forest change assessment
offer promising methods for a broad analysis of the impacts of climate change and EWEs. In this
review, we examine the potential of Earth observation for assessing the impacts of climate change and
EWEs in temperate forests by reviewing 126 scientific papers published between 1 January 2014 and
31 January 2024. This study provides a comprehensive overview of the sensors utilized, the spatial
and temporal resolution of the studies, their spatial distribution, and their thematic focus on the
various abiotic drivers and the resulting forest responses. The analysis indicates that multispectral,
non-high-resolution timeseries were employed most frequently. A predominant proportion of the
studies examine the impact of droughts. In all instances of EWEs, dieback is the most prevailing
response, whereas in studies on changing trends, phenology shifts account for the largest share
of forest response categories. The detailed analysis of in-depth forest differentiation implies that
area-wide studies have so far barely distinguished the effects of different abiotic drivers at the
species level.

Keywords: forest; temperate forest; climate change; extreme weather events; drought; storm; late
frost; remote sensing; earth observation; review

1. Introduction
1.1. Climate Change and Extreme Weather Events in Temperate Forests

Approximately one-third of the world’s land area is forested [1,2], which provides a va-
riety of ecological, economic, and social benefits to people, the environment, and health [3].
In addition to their socio-ecological services, forests are large-scale carbon dioxide sinks [4],
as they contain 80–90% of the global plant biomass [5] and continuously offer a high natural
carbon storage potential [6,7]. Due to these two aspects, forests are of particular importance
for both climate change adaptation and climate change mitigation. However, forests are
increasingly under pressure from human impact [8,9]. Forest disturbance is steadily increas-
ing due to a growing number of threats, such as deforestation, fragmentation, invasion,
and especially the negative effects of climate change [10–13].

As early as 1967, the results of a computer model that included the essential elements
of the Earth’s climate for the first time showed the extent to which the doubling of carbon
dioxide would affect the Earth’s global temperature [14]. The greenhouse effect is a radiative
process in which atmospheric gases, such as carbon dioxide, absorb and re-emit thermal
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infrared radiation, trapping heat and causing the surface temperature of the planet to
rise [15]. The strong increase in the concentration of carbon dioxide in the atmosphere was
first observed almost ten years later, in 1976 [16]. In 1990, the first IPCC (Intergovernmental
Panel on Climate Change) report [17] demonstrated the anthropogenic influence on climate
change. A few years later, Cox et al. [18] described how global warming was further
accelerated by feedback effects in the carbon cycle. Today, the consequences of climate
change are widely known and described. They are ubiquitous in both social [19] and
scientific [20] discourse. The rise in global surface temperature [21,22] and the increase in
Extreme Weather Events (EWEs) [23,24] have had an evident impact on global ecosystems,
especially forest biomes [25]. For example, species are increasingly migrating towards the
poles [26], and forests are becoming more vulnerable to drought and heatwave-induced
tree mortality [12,27,28]. Due to their location in the most densely populated regions of
the world, temperate forests have been the most affected by change, fragmentation, or
degradation in the past [29]. While these direct anthropogenic disturbances are now mainly
confined to tropical forests [30], temperate forests are now increasingly exposed to the
effects of climate change and the associated EWEs [31,32]. Olson et al. [33] divided the
world into 14 biomes and 8 biogeographic regions, based on the distribution of a wide
range of flora and fauna across the planet, to enhance their utility in conservation planning
at both global and regional scales. Two of these biomes are temperate forests: temperate
mixed deciduous forests, and temperate coniferous forests. These forests cover about
5.3 million km2, and account for 16% of the world’s forest area [11]. With their location
in the temperate zone, which is characterized by seasonal extremes [34], the two biomes
together cover large parts of Europe, the west coast of the USA, and Canada, as well as
their east coast, parts of East Asia, sections of the southern Andes, and small areas of
Oceania [33].

Rising global surface temperatures are disrupting atmospheric and oceanic patterns,
leading to the intensification and increased frequency of EWEs such as droughts, storms,
late frosts, heavy snowfall, and floods [24,35,36]. These symptoms of climate change are
also occurring in temperate forests, and are having a major impact on them. Fast adaptation
of different tree species to rapidly changing conditions is only partially possible [32,37].
This is demonstrated by extreme events such as the droughts of 2003 and 2018, with
massive impacts on European forests [38–43]. In parallel to the increase in intensity and the
duration of droughts, the number and intensity of storms are also increasing as a result
of climate change [35]. The effects on temperate forests are illustrated by the example of
the storm Vaia in autumn 2018 in northern Italy [44–46]. Storm winds of up to 200 km/h,
combined with heavy rainfall, caused widespread damage in almost 500 municipalities [47].
Another increasingly frequent extreme event is spring frost [36,48]. In temperate forests,
especially for the dominant native tree species in Europe, the European beech [49], sub-zero
temperatures immediately after the buds burst are particularly critical [50]. As a result
of changing climate conditions, the phenology, as well as the productivity, of forests are
shifting [51]. The faster warming in spring and the longer-lasting warmth in autumn
lead to an extension of the growing season and disparity between the green and thermal
seasons [52]. The combination of the different EWEs and the changing climatic conditions
thus lead to profound changes in temperate forests.

1.2. Remote Sensing Perspective

It is crucial to improve our understanding of how climate change and EWEs affect
temperate forests. Remote sensing allows for efficient forest health assessment of large
areas [53], the monitoring of otherwise inaccessible areas [54], and offers the possibility of
repeated measurements [55], which means that changes due to climate change or EWEs
can be tracked particularly effectively. This makes remote sensing an indispensable tool
for environmental monitoring. A number of large open data archives, such as those of
the AVHRR (Advanced Very High Resolution Radiometer), MODIS (Moderate Resolution
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Imaging Spectroradiometer), or Landsat missions, have expanded the possibilities of forest
research from the local to the global level in high temporal and spatial resolution [56,57].

For forestry research, this allows for the possibility to investigate the causes of forest
damage and to analyze the dynamics of forest recovery [53,58]. The high temporal avail-
ability enables timely monitoring of forest damage, and thus the rapid adaptation of forest
management [59]. The use of remote sensing technologies to evaluate forest information is
not a new phenomenon [55]. Since the 1980s, AVHRR has allowed for the monitoring of
forests on a global scale with a repeat rate of one to two days [60–62]. MODIS provides the
same frequency with increased spectral and spatial resolution [63]. Based on the MODIS
timeseries, a large number of forest products have been produced since the turn of the
millennium, such as the MODIS Fire Products [64,65], the Vegetation Continuous Fields
product [66], or the MODIS Land Cover Dynamics product [67,68]. Even longer timeseries
with higher spatial resolution are provided with Landsat, a satellite series that has offered
comprehensive information on forest condition, cover, and structure since 1972 [69,70].
Optical data with higher spatial, spectral, and temporal resolution is the Sentinel-2 ob-
servation satellite pair, which has a wide range of applications in the context of forest
disturbances [71–74] or environmental monitoring in general [75,76]. By harmonizing
several sensors, such as Sentinel-2 and Landsat 8, changes in the environment can be de-
tected more effectively [77,78]. The latest generations of satellites, such as PlanetScope and
Worldview (both commercial), allow for the monitoring of trees at the individual/species
level [79,80], as well as the near real-time detection of forest changes [71], and their potential
benefits are just beginning to be realized.

In addition to the optical sensors mentioned above, other types of sensors offer a wide
range of possibilities to monitor the effects of climate change and associated EWEs on
temperate forests. For example, satellite or airborne LiDAR images can serve as important
indicators of forest disturbances [81,82]. Also, UAVs with different sensors are increasingly
being used for very high-resolution studies, such as health and species classification of
individual trees [83,84]. Weather-independent SAR data, and thus uninterrupted time-
series, such as those from Sentinel-1, are valuable in the context of forest monitoring and
disturbance mapping [85–87]. Overall, remote sensing offers great potential for research
on the effects of climate change and EWEs. The development of increasingly advanced
spatial, temporal, and spectral sensor systems, coupled with the growth of open-access
data archives, is enabling a better understanding of forest ecosystem functioning and its
response to changing environmental influences.

1.3. Structure and Objectives of This Review

In this review, we examine the potential of Earth observation for assessing the impacts
of climate change and EWEs in temperate forests by reviewing 126 scientific papers pub-
lished between 1 January 2014 and 31 January 2024. Due to the increasing impact of climate
change and EWEs on temperate forests over the past decade [35,38,41] and the launch of
high-potential Earth system observers, the Sentinel satellites [75], 2014 was identified as an
appropriate starting year. The overall structure of the review is outlined below:

• The introduction in Section 1 presents the relevance of the potential of remote sensing
to monitor temperate forests in the context of a changing climate and an increasing
number and intensity of EWEs.

• The literature selection process is explained in Section 2 by providing an overview
of the literature databases used and the filters applied. By focusing on the primary
abiotic disturbances caused by climate change and EWEs, these filters include the
distinction from biotic forest disturbances such as bark beetle infestations.

• Section 3 presents the results of the review process. It aims to identify the potential of
Earth observation to determine the impacts of climate change and EWEs on temperate
forests. First, the evolution of the research field over time is described. This is followed
by the identification of hotspots of study areas and author affiliations. The sensors used
and the temporal and spatial scales are presented in the next subsection. The Section 3
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concludes with a detailed analysis of the research foci. The studies are classified
according to climate change or different EWEs and their remotely sensed impacts on
temperate forests, as well as an in-depth analysis of the forest differentiations used in
the studies to identify relevant research gaps.

• The discussion of the results, the limitations of the review, and the urgent need for
dense forest monitoring is presented in Section 4.

• Section 5 highlights the main findings, and concludes with the potential of remote
sensing to detect the impacts of climate change and EWEs on temperate forests.

2. Materials and Methods

For the literature review, we used the Web of Science platform. This platform allows
for an in-depth literature search with the utilization of search strings and additional filtering.
This enables the exclusion of certain languages, disciplines, publication years, or topics that
should not be included in the publications. We employed conditional statements, shown
in Table 1, to ensure the inclusion of certain criteria. We filtered the publications based on
three terms: ‘Topic’ (TS) returns search results based on title, abstract, and keywords; ‘title’
(TI) returns results based on only the title; and ‘author keyword’ (AK) returns only results
which match the keywords specified by the author.

Table 1. Criteria entered in the WoS search string. The complete list of criterion geographic scale
is included in Table S1. The asterisk (*) represents any group of characters, including the absence
of characters.

Criteria Conditions

Forest

TI = (forest* OR tree* OR conifer* OR needleless OR spruce OR pine OR fir OR larch OR
broadleaf OR deciduous OR beech OR oak OR maple OR birch OR chestnut OR aspen OR

elm OR linde* OR woodland* OR canop*) OR AK = (forest* OR tree* OR conifer* OR needleless
OR spruce OR pine OR fir OR larch OR broadleaf OR deciduous OR beech OR oak OR maple

OR birch OR chestnut OR aspen OR elm OR linde OR woodland* OR canop*)

Geographical Scale List of countries and continents with temperate forests (see Table S1)

Weather
Extreme OR Climate Change

(TI = (drought OR storm OR cold spell OR coldspell OR heatwave OR heat wave OR
climate induced OR climate change OR water deficit OR abiotic disturbance OR snow

breakage OR snow damage) OR TI = ((extreme OR heavy OR severe OR intense OR strong
OR high OR late OR early) AND (weather OR climate OR wind OR rain OR precipitation

OR temperature OR frost OR meteorology OR stress OR freeze))) OR AK = (drought OR storm
OR cold spell OR coldspell OR heatwave OR heat wave OR climate induced OR climate change

OR water deficit OR abiotic disturbance OR snow breakage OR snow damage)

Remote
Sensing

TS = (remote sensing OR remotely sensed OR earth observation OR satellite OR spaceborne OR
multispectral OR hyperspectral OR imaging spectroscopy OR SAR OR radar OR thermal OR

Sentinel OR Landsat OR MODIS OR AVHRR OR Envisat OR SPOT OR RapidEye OR WorldView
OR IKONOS OR Quickbird OR Pleiades OR Planet OR skycat OR denis OR PRISMA OR

enmap OR Hyperion OR COSMO OR ALOS OR TerraSAR OR TanDEM OR RADARSAT OR
ASTER OR SRTM OR ICESat OR GEDI OR ecostress OR Copernicus OR Suomi NPP)

Type Article

Language English

Date 1 January 2014, 31 January 2024

Excluding Factors
NOT (TI = (beetle* OR insect* OR urban* OR fire*) OR AK = (beetle* OR insect*

OR urban* OR fire*) OR TS = (boreal* OR tropical* OR subtropical* OR mangrove*
OR bamboo* OR crop* OR grassland* OR wheat* OR tundra OR marine* OR kelp OR bird))

The TS filter was applied for the category of forests, and includes terms such as
“wood”, “tree”, “deciduous”, “conifer”, and more. We also included the most common tree
species, for example, “spruce”, “fir”, “larch”, “pine”, “beech”, “oak”, “maple”, “chestnut”,
“aspen”, “elm”, or “linde*”. In the case of geographical scale, all countries and continents
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with temperate forests are included, as well as the terms “temperate” and “mid-latitude”.
The terms “temperate” and “mid-latitude” must be represented in TS to fulfill the search
requirements. The criteria for climate change and weather extremes had a more complex
conditional statement Publications were filtered that directly name such a phenomenon
in the title or as an author’s keyword, such as “drought” or “flood”. In addition, we
sought publications that used a descriptive adjective to describe an “extreme” phenomenon
in combination with a “normal” phenomenon in the title, such as “extreme” or “severe”
in combination with “weather” or “precipitation”. The context of remote sensing was
established through a topic search using a list of commonly used sensors and remote
sensing terms. The language used is English and the type of publication is set to “article”.
The selected timeframe includes all publications from 1 January 2014 to 31 January 2024.
Based on this combination of conditional statements, we derived 937 publications.

Figure 1 depicts the workflow utilized, which involves two stages of filtering: an
automated filter (shown in the last row of Table 1), and a subsequent manual filter. Auto-
mated filtering can be achieved through the use of specific ‘NOT’ statements. To ensure the
inclusion of only temperate forests, the sub-tropical, tropical, boreal, tundra, mangrove, and
bamboo forests located in the USA, China, Russia, and Canada were excluded. Additionally,
terms such as ‘crop’, ‘grassland’, ‘wheat’, ‘marine’, ‘kelp’, or ‘bird’ are excluded from the
literature search due to their divergent focus. The filtering process excluded terms such
as ‘beetle’ or ‘insect’ in TI or AK to establish a clear distinction from biotic disturbances.
Additionally, publications with ‘fire’ or ‘urban’ in TI or AK were excluded, resulting in a
total of 447 publications. Manual filtering was then applied to exclude publications that
lacked a remote sensing context, had incorrect study areas, did not focus on forests, or only
addressed seedlings or tree-line shifts. As a result of these criteria, 126 relevant articles
were identified (Table S2).
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3. Results

The following section presents the main findings of the reviewed articles on the
potential of Earth observation to assess the impacts of climate change and EWEs in
temperate forests:

• First, the distribution of publications in different journal categories is shown in
Section 3.1.

• In Section 3.2., the publications are subdivided spatially, both with regard to the
affiliation of the first author and with regard to the study area.

• The analysis of the sensor name and sensor type, as well as their carrier system, is
presented in Section 3.3.

• In Sections 3.4 and 3.5, the spatial and temporal resolutions, as well as the different
study periods, are analyzed in detail.

• This is followed by an in-depth examination of the thematic foci in Section 3.6, includ-
ing the differentiation of various EWEs and trend analyses.

• Subsequently, in Section 3.7, an in-depth analysis of the detailed forest differentiation
of the respective studies is presented in order to identify conclusive research gaps.

3.1. Development of Research Interest over Time

The development of a field of research can be analyzed by the number of publications
over the years. The composite Figure 2 includes a bar chart and a donut chart, providing a
comprehensive visualization of the number of publications within each journal category
per year and an overall distribution. We have created five categories of journals in order
to assign each publication to a specific class: “Remote Sensing”, “Forest”, “Ecology”,
“Environment”, and “Other”. The category “Other” includes all journals that do not fit into
one of the four categories, such as “Journal of Mountain Science”, “Journal of Agricultural
Meteorology”, or “Theoretical and applied Climatology”.
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In the bar chart on the left side of Figure 2, the year 2024 is excluded due to the
limited number of publications until the end of January. By that date, only one paper had
been published in the category “Remote Sensing”. The period starting in 2014 shows a
steady increase in the number of publications in all categories except 2016 and 2019. The
year 2023 has the highest number of publications with 23, and with almost 60% having
been published in the last four years, the increase becomes particularly clear. There is
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no clear shift in any of the categories. Nevertheless, the graph shows that the categories
“Remote Sensing” and “Ecology” were represented in every year, in contrast to “Forest”
and “Environment”. In the overall distribution of the 126 publications, slightly more than a
quarter of each can be assigned to the categories “Remote Sensing” (26.4%) and “Forest”
(26.4%). About 21.6% of the publications belong to the “Ecology” category, and 12.8%
belong to the “Environment” category. Sixteen publications could not be assigned to any of
these categories, corresponding to 12.8% of the total number of articles reviewed.

3.2. Spatial Analysis on Affiliations and Study Areas

With the exception of Africa and Antarctica, every continent has major temperate
forests [33], which is mostly reflected in the affiliations of the first authors and in the spatial
distribution of the study areas. Figure 3 shows the number of first author affiliations for
each country. On a continental scale, Europe has the highest number of publications with
first author affiliations (n = 57). The temperate forest layer in the map suggests that large
areas in Europe are covered by temperate forest. Asia has less partial temperate forest
cover. One third of all first authors have their affiliation in Asia (n = 42). North America
has 27 publications with first author affiliations.

The differences between countries are more distinct. In total, 37 first authors have
their affiliation in China, followed by the United States with 24 and Germany with 19.
Spain and Italy have more than five each, and all other countries listed have between one
and three first author affiliations. Figure 3 illustrates that all countries with first author
affiliations have temperate forests within their nations. On the contrary, the observation
is not transferable. Not all countries with temperate forests have affiliations within that
country. No publications with first author affiliations were found for Chile, Argentina,
Australia, or New Zealand.

Figure 4 shows the same pattern. This comprehensive representation of the number of
publications with study areas within the country shows that Chile, Argentina, Australia,
and New Zealand have temperate forest. However, there are no analyses of the effects of
climate change or EWEs on temperate forests. The other observations in the previous figure
are reflected in Figure 4. A quantitative comparison of the affiliation of the first authors
with the study sites shows a strong correlation (Cramer’s V: 0.79). The deviation from a
perfect correlation can be explained with the two subgraphs. Nearly half of study sites
are in Europe (n = 58), followed by publications with sites in Asia (n = 41), 32 of which
are in China and North America (n = 26). The study by Bórnez et al. [88] examined the
responses of deciduous forest phenology to climatic anomalies in the Northern Hemisphere
over a period of just under 20 years by using Copernicus Global Land Service LAI 1 km
version 2, derived from SPOT VEGETATION and PROBA-V data. Therefore, no single
continent can be attributed to this study. In addition, the perfect correlation mentioned
above is affected by studies that show transboundary study areas. For example, there are
seven studies with study areas covering Europe and one covering all of North America.
There are five studies in Europe, three in Asia, and one in North America that do not cover
continents, but include several nations. The high Cramer’s V value suggests that foreign
research involvement in this research topic is not very common due to the predominantly
national interest in the state of forests.
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3.3. Sensors and Sensor Type

The selection of sensors is primarily influenced by the focus of the study. Different sen-
sor types are differently suited for the detection of the impact on forest of individual EWEs
or climate change. In addition, the study area size is decisive for the choice of sensor. In re-
cent decades, the number of available data have increased distinctly [57,58,75,76,78,89–94].
In general, several sensor types are available to detect the impacts of climate change or
EWEs in temperate forests [90,91,94].

Basically, remote sensing sensors can be divided into two categories: active sensors,
and passive sensors. Active sensors actively emit a signal and measure its reflection from
the ground [95]. Passive sensors measure the electromagnetic radiation reflected from the
surface. The radiation detected is typically measured over a range from visible light (VIS)
to short-wave infrared (SWIR), and is particularly sensitive to atmospheric disturbances
such as clouds, fog, and similar phenomena [95]. Passive sensors are further subdivided
into multispectral, hyperspectral, thermal, and passive microwave sensors. Multispectral
sensors have several bands in addition to the optically VIS RGB bands. These often include
near-infrared (NIR), SWIR, and red-edge. Hyperspectral sensors often have more than one
hundred bands with narrow bandwidths [96]. SAR and LiDAR are active sensors, but SAR
(synthetic aperture radar) is unaffected by cloud cover, while LiDAR scans can acquire data
only under cloudless conditions [95]. Figure 5 shows the different sensors, sensor types,
and platforms used.
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Airborne Hyperspectral Sensor, ALS—Airborne Laser Scanning, AMS—Airborne Multispectral
Sensor, AMSR—Advanced Microwave Scanning Radiometer, AVHRR—Advanced Very High Res-
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Surface Temperature, OCO-2—Orbiting Carbon Observatory-2, PROBA-V—Project for On-Board
Autonomy—Vegetation, SPOT—Satellite Pour l’Observation de la Terre.



Remote Sens. 2024, 16, 2224 11 of 39

The use of multispectral sensors clearly predominates in the reviewed articles. Multi-
spectral sensors were used in 118 studies. Four studies each used thermal and hyperspectral
sensors. Three studies used Sentinel-1 data, which belongs to the group of SAR sensors.
Two studies used ALS data, and one study used passive microwaves. Among the multi-
spectral sensors, the familiar ones clearly dominate. MODIS is by far the most frequently
used sensor, with a total of 48 studies. Most MODIS data and products are available from
the year 2000 onwards [64,66,67]. The spatial resolution ranges from 231 m to 1000 m,
depending on the band. A major advantage over other sun-synchronous satellite platforms
is the daily repeat rate north of 30◦ latitude [63]. The temporal resolution of the Landsat
archive is less; the individual satellite systems have a repeat rate of about 16 days. However,
the spatial resolution is distinctly better. The current versions Landsat 8 and Landsat 9 have
a resolution of 30 m in the VIS, NIR, and SWIR. The Landsat archive additionally provides
the longest timeseries available, with the first images dating back to 1972 [97]. A total of
30 studies have used the Landsat archive, mostly combining multiple sensors. The most
commonly used sensors within that group were Landsat 5 and Landsat 8.

Altogether, 20 studies were conducted with Sentinel-2. The multispectral satellite pair
has been providing composites with a 5-day repeat rate since 2015. With a resolution of
10 m in the VIS and NIR, the sensor can be used for wide range of applications to provide
multidisciplinary routine measurements for operational purposes [75]. AVHRR is one of
the most widely used sensors, with 14 studies. The multiband data archive of AVHRR
starts in 1981. Different products offer spatial resolution between 1.1 and 8 km, with up to
daily revisit cycles [98–100]. When all studies employing optical sensors are aggregated, the
proportion is 96%. Of these studies, over 80% utilize the Normalized Difference Vegetation
Index (NDVI) or Enhanced Vegetation Index (EVI).

The donut chart on the left in Figure 5 shows the distribution of the platforms. The
employed sensors revealed that a large proportion of the data are spaceborne. A total of six
studies used aircrafts as carrier systems, and four used UAV. Different sensor types were
rarely combined (4.7% of all studies). Thermal data were combined with multispectral data
three times. Each Sentinel-1 was combined with Sentinel-2, MODIS was combined with
AMSR, and ALS was combined with AHS, represented by the donut chart on the right.

3.4. Temporal and Spatial Resolution

The section below examines the spatial resolution and temporal periods of remote
sensing data in the reviewed articles. Figure 6 illustrates the time period covered by the
remote sensing data in comparison to the publication dates of the reviewed articles. Each
study was categorized, based on the best spatial resolution of the sensors. The categories are
as follows: very high spatial resolution (below 10 m), high resolution (10 to 30 m), medium
resolution (above 30 to 1000 m), and coarse resolution (more than 1000 m). The remote
sensing data time periods are grouped into four categories: mono-temporal (with only
one time-step), multi-temporal (with multiple observations in one year), multi-temporal
(multiple years with single observations), and timeseries (with at least ten timesteps and
multiple recordings over several years). Figure 6 shows that the majority of the reviewed
articles used timeseries to detect extreme weather impacts or long-term trends on midlati-
tude forests. Forest impacts can be measured with their changes. Therefore, the collection
of repetitive data is a great advantage. Satellite-based timeseries analysis profits from
this feature, and is therefore the most commonly used temporal resolution group. These
systems typically have a medium-to-coarse resolution. The MODIS and AVHRR missions
have been ongoing for a long time, resulting in a wealth of data. These two sensors are
clearly identified in the Figure. The light-blue lines starting in 1982 are associated with
studies using AVHRR, and the dark-blue lines starting around 2000 are associated with
studies using MODIS. The light-orange lines with long-time periods represent Landsat,
which has a long data archive. For example, Katrandzhiev et al. [101] used the Landsat
database to create a complete 42-year timeseries to study the effects of climate change on
high mountain ecosystems in Bulgaria.
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Overall, coarse (20.6%) and medium resolution (51.6%) studies predominate. This is
especially the case in the first years of the publication year timeframe. Almost one fifth
(18.3%) of the publications used high resolution data, which increased in 2017 and can be
traced back to the start of the Copernicus program. With around one tenth (9.5%) of all
publications, the use of very high-resolution data is low, especially in older study periods.
Overall, only two of the papers reviewed used high-resolution spaceborne data to assess
the impacts of climate change and EWEs in temperate forests. Chehata et al. [102] used
an already available high resolution sensor (Formosat-2) to study storm damage in forests
after a January 2009 storm event in southwestern France, and Elatawneh et al. [103] used
multi-seasonal RapidEye data to update the forest cover database of the Bavarian Forest
National Park.

Only 6.3% of all studies use mono-temporal data, and 10.3% use multi-temporal
data, with observations in one year. Compared to satellite systems with regular repeat
cycles, high-resolution sensors mostly use UAVs or aircraft as carrier systems, and therefore
have mostly single-date data acquisitions. Consequently, only satellite systems were used
to study the impacts of climate or EWEs change on a timeseries basis (78.6% of all) or
multi-temporal over several years (4.8% of all).

3.5. Spatial Resolution (Pixel Size and Study Areas)

To assess the impact of climate change or various EWEs, research has been conducted
at different spatial extents and resolutions. Figure 7 shows the relationship between spatial
extent and its spatial mapping resolution. Due to the wide range of pixel sizes and study
area sizes, the axes are logarithmic. In around 13.5% of the studies, the size of the study area
was not stated or could be found out retrospectively; these publications are not included in
Figure 7.
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The spatial extent varies greatly, from local studies with 0.15 ha [104] to multi-
continent extent up to the entire northern hemisphere [88], while the pixel size ranged from
0.07 m [105] to 8000 m [106–112]. The average study area size is above 3.7 million km2,
while the median lies at approximately 35,000 km2. This is due to a number of large-scale
study areas. The distribution of scatter points shows a correlation between pixel size and the
size of the study area (Figure 7). Studies with high-resolution sensors tend to examine small
areas, while studies with coarse-resolution sensors tend to examine large areas. The Spear-
man correlation, useful to quantify nonlinear relationships between two variables [113],
is 0.64. About 27 studies have a study area size of more than about 1,000,000 km2, with
only one study using a sensor with a resolution of less than 250 m. Eleven studies have a
study area size of 10 km2 or less, with a predominance of high-resolution sensors and a
pixel size of up to 10 m. Parallel to the x-axis, the most frequently used sensors are clearly
visible: Sentinel-2 with 10 m, Landsat with 30 m, MODIS between 231 and 1000 m, and
AVHRR with 8000 m pixel size.

While drought studies have been conducted at all study area sizes and spatial reso-
lution levels, other extreme weather or climate change phenomena can be clustered more
distinctly. For example, trend analyses can only be found at a certain resolution and study
area size, which is due to the longer time period available for the coarser resolution sensors.
The same applies to studies of recurring extreme events. In contrast, the effects of storms in
temperate forests are only investigated in smaller studies with higher resolution sensors.
Five of the eight storm event studies have a study area size of 40–140 km2. The clustering
effect is even more pronounced in terms of resolution, with seven of the eight studies
using sensors with a pixel size of 10 m or less. The studies investigating the effects of late
frost used only the MODIS sensor, and therefore did not use pixel resolutions smaller than
250 m.

3.6. Review of Thematic Foci on Extreme Weather Events and Climate Change

Following the initial examination of the technical aspects of the studies, the subsequent
sections address the thematic foci, categorized according to the different EWEs, and climate
change, summarized as abiotic drivers. The first part examines the differentiation of EWEs,
recurrent EWEs, and long-term trend changes due to climate change, as well as forest
responses. Section 3.7 focuses on the detailed forest differentiation of the reviewed articles.

Forest changes can be triggered by a variety of factors. The objective of this review was
to examine all publications that can explain remotely sensed forest changes caused by EWEs
or climate change. Anthropogenic and biotic influences, as well as fire, were explicitly
excluded. After reviewing all 126 publications, six categories with at least three mentions
could be formed, which in turn can be divided into three subcategories: first, publications
dealing with a single EWE, such as “Drought”, “Storm”, “Late Frost”, or “Other” EWEs;
second, extreme events that recur several times over long periods of time; and third, studies
dealing with changing long-term trends due to the influence of climate change. As a
study may deal with more than one extreme event, it may be assigned to more than one
group. The total number of articles reviewed does not reflect the sum of all mentions in
the thematic focus categories. Figure 8 illustrates that a total of 71 studies, or more than
half of the studies, address the effects of drought on temperate forests. Long-term trend
studies represent the second most frequently mentioned category, with approximately one
third of the studies (n = 44). A total of 23 studies were conducted to investigate the effects
of recurrent climate extremes. Of these, more than three quarters focused on recurrent
drought events. A total of eleven studies investigated the effects of remotely sensed storms,
four studies examined the impact of late frosts, and three studies focused on all climate
extremes not mentioned more than twice. The “Other” category encompasses two studies
on the influence of floods, and one study encompasses the consequences of heavy snowfall
in forests.
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In addition to examining the impact of extreme events on forests, we also investigated
the response of forests to climate change. Figure 9a illustrates that more than three quarters
(79%) of all publications that link a specific forest response to one or more EWEs or long-
term trend changes. The responses were divided into three categories (Figure 9b): tree,
stand, or forest dieback; changes in phenology; and variations in productivity. In most
cases, mortality was associated with climate change or EWEs (54.5%), followed by changes
in phenology (25.3%) and productivity (20.2%). The category of phenology encompasses
long-term shifts in the start of the season, end of the season, or growing phase, as well as
single events, such as drought or late frost-induced early wilting phenomena.
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Figure 10 shows a breakdown of the described responses according to the different
abiotic drivers. The respective abiotic drivers are presented in relative terms, with the abso-
lute values visualized in Figure 8. The relative representation enables a direct comparison
between the abiotic drivers in relation to the forest response categories, i.e., the impact
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of the abiotic drivers on the temperate forest. It is notable that drought was primarily
associated with dieback (55%), yet a considerable proportion of studies did not indicate a
forest response (22%) or imply productivity changes (17%). Only 6% of drought studies
are associated with a shifting phenology. Storm events are exclusively associated with tree
or forest mortality. Two publications have been identified that associate mortality with
late frost-affected forests. One publication associated productivity change with the same
phenomenon, while another was linked to early wilting. These publications were there-
fore included in the phenology category. In the “Other” group, the two studies on flood
extremes [114,115] and the study on heavy snowfall [104] attributed forest damage and
forest dieback to the respective extreme events. In the case of recurring EWEs, the majority
of extreme events were associated with forest dieback (60%). Approximately 14% of the
studies analyzed the impact of extreme events on productivity, and two studies examined
changes in phenology in relation to recurring extreme events. Around 28% of the studies
dealing with long-term trend changes did not directly associate the remotely sensed signal
with changes in the forest. Frequently, without a clear link to forest effects, only changes in
the vegetation index were documented. Nevertheless, phenological changes represent the
most prevalent category of associated impacts, with 46% of trend studies attributing them.
This is followed by productivity changes (18%) and mortality occurrences (8%).
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3.6.1. Drought

A total of 49 studies dealt exclusively with the extreme event of drought. The distribu-
tion of associated forest responses varies widely, as shown in Figure 10.

Drought is most rarely associated with phenological changes. Three studies inves-
tigated the extent to which drought events induced early wilting. Using multispectral
timeseries from MODIS and Sentinel-2, changes in the NDVI or EVI signal could be at-
tributed to early leaf shedding [38,116,117]. Both Descals et al. [116] and Brun et al. [38]
demonstrated the impact of the severe 2018 drought in Central Europe on temperate forests
and the resulting early leaf shedding. While Descals et al. [116] confirmed that early leaf
shedding occurred during the entire study period (2017–2021), increased in extent with
increasing drought intensity, and was linked to anomalously high temperatures and arid
conditions, Brun et al. [38] focused exclusively on the effects of the 2018 drought. Addition-
ally, both studies demonstrated that early leaf shedding can have an impact into the next
year. Xie et al. [117] also reached the same conclusion for the North American temperate
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deciduous forest, additionally noting that moderate heat waves and drought stress resulted
in delayed leaf fall.

Eight of the drought studies dealt with the impact of drought on forest productivity.
Common to all these studies is the use of spatially coarse resolution sensors to calculate
forest productivity or biomass production [118–125]. Zhao et al. [123] discovered that soil
moisture controls productivity. They were able to show a strong correlation between soil
moisture and a severe drought in China in 2022. According to this, there is a threshold
for soil moisture. Below this point, forest productivity decreases distinctly. The methods
and data that can be used to measure changes in forest productivity related to drought
have been analyzed several times [119,122,125]. Zheng et al. [119] used signals measured
using GOME-2 and OMI, as well as the flux tower, to analyze the effects of drought
on photosynthesis, isoprene emissions, and atmospheric formaldehyde in mid-latitude
U.S. forests, and showed that both flux-derived Gross Primary Production (GPP) and
remotely sensed measurements show a reduction during drought. Using solar induced
flux (SIF) measurements, Zhang et al. [122] were able to show that, in Europe, the effects
of drought are reflected by a relatively moderate reduction in SIF. By comparing remotely
sensed data with in situ data, these studies underline the potential of remote sensing to
detect productivity changes. Another focus of productivity studies was the comparison
of different ecosystems [120,122]. Gazol et al. [120], for example determined the resilience
of Spanish forests based on their productivity. It was shown that Mediterranean forests
in particular have lower resilience but higher recovery compared to temperate forests
in the north. Resilience, as used in this publication, refers to the framework proposed
by Lloret et al. [126]. The term is defined as the capacity to reach pre-episode growth
levels. The original methodology employed the use of tree ring data for the calculation.
Gazol et al. [120] adapted this approach to remotely sensed data, quantifying the difference
in NDVI before and after the dry year (i.e., the capacity of trees to recover NDVI values
similar to those observed prior to the drought).

However, the largest group (n = 27) of studies with an exclusive focus on droughts refer to
the mortality of a tree, stand, or forest. The focus of the studies on Germany [87,105,127–131]
and the USA [132–138] is noticeable. With seven study areas in each country, this proportion
is distinctly higher than the overall distribution. The focus of the research with plots in
Germany was on the influence of several other forest variables on the effects of drought in
the forest. The extent to which a forest is damaged by drought does not depend solely on the
characteristics of the drought. For example, in pine forests, the outer areas of the forest are
more affected [105]. Soil type, soil texture, stoniness, effective rooting depth, and available
water capacity (AWC) also determine the effects of drought. The proportion of dead spruce
correlates with AWC [131]. Tree species play a role, e.g., beech is more sensitive to drought
than oak. According to Meyer et al. [129], this can be measured using spaceborne NDVI
during severe droughts, as was the case in Germany in 2003. Beloiu et al. [127] compared
different NDVI values of four years before, during, and after a drought, and analyzed
their relationship with forest structure type, soil moisture, and climate variables. They
showed that different years show different relationships between the RS signal and other
variables. Hajek et al. [128] came also to an unexpected conclusion when they compared
the influence of drought in forests with different tree species densities. By employing
airborne hyperspectral sensors, they discovered that plots with greater species richness
were not less affected by drought-induced NDVI decreases. Klisz et al. [139] came to a
comparable assumption, emphasizing that the location of the forest, rather than the tree
species composition, is the critical factor influencing drought-induced forest damage.

Studies in the USA have focused on the Sierra Nevada region [133–135,137]. Again,
several variables were shown to influence vulnerability to drought. The comprehensive
study by Hemming-Schroeder et al. [135] used AHS and ALS data to show that mortality
risk increases with tree height, forest density, and distance to the nearest river. The US
studies also showed that tree species are particularly important. By accounting for tree
species, Das et al. [133] were able to improve their mortality risk models. A method rarely
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used in this context is that of Brewer et al. [132], who implemented a spectral unmixing
method to assess partial cover of piñon and juniper, as well as dead piñon. Using Landsat
multispectral imagery from 2009 to 2016, they found increasing areas of dead piñon,
especially during severe 2011–2014 drought.

Studies with Chinese study areas are also well represented. The three studies by first
author Xu Peipei [140–142] on the importance of canopy height showed that taller trees had
the highest damage rate, that shorter trees were more likely to recover after drought than
taller trees, and that the resilience of taller trees decreased more during particularly severe
drought. Age is closely related to size, which, according to Liu et al. [143], is positively
correlated with mortality in the southern taiga. In addition to tree size, forest type also
plays a role in drought resilience. Using MODIS timeseries, Li et al. [144] showed that
deciduous broadleaf forests were better adapted during the 2002 drought in China.

A total of 11 drought studies were not assigned to a forest response category [145–155].
Most of these studies used MODIS timeseries and compared them with climate timeseries,
in particular with the Standardized Precipitation Evapotranspiration Index (SPEI), which is
often used in the context of drought. Studies on all continents with temperate forests were
able to demonstrate the relationship between SPEI and MODIS timeseries.

In summary, it can be concluded that relationships between drought events and
forest dieback can be identified using various methods of relationship analysis between
the remote sensing signal and one or more weather/climate variables. The methods
used to test the relationship ranged from simple linear regression models to more com-
plex generalized additive mixed models. Drought-related studies that did not directly
investigate the relationship with climate variables examined, e.g., the relationship be-
tween soil [123,131], tree species [129,133,156], species richness [128], forest types [43,144],
forest structure [127,140,141,143], dendrochronology data [129,139], or drought-related
mortality [105,136,157,158] with remote sensing signals or remote sensing-driven products.
The focus on these relationships is mainly explained by the fact that these variables deter-
mine the effects of drought in temperate forests, although their strength of influence varies
from site to site. In order to delve deeper into the influencing variables, we have created a
sub-section (Section 3.7) on in-depth forest differentiation.

3.6.2. Storm

A total of 11 studies dealing with the effects of storms in temperate forests were found
in all the articles reviewed. Common to all of them is that the authors tried to detect
damaged or completely destroyed forest patches and are therefore categorized within
“dieback/mortality”. Seven of these studies focused on windthrow. The scope of the
studies was limited to smaller areas (<8000 km2) compared to drought or trend studies,
which cover areas up to the entire northern hemisphere. Also noteworthy was the exclusive
use of high-resolution sensors to measure windthrow. The most frequently used sensor was
Sentinel-2. Multispectral sensors allow for the calculation of vegetation indices. Since the
values of the VIs change [44,71] or the variance of the VIs increases after a storm event [45],
this type of sensor is particularly suitable for detecting possible damage. In the study of
Garamszegi et al. [159], the potential of Sentinel-2 to predict storm areas and intensities at a
small scale in Germany was investigated. Using logistic regression and random forest (RF)
machine learning models, texture measures such as roughness were shown to be the best
predictors. Also, Piragnolo et al. [45] used RF with Sentinel-2 scenes to detect wind damage
after the Vaia EWE in northern Italy. The results showed a strong negative correlation
between the decrease in NDMI (Normalized Difference Moisture Index) or NDVI and the
severity of the damage. The authors suggest the use of multiple VIs together to improve
RF accuracy.

The Vaia storm event was the focus of two additional studies. For Olmo et al. [44], the
NDWI8A (Normalized Difference Wetness Index 8A) and NDWI (Normalized Difference
Wetness Index) indices derived from the Sentinel-2 tiles proved to be the most suitable
for monitoring windthrow after the Vaia event. The third study on forest damage caused



Remote Sens. 2024, 16, 2224 19 of 39

by the Vaia storm event was carried out by Vaglio Laurin et al. [46]. The main focus was
the comparison between Sentinel-2 and Sentinel-1. A higher accuracy was achieved with
Sentinel-2, although Sentinel-1 offers many advantages for various applications due to its
weather independence. These investigations provide examples of how severe storm events
can have environmental and economic consequences for temperate forests.

Sentinel-1 SAR data were used for storm damage detection in another study. Rüetschi
et al. [86] used a simple and direct method of change detection, “image differencing”, by
calculating the difference between pre-storm and post-storm Sentinel-1 composites. The
validation of their method at an independent test site showed that the method worked
better for areal windthrow than for scattered windthrow.

Sub 10 m high resolution sensors have been used by Elatawneh et al. [103] and
Chehata et al. [102]. The high resolution of the Formosat-2 satellite enabled the object-based
detection of changes in storm-damaged forests in the publication of Chehata et al. [102],
although the small-scale study was limited to homogeneous stands only. The authors
achieved higher overall accuracies (87.8%) for the object-based approach compared to the
pixel-based approach, and highlighted the positive correlation between tree age and wind
sensitivity. Elatawneh et al. [103] showed that high-resolution satellite data (RapidEye) can
be used to determine storm damage very accurately in comparison to methods based on
aerial imagery shortly after an event.

In summary, both optical and SAR data are highly suitable for the detection of
windthrow areas. Windthrow is detected with greater accuracy over larger areas, and
the age of the trees affects their sensitivity to wind. Furthermore, it was established that
storm events are exclusively associated with dieback, with a regional focus on Europe. Four
other studies [71,114,160,161] did not deal exclusively with storms, and are described in
more detail elsewhere.

3.6.3. Late Frost

Four of the reviewed publications dealt with the impact of late frost events on tem-
perate forests. Two studies focused exclusively on the extreme event of late frost [48,162].
Two other studies focused on other extreme events in addition to late frost [160,161].
Olano et al. [162] used the MODIS NDVI timeseries in a support vector machine to dis-
tinguish late frost from non-late frost pixels in Spanish beech forests. Dendrochronology
and photo interpretation were used to iteratively improve the model. The study showed
that the defoliation events caused by late frosts are a phenomenon with a low recurrence
rate and are located at high altitudes where precipitation is lower than average. In Italian
beech forests, Bascietto et al. [48] investigated the influence of late frost events on growth
anomalies using MODIS data. This publication is one of two studies using thermal bands,
in this case to detect late frost events together with multispectral bands to quantify the
anomalies. It was evident that the two late frost events were very different in their spatial
patterns and effects. Both studies investigated late frost events in southern Europe, which
is only partially covered by the extent of temperate forests. This is because Mediterranean
forests are not dominated by evergreen coniferous species, which are likely to be less
affected by late frost than deciduous species. Apart from the geographical focus, it is
notable that late frost events are usually examined in connection with specific tree species,
in this case, exclusively beech. The reason for this is the respective vulnerability of the
tree species, which depends on the specific budburst and defense mechanisms [160,163].
Decuyper et al. [161] also investigated the consequences of extreme events in beech forests,
but did not focus only on late frost events. The focus of this study was on the comparison of
dendrology data and remote sensing data, which showed that an ice storm is more evident
in both types of data than other extreme events.

The paper by Buras et al. [160] had a much broader scope. This publication presented
the European Forest Condition Monitor, which used the MODIS timeseries to record various
changes throughout the European forest. In addition to different EWEs, the effects of late
frost were presented. This comprehensive study confirms the stronger impact on beech
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forests compared to others, and shows that the effects of late frost events extend far into
the year.

3.6.4. Other

Studies dealing with extreme events that do not yet fit into any of the above categories
and that do not investigate trend changes in climatic conditions fall into the “Other”
category. Only three studies dealing with two other extreme events, namely floods and
heavy snowfall, could not be classified. In the study by Fagherazzi et al. [114], the authors
described how remote sensing data can be used to quantify flood damage in coastal forests.
Rising sea levels and more intense storms are flooding the forest and salinizing the soil. This
damages the forest and changes the remotely sensed reflection signal from the vegetation.
The authors found that the Normalized Difference Wetness Index (NDWI), calculated from
the Landsat timeseries, was best suited to capture the effects of storms on coastal forests.

Samec et al. [115] examined the impact of floods and droughts on the temperate
forest in the Hrubý Jeseník Mountains (Czech Republic) between 2004 and 2013. The
study assessed the influence of various environmental factors, including drought and
management, on forest damage. In addition to in situ data, MODIS data were employed
for timeseries analysis. The results indicated that strong winters or droughts exert a more
pronounced influence on the NDVI than flood events, thereby demonstrating a stronger
association with forest decline. The third publication under “Other” addressed the issue
of forest damage caused by heavy snowfall. Nagai et al. [104] described the potential of
multispectral UAV imagery to detect damage to individual trees or completely destroyed
trees. The use of structure from motion point clouds (photogrammetry) resulted in an
overall accuracy of 0.9 for the detection of trees damaged by wet and heavy snow.

3.6.5. Recurrent Extreme Events

The category of recurring extreme events can be divided into two subcategories. Of the
23 publications in this category, 5 dealt with various recurring extreme events [114,115,160,161,164]
and 18 dealt with recurring drought events [74,88,165–180].

Of these eighteen studies, three studies focused on changes in the productivity of
forests: two in China, and one on the Iberian Peninsula. Zhong et al. [180] employed
a 12-year MODIS timeseries to demonstrate that planted forests exhibited heightened
sensitivity to recurrent drought events relative to natural forests in China. Shi et al. [178]
utilized AVHRR data spanning 30 years to investigate the growth variability along the
drought gradient in China. Both studies revealed a negative correlation between tree
growth and water deficit. The same sensor and the same timeframe were used in a study
by Peña-Gallardo et al. [175] to analyze productivity changes in a different study area (the
Iberian Peninsula). Here, the focus was on the relationship between remote sensing or
tree-ring data and various drought indices. It was found that tree-ring growth appears to
be a more reliable indicator of the response of forests to drought.

As with single drought events, mortality was the most frequently associated forest
response category for recurring droughts/events. The research by Bento et al. [171] on
dieback in forest ecosystems and spatial variability of drought impact focused on the Iberian
Peninsula. They found that the eastern forests of Spain and Portugal were more affected by
droughts than forests in other regions of the peninsula. This research utilized a commonly
used method for assessing the impact of recurrent droughts on temperate forests, namely,
relationship analysis. The correlation between climate variables and remote sensing signals
in the context of forest dieback has been studied on several occasions [172,174,179]. These
studies demonstrated a correlation between forest decline and summer temperatures or
the severity of drought or water stress. Tao et al. [179] reached the same conclusion as the
previously mentioned study by Zhong et al. [180], namely, that planted compared to natural
forests in China react more strongly to the effects of drought. In contrast, Bórnez et al. [88]
employed a relationship analysis approach to ascertain and justify changes in phenology.
The study of the entire Northern Hemisphere has demonstrated that an earlier start of the
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season is more dependent on temperature, while the later end of the season is influenced
by both temperature and precipitation. The occurrence of extreme droughts, such as those
experienced in Western Europe in 2003 and the USA in 2012, have resulted in a shift of
more than 20 days in the timing of the start and end of the season in a predominant portion
of these regions.

The effects of recurring severe droughts and the associated forest dieback have been
widely studied in Europe [74,167–170]. Senf et al. [168] have quantified the forest mortality
caused by droughts with the help of Landsat timeseries and correlation analyses. Accord-
ing to this, 500,000 ha of forest were destroyed by droughts alone between 1987 and 2016.
This does not even include the most severe droughts of the recent past. A noteworthy
aspect of studies on recurring droughts in Europe is the year 2018, which demonstrated
a clear correlation with widespread canopy loss in Central Europe. Thonfeld et al. [74]
calculated the loss across Germany using the saturation line-based Disturbance Index.
Schwarz et al. [169] were able to use aerial photographs to show how canopy mortality
increased during droughts in Luxembourg. West et al. [170] demonstrated that the drought
signal in the canopy of German beech forests is only detectable with a delay to the meteoro-
logical drought peak. Li et al. [167] used MODIS timeseries combined with tree heights for
Europe to show that shorter forests are less resilient to drought due to the deeper tree roots.

The studies that did not deal exclusively with recurrent droughts primarily employed
the MODIS sensor to determine the induced alterations in the forest. These include the already
mentioned drought monitor by Buras et al. [160], the study by Samec et al. [115] on the conse-
quences of alternating droughts and floods in temperate mountain forests, and the general
analysis of the effects of extreme events in the Slovenian beech forest by Decuyper et al. [161].
In the context of other extreme events, the study by Fagherazzi et al. [114] was mentioned
earlier, which investigated recurrent storm-induced flooding in coastal forests using the
Landsat timeseries. The fifth study dealing with different extreme events is the publication
by Pilaš et al. [164]. The study investigated the consequences of recurrent climatic anoma-
lies in a Croatian forest. The study employed the Fraction of Absorbed Photosynthetic
Active Radiation (FAPAR), as measured using SPOT and PROBA-V, to examine the effects
on various forest types and tree species. Similarly, Bórnez et al. [88] demonstrated that
elevated temperatures at the beginning of the year, as a consequence of global warming,
resulted in an earlier start to the season, with Pilaš et al. [164] emphasizing the earlier start
of the season in beech forests.

In conclusion, it can be stated that recurring extreme events, particularly recurring
droughts, result in temperate forest dieback, shifting defoliation forward in the year,
and lowering productivity, regardless of the location on Earth. This is evidenced by the
correlations between climate variables and remote sensing signals. As longer time periods
are required to capture the short- and longer-term effects of multiple droughts, the studies
in this thematic focus area used sensors or sensor combinations that already have a long
measurement time background.

3.6.6. Trend Change

With a total of 44 studies on the effects of trend changes due to climate change on
temperate forests, this topic is the second largest. The distribution of the study areas is
noteworthy. Overall, more than half of the study areas are in Asia (n = 25), 20 of which are
in China. There are clear trends in the breakdown of forest response categories. In contrast
to the other drivers, the most common forest response in the trend change category is a shift
in phenology. Studies from Asia are overrepresented in this category, and their approach is
very similar. A longer timeseries of multispectral sensors were used to measure the changes
caused by climate change and the influence of other variables on the start or end of the
season or the length of the growing season [111,112,181–186]. Common to all studies is
that they show how changing climatic conditions affected the development of the seasons.
Accordingly, the start of season (SOS) is shifting earlier in the year, and the end of season
(EOS) is being delayed in the course of the year. This extends the length of the growing
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season. These studies also examined the influence of various independent climate variables
on phenology. The results overlap. Du et al. [181] showed that minimum temperatures
in particular control the dynamics of SOS and EOS in semi-arid mountainous regions of
China, which was also confirmed by Wang et al. [185], who emphasized night temperature
as the most important driver of phenology changes. Zhang et al. [112] and Qiao et al. [184]
showed how spring temperature evidently influences the start of the season. These studies
demonstrate that precipitation has less influence on phenology in northern China. In
addition, the influence of topography and exposure was proven [182,186]. Also the study
by Park et al. [187] on phenological changes in subalpine forests on Jeju Island, South Korea,
confirmed that rising temperatures affect SOS. Similarly, the study by Şenel et al. [188] was
on climate change-induced phenological changes in Turkish beech forests, in which chilling
hours and growing degree days explicitly showed the highest correlations with SOS.

Seven studies analyzed phenological changes as a result of climate change in North
America. What they all have in common is the use of multispectral timeseries [106,189–194],
while the time periods examined ranged from 10 [194] to well over 30 years [192]. These
studies focused on the influence of hydrologic cycles on phenology, which is influenced by
precipitation and temperature. For example, O’Leary et al. [193] showed that earlier mean
annual snowmelt was significantly correlated (Spearman rank correlation, p val = 0.046,
p = 0.594) with earlier onset of green-up at the landscape scale. Similar results to the Asian
studies were found in North America. Friedl et al. [189] identified thermal forcing as the
main driver of spring phenology, while Li et al. [191] found that the phenology of deciduous
forests in North America has shown an advanced SOS and delayed EOS over the last two
decades, driven by climate variability.

The proportion of studies with European study sites is below average. Only three studies
address the effects of changing climatic conditions on phenology in Europe. Senf et al. [195]
focused on the development of a Bayesian hierarchical model for estimating spatial and
temporal variation in vegetation phenology from the Landsat timeseries. Uphus et al. [196]
investigated the effects of climate change on beech phenology and found that the overstory
SOS increased with higher mean April canopy temperature, although the understory was
not affected by the temperature change. Pilaš et al. [164] confirmed the already known
phenomenon that beech forest types have a very high capacity to shift their phenology
towards an earlier spring as a consequence of global warming.

Changing climatic conditions also affect forest productivity. Five studies looked at the
impact of climate change on the productivity of Asian forests [107,197–200]. Xi et al. [199]
and Du et al. [107] used NDVI timeseries to investigate the impact of climate change on
net primary productivity. Du et al. [107] found that, in general, the Net Primary Produc-
tion (NPP) of Chinese forests is increasing steadily, although there are spatial patterns.
Xi et al. [199] mainly mentioned the variability of precipitation as a conditional variable. In
contrast, Khan et al. [197] and Lv et al. [198] used only mono-temporal multispectral data
to investigate the influence of different climatic conditions on productivity. Lv et al. [198]
were able to prove that temperature and soil moisture have the greatest influence on pro-
ductivity. They are the only two studies that fall into the “trend change” category and
only use mono-temporal data. Their assignment to this category was based on the authors’
assumption that the various climatic conditions studied in the study areas will change in
the future, and that the trend can therefore be studied in advance by using sites that are
already drier. The influence of trend changes on productivity has also been investigated
for European forests. The two studies by the first author Remus et al. [201,202] modelled
net primary productivity in Romania using the Landsat archive and machine learning
methods. Both studies were able to show that above-ground biomass (AGB) in Romania
has increased since 1987, and that Romanian forests have recently experienced a large-scale
improvement in carbon fluxes and stocks. Han et al. [203] took a different approach by
incorporating phenological shifts due to changing climatic conditions into a process-based
ecosystem simulation model. The results showed that, in European forests, phenological
variation reduces net ecosystem exchange. As a possible reason, the authors pointed to the
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opposite effect of increased heterotrophic respiration directly induced by the extension of
the growing season. This result is in contrast to other studies.

Only four studies, all located in Asia, focused on forest and tree mortality as a result
of changing climate conditions using only multispectral timeseries [108,174,204,205]. For
example, it has been shown that forest cover in northeastern China is more dependent
on active disturbance (e.g., logging) than on climate trends [108], and that NDVI and
Normalized Difference Infrared Index (NDII) are negatively correlated with mortality in
birch forests in northern China [205].

Several trend studies did not include a precise description of the effects at the forest
level (phenological changes, mortality, or productivity changes). However, these studies
commonly described changes in vegetation indices and associated changes in vegetation as
a result of changing climatic conditions [101,109,110,206–214].

In summary, the studies dealing with trend changes focus mainly on changes in phe-
nology. Here, the results are mostly in agreement in saying that higher spring temperatures
in particular lead to an earlier start of the season, regardless of the location of the study site.
It has been shown that, in most cases, forest productivity increased in the long-term, and
that forest decline was usually caused by active disturbances such as logging.

3.7. Review of In-Depth Forest Differentiation

In addition to the thematic focus on weather differences, extremes, and long-term
climate change, the differentiation of the forest was examined, particularly with regard
to the identification of research gaps. The differentiation criteria chosen by the authors in
relation to forests are therefore presented below.

One way of distinguishing forests is by forest type. Three forest types can be differen-
tiated in temperate forests: coniferous forests, deciduous forests, and mixed forests. Sixty
studies investigated only one forest type, in nine studies the forest type was not specified.
The remaining 57 studies investigated the effects of climate change or EWEs in two or more
forest types. Figure 11 shows the distribution of the investigated forest types according
to the proportion of mentions. Coniferous and deciduous forests were mentioned equally
frequently in 66% of the studies. The effects in mixed forests, on the other hand, were
only examined in 44% publications. The mention of the different forest types does not yet
indicate whether the authors differentiated the forest according to the different impacts of
EWEs and climate change.
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57 studies.

The effects of EWEs and climate change may vary depending on forest characteristics.
For example, the impact of drought on the forest depends on species composition, forest
structure, forest type, stand location, or management type. Based on this, we built five
forest differentiation types named “Tree Species”, “Forest Structure”, “Forest Type”, “Stand
Location”, and “Management Type”. The left donut chart in Figure 12 shows whether the
studied forest was classified according to one of these criteria. According to this, 60.3% of
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the publications distinguish between the impacts of climate change and EWEs according
to at least one forest characteristic. The donut chart on the right shows the distribution
of area coverage. The bar chart combines these two points and shows the number of
publications that differentiate the effects of EWEs or climate change according to the forest
characteristics (x-axis), and additionally indicates the territorial extent via the color.
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The authors most frequently differentiate the forest by forest type at all scales. The
location of the stand is only considered in two studies. Buras et al. [105] investigated
whether pine trees at the edge of the forest are affected by higher mortality rates during
drought. Using a combination of dendroecology and remote sensing, it was shown that
proximity to the forest edge is negatively related to mortality and positively related to
growth. Hemming-Schroeder et al. [135] used ALS and AHS data in their study of conifer
mortality in the Sierra Nevada to show, among other things, that mortality increases with
distance from a river.

Relatively little distinction was made between different types of forest management.
A commonly used distinction of forest management is that between natural and planted
forest. For example, Luo et al. [150] investigated the intensity of drought impacts in planted
and natural forests using the MODIS timeseries. Other studies followed similar approaches
to distinguish the different responses of planted and natural forests in China [180,213].
Luo et al. [150] and Zhong et al. [180] demonstrated that natural forests are more vulnerable
to drought, while Yu et al. [213] focused on carbon sequestration and showed lower values
for planted forests.

In turn, Sankey and Tatum [154] examined the effects of forest thinning on drought
resilience using airborne thermal data. They demonstrated that the benefits of forest
restoration thinning are enhanced during periods of unprecedented drought.

In general, studies using this forest differentiation have only been conducted at smaller
scales. When differentiating between the effects of climate change and EWEs on forest
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structure, there are at least two publications at each territorial scale. In most cases, a
distinction was made according to tree height, sometimes with a direct research focus
on the importance of tree height in the context of drought events [140,141,143,158,167].
However, studies conducted in Asia by Peipei [140,141] showed lower drought resistance
in taller trees, and furthermore, the study by Li et al. [167] about central European forests
showed higher resistance.

A clear trend of territorial scales can be seen in the differentiation of effects of climate
change and EWEs in relation to different tree species. More than two thirds (n = 13)
of the nineteen studies that made this subdivision examined the different impacts at a
regional or smaller scale, two studies made it at a federal scale, three at a national scale,
and one at a continental scale. However, the national and continental studies are not
area-wide studies, but rather are widely distributed sample points with different tree
species. In the study of Gazol et al. [120], AVHRR images were analyzed in combination
with tree-ring data from 502 forests in Spain with eleven different tree species to investigate
forest resilience to drought events. Nevertheless, they did not differentiate between tree
species across the whole area. A very similar approach with 402 forest stands was used by
Peña-Gallardo et al. [175] to investigate the sensitivity of forest growth to drought events.
Contrary to punctual studies, Pilaš et al. [164] used detailed forest type maps (with one to
eight different tree species) from the Forest Ecosystem Inventory to differentiate tree species
in Croatia on an area-wide basis and to investigate the effects of different climate anomalies
on different biomes. They showed differences in the ability of some tree species to better
utilize rainfall during very wet periodic episodes, and recommended more research to
draw conclusions about the overall resilience of forests under future climate change.

Rita et al. [153] carried out a further area-wide study of drought on forests and on
different tree species. The tree species map of Europe used here, which is now almost
15 years old, is based on a combination of compositional kriging and multinomial multiple
logistic regression modeling of National Forest Inventory and ICP forest data [215]. Rita
demonstrated that species classified as “miscellanea”—broad-leaved and oak—from mesic
sites exhibited the most pronounced decline in NDVI values. Consequently, the effects of ex-
treme events and climate change on different tree species, using high resolution tree species
maps covering large areas, have not yet been carried out in any of the reviewed articles.

4. Discussion
4.1. Findings in Comparison to Previous Reviews

In recent years, a large number of reviews have been published on the topic of forests
and climate change. Some of them are limited to remote sensing methods, and others deal
with other data sources and methods in the context of forests and climate change. In the
following section, the main findings of this review are summarized and, where possible,
discussed in relation to the findings of other reviews.

The focus of this review was on temperate forests. We were able to show that research
on this ecosystem is only carried out by countries that cover temperate forests. It was
noticeable that, with the applied method, we could not identify any publication from or
about Australia, New Zealand, Chile, or Argentina.

Many recent reviews discuss the possibilities of monitoring tropical forests with RS,
focusing more on direct anthropogenic impacts and degradation [216–219]. In contrast,
research on temperate forests has been investigating the effects of EWEs using remote
sensing data for some time. Fifteen years ago, Frolking et al. [220] summarized the potential
of spatial data for research on forest degradation and regeneration. The very recent review
by Fassnacht et al. [58] summarizes the current challenges, considerations, and directions
of remote sensing in forestry. Even more detailed evaluations of the remote sensing data
used can be found in Holzwarth et al. [221,222]. The authors examined the development of
remote sensing research on German forests. In principle, the two reviews are much more
spatially limited and have a broader focus. They revealed an increasing interest on studies
of disturbances, most of which are directly or indirectly caused by climate change and its
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consequences. The shift towards disturbance studies is accompanied by a shift towards
timeseries analysis. In fact, in our review, timeseries account for more than three quarters
of all studies, because climate changes and EWEs tend to occur over longer periods of time
and their effects evolve over several years. Since, with the exception of Landsat, long-term
series are only available from satellite systems with low spatial resolution, systems with
pixel sizes more than 30 m predominate in our review, accounting for more than two thirds
of the sensors used.

The proportion of publications not using satellite data is less than 8% in our review,
and is distinctly higher in reviews with limited spatial scope [221,222]. The wide range of
multispectral satellite systems available offer the opportunity that observation gaps can be
filled more and more effectively. Therefore, optical data were used in more than 96% of
the studies in our review. This is also reflected in the general distribution of the use of
Earth observation satellite data in publications worldwide, where, e.g., optical data clearly
outnumber radar data [94].

Similarly, there is already a large collection of reviews from recent years that address
the increasing pressure on forests due to climate change without focusing on remote sensing
data and methods. Kleinman et al. [223], for example, focus on the ecological consequences
of combined disturbances in forest ecosystems, Zhang et al. [224] examine studies on the
effects of drought on biodiversity, Vacek et al. [225] analyze publications on the effects of
climate change on tree growth as well as on crises and management strategies for European
forests, Keenan [226] also deals with the adaptation of forest management to climate change,
and Park et al. [227] asks the general question whether forest management can adapt to
the uncertainties of climate change in the 21st century. All of these reviews and studies
emphasize the problem of water scarcity, mostly caused by droughts. This is reflected
in the above-average attention given to the issue. More than 70 of the 126 publications
used deal with the effects of droughts on forests. The focus on drought is not surprising.
Compared to other EWEs, water scarcity has the strongest negative impact on forests
and the highest risk for large-scale changes, which can be monitored by remote sensing
techniques [38,224,228,229]. Research into this influence is therefore particularly important,
especially as drought events are already causing increasing monetary damage [41,230] and
are expected to increase in frequency and severity over large parts of the world [231–233].
With only four studies on the effects of late frost events, this extreme is underrepresented
compared to other weather extremes. So far, frost damage has been a regular phenomenon,
especially in southern Europe. Combined with the results of studies on phenological
changes with earlier SOS, the likelihood of damage in temperate forests becomes much
higher, and the issue more relevant.

The analysis of the results of the studies on the various abiotic drivers has revealed
clear trends. While the effects of storms and late frosts are studied almost exclusively in
Europe, the focus of trend changes is in Asia. There is no regional focus in studies on the
effects of droughts, but it has been shown that a large number of variables determine the
severity of the impact. In addition to temperature and precipitation, tree species, forest type,
location, management, and soil properties have an important impact on forest response.

4.2. A Need for Dense High-Resolution Forest Monitoring, and Future Research Trends

Given the increasing frequency of disturbances in forests [13], the decreasing resilience
of forests [229], or the rising tree mortality due to changing climate conditions and more
frequent EWEs [27,234], comprehensive, temporally, and spatially high-resolution forest
monitoring is crucial. However, methodological problems or missing data could be solved
in the near future. In the field of remote sensing, there are trade-offs between the spatial and
temporal resolution of the sensor [235]. The future of satellite remote sensing data includes
smaller and more cost-effective platforms, so-called CubeSats, which operate as a unified
system or constellation. CubeSats can provide data with higher spatial resolutions well
below 10 m, with a daily revisit time [235,236]. This allows for the detection of small-scale
successional events in forests and the timely detection of damage caused by EWEs. Very
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high-resolution systems offer the possibility of object-based detection, for example, of forest
damage at the individual tree level [102].

In addition to new satellite systems, forest monitoring can be improved by combining [77,78]
and making better use of existing satellite data. As the evaluation of the studies has shown,
almost exclusively multispectral data have been used so far, which has the disadvantage
of being weather dependent. The SAR sensor of Sentinel-1 can therefore be used as an
independent data source for the detection of forest response to extreme events or as a
supplement to multispectral timeseries [45,46]. The positive development in improving
forest monitoring is also due to the increasing number of publicly available data archives
such as Landsat [57] or the Sentinel series [75,76]. Regardless of the improving satellite
database, the problem of missing in situ data remains [176,205,237]. In particular, in situ
data can be used to improve the interpretation of remote sensing signals to help verify
quality [237,238] and to gain a better understanding of the forest system.

In addition to data improvements and accessibility, methodological options are evolv-
ing rapidly. In most of the studies reviewed, correlations between climate extremes and
remote sensing signals were measured using simple correlation indicators such as Spearman
and Pearson. In contrast, Wu et al. [110] used convergent cross-mapping as a novel tech-
nique to uncover non-linear causalities between timeseries data. Zimmermann et al. [239]
additionally recommend the use of individual extreme values instead of the commonly
used mean values, e.g., to better understand spatial patterns of tree species. The use of
artificial intelligence and advanced machine learning offers great potential for climate
impact research in forests with remote sensing [224,240]. Random forest or support vector
machines have already been used in many of the studies, often reaching overall accura-
cies above 0.85 [46,138,157,179]. To reduce the problems of opacity and inexplicability,
understanding the processes behind artificial intelligence must not be neglected in the
future [241].

The evaluation of the different studies has shown that investigations have already
been carried out at all spatial scales. However, there is a direct negative correlation between
the depth of the studies and the size of the study area. For example, the effects of extreme
events on specific tree species or the effects of different management practices on forest
response have only been investigated in very localized study areas. Large-scale studies
have been limited to changes in phenology [88,191], biomass production [107], or forest
damage [13], with no differentiation by tree species, stand location, or management type.

Finally, there is a need to better understand the response of forests to variables such as
soil conditions, management practices, forest structure, tree species distribution, or stand
location. Whether tall or short trees and natural or planted forests are more affected by
drought depends on different site conditions, and does not follow a general rule. The in-
creasing challenges posed by climate change require rapidly adaptable forest management
strategies which take into account forest disturbance interactions at the landscape scale
in order to maintain resilience, resistance, enhance biodiversity, and enable sustainability.
Many scientific findings from remotely sensed forest formations are already being used for
forest management strategies [58,149], which, in the case of satellite-based observations,
can offer the possibility of near real-time monitoring [59,103].

The accelerating development of methods, especially in the field of artificial intelli-
gence, and the increasing availability of high-resolution spaceborne data will noticeably
influence the trends of future research in satellite-based forest science, enabling continuous
detailed forest monitoring.

4.3. Limitations

Considering the scope and depth of this review, there are several limitations that may
affect the completeness and applicability of the results. Limitations in the literature reviews
can arise in the pre-selection of papers due to restrictions in the search string. Web of Science
is one of the most widely used principle search systems [242], and makes the literature
searches reproducible and, if the complexity remains at a reasonable level, transparent [243].
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However, Boolean expressions like “AND” make the search very sensitive [244] and depend
on clear formulation by authors. At the same time, Boolean strategies allow for clear
delineations [243,244].

For example, the timeframe from January 2014 to January 2024 excludes studies pub-
lished before and after this date. However, as remote sensing is developing rapidly [55,89,90],
especially in forestry applications [58], and this review is intended to represent the current
state of research rather than historical development, our timeframe was considered to be
appropriate, especially since important milestones in remote sensing took place after or
around the beginning of the timeframe, such as the launch of the Copernicus program [91],
the commissioning of Landsat 8 [93], or the launch of commercial high-resolution satellite
fleets such as Planet [235].

The non-use of the term “disturbance” in the search string and the exclusion of terms
such as “beetle” or “insects”, which describe biotic disturbances, had a major influence
on the selection of studies examined. Avoiding the term “disturbance” was intended to
circumvent a one-sided focus on disturbances in the forest and not necessarily on forest
responses to changing climate conditions or EWEs. Examples of this would be the changes
in phenology or the effects on productivity as described in the results. Consequences, such
as bark beetle infestations or forest fires, are closely related to weather extremes in the
forest, especially drought. Excluding “fire”, “beetle”, and “insect” resulted in a reduction
in over 70 papers that were selected as relevant before the manual filter.

However, by excluding these terms from the TI and AK, it was ensured that papers in
which the bark beetle occurs were not generally excluded, but that papers dealing centrally
with this biotic disturbance were excluded. Again, this restriction was important in order
to be able to make statements about the influence of extreme events that are as independent
as possible.

The final evaluation of the individual papers is influenced by the categorization of the
contents, which can lead to a loss of information. In order to provide an overall picture of
the current state of science, these supplements are important. They enable a straightforward
comparison of the databases, methods, and results of different studies.

5. Conclusions

This review provides a comprehensive overview of the potential of remote sensing
to detect the impacts of climate change and EWEs in temperate forests. By constructing a
search string of relevant terms using automated and manual filtering methods, we obtained
126 relevant studies published between 1 January 2014 and 31 January 2024. From these
studies, information was collected on the study areas, the origins of the authors, the sensors
used, their temporal and spatial resolution, and the time period studied. In addition, we
analyzed which extreme events or trend analyses were examined, what the associated
consequences in the forest were, and to what extent the studies differentiated the forest.
The main findings are summarized below:

• The increasing relevance of research on the impacts of climate change and EWEs on
temperate forests is underlined by the increasing number of publications, with almost
60% of all studies published in the last four years.

• Only countries with temperate forests conducted research on these biomes. Europe
dominates both the number of first author affiliations (n = 57) and the number of study
areas (n = 58) within the continent. However, when looking at individual countries,
China stands out, with 36 first author affiliations and 32 study area assignments.

• Optical data are used in 96% of the studies, more than 92% of the studies use satellites
as a carrier system, and only about 5% of the studies combine different sensor types.

• Studies utilizing timeseries data predominate, accounting for more than three quarters
of all studies (78.6%). With the exception of Landsat, long-term series are only available
from satellite systems with medium-to-coarse spatial resolution.

• Sensors with spatial resolutions higher than 30 m predominate in this review, account-
ing for more than two thirds (69.9%) of the sensors used.
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• Study sizes range from very small studies (0.15 ha) to multi-continental studies, with
large studies focusing more on long-term trend changes or drought events, and smaller
studies focusing more on storms or other weather extremes.

• In total, 71 of the 126 studies dealt with drought, followed by studies on trend changes
(n = 44). Recurrent extreme events were examined in 23 studies, and the effects of
storms were examined in 11 studies. Four studies examined the effects of late frost, two
studies examined the effects of floods on temperate forests, and one study examined
the effects of heavy snowfall.

• When attributing different impacts to forests, extreme events such as drought, storms,
floods, heavy snowfall, and recurrent extreme events were most often associated with
forest mortality (50–100%). In the case of changes in climatic conditions, most studies
associated the forest change with a shifting phenology (46%). Different EWEs are
regionally focused, and so the effects of storms and late frosts are studied almost
exclusively in Europe and the effects of changing trends are studied primarily in
temperate forests of Asia.

• The intensity of EWEs together with soil conditions, tree species, forest type, structure,
management, and stand location influence the response of the forest. These factors
vary from site to site, and a better understanding is needed.

• In more than 60% of the studies, the forest is further differentiated. In most cases,
however, only forest types or forest structures are distinguished. Only in a few
cases are impacts differentiated by tree species, and then only for very small or non-
comprehensive areas.

• The predominant focus on droughts (56.3% of all studies) is confirmed by other re-
views, and is explained by the fact that water limitation, usually triggered by droughts,
has the greatest area-wide impact on forests, in contrast to other extreme events.

With this review, we present a comprehensive analysis of the current state of remote
sensing capabilities to detect the impacts of climate change and weather extremes on
temperate forests. Future studies should combine as many of the following aspects as
possible to enable rapid, comprehensive, and high-resolution monitoring: multispectral
dense and long time series, high temporal and spatial resolution, national-to-continental
study areas, and detailed forest differentiation. In addition, the potential for artificial
intelligence and the need for in situ data to enable a better understanding of forest systems
should not be underestimated.
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et al. NDVI-based ecological dynamics of forest vegetation and its relationship to climate change in Romania during 1987–2018.
Ecol. Indic. 2022, 136, 108629. [CrossRef]

211. Pravalie, R.; Sîrodoev, I.; Peptenatu, D. Detecting climate change effects on forest ecosystems in Southwestern Romania using
Landsat TM NDVI data. J. Geogr. Sci. 2014, 24, 815–832. [CrossRef]

212. Vila-Viçosa, C.; Arenas-Castro, S.; Marcos, B.; Honrado, J.; García, C.; Vázquez, F.M.; Almeida, R.; Gonçalves, J. Combining
Satellite Remote Sensing and Climate Data in Species Distribution Models to Improve the Conservation of Iberian White Oaks
(Quercus L.). ISPRS Int. J. Geo-Inf. 2020, 9, 735. [CrossRef]

213. Yu, Z.; Liu, S.; Wang, J.; Wei, X.; Schuler, J.; Sun, P.; Harper, R.; Zegre, N. Natural forests exhibit higher carbon sequestration and
lower water consumption than planted forests in China. Glob. Change Biol. 2019, 25, 68–77. [CrossRef]

https://doi.org/10.3390/f14020413
https://doi.org/10.1088/1748-9326/9/5/054006
https://doi.org/10.1016/j.scitotenv.2018.09.129
https://doi.org/10.3390/f13071137
https://doi.org/10.1016/j.agrformet.2023.109525
https://doi.org/10.1007/s00484-017-1449-3
https://doi.org/10.1007/s10980-014-0099-7
https://doi.org/10.1016/j.rse.2017.03.020
https://doi.org/10.3390/rs13193982
https://doi.org/10.15666/aeer/1801_783815
https://doi.org/10.3390/rs13153009
https://doi.org/10.1002/eco.2377
https://doi.org/10.1111/gcb.12588
https://doi.org/10.1016/j.jenvman.2023.117513
https://doi.org/10.1007/s00477-022-02359-z
https://doi.org/10.1016/j.foreco.2018.05.062
https://doi.org/10.3808/jei.201400268
https://doi.org/10.1016/j.ecolind.2021.107526
https://doi.org/10.1007/s12524-019-01065-8
https://doi.org/10.1002/met.2156
https://doi.org/10.5424/fs/2023322-20348
https://doi.org/10.1111/gcb.16714
https://doi.org/10.1016/j.ecolind.2022.108629
https://doi.org/10.1007/s11442-014-1122-2
https://doi.org/10.3390/ijgi9120735
https://doi.org/10.1111/gcb.14484


Remote Sens. 2024, 16, 2224 38 of 39

214. Zhou, Y.; Yi, Y.; Jia, W.; Cai, Y.; Yang, W.; Li, Z. Applying dendrochronology and remote sensing to explore climate-drive in
montane forests over space and time. Quat. Sci. Rev. 2020, 237, 106292. [CrossRef]

215. Brus, D.J.; Hengeveld, G.M.; Walvoort, D.J.J.; Goedhart, P.W.; Heidema, A.H.; Nabuurs, G.J.; Gunia, K. Statistical mapping of tree
species over Europe. Eur. J. For. Res. 2011, 131, 145–157. [CrossRef]

216. David, R.M.; Rosser, N.J.; Donoghue, D.N.M. Remote sensing for monitoring tropical dryland forests: A review of current
research, knowledge gaps and future directions for Southern Africa. Environ. Res. Commun. 2022, 4, 042001. [CrossRef]

217. Dupuis, C.; Lejeune, P.; Michez, A.; Fayolle, A. How Can Remote Sensing Help Monitor Tropical Moist Forest Degradation?—A
Systematic Review. Remote Sens. 2020, 12, 1087. [CrossRef]

218. Murrins Misiukas, J.; Carter, S.; Herold, M. Tropical Forest Monitoring: Challenges and Recent Progress in Research. Remote Sens.
2021, 13, 2252. [CrossRef]

219. Trisasongko, B.H.; Paull, D. A review of remote sensing applications in tropical forestry with a particular emphasis in the
plantation sector. Geocarto Int. 2020, 35, 317–339. [CrossRef]

220. Frolking, S.; Palace, M.W.; Clark, D.B.; Chambers, J.Q.; Shugart, H.H.; Hurtt, G.C. Forest disturbance and recovery: A general
review in the context of spaceborne remote sensing of impacts on aboveground biomass and canopy structure. J. Geophys. Res.
Biogeosci. 2009, 114, G00E02. [CrossRef]

221. Holzwarth, S.; Thonfeld, F.; Abdullahi, S.; Asam, S.; Da Ponte Canova, E.; Gessner, U.; Huth, J.; Kraus, T.; Leutner, B.; Kuenzer, C.
Earth Observation Based Monitoring of Forests in Germany: A Review. Remote Sens. 2020, 12, 3570. [CrossRef]

222. Holzwarth, S.; Thonfeld, F.; Kacic, P.; Abdullahi, S.; Asam, S.; Coleman, K.; Eisfelder, C.; Gessner, U.; Huth, J.; Kraus, T.; et al.
Earth-Observation-Based Monitoring of Forests in Germany—Recent Progress and Research Frontiers: A Review. Remote Sens.
2023, 15, 4234. [CrossRef]

223. Kleinman, J.S.; Goode, J.D.; Fries, A.C.; Hart, J.L. Ecological consequences of compound disturbances in forest ecosystems:
A systematic review. Ecosphere 2019, 10, e02962. [CrossRef]

224. Zhang, T.-Y.; Di, D.-R.; Liao, X.-L.; Shi, W.-Y. Response of Forest Plant Diversity to Drought: A Review. Water 2023, 15, 3486.
[CrossRef]

225. Vacek, Z.; Vacek, S.; Cukor, J. European forests under global climate change: Review of tree growth processes, crises and
management strategies. J. Environ. Manag. 2023, 332, 117353. [CrossRef]

226. Keenan, R.J. Climate change impacts and adaptation in forest management: A review. Ann. For. Sci. 2015, 72, 145–167. [CrossRef]
227. Park, A.; Puettmann, K.; Wilson, E.; Messier, C.; Kames, S.; Dhar, A. Can Boreal and Temperate Forest Management be Adapted

to the Uncertainties of 21st Century Climate Change? Crit. Rev. Plant Sci. 2014, 33, 251–285. [CrossRef]
228. Breshears, D.D.; Cobb, N.S.; Rich, P.M.; Price, K.P.; Allen, C.D.; Balice, R.G.; Romme, W.H.; Kastens, J.H.; Floyd, M.L.; Belnap, J.;

et al. Regional vegetation die-off in response to global-change-type drought. Proc. Natl. Acad. Sci. USA 2005, 102, 15144–15148.
[CrossRef]

229. Forzieri, G.; Dakos, V.; McDowell, N.G.; Ramdane, A.; Cescatti, A. Emerging signals of declining forest resilience under climate
change. Nature 2022, 608, 534–539. [CrossRef]

230. Naumann, G.; Cammalleri, C.; Mentaschi, L.; Feyen, L. Increased economic drought impacts in Europe with anthropogenic
warming. Nat. Clim. Change 2021, 11, 485–491. [CrossRef]

231. Cook, B.I.; Mankin, J.S.; Anchukaitis, K.J. Climate Change and Drought: From Past to Future. Curr. Clim. Change Rep. 2018, 4,
164–179. [CrossRef]

232. Cook, B.I.; Smerdon, J.E.; Seager, R.; Coats, S. Global warming and 21st century drying. Clim. Dyn. 2014, 43, 2607–2627. [CrossRef]
233. Dai, A. Increasing drought under global warming in observations and models. Nat. Clim. Change 2013, 3, 52–58. [CrossRef]
234. McDowell, N.G.; Beerling, D.J.; Breshears, D.D.; Fisher, R.A.; Raffa, K.F.; Stitt, M. The interdependence of mechanisms underlying

climate-driven vegetation mortality. Trends Ecol. Evol. 2011, 26, 523–532. [CrossRef]
235. Leach, N.; Coops, N.C.; Obrknezev, N. Normalization method for multi-sensor high spatial and temporal resolution satellite

imagery with radiometric inconsistencies. Comput. Electron. Agric. 2019, 164, 104893. [CrossRef]
236. Poghosyan, A.; Golkar, A. CubeSat evolution: Analyzing CubeSat capabilities for conducting science missions. Prog. Aerosp. Sci.

2017, 88, 59–83. [CrossRef]
237. Marusig, D.; Petruzzellis, F.; Tomasella, M.; Napolitano, R.; Altobelli, A.; Nardini, A. Correlation of Field-Measured and Remotely

Sensed Plant Water Status as a Tool to Monitor the Risk of Drought-Induced Forest Decline. Forests 2020, 11, 77. [CrossRef]
238. Chaurasia, A.N.; Parmar, R.M.; Dave, M.G.; Krishnayya, N.S.R. Integrating field- and remote sensing data to perceive species

heterogeneity across a climate gradient. Sci. Rep. 2024, 14, 42. [CrossRef]
239. Zimmermann, N.E.; Yoccoz, N.G.; Edwards, T.C.; Meier, E.S.; Thuiller, W.; Guisan, A.; Schmatz, D.R.; Pearman, P.B. Climatic

extremes improve predictions of spatial patterns of tree species. Proc. Natl. Acad. Sci. USA 2009, 106, 19723–19728. [CrossRef]
240. Janga, B.; Asamani, G.; Sun, Z.; Cristea, N. A Review of Practical AI for Remote Sensing in Earth Sciences. Remote Sens. 2023, 15,

4112. [CrossRef]
241. Zhang, L.; Zhang, L. Artificial Intelligence for Remote Sensing Data Analysis: A review of challenges and opportunities. IEEE

Geosci. Remote Sens. Mag. 2022, 10, 270–294. [CrossRef]
242. Gusenbauer, M.; Haddaway, N.R. Which academic search systems are suitable for systematic reviews or meta-analyses? Evaluat-

ing retrieval qualities of Google Scholar, PubMed, and 26 other resources. Res. Synth. Methods 2020, 11, 181–217. [CrossRef]

https://doi.org/10.1016/j.quascirev.2020.106292
https://doi.org/10.1007/s10342-011-0513-5
https://doi.org/10.1088/2515-7620/ac5b84
https://doi.org/10.3390/rs12071087
https://doi.org/10.3390/rs13122252
https://doi.org/10.1080/10106049.2018.1516245
https://doi.org/10.1029/2008jg000911
https://doi.org/10.3390/rs12213570
https://doi.org/10.3390/rs15174234
https://doi.org/10.1002/ecs2.2962
https://doi.org/10.3390/w15193486
https://doi.org/10.1016/j.jenvman.2023.117353
https://doi.org/10.1007/s13595-014-0446-5
https://doi.org/10.1080/07352689.2014.858956
https://doi.org/10.1073/pnas.0505734102
https://doi.org/10.1038/s41586-022-04959-9
https://doi.org/10.1038/s41558-021-01044-3
https://doi.org/10.1007/s40641-018-0093-2
https://doi.org/10.1007/s00382-014-2075-y
https://doi.org/10.1038/nclimate1633
https://doi.org/10.1016/j.tree.2011.06.003
https://doi.org/10.1016/j.compag.2019.104893
https://doi.org/10.1016/j.paerosci.2016.11.002
https://doi.org/10.3390/f11010077
https://doi.org/10.1038/s41598-023-50812-y
https://doi.org/10.1073/pnas.0901643106
https://doi.org/10.3390/rs15164112
https://doi.org/10.1109/mgrs.2022.3145854
https://doi.org/10.1002/jrsm.1378


Remote Sens. 2024, 16, 2224 39 of 39

243. MacFarlane, A.; Russell-Rose, T.; Shokraneh, F. Search strategy formulation for systematic reviews: Issues, challenges and
opportunities. Intell. Syst. Appl. 2022, 15, 200091. [CrossRef]

244. Bramer, W.M.; de Jonge, G.B.; Rethlefsen, M.L.; Mast, F.; Kleijnen, J. A systematic approach to searching: An efficient and complete
method to develop literature searches. J. Med. Libr. Assoc. 2018, 106, 531–541. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.iswa.2022.200091
https://doi.org/10.5195/jmla.2018.283

	Introduction 
	Climate Change and Extreme Weather Events in Temperate Forests 
	Remote Sensing Perspective 
	Structure and Objectives of This Review 

	Materials and Methods 
	Results 
	Development of Research Interest over Time 
	Spatial Analysis on Affiliations and Study Areas 
	Sensors and Sensor Type 
	Temporal and Spatial Resolution 
	Spatial Resolution (Pixel Size and Study Areas) 
	Review of Thematic Foci on Extreme Weather Events and Climate Change 
	Drought 
	Storm 
	Late Frost 
	Other 
	Recurrent Extreme Events 
	Trend Change 

	Review of In-Depth Forest Differentiation 

	Discussion 
	Findings in Comparison to Previous Reviews 
	A Need for Dense High-Resolution Forest Monitoring, and Future Research Trends 
	Limitations 

	Conclusions 
	References

