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In the present work we improve the characteristic splitting approach for computing mildly 
compressible flows. This splitting approach is consisted of two separate steps namely an advective 
step and a purely hyperbolic, acoustic step. Typically, a pressure correction method is used for 
solving the acoustic step which may lead to overly dispersive, incorrect results. As a remedy to 
this issue, a novel solution approach on the basis of the weighted averaged flux method (WAF) is 
proposed, which solves the non-conservative, hyperbolic equations of the acoustic step directly. 
The stability and accuracy of this novel WAF method is demonstrated and an implicit, monotone 
formulation for three-dimensional unstructured grids is given. The simulation of the non-reacting 
flow in a swirl burner proves the applicability of the method.

1. Introduction

The present work focuses on the characteristic splitting of [1] which is a numerical approach for the computation of mildly 
compressible flows. The key idea of this approach is to derive a numerical splitting scheme by decomposing the Eigenvalues of the 
convective flux term’s Jacobian matrix into flow velocity and the speed of sound. In this way a two step scheme is obtained which 
consists of an advective step followed by an acoustic step. The advantage of this approach is that for low Mach numbers the stiffness 
of the compressible flow equations (which is caused by the difference between the magnitude of flow velocity and speed of sound, 
cf. for example [2]) is eliminated. Each step of the scheme can be solved theoretically by a semi implicit scheme [1] (thus avoiding 
computationally expensive iterations), which makes the method particularly interesting for unsteady flow simulations like large-eddy 
simulations (LES). Since its introduction, the approach has therefore enjoyed an extensive usage in various fields like simulation of 
combustion instabilities in gas [3,4] and spray flames [5–8], various reactive flow simulations [9–20], simulations of combustion 
noise in conjunction with computational aero acoustics [21–23], droplet vaporization [24], flame wall interaction [25,26], fluid 
structure interaction [27,28] and even simulations of environmental problems [29,30]. A recent extension of the scheme includes 
real gas effects [31]. Improvements on this scheme are presented in [32] where total energy is used as an energy variable and 
simplifications to the pressure correction equation are proposed which increase the stability of the scheme. In [32] an iterative 
advective step is also suggested for multi-species flows in order to increase the accuracy. The differences between the scheme of [1]

and [32] are illustrated in Fig. 1. The approach of [32] is termed “implicit characteristic splitting” (ICS) to distinguish it from [1]. 
This ICS scheme is the focal point of the present work. It is found that despite the improvements in [32], problems may occur in the 
simulation of standing pressure waves where large dispersive errors render the numerical solution useless (similar observations are 
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Fig. 1. Overview of the different numerical schemes based on characteristic splitting.

also reported in [33] where standing pressure waves are computed with various density based solvers). The root of this problem lies in 
the pressure correction equation which is used in [32] (and also in [1] where the pressure correction equation is initially introduced) 
for computing pressure in the acoustic step of the ICS scheme. This pressure correction equations utilizes a purely central, second 
order spatial discretization which does not ensure monotonicity of the solution. The main objective of the present work is therefore to 
find a solution for this problem by deriving a new, monotone numerical scheme for solving the hyperbolic equations of the acoustic 
step. We build this solution method on the weighted averaged flux (WAF) scheme [34] since the equations for the acoustic step are 
non-conservative. The changes made to the ICS scheme are illustrated in Fig. 1 where the new scheme is termed ICS-WAF method. 
The outline of this ICS-WAF method for three-dimensional unstructured meshes is given in Sec. 2 where also a von Neumann stability 
analysis [35,36] of the overall splitting scheme is provided. The accuracy of the method and its applicability to practical problems is 
discussed in Sec. 3.

It should be stressed at this point that the characteristic splitting is not the only method available for computing mildly com-

pressible flows. Similar approaches which avoid the stiffness at low Mach numbers by using a splitting approach are provided in 
[37–50]. For low Mach number and all speed flows the flux-vector splitting scheme introduced in [51,52] forms the basis of several 
numerical methods. In addition, preconditioned density based schemes enjoy an extensive use for computing low Mach number 
flows. An overview on established approaches such as [53–57] is given in [58]. Other examples involve [59] where a precondi-

tioning matrix for all speeds is proposed as well as [60] where a preconditioner in diagonal form for arbitrary Mach numbers is 
derived. In [61] a preconditioning is presented which is capable of handling the stiffness due to low Mach number as well as the 
stiffness caused by high-aspect ratio cells. An improved control of the preconditioning for viscosity dominated flows is discussed in 
[62]. A preconditioning which targets distinct physics separately is introduced in [63]. In [64] a low Mach number fix for the Roe 
scheme is presented. Based on an asymptotic analysis the Harten-Lax-van Leer (HLL) scheme is extended to low Mach number flows 
in [65]. The HLL algorithm is also used in [66] in conjunction with the splitting given in [51]. Methods given in [67,68] are also 
based on the splitting scheme of [51]. With the help of an artificial dissipation term a density based scheme is applied to low Mach 
number flow regimes in [69]. For multi-phase flows at all Mach numbers a hybrid advection upstream splitting method is introduced 
in [70]. An approach presented in [71] is based on a Suliciu relaxation type to compute weak solutions of the Euler equations at 
all Mach numbers. By using the entropy inequality in place of the total energy conservation law a thermodynamically compatible 
finite volume scheme is derived in [72]. Density based schemes are also used in conjunction with discontinuous Galerkin method to 
compute flows over a wide range of Mach numbers, e.g. [73–84]. For the computation of low Mach numbers flows the discontinuous 
Galerkin discretization in space is frequently combined with an implicit/explicit (IMEX) time discretization [85–89]. Further use of 
IMEX time discretization for all speed flows and low Mach number flows may be found in [90–105] where the main focus is on the 
solution of the Euler equations and in [106–109]. In addition to density based methods pressure based methods may also be used 
for computing compressible flows, cf. [110–136] and [137–142] where multiple pressure variables are utilized. The solution of the 
Euler equations at all speeds by using implicit and semi implicit schemes in primitive variables is described in [143,144]. In [145]

a semi implicit pressure based method for solving the Navier-Stokes equations with general equations of state is presented which is 
extended in [146] to high order of accuracy by using a discontinuous Galerkin scheme. Semi implicit pressure based schemes are 
also proposed in [147] (a space-time discontinuous Galerkin method is utilized here), [148] (in conjunction with an IMEX scheme 
for time integration), and in [149] (where a structure-preserving staggered scheme is introduced). Weakly compressible flows are 
2

also investigated in a pressure based framework by means of the finite element [150] and discontinuous Galerkin method [151]. 
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Solution methods utilizing hybrid finite volume/finite element discretization are described in [152–154]. Pressure based methods 
are also extended to the computation of compressible and mildly compressible two- and multi-phase flows, e.g. [155–158]. Despite 
these various alternative approaches the characteristic splitting still merits further improvements given its relevance in various fields.

2. Methodology

2.1. Overview of the basic splitting scheme

We are interested in solving the balance equations for mass, momentum and energy together with the transport equations for 
species. These equations are given by (Einstein notation)

𝜕𝜌

𝜕𝑡
+
𝜕𝜌𝑢𝑖

𝜕𝑥𝑖
= 0 (1)

𝜕𝜌𝑢𝑗

𝜕𝑡
+
𝜕𝜌𝑢𝑖𝑢𝑗

𝜕𝑥𝑖
= − 𝜕𝑝

𝜕𝑥𝑗
+
𝜕𝜏𝑖𝑗

𝜕𝑥𝑖
(2)

𝜕𝜌𝐸

𝜕𝑡
+ 𝜕

𝜕𝑥𝑖

(
𝜌𝑢𝑖

(
𝐸 + 𝑝

𝜌

))
=
𝜕𝑢𝑗𝜏𝑖𝑗

𝜕𝑥𝑖
−
𝜕𝑞𝑖

𝜕𝑥𝑖
(3)

𝜕𝜌𝑌𝛼

𝜕𝑡
+
𝜕𝜌𝑢𝑖𝑌𝛼

𝜕𝑥𝑖
= −

𝜕𝑗𝑖𝛼

𝜕𝑥𝑖
+ 𝑆𝛼 . (4)

Here 𝑡 is the time, 𝑥𝑖 the spatial coordinate, 𝜌 the density, 𝑝 the pressure, 𝑢𝑖 the 𝑖th component of the velocity vector, 𝑌𝛼 the mass 
fraction of the species 𝛼 (there are a total of 𝑁𝑠 − 1 linearly independent species, where 𝑁𝑠 is the total number of species), and 𝐸
the total energy. 𝜏𝑖𝑗 is the 𝑖𝑗 component of the viscous stress tensor, 𝑞𝑖 the 𝑖th component of the vector of the diffusive heat flux and 
𝑗𝑖𝛼 and 𝑆𝛼 the 𝑖th component of the diffusive mass flux vector and chemical source term of the species 𝛼, respectively. It is assumed 
that the fluid is a mixture of thermally perfect gases and that the equation of state is given by the ideal gas law. The characteristic 
based splitting [1] is based on a decomposition of the Eigenvalues associated with the convective flux terms into the flow velocity 
and the speed of sound. As outlined in [32] we obtain the Equations (Einstein notation)

𝜕𝜌

𝜕𝑡
+
𝜕𝜌𝑢𝑖

𝜕𝑥𝑖
− 𝜌

𝜕𝑢𝑖
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𝜕𝑢𝑖

𝜕𝑥𝑖
=
𝜕𝜏𝑖𝑗

𝜕𝑥𝑖
(6)

𝜕𝜌𝐸
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𝜕𝑥𝑖
− 𝜌𝐸

𝜕𝑢𝑖
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𝜕𝑥𝑖
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(7)

𝜕𝜌𝑌𝛼

𝜕𝑡
+
𝜕𝜌𝑢𝑖𝑌𝛼

𝜕𝑥𝑖
− 𝜌𝑌𝛼

𝜕𝑢𝑖

𝜕𝑥𝑖
= −

𝜕𝑗𝑖𝛼

𝜕𝑥𝑖
+ 𝑆𝛼 (8)

for the advective step (where the solution is advanced from a time level 𝑛 to an intermediate time level ⋆) and (Einstein notation)

𝜕𝜌

𝜕𝑡
+ 𝜌

𝜕𝑢𝑖

𝜕𝑥𝑖
= 0 (9)
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𝜕𝜌𝐸
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𝜕𝑢𝑖
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𝜕𝜌𝑌𝛼

𝜕𝑡
+ 𝜌𝑌𝛼

𝜕𝑢𝑖

𝜕𝑥𝑖
= 0 (12)

for the acoustic step (i.e. for the advancement of the solution from the intermediate time level ⋆ to the time level 𝑛 + 1). The ideal 
gas law remains valid within each step of the splitting. The equations of the acoustic step can be transformed further into (Einstein 
notation)

𝜕𝑝

𝜕𝑡
+ 𝜌𝑐2

𝜕𝑢𝑖

𝜕𝑥𝑖
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𝜕𝑥𝑗
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𝜕𝑠

𝜕𝑡
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𝜕𝑌
3

𝛼

𝜕𝑡
= 0 (16)
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Fig. 2. A control volume 𝑃0 of the dualgrid and its neighbors.

where 𝑐 denotes the isentropic speed of sound. Note, that the specific entropy 𝑠 and the composition 𝑌𝛼 remain constant over time 
during the acoustic step. They may, however, vary in space. The main objective of this work is to provide an alternate numerical 
scheme for solving the non-conservative hyperbolic Eqs. (13) and (14) under the constraints given by Eqs. (15) and (16).

2.2. The weighted averaged flux scheme for the acoustic step

A major difficulty in solving non-conservative hyperbolic equations such as Eqs. (13) and (14) is the definition of weak solutions in 
situations where discontinuities like shock waves are present. The problem stems from the fact that for non-conservative hyperbolic 
equations there is usually no Rankine-Hugoniot relation available to relate states across a discontinuity. One way of solving this 
problem is to introduce a general Rankine-Hugoniot relation which applies along a given family of paths in phase space [159]. This 
path definition forms the basis of the so called path conservative schemes, cf. [160]. It is found, however, that even these schemes 
may give incorrect results if strong discontinuities are present [161]. In this work we are primarily interested in smooth solutions 
which do not involve strong discontinuities (e.g. flows in gas turbine combustors). In [162] it is pointed out that non-conservative 
equations are adequate to capture physics under these conditions and the WAF scheme [34] is suggested as a suitable numerical 
approach for solving non-conservative hyperbolic equations. Therefore, the application of the WAF scheme to Eqs. (13) and (14) is 
outlined in the following. To this end Eqs. (13) and (14) are rewritten in terms of the vector �⃗� and the coefficient matrices 𝐴, 𝐵 and 
𝐶 as

𝜕�⃗�

𝜕𝑡
+𝐴 𝜕�⃗�

𝜕𝑥1
+𝐵 𝜕�⃗�

𝜕𝑥2
+𝐶 𝜕�⃗�

𝜕𝑥3
= 0⃗ (17)

�⃗� =
⎛⎜⎜⎜⎝
𝑝

𝑢1
𝑢2
𝑢3

⎞⎟⎟⎟⎠ 𝐴 =
⎛⎜⎜⎜⎝

0 𝜌𝑐2 0 0
𝜌−1 0 0 0
0 0 0 0
0 0 0 0

⎞⎟⎟⎟⎠
𝐵 =

⎛⎜⎜⎜⎝
0 0 𝜌𝑐2 0
0 0 0 0
𝜌−1 0 0 0
0 0 0 0

⎞⎟⎟⎟⎠ 𝐶 =
⎛⎜⎜⎜⎝

0 0 0 𝜌𝑐2

0 0 0 0
0 0 0 0
𝜌−1 0 0 0

⎞⎟⎟⎟⎠ .

We seek to solve this system of equations on an unstructured median-dual mesh (these meshes are used by the in-house solver 
ThetaCOM [163] where this method is implemented). An example of such a mesh is shown in Fig. 2 where a control volume at 
the point 𝑃0 is shown along with its neighboring control volumes 𝑃1,𝑓 (𝑓 denotes the face index). A finite volume discretization of 
Eq. (17) in 𝑃0 is derived by using Gauss’s theorem to determine the gradients, i.e.

𝜕�⃗�

𝜕𝑥𝑖

|||||𝑃0 ≈ 1
Δ𝑉𝑃0

𝑁𝐹,𝑃0∑
𝑓=1

�⃗�𝑓 𝑛𝑖,𝑓 ,

where 𝑁𝐹,𝑃0
is the number of faces of the control volume located at 𝑃0, 𝑛𝑖,𝑓 is the 𝑖th component of face normal vector 𝑛𝑓 , Δ𝑉𝑃0

the control volume’s volume and �⃗�𝑓 the face value of �⃗�. We follow the approach given in [162] for non-conservative hyperbolic 
4

equations and obtain for Eq. (17) the discrete scheme
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Fig. 3. Computational Steps of the WAF scheme.

Δ𝑉𝑃0
�⃗�𝑛+1 − �⃗�⋆

Δ𝑡
+ ⟨𝐴⟩𝑃0 𝑁𝐹,𝑃0∑

𝑓=1
�⃗�
⋆+ 1

2
𝑓

𝑛1,𝑓 + ⟨𝐵⟩𝑃0 𝑁𝐹,𝑃0∑
𝑓=1

�⃗�
⋆+ 1

2
𝑓

𝑛2,𝑓 + ⟨𝐶⟩𝑃0 𝑁𝐹,𝑃0∑
𝑓=1

�⃗�
⋆+ 1

2
𝑓

𝑛3,𝑓 = 0⃗ (18)

⟨𝐴⟩𝑃0 =
⎛⎜⎜⎜⎜⎝

0 ⟨𝜌⟩𝑃0⟨𝑐2⟩𝑃0 0 0⟨𝜌⟩−1
𝑃0

0 0 0
0 0 0 0
0 0 0 0

⎞⎟⎟⎟⎟⎠
⟨𝐵⟩𝑃0 =

⎛⎜⎜⎜⎜⎝
0 0 ⟨𝜌⟩𝑃0⟨𝑐2⟩𝑃0 0
0 0 0 0⟨𝜌⟩−1
𝑃0

0 0 0
0 0 0 0

⎞⎟⎟⎟⎟⎠
⟨𝐶⟩𝑃0 =

⎛⎜⎜⎜⎜⎝
0 0 0 ⟨𝜌⟩𝑃0⟨𝑐2⟩𝑃0
0 0 0 0
0 0 0 0⟨𝜌⟩−1
𝑃0

0 0 0

⎞⎟⎟⎟⎟⎠
.

Equation (18) is used for advancing the solution over a time step Δ𝑡 from the intermediate time level ⋆ of the splitting scheme to 

the new time level 𝑛 + 1 (�⃗�⋆ and �⃗�𝑛+1 are the respective solution vectors at these time levels). �⃗�
⋆+ 1

2
𝑓

denotes face values which are 
determined on the basis of local Riemann problems at each face of the control volume. These Riemann problems also provide the 
basis for computing the averaged coefficient matrices ⟨𝐴⟩𝑃0 , ⟨𝐵⟩𝑃0 and ⟨𝐶⟩𝑃0 which depend on the face average of density ⟨𝜌⟩𝑃0 and 
the face average of the square speed of sound ⟨𝑐2⟩𝑃0 . The individual steps required to obtain these values and to arrive at an explicit 
WAF scheme are illustrated in Fig. 3. In the following each of these steps is outlined in more detail.

2.2.1. Step 1: solution of the Riemann problem

Various approaches for extending the WAF method to three-dimensional structured grids are discussed in [162]. Applications of 
the WAF scheme to unstructured grids in two space dimensions are presented to our knowledge only in [164,165]. In the present 
work we are interested in applying the WAF scheme on three-dimensional unstructured median-dual grids. To this end we adopt the 
approaches outlined in [166,164,165] which are based on a locally one-dimensional Riemann problem. The Riemann problem at a 
face between the control volume 𝑃0 and its neighbor 𝑃1,𝑓 is depicted in Fig. 4. As suggested in [166,164,165] a one-dimensional 
Riemann problem is obtained for each face by reformulating Eq. (17) in a local coordinate frame �̂�𝑖, cf. Fig. 4. The �̂�1 axis of this 
local coordinate frame is aligned with the face normal vector 𝑛𝑓 [166,164,165], the origin of the local coordinate frame is on the face 
(i.e. on the intersection between the face and the edge connecting the cell centers of 𝑃0 and 𝑃1,𝑓 , cf. Fig. 4). In this local coordinate 

frame the vector �⃗� is transformed to ̂⃗𝑄 =
(
𝑝, �̂�𝑖
)𝑇

where �̂�𝑖 denotes the velocity components in the local �̂�𝑖 coordinate frame. The 

initial conditions of the Riemann problem are expressed in terms of a left state ̂⃗𝑄𝐿 and a right state ̂⃗𝑄𝑅 (cf. Fig. 4) as

̂⃗
𝑄
(
�̂�1, 𝑡 = 0

)
=
⎧⎪⎨⎪⎩
̂⃗
𝑄𝐿 = ̂⃗

𝑄⋆
𝑃0
, �̂�1 < 0

̂⃗
𝑄𝑅 = ̂⃗

𝑄⋆
𝑃1,𝑓

, �̂�1 ≥ 0
. (19)

Pressure and �̂�1-velocity evolve in this one-dimensional Riemann problem according to

𝜕
(
𝑝
) (

0 𝜌𝑐2
)

𝜕
(
𝑝
) (

0
)

5

𝜕𝑡 �̂�1
+

𝜌−1 0 𝜕�̂�1 �̂�1
= 0 . (20)
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Fig. 4. Quasi one-dimensional Riemann problem at the cell face 𝑓 between control volumes 𝑃0 and 𝑃1,𝑓 in the local �̂�1-�̂�2 coordinate frame. �̂�𝛽 denotes the 𝛽
component of the vector ̂⃗𝑄.

Fig. 5. Solution structure of the Riemann problem in the �̂�1-𝑡 plane.

All other quantities (i.e. the tangential velocities �̂�2 and �̂�3, the specific entropy and species mass fractions) remain constant over 
time. The Eigenvalues of the coefficient matrix of Eq. (20) (i.e. the characteristic speeds) are 𝜆1 = −𝑐 and 𝜆2 = 𝑐. Since there are no 
Rankine-Hugoniot relations available for Eq. (20) to determine the speed of waves we assume that the wave speeds are equal to these 
characteristic speeds. Thus, the following derivation is limited to flows with pressure waves of comparatively small amplitude (the 
method is however applicable to nonlinear problems as demonstrated in Sec. 3.6). On the basis of this assumption the solution of 
the Riemann problem is advanced in time. The structure of the solution in the �̂�1-𝑡 plane is shown in Fig. 5. Between the “left” state 
∙𝐿 and the “right” state ∙𝑅 lies the “star region” ∙∗ which is enclosed by the characteristics of the Eigenvalues −𝑐 and 𝑐. In the WAF 
scheme we require the solution of the Riemann problem at the time Δ𝑡∕2 which we denote as ̂⃗𝑄(�̂�1, Δ𝑡∕2). Thus, a solution for the 
unknown state ̂⃗𝑄∗ inside the star region is required. To this end we follow the approach outlined in [167] and consider characteristic 
equations along the left and right running characteristics (i.e. for the Eigenvalues −𝑐 and 𝑐). For the left running characteristic (i.e. 
for 𝜆1 = −𝑐) we obtain

1
𝑐

(
𝜕𝑝

𝜕𝑡
− 𝜌𝑐

𝜕�̂�1
𝜕𝑡

)
−
(
𝜕𝑝

𝜕�̂�1
− 𝜌𝑐

𝜕�̂�1
𝜕�̂�1

)
= 0 (21)

whereas we have

1
𝑐

(
𝜕𝑝

𝜕𝑡
+ 𝜌𝑐

𝜕�̂�1
𝜕𝑡

)
+ 𝜕𝑝

𝜕�̂�1
+ 𝜌𝑐

𝜕�̂�1
𝜕�̂�1

= 0 (22)

for the right running characteristic (i.e. for 𝜆2 = 𝑐). As in [167] we take the product 𝜌𝑐 and 𝑐 to be constant along the characteristic

𝜌𝑐 ≈ 𝜌𝑐 = 1
4
(𝜌𝐿 + 𝜌𝑅) (𝑐𝐿 + 𝑐𝑅) =

1
4
(𝜌⋆
𝑃0

+ 𝜌⋆
𝑃1,𝑓

) (𝑐⋆
𝑃0

+ 𝑐⋆
𝑃1,𝑓

) (23)

𝑐 ≈ 𝑐 = 1
2
(𝑐𝐿 + 𝑐𝑅) =

1
2
(𝑐⋆
𝑃0

+ 𝑐⋆
𝑃1,𝑓

) (24)

and obtain

𝜕

𝜕𝑡

(
𝑝− 𝜌𝑐 �̂�1

)
+ (−𝑐) 𝜕

𝜕�̂�1

(
𝑝− 𝜌𝑐 �̂�1

)
= 0 (25)

𝜕

𝜕𝑡

(
𝑝+ 𝜌𝑐 �̂�1

)
+ 𝑐 𝜕

𝜕�̂�1

(
𝑝+ 𝜌𝑐 �̂�1

)
= 0 (26)

for the left and right running characteristics, respectively. This yields

𝑝− 𝜌𝑐 �̂�1 = 𝑐𝑜𝑛𝑠𝑡. (27)
6

𝑝+ 𝜌𝑐 �̂�1 = 𝑐𝑜𝑛𝑠𝑡. (28)
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or

𝑝𝐿 − 𝜌𝑐 �̂�1,𝐿 = 𝑝∗ − 𝜌𝑐 �̂�∗1 (29)

𝑝𝑅 + 𝜌𝑐 �̂�1,𝑅 = 𝑝∗ + 𝜌𝑐 �̂�∗1 . (30)

Solving for pressure and velocity in the star region gives

𝑝∗ =
𝑝𝐿 + 𝑝𝑅

2
+ 𝜌𝑐

�̂�1,𝐿 − �̂�1,𝑅
2

=
𝑝⋆
𝑃0

+ 𝑝⋆
𝑃1,𝑓

2
+ 𝜌𝑐

�̂�⋆1,𝑃0
− �̂�⋆1,𝑃1,𝑓
2

(31)

�̂�∗1 =
�̂�1,𝐿 + �̂�1,𝑅

2
+ 1
𝜌𝑐

𝑝𝐿 − 𝑝𝑅
2

=
�̂�⋆1,𝑃0

+ �̂�⋆1,𝑃1,𝑓
2

+ 1
𝜌𝑐

𝑝⋆
𝑃0

− 𝑝⋆
𝑃1,𝑓

2
. (32)

Using the solution in the star region the complete solution of the Riemann problem reads:

̂⃗
𝑄(�̂�1,Δ𝑡∕2) =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
𝑝𝐿

�̂�𝑖,𝐿

)
=

(
𝑝⋆
𝑃0

�̂�⋆
𝑖,𝑃0

)
, �̂�1 ≤ − 𝑐Δ𝑡

2

⎛⎜⎜⎜⎜⎜⎝

𝑝𝐿+𝑝𝑅
2 + 𝜌𝑐 �̂�1,𝐿−�̂�1,𝑅

2
�̂�1,𝐿+�̂�1,𝑅

2 + 1
𝜌𝑐

𝑝𝐿−𝑝𝑅
2

�̂�2,𝐿

�̂�3,𝐿

⎞⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

𝑝⋆
𝑃0

+𝑝⋆
𝑃1,𝑓

2 + 𝜌𝑐
�̂�⋆1,𝑃0

−�̂�⋆1,𝑃1,𝑓
2

�̂�⋆1,𝑃0
+�̂�⋆1,𝑃1,𝑓
2 + 1

𝜌𝑐

𝑝⋆
𝑃0

−𝑝⋆
𝑃1,𝑓

2
�̂�⋆2,𝑃0
�̂�⋆3,𝑃0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, − 𝑐Δ𝑡

2 < �̂�1 ≤ 0

⎛⎜⎜⎜⎜⎜⎝

𝑝𝐿+𝑝𝑅
2 + 𝜌𝑐 �̂�1,𝐿−�̂�1,𝑅

2
�̂�1,𝐿+�̂�1,𝑅

2 + 1
𝜌𝑐

𝑝𝐿−𝑝𝑅
2

�̂�2,𝑅

�̂�3,𝑅

⎞⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

𝑝⋆
𝑃0

+𝑝⋆
𝑃1,𝑓

2 + 𝜌𝑐
�̂�⋆1,𝑃0

−�̂�⋆1,𝑃1,𝑓
2

�̂�⋆1,𝑃0
+�̂�⋆1,𝑃1,𝑓
2 + 1

𝜌𝑐

𝑝⋆
𝑃0

−𝑝⋆
𝑃1,𝑓

2
�̂�⋆2,𝑃1,𝑓
�̂�⋆3,𝑃1,𝑓

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, 0 < �̂�1 ≤ 𝑐Δ𝑡

2

(
𝑝𝑅

�̂�𝑖,𝑅

)
=

(
𝑝⋆
𝑃1,𝑓

�̂�⋆
𝑖,𝑃1,𝑓

)
,
𝑐Δ𝑡
2 < �̂�1

(33)

Specific entropy and composition in terms of species mass fractions remain constant over time, i.e.

(
𝑠(�̂�1,Δ𝑡∕2)
𝑌𝛼(�̂�1,Δ𝑡∕2)

)
=

⎧⎪⎪⎪⎨⎪⎪⎪⎩

(
𝑠𝐿

𝑌𝛼,𝐿

)
=

(
𝑠⋆
𝑃0

𝑌 ⋆
𝛼,𝑃0

)
, �̂�1 ≤ 0

(
𝑠𝑅

𝑌𝛼,𝑅

)
=

(
𝑠⋆
𝑃1,𝑓

𝑌 ⋆
𝛼,𝑃1,𝑓

)
, 0 < �̂�1

. (34)

In addition, the density and the square speed of sound are required in this Riemann problem in order to evaluate the coefficient 
matrices. We first compute the values of density (i.e. 𝜌∗𝐿 and 𝜌∗𝑅) and the square speed of sound (i.e. 𝑐2,∗𝐿 and 𝑐2,∗𝑅) in the “star 
region”, i.e.

𝜌∗𝐿 = 𝜌
(
𝑝∗, 𝑠⋆

𝑃0
, 𝑌 ⋆
𝛼,𝑃0

)
(35)

𝜌∗𝑅 = 𝜌
(
𝑝∗, 𝑠⋆

𝑃1,𝑓
, 𝑌 ⋆
𝛼,𝑃1,𝑓

)
(36)

𝑐2,∗𝐿 = 𝑐2
(
𝑝∗, 𝑠⋆

𝑃0
, 𝑌 ⋆
𝛼,𝑃0

)
(37)

𝑐2,∗𝑅 = 𝑐2
(
𝑝∗, 𝑠⋆

𝑃1,𝑓
, 𝑌 ⋆
𝛼,𝑃1,𝑓

)
(38)

where 𝑝∗ is given by Eq. (31). Note that there are two different values for density and speed of sound in the “star region” since 
specific entropy and mass fractions may change at �̂�1 = 0 as Eq. (34) indicates. The situation is depicted in Fig. 6 where a “left star 
region” ∙∗𝐿 and a “right star region” ∙∗𝑅 are shown for density and square speed of sound. The solution for density and square speed 
7

of sound in this Riemann problem is given at the time Δ𝑡∕2 by
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Fig. 6. Solution structure of the Riemann problem in the �̂�1-𝑡 plane with regions for the density and the square speed of sound.

(
𝜌(�̂�1,Δ𝑡∕2)
𝑐2(�̂�1,Δ𝑡∕2)

)
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
𝜌𝐿

𝑐2
𝐿

)
=
⎛⎜⎜⎝
𝜌⋆
𝑃0

𝑐2⋆
𝑃0

⎞⎟⎟⎠ , �̂�1 ≤ − 𝑐Δ𝑡
2

(
𝜌∗𝐿

𝑐2,∗𝐿

)
=
⎛⎜⎜⎜⎝
𝜌
(
𝑝∗, 𝑠⋆

𝑃0
, 𝑌 ⋆
𝛼,𝑃0

)
𝑐2
(
𝑝∗, 𝑠⋆

𝑃0
, 𝑌 ⋆
𝛼,𝑃0

)⎞⎟⎟⎟⎠ , −
𝑐Δ𝑡
2 < �̂�1 ≤ 0

(
𝜌∗𝑅

𝑐2,∗𝑅

)
=
⎛⎜⎜⎝
𝜌
(
𝑝∗, 𝑠⋆

𝑃1,𝑓
, 𝑌 ⋆
𝛼,𝑃1,𝑓

)
𝑐2
(
𝑝∗, 𝑠⋆

𝑃1,𝑓
, 𝑌 ⋆
𝛼,𝑃1,𝑓

)⎞⎟⎟⎠ , 0 < �̂�1 ≤ 𝑐Δ𝑡
2

(
𝜌𝑅

𝑐2
𝑅

)
=
⎛⎜⎜⎝
𝜌⋆
𝑃1,𝑓

𝑐2⋆
𝑃1,𝑓

⎞⎟⎟⎠ , 𝑐Δ𝑡2 < �̂�1

. (39)

2.2.2. Step 2: computation of face values

In the WAF method the face value �⃗�
⋆+ 1

2
𝑓

in Eq. (18) is defined at Δ𝑡∕2 (or time level ⋆ + 1
2 ) as the spatial average of the solution 

to the Riemann problem defined by Eqs. (19) and (20) [162]. This average is evaluated in the local coordinate frame first, i.e.

̂⃗
𝑄
⋆+ 1

2
𝑓

= 1
Δ�̂�1

Δ�̂�1∕2

∫
−Δ�̂�1∕2

̂⃗
𝑄(�̂�1,Δ𝑡∕2) 𝑑�̂�1 , (40)

where Δ�̂�1 is the distance between the centers of the control volumes in �̂�1 direction as illustrated in Fig. 4. By transforming in a last 

step ̂⃗𝑄
⋆+ 1

2
𝑓

into the global coordinate frame the face value �⃗�
⋆+ 1

2
𝑓

is obtained. Hence, applying Eq. (33) in Eq. (40) and transforming 

the velocity from the local coordinate frame to the global coordinate frame provides the required pressure 𝑝
⋆+ 1

2
𝑓

and velocity 𝑢
⋆+ 1

2
𝑓

at the face 𝑓 , i.e.

𝑝
⋆+ 1

2
𝑓

=
𝑝𝐿 + 𝑝𝑅

2
+ 𝜈𝑓 𝜌𝑐

⟨𝑢𝐿 − 𝑢𝑅, 𝑒𝑓 ⟩
2

=
𝑝⋆
𝑃0

+ 𝑝⋆
𝑃1,𝑓

2
+ 𝜈𝑓 𝜌𝑐

⟨𝑢⋆
𝑃0

− 𝑢𝑃⋆1,𝑓 , 𝑒𝑓 ⟩
2

(41)

𝑢
⋆+ 1

2
𝑓

=
𝑢𝐿 + 𝑢𝑅

2
+
𝜈𝑓

𝜌𝑐

𝑝𝐿 − 𝑝𝑅
2

𝑒𝑓

=
𝑢⋆
𝑃0

+ 𝑢⋆
𝑃1,𝑓

2
+
𝜈𝑓

𝜌𝑐

𝑝⋆
𝑃0

− 𝑝⋆
𝑃1,𝑓

2
𝑒𝑓 (42)

where the operator ⟨∙⃗, ⃗∙⟩ denotes the scalar product of two vectors and 𝑒𝑓 = 𝑛𝑓∕‖𝑛𝑓‖ the unit vector in direction of the face normal. 
The acoustic Courant-Friedrichs-Lewis (CFL) number 𝜈𝑓 at the face 𝑓 is defined as

𝜈𝑓 = 𝑐 Δ𝑡
Δ�̂�1

. (43)

The spatial averaging defined by Eq. (40) is also required for the computation of ⟨𝜌⟩𝑃0 and ⟨𝑐2⟩𝑃0 in the averaged coefficient matrices 
8

of Eq. (18). We use Eq. (39) in Eq. (40) in order to obtain first for each individual face the values
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𝜌
⋆+ 1

2
𝑓

= 𝜈𝑓
𝜌⋆
𝑃0

+ 𝜌⋆
𝑃1,𝑓

2
+ (1 − 𝜈𝑓 )

𝜌∗𝐿 + 𝜌∗𝑅

2
, (44)

𝑐
2,⋆+ 1

2
𝑓

= 𝜈𝑓
𝑐2,⋆
𝑃0

+ 𝑐2,⋆
𝑃1,𝑓

2
+ (1 − 𝜈𝑓 )

𝑐2,∗𝐿 + 𝑐2,∗𝑅
2

. (45)

These face values are used in a following step to compute the averaged coefficient matrices.

2.2.3. Step 3: computation of averaged coefficient matrices

With the help Eqs. (44) and (45) the face averages ⟨𝜌⟩𝑃0 and ⟨𝑐2⟩𝑃0 are defined as [162]

⟨𝜌⟩𝑃0 = 1
𝑁𝐹,𝑃0

𝑁𝐹,𝑃0∑
𝑓=1

𝜌
⋆+ 1

2
𝑓

, (46)

⟨𝑐2⟩𝑃0 = 1
𝑁𝐹,𝑃0

𝑁𝐹,𝑃0∑
𝑓=1

𝑐
2,⋆+ 1

2
𝑓

. (47)

These values are used to compute the averaged coefficient matrices in Eq. (18).

2.2.4. Step 4: formulation of explicit WAF scheme

We substitute the results given by Eqs. (41) and (42) in Eq. (18). Hence, an explicit WAF scheme, which advances the solution in 
a control volume 𝑃0 during the acoustic step, is given by

Δ𝑉𝑃0
𝑝𝑛+1
𝑃0

− 𝑝⋆
𝑃0

Δ𝑡
= −⟨𝜌⟩𝑃0⟨𝑐2⟩𝑃0 𝑁𝐹,𝑃0∑

𝑓=1

⟨𝑢⋆
𝑃0

+ 𝑢⋆
𝑃1,𝑓

, 𝑛𝑓 ⟩
2

+ ‖𝑛𝑓‖ 𝜈𝑓

𝜌𝑐𝑓

𝑝⋆
𝑃0

− 𝑝⋆
𝑃1,𝑓

2
, (48)

Δ𝑉𝑃0
𝑢𝑛+1
𝑖,𝑃0

− 𝑢⋆
𝑖,𝑃0

Δ𝑡
= − 1⟨𝜌⟩𝑃0

𝑁𝐹,𝑃0∑
𝑓=1

𝑛𝑓,𝑖

⎛⎜⎜⎝
𝑝⋆
𝑃0

+ 𝑝⋆
𝑃1,𝑓

2
+ 𝜈𝑓 𝜌𝑐𝑓

⟨𝑢⋆
𝑃0

− 𝑢⋆
𝑃1,𝑓

, 𝑒𝑓 ⟩
2

⎞⎟⎟⎠ . (49)

From Eqs. (15) and (16) we have

𝑠𝑛+1
𝑃0

= 𝑠⋆
𝑃0

, (50)

and

𝑌 𝑛+1
𝛼,𝑃0

= 𝑌 ⋆
𝛼,𝑃0

. (51)

2.3. Implicit formulation of the WAF scheme

A quite restrictive drawback of the explicit scheme presented in the previous section (cf. Eqs. (48) and (49)) is that it requires 
𝜈𝑓 ≤ 1 to remain stable. In the following an implicit formulation is given overcoming this limitation. As noted in [162] the WAF 
scheme is equivalent to the second order Lax-Wendroff scheme [168]. Thus, we use the approach of Lerat [169–171] to derive an 
implicit WAF scheme for the acoustic step. We obtain the equations

Δ𝑉𝑃0
Δ𝑝𝑃0
Δ𝑡

+ ⟨𝜌⟩𝑃0⟨𝑐2⟩𝑃0 𝑁𝐹,𝑃0∑
𝑓=1

‖𝑛𝑓‖ 𝜈𝑓

𝜌𝑐𝑓

Δ𝑝𝑃0 − Δ𝑝𝑃1,𝑓
4

= −⟨𝜌⟩𝑃0⟨𝑐2⟩𝑃0 𝑁𝐹,𝑃0∑
𝑓=1

⟨𝑢⋆
𝑃0

+ 𝑢⋆
𝑃1,𝑓

, 𝑛𝑓 ⟩
2

+ ‖𝑛𝑓‖ 𝜈𝑓

𝜌𝑐𝑓

𝑝⋆
𝑃0

− 𝑝⋆
𝑃1,𝑓

2

(52)

and

Δ𝑉𝑃0
Δ𝑢𝑖,𝑃0
Δ𝑡

− 𝛾⟨𝜌⟩𝑃0
𝑁𝐹,𝑃0∑
𝑓=1

𝑛𝑓,𝑖
𝜌𝑐𝑓

𝜈𝑓

⟨Δ𝑢𝑃0 − Δ𝑢𝑃1,𝑓 , 𝑒𝑓 ⟩
2

= − 1⟨𝜌⟩𝑃0
𝑁𝐹,𝑃0∑
𝑓=1

𝑛𝑓,𝑖

𝑝⋆
𝑃0

+ 𝑝⋆
𝑃1,𝑓

+ 𝑝𝑛+1
𝑃0

+ 𝑝𝑛+1
𝑃1,𝑓

4
, (53)

where the unknowns are denoted by Δ𝑢𝑖,𝑃0 = 𝑢
𝑛+1
𝑖,𝑃0

− 𝑢⋆
𝑖,𝑃0

and Δ𝑝𝑃0 = 𝑝
𝑛+1
𝑃0

− 𝑝⋆
𝑃0

. Here, different time discretizations are used for 
velocity and pressure which permits a sequential solution of these two equations. First the pressure equation given by Eq. (52) is 
solved. Subsequently, the velocity equation given by Eq. (53) is solved using the newly obtained pressure. The parameter 𝛾 is used to 
control the implicit scheme for the velocity equation, where second order accuracy requires 𝛾 < 1∕2 [171]. The matrices of the linear 
systems given by Eqs. (52) and (53) are not symmetric for unstructured meshes. Even for an equidistant structured mesh the matrices 
are not symmetric since 𝜈𝑓 and 𝜌𝑐𝑓 (which are required to compute the matrix coefficients at a point 𝑃0) vary on the faces of a 
control volume at 𝑃0. Symmetric matrices are only obtained for model problems such as in Sec. 2.4. It can be shown, however, that 
9

the matrix of the linear system given by Eq. (52) is positive definite by applying Gershgorin’s circle theorem [172] to its symmetric 
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part [173]. In the same way we can show that the matrix of the linear system given by Eq. (53) is also positive definite except for 
certain ranges of the parameter 𝛾 . To solve the linear systems (52) and (53), Krylov space solvers are used in ThetaCOM. In this work 
we use the Bi-Conjugate Gradient Stabilized (BiCGSTAB) method [174] in conjunction with a Jacobi preconditioner (i.e. the linear 
system is scaled with the inverse of the linear system’s diagonal). The stability of the implicit approach is discussed in the following 
section.

2.4. Stability

To investigate the stability of the WAF scheme we apply the von Neumann stability analysis to the following linear, hyperbolic 
model problem

𝜕𝑈

𝜕𝑡
+ 𝑐𝑐

𝜕𝑈

𝜕𝑥1
+ 𝑐𝑎

𝜕𝑉

𝜕𝑥1
= 0 (54)

𝜕𝑉

𝜕𝑡
+ 𝑐𝑐

𝜕𝑉

𝜕𝑥1
+ 𝑐𝑎

𝜕𝑈

𝜕𝑥1
= 0 , (55)

where 𝑈 and 𝑉 are the transported variables and 𝑐𝑐 and 𝑐𝑎 mimic the convective and acoustic wave speeds, respectively. The 
Eigenvalues of this system are 𝑐𝑐 + 𝑐𝑎 and 𝑐𝑐 − 𝑐𝑎. Applying the ICS scheme yields the advective step

𝜕𝑈

𝜕𝑡
+ 𝑐𝑐

𝜕𝑈

𝜕𝑥1
= 0 (56)

𝜕𝑉

𝜕𝑡
+ 𝑐𝑐

𝜕𝑉

𝜕𝑥1
= 0 (57)

and the acoustic step

𝜕𝑈

𝜕𝑡
+ 𝑐𝑎

𝜕𝑉

𝜕𝑥1
= 0 (58)

𝜕𝑉

𝜕𝑡
+ 𝑐𝑎

𝜕𝑈

𝜕𝑥1
= 0 . (59)

To solve Eqs. (56) and (57) numerically we use time and space centered scheme as in [32] which yields[
1 +

𝜈𝑐

4
𝛿
]
𝑈⋆
𝑙
=
[
1 −

𝜈𝑐

4
𝛿
]
𝑈𝑛
𝑙

(60)[
1 +

𝜈𝑐

4
𝛿
]
𝑉 ⋆
𝑙

=
[
1 −

𝜈𝑐

4
𝛿
]
𝑉 𝑛
𝑙

(61)

whereas for Eqs. (58) and (59) we employ the implicit WAF scheme given in Sec. 2.3 leading to[
1 −

𝜈2𝑎
4
𝛿2

]
𝑈𝑛+1
𝑙

=
[
−
𝜈𝑎

2
𝛿
]
𝑉 ⋆
𝑙

+

[
1 +

𝜈2𝑎
4
𝛿2

]
𝑈⋆
𝑙

(62)[
1 + 𝛾

2
𝛿2
]
𝑉 𝑛+1
𝑙

+
[ 𝜈𝑎
4
𝛿
]
𝑈𝑛+1
𝑙

=
[
−
𝜈𝑎

4
𝛿
]
𝑈⋆
𝑙
+
[
1 + 𝛾

2
𝛿2
]
𝑉 ⋆
𝑙
. (63)

The operators 𝛿2 and 𝛿 are defined as in [175] to

𝛿𝑈𝑙 =𝑈𝑙+1 −𝑈𝑙−1
𝛿2𝑈𝑙 =𝑈𝑙+1 +𝑈𝑙−1 − 2 𝑈𝑙

and the CFL numbers 𝜈𝑐 and 𝜈𝑎 are given by

𝜈𝑐 =
𝑐𝑐 Δ𝑡
Δ𝑥1

, 𝜈𝑎 =
𝑐𝑎 Δ𝑡
Δ𝑥1

.

The one dimensional computational domain is of finite length and is taken to be divided into 𝑀 computational cells with a width of 
Δ𝑥1. We assume periodic boundary conditions and express 𝑈 ∙

𝑙
and 𝑉 ∙

𝑙
in space by the finite Fourier series [175]

𝑈 ∙
𝑙
=

𝑀∑
𝑚=−𝑀

𝜉∙𝑚 𝑒
𝑙𝑘𝑚Δ𝑥1i

𝑉 ∙
𝑙
=

𝑀∑
𝑚=−𝑀

𝜂∙𝑚 𝑒
𝑙𝑘𝑚Δ𝑥1i

where the symbol ∙ represents either the time level 𝑛, ⋆ or 𝑛 +1. i =
√
−1 is the imaginary unit and 𝑘𝑚 is the wave number of the 𝑚th 

harmonic. 𝜉∙𝑚 and 𝜂∙𝑚 represent the amplitudes of the 𝑚th harmonic. Using these Fourier expansions in the advective step (Eqs. (60)
10

and (61)) and the acoustic step (Eqs. (62) and (63)) we obtain for a single harmonic 𝑚 of the Fourier series



Journal of Computational Physics 513 (2024) 113197A. Fiolitakis and M. Pries(
𝜉⋆𝑚

𝜂⋆𝑚

)
=𝐺

𝑐,𝑚

(
𝜉𝑛𝑚

𝜂𝑛𝑚

)
(64)(

𝜉𝑛+1𝑚

𝜂𝑛+1𝑚

)
=𝐺

𝑎,𝑚

(
𝜉⋆𝑚

𝜂⋆𝑚

)
(65)

where the amplification matrices 𝐺
𝑐,𝑚

and 𝐺
𝑎,𝑚

are given by

𝐺
𝑐,𝑚

= 𝑒2𝜃𝑚i
(
1 0
0 1

)
, (66)

𝐺
𝑎,𝑚

= 1

1 − 𝜈2𝑎
2 (cos𝛽𝑚 − 1)⎛⎜⎜⎜⎜⎝

1 + 𝜈2𝑎
2 (cos𝛽𝑚 − 1) −𝜈𝑎 sin𝛽𝑚i

−𝜈𝑎 sin𝛽𝑚i
1+𝛾(cos𝛽𝑚−1)

(1+𝛾(cos𝛽𝑚−1)) (1−
𝜈2𝑎
2 (cos𝛽𝑚−1))−

𝜈2𝑎 sin
2 𝛽𝑚
2

1+𝛾(cos𝛽𝑚−1)

⎞⎟⎟⎟⎟⎠
(67)

and 𝛽𝑚 and 𝜃𝑚 are defined as

𝛽𝑚 = 𝑘𝑚Δ𝑥1 =
𝑚 𝜋

𝑀
,

𝜃𝑚 = −arctan
(
2𝜈𝑐 sin𝛽𝑚

)
.

To obtain the amplification matrix for one harmonic over the entire time step Eqs. (64) and (65) are combined as suggested in [37]

to (
𝜉𝑛+1𝑚

𝜂𝑛+1𝑚

)
=𝐺

𝑚

(
𝜉𝑛𝑚

𝜂𝑛𝑚

)
(68)

where

𝐺
𝑚
=𝐺

𝑎,𝑚
𝐺
𝑐,𝑚

= 𝑒2𝜃𝑚i 𝐺
𝑎,𝑚

(69)

is the overall amplification matrix. For stability we demand that none of the individual harmonics is amplified [176]. A necessary 
condition for stability is the von Neumann condition [176]

|𝜆𝐺𝑚𝑞 | ≤ 1 + O(Δ𝑡) (70)

where 𝜆𝐺𝑚𝑞 denotes the 𝑞-th Eigenvalue of 𝐺
𝑚

. This inequality must be fulfilled for every Eigenvalue at all wave numbers 𝑘𝑚, any 
time step size Δ𝑡 and time 𝑡 = 𝑛Δ𝑡 of the computation’s 𝑛th time step [176]. For 𝐺

𝑎,𝑚
and 𝐺

𝑚
we have the following lemma:

Lemma 1. The amplification matrices 𝐺
𝑎,𝑚

and 𝐺
𝑚

fulfill the von Neumann necessary condition.

Proof. We first define the auxiliary functions

𝑎𝜆(𝜈𝑎, 𝛽𝑚) =
𝜈2𝑎
2
(cos𝛽𝑚 − 1)

𝑏𝜆(𝜈𝑎, 𝛽𝑚) =
𝜈𝑎

2
sin𝛽𝑚

𝑔𝜆(𝛾, 𝛽𝑚) = 1 + 𝛾 (cos𝛽𝑚 − 1)

and express the matrix 𝐺
𝑎,𝑚

as

𝐺
𝑎,𝑚

= 1
1 − 𝑎𝜆

(
1 + 𝑎𝜆 −2𝑏𝜆i
−2𝑏𝜆i
𝑔𝜆

𝑔𝜆 (1−𝑎𝜆)−2𝑏2𝜆
𝑔𝜆

)
.

The two Eigenvalues of 𝐺
𝑎,𝑚

are given by

𝜆
𝐺𝑎,𝑚
1,2 = 1

𝑔𝜆(1 − 𝑎𝜆)

(
−𝐵𝜆 ±

√
𝐵2
𝜆
−𝐶𝜆

)
(71)
11

which are either real or complex depending on the sign of 𝐵2
𝜆
−𝐶𝜆 where 𝐵𝜆 and 𝐶𝜆 are given by
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𝐵𝜆 = 𝑏2𝜆 − 𝑔𝜆

𝐶𝜆 = 𝑔𝜆(1 − 𝑎𝜆)(𝑔𝜆(1 + 𝑎𝜆) + 2 𝑏2
𝜆
) .

In order to prove Lemma 1 we show first for 𝐺
𝑎,𝑚

that

𝜌𝐺𝑎,𝑚 ∶= max
(|𝜆𝐺𝑎,𝑚1 |, |𝜆𝐺𝑎,𝑚2 |) ≤ 1 (72)

is fulfilled, where 𝜌𝐺𝑎,𝑚 denotes the spectral radius of 𝐺
𝑎,𝑚

. We consider first real Eigenvalues (i.e. 𝐵2
𝜆
−𝐶𝜆 ≥ 0) where Eq. (72) yields

𝜌𝐺𝑎,𝑚 ≤ 1

⇒
|𝐵𝜆|+√𝐵2

𝜆
−𝐶𝜆

𝑔𝜆(1 − 𝑎𝜆)
≤ 1

⇒ 0 ≤ 𝑔𝜆 ∨ 0 ≤ 𝑏2
𝜆

which is always true for 𝛾 < 1∕2, i.e. for second order schemes, and any choice of 𝛽𝑚 and 𝜈𝑎. If we apply Eq. (72) to complex 
Eigenvalues (i.e. 𝐵2

𝜆
−𝐶𝜆 < 0) we obtain a similar result in terms of 𝛾 , i.e.

𝜌𝐺𝑎,𝑚 ≤ 1

⇒

√
𝐶𝜆

𝑔𝜆(1 − 𝑎𝜆)
≤ 1

⇒ 𝛾 ≤ 1
2
.

Thus 𝐺
𝑎,𝑚

fulfills the von Neumann necessary condition. Due to Eq. (69) we have

𝜆
𝐺𝑚
𝑞 = 𝑒2𝜃𝑚i𝜆𝐺𝑎,𝑚𝑞

⇒ |𝜆𝐺𝑚𝑞 | = |𝜆𝐺𝑎,𝑚𝑞 |
and therefore

𝜌𝐺𝑚 = 𝜌𝐺𝑎,𝑚 (73)

⇒ 𝜌𝐺𝑚 ≤ 1 (74)

where 𝜌𝐺𝑚 is the spectral radius of 𝐺
𝑚

. Hence, both 𝐺
𝑎,𝑚

and 𝐺
𝑚

fulfill the von Neumann necessary condition. □

Lemma 1 represents a necessary condition for stability. To obtain sufficient conditions we first consider the Fourier modes 
𝑚 ∈ {−𝑀, 0, 𝑀}, i.e. 𝛽𝑚 ∈ {−𝜋; 0; 𝜋}, where the following lemma applies.

Lemma 2. For 𝛽𝑚 ∈ {−𝜋; 0; 𝜋} the matrices 𝐺
𝑎,𝑚

and 𝐺
𝑚

are stable.

Proof. The von Neumann necessary condition is also a sufficient condition if the amplification matrices 𝐺
𝑎,𝑚

and 𝐺
𝑚

are normal 
matrices [176]. Such a situation occurs if 𝛽𝑚 ∈ {−𝜋; 0; 𝜋} because in this 𝐺

𝑎,𝑚
and 𝐺

𝑚
become a real valued diagonal matrices which 

is the trivial case of a normal matrix. □

For any other value of 𝛽𝑚 a sufficient condition of stability is obtained here through the use of the Kreiss Matrix Theorem [176]. 
In order to use the Kreiss Matrix Theorem in this work the following lemma is required.

Lemma 3. The spectral radius of the matrix 𝐺
𝑎,𝑚

(and subsequently of the matrix 𝐺
𝑚

) equals one only for 𝛽𝑚 ∈ {−𝜋; 0; 𝜋} provided that a 
second order scheme is used (i.e. 𝛾 < 1∕2).

Proof. To prove Lemma 3 we simply solve the equation

𝜌𝐺𝑎,𝑚 = 1 .
12

For real Eigenvalues we obtain
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𝜌𝐺𝑎,𝑚 = 1

⇒ sin𝛽𝑚 = 0 ∨
(
𝛾 = 1

2
∧ cos𝛽𝑚 = −1

)
From these two conditions only sin𝛽𝑚 = 0, i.e. 𝛽𝑚 ∈ {−𝜋; 0; 𝜋} is considered here since we require 𝛾 < 1∕2. For complex Eigenvalues 
we get

𝜌𝐺𝑎,𝑚 = 1

⇒ cos𝛽𝑚 = 1 ∨ 𝛾 = 1
2
.

Again, only the first condition cos𝛽𝑚 = 1, i.e. 𝛽𝑚 = 0, is retained. Hence, the spectral radius equals one only for 𝛽𝑚 ∈ {−𝜋; 0; 𝜋}. Due 
to Eq. (73) this result also applies to the matrix 𝐺

𝑚
. □

To continue the proof of stability on the basis of the Kreiss Matrix Theorem we consider a family F of 𝑞 × 𝑞 matrices 𝐴
F

[176]. 
This family of matrices is said to be stable if there exists a constant C such that for all 𝐴

F
∈ F and all positive integers 𝑘 [176]

‖𝐴
F
‖𝑘 < C . (75)

We use the following statement of the Kreiss Matrix Theorem to prove stability [176]:

Theorem 1. The stability of the family F of matrices 𝐴
F

is equivalent to the following statement:

There exist constants C𝑆 and C𝐵 and, to each 𝐴
F

∈ F , a non-singular matrix 𝑆 such that (i) ‖𝑆‖, ‖𝑆−1‖ ≤ C𝑆 ; and (ii) 𝐵
F

= 𝑆 𝐵
F
𝑆−1

is upper triangular and its off-diagonal elements satisfy

|𝐵F ,𝑖𝑗 | ≤ C𝐵 min(1 − |𝜅𝑖|,1 − |𝜅𝑗 |) , (76)

where 𝜅𝑖 are the diagonal elements of 𝐵
F

, i.e., the Eigenvalues of 𝐴
F

and 𝐵
F

.

In this work we choose the family F =
{
𝐺
𝑎,𝑚

}
and impose restrictions on the choice of 𝜈𝑎 and 𝛾 . For both 𝜈𝑎 and 𝛾 we require 

that they are bounded, i.e. they do not approach infinity since this case does not represent a meaningful numerical scheme. To obtain 
a second order numerical scheme we do not consider 𝛾 → 1∕2. Furthermore, we disregard the limit 𝜈𝑎 → 0 since we have finite 
values for Δ𝑡 and Δ𝑥1 as well as a finite wave speed 𝑐𝑎 (for compressible flows this speed corresponds to the speed of sound which 
is nonzero). Hence, we state the following lemma.

Lemma 4. The amplification matrix 𝐺
𝑎,𝑚

fulfills the conditions (i) and (ii) of Theorem 1 (Kreiss Matrix Theorem) provided that

• 𝛽𝑚 ∈
[
− (𝑀−1)

𝑀
𝜋;− 𝜋

𝑀

]
∨ 𝛽𝑚 ∈

[
𝜋

𝑀
; (𝑀−1)

𝑀
𝜋
]

• 𝜈𝑎 is bounded and does not approach asymptotically zero.

• 𝛾 is bounded and does not approach asymptotically one half.

Proof. We first prove that condition (i) is fulfilled. To this end we consider the left Eigenvector 𝑣1 for the Eigenvalue

𝜆
𝐺𝑎,𝑚
1 =

−𝐵𝜆 +
√
𝐵2
𝜆
−𝐶𝜆

𝑔𝜆(1 − 𝑎𝜆)

and the right Eigenvector �⃗�2 for the Eigenvalue

𝜆
𝐺𝑎,𝑚
2 =

−𝐵𝜆 −
√
𝐵2
𝜆
−𝐶𝜆

𝑔𝜆(1 − 𝑎𝜆)
.

These Eigenvectors are given by

𝑣1 =
1√

4𝑏2
𝜆
𝑔2
𝜆
+ |||𝑔𝜆 (1 + 𝑎𝜆)− 𝜁𝜆|||2

(
2𝑏𝜆𝑔𝜆i

𝑔𝜆(1 + 𝑎𝜆) − 𝜁𝜆

)

�⃗�2 =
1√

4𝑏2𝑔2 + ||𝑔 (1 + 𝑎 )− 𝜁 ||2
(
−i
(
𝑔𝜆(1 + 𝑎𝜆) − 𝜁𝜆

)
−2𝑏𝜆𝑔𝜆

)
,

13

𝜆 𝜆 | 𝜆 𝜆 𝜆|
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where 𝜁𝜆 is given by

𝜁𝜆 = 𝑔𝜆 − 𝑏2𝜆 +
√
𝑏4
𝜆
+ 𝑔2

𝜆
𝑎2
𝜆
+ 2𝑔𝜆𝑏2𝜆

(
𝑎𝜆 − 2

)
∈ℂ .

ℂ denotes the set of complex numbers. Using these Eigenvectors the matrix 𝑆 and 𝑆−1 are defined as

𝑆 =
⎡⎢⎢⎣
(
𝑣1

)𝑇(
�⃗�2
)𝑇 ⎤⎥⎥⎦

𝑆−1 =
[
𝑣1, �⃗�2

]
,

where operators ∙ and ∙𝑇 denote the conjugate complex and the transpose, respectively. It can easily be shown that 𝑆 is an unitary 
matrix since the inverse 𝑆−1 is also its conjugate transpose. Thus the spectral norm of these matrices is one and we have therefore 
C𝑆 = 1. Hence condition (i) is fulfilled. For the proof of the validity of condition (ii) we compute 𝐵

F
for the matrix 𝐺

𝑎,𝑚
and obtain

𝐵
F

=
⎛⎜⎜⎝
𝜆
𝐺𝑎,𝑚
1 ⟨𝑣1,𝐺

𝑎,𝑚
�⃗�2⟩

0 𝜆
𝐺𝑎,𝑚
2

⎞⎟⎟⎠ .

The upper diagonal matrix consists of a single element 𝐵F ,12 and its magnitude is given by

||𝐵F ,12|| = ||||⟨𝑣1,𝐺𝑎,𝑚�⃗�2⟩|||| =
⎧⎪⎪⎨⎪⎪⎩
2

√
(𝑎𝜆𝑔𝜆+𝑏2𝜆)

2+𝑏2
𝜆
(1−𝑔𝜆)2

(1−𝑎𝜆)𝑔𝜆
, 𝐵2

𝜆
−𝐶𝜆 < 0

2
||𝑏𝜆||(𝑔𝜆+1)
(1−𝑎𝜆)𝑔𝜆

, 𝐵2
𝜆
−𝐶𝜆 ≥ 0

Note, that ||𝐵F ,12|| is a continuous function of its arguments 𝛾 , 𝜈 and 𝛽𝑚 because its denominator is strictly positive in the specified 
range of the arguments. Since ||𝐵F ,12|| is finite at the upper and lower limits of the intervals of 𝛽𝑚 it is a bounded function and an 
upper limit of ||𝐵F ,12|| exists. It remains to show that

|𝐵F ,12| ≤ C𝐵 min(1 − |𝜅𝑖|,1 − |𝜅𝑗 |)
⇒ |𝐵F ,12| ≤ C𝐵

(
1 − 𝜌𝐺𝑎,𝑚

)
⇒
|𝐵F ,12|
1 − 𝜌𝐺𝑎,𝑚

≤ C𝐵 .

For the existence of an upper bound C𝐵 it is necessary that |𝐵F ,12|∕ (1 − 𝜌𝐺𝑎,𝑚) is a bounded function. Due to Lemma 3 we have

𝜌𝐺𝑎,𝑚 < 1, 𝛽𝑚 ∈
[
−(𝑀 − 1)

𝑀
𝜋;− 𝜋

𝑀

]
∨ 𝛽𝑚 ∈

[
𝜋

𝑀
; (𝑀 − 1)

𝑀
𝜋

]
⇒ 1 − 𝜌𝐺𝑎,𝑚 > 0, 𝛽𝑚 ∈

[
−(𝑀 − 1)

𝑀
𝜋;− 𝜋

𝑀

]
∨ 𝛽𝑚 ∈

[
𝜋

𝑀
; (𝑀 − 1)

𝑀
𝜋

]
.

The function 1∕(1 − 𝜌𝐺𝑎,𝑚 ) is therefore a bounded function for the range of 𝛽𝑚 considered here (i.e. it is continuous and it also 

possesses finite values at the upper and lower limits of the 𝛽𝑚 intervals). Thus the function |𝐵F ,12|∕ (1 − 𝜌𝐺𝑎,𝑚) is also a bounded 
function which possesses an upper bound. Hence, a constant C𝐵 exists and condition (ii) is fulfilled. □

Lemma 4 establishes that the matrix 𝐺
𝑎,𝑚

is stable in the sense of Eq. (75). From Eq. (68) we obtain

‖𝐺
𝑚
‖ = ‖𝑒2𝜃𝑚i 𝐺

𝑎,𝑚
‖ = ‖𝐺

𝑎,𝑚
‖ .

Hence, according to Eq. (75) the matrix 𝐺
𝑚

is also stable in the range of 𝛽𝑚, 𝜈 and 𝛾 given in Lemma 4. Together with Lemma 2 the 
stability of 𝐺

𝑚
over the entire range of 𝛽𝑚 is established.

2.5. Monotonicity

To obtain a monotone scheme a spatially first order scheme is required [177]. To arrive at such a scheme for the acoustic step we 
14

make use of Lerat’s approach [169–171] to derive a scheme which is first order accurate in space and time. As suggested in [162] a 
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limiter function 𝜙𝑃0 is used to blend the first order scheme and the second order scheme of Sec. 2.3 in order to enforce monotonicity. 
The monotone scheme for pressure and velocity is then given by

Δ𝑉𝑃0
Δ𝑝𝑃0
Δ𝑡

+ ⟨𝜌⟩𝑃0⟨𝑐2⟩𝑃0 𝑁𝐹,𝑃0∑
𝑓=1

‖𝑛𝑓‖ ℎ𝑓,𝐿𝐻𝑆,𝑝 Δ𝑝𝑃0 − Δ𝑝𝑃1,𝑓
2

=

− ⟨𝜌⟩𝑃0⟨𝑐2⟩𝑃0 𝑁𝐹,𝑃0∑
𝑓=1

⟨𝑢⋆
𝑃0

+ 𝑢⋆
𝑃1,𝑓

, 𝑛𝑓 ⟩
2

+ ‖𝑛𝑓‖ ℎ𝑓,𝑅𝐻𝑆,𝑝 𝑝⋆𝑃0 − 𝑝⋆𝑃1,𝑓2
(77)

and

Δ𝑉𝑃0
Δ𝑢𝑖,𝑃0
Δ𝑡

+
𝑁𝐹,𝑃0∑
𝑓=1

ℎ𝑓,𝐿𝐻𝑆,𝑢 𝑛𝑓,𝑖

⟨Δ𝑢𝑃0 − Δ𝑢𝑃1,𝑓 , 𝑒𝑓 ⟩
2

=

𝑁𝐹,𝑃0∑
𝑓=1

𝑛𝑓,𝑖

⎛⎜⎜⎝− 1⟨𝜌⟩𝑃0
𝑝⋆
𝑃0

+ 𝑝⋆
𝑃1,𝑓

+ 𝑝𝑛+1
𝑃0

+ 𝑝𝑛+1
𝑃1,𝑓

2
− ℎ𝑓,𝑅𝐻𝑆,𝑢

⟨𝑢⋆
𝑃0

− 𝑢⋆
𝑃1,𝑓

, 𝑒𝑓 ⟩
2

⎞⎟⎟⎠ , (78)

where the coefficients of the left hand side (LHS) and the right hand side (RHS) for pressure (i.e. ℎ𝑓,𝐿𝐻𝑆,𝑝 and ℎ𝑓,𝑅𝐻𝑆,𝑝) and velocity 
(i.e. ℎ𝑓,𝐿𝐻𝑆,𝑢 and ℎ𝑓,𝑅𝐻𝑆,𝑢) are given by

ℎ𝑓,𝐿𝐻𝑆,𝑝 =
(
1 −

𝜙𝑃0

2

)
𝜈𝑓

𝜌𝑐𝑓
(79)

ℎ𝑓,𝑅𝐻𝑆,𝑝 =
𝜈𝑓

𝜌𝑐𝑓
+
(
1 − 𝜙𝑃0

) 1
𝜌𝑐𝑓

(80)

ℎ𝑓,𝐿𝐻𝑆,𝑢 =
𝜌𝑐𝑓⟨𝜌⟩𝑃0

(
−𝜙𝑃0 𝛾 +

(
1 − 𝜙𝑃0

)
𝜈𝑓

)
(81)

ℎ𝑓,𝑅𝐻𝑆,𝑢 =
(
1 − 𝜙𝑃0

) 𝜌𝑐𝑓⟨𝜌⟩𝑃0 (𝜈𝑓 + 1
)
. (82)

For the unstructured meshes which are of interest here we use the limiter function of [178]. The parameter of the limiter function is 
computed at time level ⋆ on the basis of pressure for Eq. (77) and velocity for Eq. (78).

3. Results

In the present section we present results obtained with the ICS-WAF method. We tested and validated this method extensively with 
numerous test cases. Using analytical solutions the formal order of accuracy is established in physical space and time. Furthermore, 
incompressible and compressible benchmark problems are computed including the lid-driven cavity problem, the two-dimensional 
Taylor-Green vortex, different Riemann problems, and the laminar boundary layer over a flat plate at different Mach numbers. 
The results for all of these test cases are discussed in the following sections. In addition, results for a standing wave are given to 
demonstrate the improvements of the ICS-WAF method over previous approaches [1,32]. At the end of this section the application 
of the ICS-WAF method to complex flows is presented.

3.1. Accuracy

To demonstrate the spatial accuracy of the present ICS-WAF method we consider an isentropic vortex at two different Mach 
numbers, namely 0.05 (case 1) and 0.5 (case 2). Details on the test case are given in [32]. The spatial error is plotted versus grid 
size in Fig. 7. Second order accuracy is obtained in space (see also Table 1). The temporal accuracy is investigated with the help of 
an isentropic acoustic wave at different flow speeds (case 1 at 0 m/s and case 2 at 20 m/s). Details on the setup are also provided 
in [32]. The results are summarized in Fig. 8 where plots of the temporal error versus time step size are shown. An order of two is 
found for large time steps which decreases slightly for smaller time steps due to the presence of other discretization errors (see also 
Table 2).

3.2. Riemann problems

To further assess the accuracy of the ICS-WAF method we investigate in this section Riemann problems for the Euler equations. 
As suggested in [152] we consider for this purpose three different Riemann problems. The initial conditions for these Riemann 
problems (denoted by RP1, RP2, and RP3) are summarized in Table 3. The solution of the first Riemann problem RP1 consists of two 
rarefactions and a stationary contact discontinuity. The second Riemann Problem is the so called Sod test case [179] and its solution 
is given by a left rarefaction, a contact discontinuity, and a right shock wave. For the third Riemann problem RP3 the solution consists 
15

of a left shock wave, a contact discontinuity, and a right shock wave. For all computations the monotone ICS-WAF scheme outlined 
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Fig. 7. Normalized numerical error of the transported variables over the discretization length for the isentropic vortex test cases 1 and 2. The magnitude of the errors 
for each variable is normalized with the magnitude of error on the coarsest grid for each variable. ( ) nominal second order, ( ) Mach number 0.05, ( ) Mach 
number 0.5.

Table 1

Spatial convergence rate for isentropic vortex.

Mach 
number

Δ𝑥1
in m

Normalized error Convergence rate

𝜌 𝜌𝑢1 𝜌𝑢2 𝜌𝐸 𝜌𝑌1 𝜌 𝜌𝑢1 𝜌𝑢2 𝜌𝐸 𝜌𝑌1

0.05 2.0e-02 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 - - - - -

0.05 1.0e-02 2.6e-01 2.5e-01 2.5e-01 2.4e-01 2.4e-01 1.9 2.0 2.0 2.1 2.1

0.05 5.0e-03 6.8e-02 6.3e-02 6.2e-02 5.9e-02 5.9e-02 1.9 2.0 2.0 2.0 2.0

0.05 2.5e-03 1.9e-02 1.6e-02 1.6e-02 1.5e-02 1.5e-02 1.8 2.0 2.0 2.0 2.0

0.5 2.0e-02 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 - - - - -

0.5 1.0e-02 2.6e-01 2.5e-01 2.5e-01 2.5e-01 2.5e-01 1.9 2.0 2.0 2.0 2.0

0.5 5.0e-03 6.6e-02 6.4e-02 6.3e-02 6.1e-02 6.1e-02 2.0 2.0 2.0 2.0 2.0

0.5 2.5e-03 1.7e-02 1.6e-02 1.6e-02 1.5e-02 1.5e-02 1.9 2.0 2.0 2.0 2.0

Fig. 8. Normalized numerical error of the transported variables over the time step for the isentropic acoustic wave cases 1 and 2. The magnitude of errors for each 
variable is normalized by the error at the largest time step. ( ) nominal second order, ( ) case 1, ( ) case 2.

in Sec. 2.5 is used. An ideal gas is assumed with a constant heat capacity at constant pressure of 894.9 J/(kg K) and a specific gas 
constant of 288.3 J/(kg K) (the ratio of specific heats equals 1.4753). The computations are performed on hexahedral domain which 
extends from −0.05 m to 0.05 m in 𝑥1 direction and from −50 μm to 50 μm in 𝑥2 and 𝑥3 directions. To obtain a one dimensional 
flow problem symmetry boundary conditions are prescribed at the boundary planes normal to the 𝑥2 and 𝑥3 directions. This domain 
is discretized with 3200 control volumes in 𝑥1 direction and two control volumes in 𝑥2 and 𝑥3 direction, respectively. A time step 
size of 5 ⋅ 10−9 s is used for solving Riemann problems RP1 and RP3 whereas a time steps size of 5 ⋅ 10−8 s is used for solving RP2. 
Numerical results are compared to the exact solution at a time of 50 μs for RP1 and RP2 and 40 μs for RP3. The comparison between 
numerical and exact solution is given in Fig. 9 for RP1. An excellent agreement is found between both solutions for this Riemann 
problem. Likewise, a good agreement between exact and numerical solution is found for the Riemann problems RP2 and RP3 (cf. 
Figs. 10 and 11, respectively). It must be noted, however, that the ICS-WAF method is in general not well suited for capturing strong 
16

shock waves since it is based on the assumption that the wave speed equals the characteristic speed as outlined in Sec. 2.2.1. For the 
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Table 2

Temporal convergence rate for acoustic wave.

case Δ𝑡
in s

Normalized error Convergence rate

𝜌 𝜌𝑢1 𝜌𝐸 𝜌𝑌1 𝜌 𝜌𝑢1 𝜌𝐸 𝜌𝑌1

1 2.0e-05 1.0e+00 1.0e+00 1.0e+00 1.0e+00 - - - -

1 1.0e-05 2.6e-01 2.6e-01 2.6e-01 2.6e-01 2.0 2.0 2.0 2.0

1 5.0e-06 6.5e-02 6.6e-02 6.4e-02 6.5e-02 2.0 2.0 2.0 2.0

1 2.5e-06 1.7e-02 1.8e-02 1.6e-02 1.7e-02 1.9 1.9 2.0 1.9

1 1.3e-06 5.0e-03 5.7e-03 5.0e-03 5.0e-03 1.8 1.6 1.7 1.8

2 2.0e-05 1.0e+00 1.0e+00 1.0e+00 1.0e+00 - - - -

2 1.0e-05 2.6e-01 2.6e-01 2.5e-01 2.6e-01 2.0 2.0 2.0 2.0

2 5.0e-06 6.5e-02 6.6e-02 6.3e-02 6.5e-02 2.0 2.0 2.0 2.0

2 2.5e-06 1.7e-02 1.8e-02 1.5e-02 1.7e-02 1.9 1.9 2.0 1.9

2 1.3e-06 5.0e-03 5.7e-03 5.4e-03 5.0e-03 1.8 1.6 1.5 1.8

Table 3

Initial conditions for Riemann problems.

Riemann 
problem

𝑥 < 0 m 𝑥 ≥ 0 m

𝜌 𝑝 𝑢1 𝜌 𝑝 𝑢1
in kg/m3 in bar in m/s in kg/m3 in bar in m/s

RP1 1.16 1 −210 1.16 1 210
RP2 1.16 1 0 0.92 0.8 0
RP3 1.16 1 40 0.116 1 0

Fig. 9. Solution of Riemann problem RP1. ( ) exact solution, ( ) numerical solution of ICS-WAF method.

Riemann problems RP2 and RP3 given in Table 3 this condition is almost fulfilled since the ratio of pressures across a shock wave is 
close to one.

3.3. Low Mach number limit

In this section the asymptotic behavior of the ICS-WAF scheme in the low Mach number limit is investigated. As Mach number 
decreases the deviation from the incompressible limit in dimensionless pressure, dimensionless density, and dimensionless velocity 
17

divergence should decrease with the square of Mach number provided that acoustic perturbations are absent (see e.g. [137,139,180]). 
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Fig. 10. Solution of Riemann problem RP2. ( ) exact solution, ( ) numerical solution of ICS-WAF method.

Fig. 11. Solution of Riemann problem RP3. ( ) exact solution, ( ) numerical solution of ICS-WAF method.

To demonstrate this behavior for the ICS-WAF scheme we perform a numerical experiment as proposed in [149] and compute a 
Taylor-Green vortex (TGV) for different Mach numbers. For each Mach number the deviation from the incompressible solution is 
evaluated. For the TGV the dimensionless solution for 𝑢1 and 𝑢2 velocities and relative pressure Δ𝑝 in the incompressible limit is 
18

given by
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Table 4

Physical parameters of Taylor-Green vortex.

𝑀𝑎0,TGV 𝑢0,TGV in m/s 𝓁0,TGV in mm 𝜇0,TGV in μPa s 𝑅𝑒 𝑆𝑟

0.1 35.72 10 500 8.26 1

0.01 3.572 1 5 8.26 1

0.001 0.3572 0.1 0.05 8.26 1

�̌�1 = 𝑢1∕𝑢0,TGV = −cos
(
𝜋

2
�̌�1

)
sin
(
𝜋

2
�̌�2

)
𝐹 (𝑡) , (83)

�̌�2 = 𝑢2∕𝑢0,TGV = sin
(
𝜋

2
�̌�1

)
cos
(
𝜋

2
�̌�2

)
𝐹 (𝑡) , (84)

Δ�̌� =Δ𝑝∕(𝜌0,TGV 𝑢
2
0,TGV

) = −1
4
(
cos
(
𝜋�̌�1
)
+ cos

(
𝜋�̌�2
))
𝐹 (𝑡)2 (85)

where the symbol ∙̌ denotes dimensionless quantities. The function 𝐹 (𝑡) is defined as

𝐹 (𝑡) = 𝑒𝑥𝑝
(
− 𝜋2 𝑡

2 𝑆𝑟 𝑅𝑒

)
(86)

in terms of the Strouhal number

𝑆𝑟 =
𝓁0,TGV

𝑢0,TGV 𝑡0,TGV

and the Reynolds number

𝑅𝑒 =
𝑢0,TGV 𝓁0,TGV 𝜌0,TGV

𝜇0,TGV

.

Dimensionless time and space coordinates are defined as 𝑡= 𝑡∕𝑡0,TGV and �̌�𝑖 = 𝑥𝑖∕𝓁0,TGV, respectively. 𝑡0,TGV and 𝓁0,TGV are reference 
time and length scales of the TGV. In the above equations 𝑢0,TGV denotes a reference velocity, 𝜌0,TGV a reference density, and 𝜇0,TGV

the dynamic viscosity which is taken to be constant. The reference Mach number for the TGV is defined in terms of the reference 
speed of sound 𝑐0,TGV as

𝑀𝑎0,TGV =
𝑢0,TGV

𝑐0,TGV

.

In this study the reference Mach numbers 0.001, 0.01, and 0.1 are considered. To modify Mach number we keep the speed of sound 
𝑐0,TGV constant and change the velocity 𝑢0,TGV. In order to ensure similar solutions in the incompressible limit despite the change 
in 𝑢0,TGV the Strouhal number and the Reynolds number must be kept constant as the Mach number changes. To this end 𝓁0,TGV

and 𝜇0,TGV are adjusted as summarized in Table 4. Furthermore, the Prandtl number is also kept constant at a value of 0.7 in 
the computations with the ICS-WAF scheme. For each computation the same reference pressure 𝑃0,TGV = 1000 Pa as well as the 
same reference density 𝜌0,TGV = 0.011562 kg/m3 are used. With a specific gas constant of 288.3 J/(kg K) this corresponds to a gas 
temperature of 300 K and a speed of sound of 𝑐0,TGV = 357.2 m/s (the ratio of specific heats equals 1.4753, the specific heat capacity at 
constant pressure equals 894.9 J/(kg K) and is taken to be constant). The computations are performed on a hexahedral domain which 
extends from −1 to 1 in dimensionless �̌�1 and �̌�2 directions and from −0.02 to 0.02 in dimensionless �̌�3 direction. It is discretized with 
50 control volumes in �̌�1 and �̌�2 directions and two control volumes in �̌�3 direction. All computations are initialized with a constant 
density 𝜌0,TGV and velocities according to Eqs. (83) and (84). The initial pressure is the sum of the reference pressure 𝑃0,TGV and the 
relative pressure given in Eq. (85). The computations are run until 𝑡 = 1 for 𝑡0,TGV = 0.00028 s. At this point in time the velocity in 
the TGV has decayed about 45% from its initial value. All computations are run with an acoustic CFL of 0.001. For this numerical 
experiment it is found that a small acoustic CFL number is necessary to reduce the numerical errors sufficiently such that the correct 
scaling in velocity divergence at the smallest Mach number of 0.001 is obtained. At the end of the computation the 𝐿2-norm of the 
deviation from the incompressible limit in dimensionless pressure, dimensionless density, and dimensionless velocity divergence, i.e. 
(Einstein notation)

�̌� = 𝑝

𝑝0,TGV

, �̌� = 𝜌

𝜌0,TGV

,
𝜕�̌�𝑖

𝜕�̌�𝑖
=
𝜕𝑢𝑖

𝜕𝑥𝑖

𝓁0,TGV

𝑢0,TGV

is evaluated. The results are summarized in Fig. 12 and Table 5. For the present numerical experiment the numerical solution of the 
ICS-WAF scheme approaches the incompressible limit with the square of Mach number, showing thus the expected scaling.

3.4. Lid-driven cavity

The laminar lid-driven cavity flow is a well known model problem which is often used to assess numerical flow solvers operating 
19

in viscous, low Mach number flow regimes. The problem consists of a cavity with a square cross section surrounded by no-slip walls. 
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Fig. 12. Deviation from incompressible limit over Mach number for the Taylor-Green vortex. ( ) nominal second order, ( ) dimensionless density, (△) dimen-

sionless pressure, ( ) dimensionless velocity divergence.

Table 5

Convergence in Mach number 𝑀𝑎0,TGV for Taylor green vortex. The devia-

tions from the incompressible limit of dimensionless density, dimensionless 
pressure, and of dimensionless velocity divergence are given in the 𝐿2-norm.

𝑀𝑎0,TGV Deviation Convergence rate

�̌� �̌�
∑3
𝑖=1

𝜕�̌�𝑖

𝜕�̌�𝑖
�̌� �̌�

∑3
𝑖=1

𝜕�̌�𝑖

𝜕�̌�𝑖

1.0e-01 5.2e-04 1.2e-03 3.6e-03 - - -

1.0e-02 5.3e-06 1.2e-05 3.6e-05 2.0 2.0 2.0

1.0e-03 5.2e-08 1.2e-07 6.1e-07 2.0 2.0 1.8

As the upper wall moves, a shear driven flow is induced. Depending on the fluid properties as well as the velocity of the moving wall 
𝑢0,LDC, different flows characterized by the Reynolds number

𝑅𝑒 =
𝑢0,LDC 𝓁0,LDC 𝜌0,LDC

𝜇0,LDC

can be defined. The parameter 𝓁0,LDC is the characteristic length of the cavity whereas 𝜇0,LDC is the dynamic viscosity (which is 
taken to be constant), and 𝜌0,LDC the reference density. In the present work an ideal gas is assumed with constant specific heat 
capacity at constant pressure of 1009 J/(kg K) and a specific gas constant of 288.3 J/(kg K) (the ratio of specific heats equals 1.4). 
A reference length of 1 m is used here, the velocity of the moving wall is 1 m/s. Furthermore, a reference pressure of 7.14 bar 
and a reference density of 1 kg/m3 is used. In this way a Mach number of 0.001 is obtained based on the velocity of the moving 
wall. The computational domain is hexahedral. It extends from 0 m to 1 m in 𝑥1 and 𝑥2 direction and from 0 m to 0.005 m in 
𝑥3 direction. Symmetry boundary conditions are prescribed at the boundary planes normal to the 𝑥3 direction in order to obtain 
a two dimensional flow. The domain is discretized with an equally spaced grid which consists 202 control volumes in 𝑥1 and 𝑥2
direction, and two control volumes in 𝑥3 direction. Three different Reynolds numbers (𝑅𝑒 = 100, 1000, and 5000) are investigated. 
All simulations are run until a steady state solution is reached. The velocity components 𝑢1 and 𝑢2 are compared against the data 
published in [181]. The resulting velocities 𝑢1 and 𝑢2 are plotted in Fig. 13 along the center lines of the cavity at 𝑥1 = 0.5 m and 
𝑥2 = 0.5 m. A good agreement between the data obtained from the ICS-WAF method and the data published in [181] is found in 
Fig. 13. This confirms that the ICS-WAF method works correctly for viscous, low Reynolds number flows at small Mach number.

3.5. Laminar boundary layer

For a further investigation of the ICS-WAF method in viscous flows the laminar boundary layer over a flat, isothermal plate is 
investigated here. The computational domain is shown schematically in Fig. 14. It extends from 𝑥1 = −700 mm to 𝑥1 = 70 mm and 
from 𝑥2 = 0 mm to 𝑥2 = 700 mm. Its extension in 𝑥3 direction is 1 mm. The flat plate has a total length of 70 mm and is located 
along the lower boundary between 𝑥1 = 0 mm to 𝑥1 = 70 mm as indicated in Fig. 14. The computational domain is discretized with 
a structured mesh consisting of 263 control volumes in 𝑥1 direction, 231 control volumes in 𝑥2 direction, and two control volumes 
in 𝑥3 direction. The height of the first cells along the wall is 0.5 μm, the growth rate of the control volumes normal to the wall is 
5%. The aspect ratio in 𝑥1 and 𝑥2 direction increases for the control volumes at the wall from almost one at the tip of the plate to 
about 7000 at the end of the plate. Four different free stream Mach numbers 𝑀𝑎∞, i.e. 0.1, 0.3, 0.6, and 0.9, are considered here. To 
provide a reference solution for the computations with the ICS-WAF method, the boundary layer equations for compressible flows 
are solved for these four Mach numbers. For this purpose the Levy-Lees transformation [182]

𝜗 =

𝑥1

𝜌𝑒𝜇𝑒𝑢1,𝑒𝑑�̃�1 (87)
20

∫
0
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Fig. 13. Velocity 𝑢1 and 𝑢2 for the lid-driven cavity problem. Velocities are sampled along 𝑥1 = 0.5 m for 𝑢1 and along 𝑥2 = 0.5 m for 𝑢2 . Lines represent the data of 
the ICS-WAF method whereas symbols represent the results from [181].

Fig. 14. Computational domain for solving laminar boundary layer flow over flat plate.

𝜓 =
𝑢1,𝑒√
2𝜗

𝑥2

∫
0

𝜌𝑑�̃�2 (88)

is used to transform the 𝑥1, 𝑥2 coordinates in 𝜗, 𝜓 coordinates as outlined in [183]. Here, 𝜌𝑒, 𝜇𝑒, and 𝑢1,𝑒 denote the density, 
dynamic viscosity, and 𝑢1-velocity at the edge of the boundary layer, respectively. The operator ̃∙ denotes the variable of integration. 
With the help of Levy-Lees transformation the boundary layer equations are reduced to a set of two ordinary differential equations 
(see [183]). These equations are solved here numerically by using an iterative shooting technique. We assume an ideal gas with 
a constant dynamic viscosity of 7.5 ⋅ 10−5 Pa s, a specific gas constant of 259.8 J/(kg K) (the ratio of specific heats equals 1.52, 
the specific heat capacity at constant pressure equals 760.5 J/(kg K) and is taken to be constant), and a Prandtl number of 0.7. 
Furthermore, we take the free stream temperature to be 300 K and the pressure to be 1 bar. The free stream velocities are 34.41
m/s, 103.23 m/s, 206.47 m/s, and 309.70 m/s for the Mach numbers of 0.1, 0.3, 0.6, and 0.9, respectively. Computational results of 
the ICS-WAF method are compared to the reference solution in Fig. 15. In this figure the similarity coordinate 𝜓 is plotted versus 
temperature and 𝑢1-velocity at 𝑥1 = 52.2 mm. This location corresponds to length based Reynolds numbers of 30743, 92230, 184461, 
and 276691 for the Mach numbers 0.1, 0.3, 0.6, and 0.9. A good agreement between the ICS-WAF method and the reference solution 
is found for all Mach numbers. In particular, the increase of temperature within the boundary layer due to viscous dissipation is 
clearly visible.

3.6. Application to a standing wave

To illustrate the advantage of the combined ICS-WAF scheme over the original approach of [1] and later [32] we consider a one 
dimensional standing wave. Standing waves are frequently encountered (e.g. in thermo acoustic problems) and we choose here a test 
case which mimics closely the conditions described in [4]. The temperature of the gas is set to 2100 K and pressure is 6 bar and the 
composition of the gas is that of air (i.e. oxygen mass fraction of 23% and nitrogen mass fraction of 77%). Under these conditions 
the isentropic speed of sound is 945 m/s. We choose 0.189 m for the length of the domain which results in a Eigenfrequency of 2500
Hz. This is close to the frequency of the first longitudinal mode in [4]. We compute the evolution of this first longitudinal mode 
21

over time by solving the inviscid flow equations. The computation is conducted in a three-dimensional domain which has the shape 
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Fig. 15. Similarity variable 𝜓 over temperature and 𝑢1-velocity for free stream Mach numbers (𝑀𝑎∞) 0.1, 0.3, 0.6, and 0.9. Comparison between the ICS-WAF method 
( ) and the reference solution obtained from the boundary layer equations ( ).

Fig. 16. Simulation of a standing wave. ( ) ICS, ( ) ICS-WAF.

of an elongated cuboid. The ends of this cuboid are fully reflecting, free slip walls whereas the two lateral dimensions are a pair of 
symmetry and periodic plains. The domain is discretized with 320 hexahedral cells (729 grid points), the computational time step 
size is 10−7 s. The initial amplitude of the pressure wave is set to 60 kPa which is a typical amplitude for the instabilities in the type 
of burners considered in [4]. For this amplitude nonlinear effects have a noticeable effect on the wave shape and wave steepening 
is observed as described in [184] and [33]. Furthermore, the wave is no longer isentropic and the wave amplitude decreases due 
to entropy production across the steep wave front [184]. This effect is reproduced very well by the combined ICS-WAF scheme as 
22

shown in Fig. 16. In this figure, the relative pressure at one of the walls is plotted versus time.
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Fig. 17. Average axial velocity profiles of the isothermal swirl burner at different heights. ( ) ICS-WAF, ( ) ICS, ( ) incompressible, ( ) experiment.

Fig. 18. Axial RMS velocity profiles of the isothermal swirl burner at different heights. ( ) ICS-WAF, ( ) ICS, ( ) incompressible, ( ) experiment.

For this computation it is necessary to use the monotone scheme in the acoustic step described in Sec. 2.5 (the parameter 𝛾 in 
Eq. (81) is set to 0.25). The possibility to enforce monotonicity in the ICS-WAF scheme is a clear advantage. The pressure correction 
equation used in the ICS scheme [32] on the other hand leads to the build up of an dispersive error which eventually renders the 
solution useless as shown in Fig. 16. Such build up of dispersive errors is also reported in the computations of [33]. This effect is 
not surprising since the original pressure correction relies on a purely central discretization in space. Hence, the present combined 
ICS-WAF scheme is a clear improvement of the original splitting scheme proposed in [32].

3.7. Application to complex flows

To demonstrate the applicability of the combined ICS-WAF method to practical problems this method is used in a LES of airflow 
through a swirl burner. This flow has been investigated experimentally and measurements for the root mean square (RMS) and 
average of each velocity component are provided [185]. The flow is isothermal (the air temperature is 320 K) at atmospheric 
pressure. This case is also investigated numerically in [1,32]. Since the Mach number of the flow in this burner is small simulations 
using an incompressible flow solver in ThetaCOM are also performed. For LES the wall-adapting local eddy-viscosity (WALE) model 
[186] is used as a subgrid-scale stress model. The time steps size is 0.1 μs which corresponds to a convective CFL number of 
0.066 and an acoustic CFL number of 13. Computational results obtained with the ICS-WAF method are given in Figs. 17 to 22

for the average and RMS of velocities. In addition, results obtained with the incompressible solver and the ICS method [32] are 
also included in these figures. The profiles shown in these figures are evaluated in the center plane of the burner at different 
heights above the burner base plate (i.e. 1.5 mm, 5 mm, 15 mm, 25 mm, 35 mm). Similar to the results given in [1,32] some 
deviations between measurement and computations are observed upstream close to the exit of the swirler. Further downstream the 
overall agreement between simulation and experiment appears to be good. Both compressible solvers, i.e. the ICS-WAF method and 
the ICS method, appear to give very similar results. They show similar differences compared to the incompressible flow solver.
23
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Fig. 19. Average radial velocity profiles of the isothermal swirl burner at different heights. ( ) ICS-WAF, ( ) ICS, ( ) incompressible, ( ) experiment.

Fig. 20. Radial RMS velocity profiles of the isothermal swirl burner at different heights. ( ) ICS-WAF, ( ) ICS, ( ) incompressible, ( ) experiment.

Fig. 21. Average tangential velocity profiles of the isothermal swirl burner at different heights. ( ) ICS-WAF, ( ) ICS, ( ) incompressible, ( ) experiment.

4. Summary

In this paper we present a novel approach for solving the acoustic step in the ICS scheme of [32]. This approach solves directly 
the hyperbolic system of equations in the acoustic step rather than relying on a pressure correction equation as in [1] and [32]. The 
solution method used here is based on the WAF method of [34]. In using this WAF method we assume equality of wave speed and 
characteristic speed which limits our approach to flows with pressure waves of comparatively small amplitude. For such flows this 
method is applicable to general unstructured meshes and it is not restricted by CFL conditions in computational time step size due 
to the use of Lerat’s [169–171] implicit schemes. The approach is robust as demonstrated in Sec. 3.7 through the simulation of a 
24

complex flow and is second order accurate in physical space and time. An important aspect of this novel approach is that it opens an 
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Fig. 22. Tangential RMS velocity profiles of the isothermal swirl burner at different heights. ( ) ICS-WAF, ( ) ICS, ( ) incompressible, ( ) experiment.

avenue for obtaining monotone solutions as shown in Sec. 2.5. This is important in many applications and is discussed here with the 
simple problem of a standing nonlinear wave (cf. Sec. 3.6). It is shown that earlier pressure correction based methods such as [32]

are overly dispersive in this type of problem whereas the present approach is clearly superior. A further advantage of the method 
presented here is that it is possible to prove the stability of the approach (and subsequently of the entire splitting scheme) on the 
basis of the von Neumann stability analysis which is applied here to a linear model equation. To our knowledge such a proof of 
stability is still lacking for the pressure correction based methods of [1] and [32] which is a major disadvantage of these methods.
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