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A B S T R A C T

Electrified residential heating systems have great potential for flexibility provision to the electricity grid
with advanced operation control mechanisms being able to harness that. In this work, we therefore apply
a reinforcement learning (RL) approach for the operation of a residential heat pump in a simulation study and
compare the results with a classical rule-based approach. Doing so, we consider an apartment complex with
100 living units and a central heat pump along with a central hot water tank serving as heat storage. Unlike
other studies in the field, we focus on a data driven approach where no building model is required and living
comfort of the residents is never compromised. Both factors maximize the applicability in real world buildings.
Additionally, we examine the effects of uncertainty on the heat pump operation. This is carried out by testing
four different observation spaces each with different data visibility and availability to the RL agent. With that
we also simulate the heat pump operation under forecast conditions which has not been done before to the best
of our knowledge. We find that the inertia of typical residential heat systems is high enough so that missing or
uncertain information has only a minor effect on the operation. Compared to the rule-based approach all RL
agents are able to exploit variable electricity prices and the flexibility of the heat storage in such a way, that
electricity costs and energy consumption can be significantly reduced. Additionally, a large proportion of the
nominal electrical power of the installed heat pump could be saved with the presented intelligent operation.
The robustness of the approach is shown by running ten independent training and testing cycles for all setups
with reproducible results.
1. Introduction

The residential sector caused approximately 28% of the total energy
consumption in Germany in 2021 [1] while space heating accounted for
more than two-thirds of this [2]. Therefore, the ongoing electrification
of the residential heat sector with e.g. heat pumps (HP) provides chal-
lenges (e.g. increased electricity consumption) but also opportunities
(e.g. demand response) for the overall energy system [3]. Providing
flexibility on a decentral level will be important to ensure energy
system stability especially in distribution grids. Especially, electrified
heating systems offer a lot of flexibility due to the inherent inertia
of most heating systems and sector coupling opportunities. According
to [4], especially hot water tanks (HWT) as heat storage are one of the
most influential residential flexibility bearing devices and can be easily
combined with HPs to electrify heat demands. But, two main things are
important in harnessing this flexibility potential: High quality demand
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and generation predictions as well as intelligent control and operational
management mechanisms based on the provided predictions [5].

While there is extensive research on carrying out demand and
generation predictions, the operation of real world HPs is still rather
simple [6,7]. Currently, they are mostly operated based on classi-
cal control engineering using PID controllers or naive rule-based ap-
proaches which are not able to follow complex variable objectives or
steering signals [7].

A technique called Reinforcement Learning (RL) is a promising
approach for more sophisticated operational management of HPs being
able to take into account the complexity of the respective heat system
without requiring extensive model building as for Model Predictive
Control (MPC) [8]. RL is a branch of machine learning that focuses
on teaching agents to make optimal decisions in dynamic environ-
ments [9]. RL agents are able to take actions and learn from the
resulting response of the environment, receiving rewards or penalties.
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RL has shown promise in solving complex problems in the energy
context [10].

Applying RL to control and operational problems in residential
heating is a rising research topic. RL has been applied to a variety of
heat control problems mostly in the residential sector [4,11] but also
in commercial or office buildings [12,13]. While many publications
consider only space heating, some also look at domestic hot water pro-
vided by HPs combined with HWTs like [14,15]. Typically, RL can save
10% of energy costs when applied to the operation of HVAC systems
and 20% for water heaters compared to rule-based approaches [10].
This has been demonstrated in various simulation studies [11,16,17].
Some publications already deploy their RL approaches into real world
systems. In [18], the authors train an agent off-site on measured
data and after an on-site training phase the RL agent takes over the
HP control for domestic hot water in a real building. But generally,
according to [8] RL for building control is still in research state with
only limited applications in real world buildings (11% of studies).

A crucial step in designing a RL approach for building control
is the selection of a meaningful reward function. This is mandatory
to give the agent the needed feedback to optimize its behavior. For
space heating control, this reward function is often designed using
the internal room temperature together with comfort bands of the
residents. This approach requires a building model which is able to
interact with the inputs of the agent [19]. Most studies consider a
temperature or comfort band of the residents somewhere between 19 ◦C
nd 24 ◦C for space heating like [20] or 24 ◦C to 28 ◦C for cooling
ike [12]. But during training and also sometimes during testing, the RL
gent compromises living comfort. Additionally, this approach needs
xtensive expert knowledge creating the building models. Both factors
ecrease acceptance and deployment of the approach into real world
ystems [8].

A second important factor is the observation space of the RL agent,
hat is, the information that the agent gets about the current or future
nvironment. In [13], the authors give the RL agent electricity price
nd weather forecasts and in [21], the authors investigate the impact
f weather forecast quality on HP control. But they do not use RL but
PC. In general, most of the other works applying RL assume perfect

oresight conditions or no foresight on the heat demand at all. But
ccording to [5], it is important to combine and integrate forecasting
nto control problems for increased applicability in real world systems.
L is able to operate under forecast conditions as [22] shows for the RL-
ased operation of a hydrogen storage based on renewable generation
orecasts. But despite the importance of the integration of forecasts into
ontrol, to the best of our knowledge, there is no publication applying
L to HP control for space heating based on heat demand predictions.
herefore, it is also unclear how important good predictions of the
eat demand are or whether RL is already able to find a sufficient
anagement strategy without such predictions.

The aim of this paper is the application of a RL approach to the
peration of a residential HP for space heating in a big apartment
omplex. Note, that heat demand from domestic hot water is not
aken into account in this study. Our work includes the creation of a
uitable but simple environment modeling of the heat network includ-
ng a HWT as heat storage but without requiring a building model.
he HP gets modeled using a temperature dependent coefficient-of-
erformance (COP) curve. Furthermore, the agent learns to operate
nder perfect foresight conditions as well as relying on demand pre-
ictions. The demand predictions are created using a recurrent neural
etwork technique called Long-Short-Term-Memory (LSTM). Five years
f simulated space heating demands with a granularity of 15 min are
vailable. A rule-based approach is taken as benchmark for the results
f the RL agent.

In this work, we present four main research contributions:

• Firstly, we demonstrate the operation of a HP using a RL approach
2

working under perfect foresight conditions as well as forecast
conditions for the respective heat demand. Doing so, we can
quantify and evaluate the impact of demand uncertainty on the
operation and respective costs of HPs using RL which has not been
published before to the best of our knowledge.

• Secondly, in this work, no building model is required, since
the building’s inherent thermal inertia is assumed to be already
decoded in the demand data of its residents. Instead, the only
modeled heat storage is the installed HWT which is simulated
with very basic parameters.

• The third contribution of this paper is that we carry out a RL-
based operational management approach without ever compro-
mising living comfort due to the environment’s inherent condition
that the heat demand of residents is met at all times. Flexibility
will only be harnessed by exploiting the storage capacity of
the modeled HWT. No building envelope and therefore also no
indoor temperature is modeled. This approach will also likely
increase acceptance and adoption in real world heating systems
significantly in the future.

• Lastly, we show the robustness and reproducibility of results by
running ten independently trained agents on all our different
tests and examining the means and standard deviations of all
respective evaluation metrics.

This paper is structured as follows: First, we describe all data
sources used for this paper in Section 2 which consist of heat demand
data and weather data (Section 2.1) as well as historic variable elec-
tricity prices (Section 2.2). We follow, by extensively explaining the
methodology and taken approaches in Section 3. That comprises a short
introduction of the RL algorithm which was used in this work, followed
by the description of the HWT model, the environment design, reward
function design, demand forecast creation, describing the benchmark
rule-based approach and finally presenting the evaluation metrics.
Afterwards, we present the results in Section 4 by firstly examining
effects of different RL agents on the apartment complex’s electricity
costs and secondly by investigating the different learned operational
strategies in more depth. This section is followed by a discussion of
the results in Section 5 and is concluded by a summary and outlook in
Section 6.

2. Data sources

2.1. Simulated heat demand data and weather data

Note, that in this study we used simulated heat demand data but
measured space heating demands are equally suited for applying our
approaches. Heat demand due to domestic hot water is not taken into
account. The historical heat demand profiles of a residential apart-
ment complex were simulated using the software QuaSi [23]. The
buildings under study were calibrated for a standard weather profile
applying simplified cubatures and determining of the building material
properties, in order to comply with the annual heat demand estima-
tions according to the energy performance certificates of the buildings
following DIN 4108 [24]. QuaSi simulates the buildings energetic
behavior and thereby can create hourly or 15-minutes load profiles
for space heating using a generic thermal building model based on
EnergyPlus [25]. These calibrated models in QuaSi were then applied
to generate the historical heat demand profiles using the historical
hourly weather data published by DWD [26] from 2017 to 2021 for
the location of Bremen, Germany. The few sporadic missing weather
data were closed utilizing interpolation techniques based on reasonable
assumptions. As QuaSi can only process the weather data in TRY-
format, the historical weather data were hence mapped to this format.
The simulation approach was used in order to have an extensive data
set to work with and test on. In this study the simulated heat demand
was used in a quarter-hourly resolution. An exemplary representation

of the heat demand and the ambient temperature for the period from
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Fig. 1. Heat demand, ambient temperature and electricity prices for a one year period.
(Time interval: 15min)

1.01.2020 to 01.01.2021 can be seen in Fig. 1. As can be seen the
eat demand reaches values of up to 50 kWh per 15 min in the winter
onths and vanishes completely in the summer period. The ambient

emperature reaches values of up to around 30 °C in summer and
round −15 °C in winter.

.2. Variable electricity prices

The variable electricity prices have been obtained from SMARD [27]
hich is the official provider of the electricity market data for Germany

rom the Federal Network Agency [28]. The original data source is
NTSO-E (European Network of Transmission System Operators for
lectricity) [29]. Prices for the bidding zone Germany/Luxembourg were
nly available from October 1st 2018. Therefore, the prices from the
idding zone Belgium have been used for the period from January 1st
017 to September 30th 2018. All prices are available in quarter-hourly
esolution. Since the prices from SMARD are wholesale prices a scaling
uch that the mean of the prices is a typical consumption price of
.3 Euro∕kWh has been performed. Fig. 1 shows the electricity prices
or the period from 01.01.2020 to 01.01.2021. One can see that the
rices are rising in this period. Generally there is a lot of fluctuation
ith the lowest prices at just under 0 Euro∕kWh and the highest prices
ith a little over 2 Euro∕kWh. Note, that the electricity prices obtained

rom SMARD do not include grid fees and other charges.

. Methodology

.1. Reinforcement learning algorithm

The Proximal Policy Optimization (PPO) algorithm was used to train
he RL agent in this work. The underlying theory is described in detail
n [30]. PPO is an on-policy approach and does not require a model.
t applies a ‘‘proximal’’ approach by introducing a clipping mechanism
nto the objective function. Thanks to this mechanism, the update of
he strategy is within a certain range, preventing drastic changes that
ould lead to instability or divergence. One of PPO’s notable strengths
s its effectiveness in handling continuous action spaces. Traditional
L algorithms, such as Q-learning as described in [31], struggle with

he high-dimensional and continuous nature of action spaces. PPO’s
olicy-based approach, proximal updates and effectiveness in dealing
ith continuous action spaces make it particularly suitable for our

ask. For this work, the python implementation of PPO from Stable-
aselines3 has been used [32] as shown in Fig. 2. Stable-Baselines3 is
Python package providing implementations of multiple reinforcement

earning algorithms. In our work, it is used for modeling and training
3

f

Fig. 2. Conceptual representation of the interplay of the used reinforcement learning
python libraries.

the agent and its embedding into the learning environment. The OpenAI
Gym interface on the other hand is used for modeling the environment
itself [33]. This includes the definition of the observation space and the
agent’s action space.

3.2. Hot water tank model

The HWT model used for this work was developed for another
project [34] and is openly available as a part of the mosaik-heatpump
repository [35]. It is a multinode stratified thermal tank model, where
the tank volume is divided into a specified number of layers (nodes)
of equal volume, each characterized by a specific temperature. A tradi-
tional density distribution approach is adopted where the water flowing
into the tank enters the layer that best matches its density (i.e., temper-
ature). The model assumes that the fluid streams are fully mixed before
leaving each of the layers and the flows between the layers follow the
law of mass conservation. Heat transfer to the surrounding environment
from the walls of the tank, and the heat transfer between the layers are
considered.

The initial temperature profile inside the tank must be specified
at the time of initialization of the model. For flows coming into the
tank, both the temperature and flow rate should be specified. For the
flows going out of the tank, only the flow rate should be specified,
as the temperature is obtained from the corresponding layer of the
tank. The model ensures that the overall flow into and out of the
tank is equal. The model then updates the temperatures of each layer
based on the water flows through the specified connections, the heat
transfer between the layers, and the heat transfer to the surrounding
environment. The model has the functionality to flip the layers to
ensure a negative temperature gradient from the top to the bottom of
the tank. Finally, the model updates the connections with respect to
the updated layer temperatures. For the flows going out of the tank,
the temperature is updated. For the flows coming into the tank, the
corresponding layer is updated.

The heat storage for the considered apartment complex is modeled
by one central HWT and can be seen in Fig. 3. It has a height of 𝐻 = 5m
and a diameter of 𝐷 = 4m. These dimensions result in a volume of
almost 63 000 l. The HWT has connectors at ℎHP,S = ℎS,D = 4.999m for
the hot water and connectors at ℎS,HP = ℎD,S = 0.001m for the cool

ater. Three layers are considered for modeling the stratification and
he ambient temperature of the HWT is set to be at constant 20 °C.

.3. Heat pump model

The HP is of type air-to-water and is simulated via a linear re-
ression that takes the inputs ambient temperature 𝑇amb and water
emperature 𝑇w and predicts the COP. The linear regression is based
n 18 COP values distributed in the range of −15 ◦C and 20 ◦C for
he ambient temperature as well as 35 ◦C and 55 ◦C for the water
emperature (see Table 1). The simulated COP value is used to calculate
he thermal power 𝑃th based on the chosen electrical operational power
el of the HP as follows.

th(𝑇amb, 𝑇w) = 𝐶𝑂𝑃 (𝑇amb, 𝑇w) ⋅ 𝑃el (1)

𝑃th is used to determine the water flow 𝐹HP,S from the HP to the
WT (see Fig. 3). For our work, 𝑃el can be continuously set in a range
rom 0 to 100 kW.
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Table 1
COP values for specific ambient temperatures 𝑇amb and outflow water temperatures 𝑇w
of the HP taken from the manufacturer’s design tool [36].

COP values 𝑇amb [◦C]

𝑇w [◦C] 20 15 10 7 −2 −7 −15

35 5.61 – 4.45 4.21 3.75 3.07 2.56
45 – – – 3.44 3.11 2.59 2.21
50 4.58 3.66 – 3.11 2.82 2.37 –
55 3.59 – – 2.80 – 2.29 –

Fig. 3. Schematic representation of the used heating model including a HWT as heat
storage.

The installed nominal electrical HP power results from the fol-
lowing: The apartment complex under consideration for simulation
comprises approximately 100 residential living units and 7000 square-
meters of living space at a space heating demand of 25-28 kWh/qm
per annum. Taking into account best practices and security concerns
for sizing heat pumps in the climate environment of northern Germany
this would result in a nominal electrical power of 200 kW including
domestic hot water. Since domestic hot water is not considered in this
work due to data availability and accounts for approximately half of
the total heat demand only 100 kW of nominal electrical power are
assumed here.

3.4. Environment design

The environment described in this section has been built with
Stable-Baselines3 [32] in combination with OpenAI’s Gym library [33].
The interplay of the two libraries is depicted in Fig. 2 and explained in
Section 3.1. The environment consists of a HP simulation as described
in Section 3.3 as well as a HWT simulation as described in Section 3.2.
A schematic overview of the simplified heat network of the apartment
complex can be seen in Fig. 3. The assumptions regarding the heat net-
work of the apartment complex are based on the following publications
by Klement et al. [37] and Schmeling et al. [38].

The water flow 𝐹HP,S between the HP and the HWT is calculated by

𝐹HP,S =
𝑃th

𝑐water ⋅ 𝛥T,HP
(2)

where 𝑐water denotes the specific heat capacity of water and 𝛥T,HP is the
temperature difference of the water flowing out of the HP and the water
flowing into the HP. The former temperature is assumed to be 50 ◦C
and the latter temperature is retrieved from the sensors at ℎS,HP of the
HWT simulation. The water flow 𝐹S,D from the HWT to the apartment
complex is calculated via

𝐹S,D = 𝐷
𝑐water ⋅ 𝛥T,D

(3)

where 𝐷 is the current demand. 𝛥T,D is the temperature difference of
the water flowing into the heat exchangers of the apartment complex
compared to the water flowing out of the heat exchangers of the
apartment complex. This temperature spread is determined by the heat
exchangers of the heating system in the apartment complex and is fixed
to 5 ◦C. For conservation reasons it follows 𝐹S,HP = −𝐹HP,S for the water
flow from the HWT to the HP as well as 𝐹D,S = −𝐹S,D for the water flow
from the apartment complex to the HWT. Note, that the heating system
of the apartment complex is not directly connected to the flow out of
4

Fig. 4. Schematic representation of the learning environment. A detailed picture of
the heating model is shown in Fig. 3.

the HWT since thermal and hydraulic decoupling by heat exchangers
takes place. The environment is idealized in such a way that the heat
transfer between HP and HWT is assumed to be loss free. Losses within
the apartment complex and due to the thermal decoupling at the heat
exchangers are included in the demand data. Furthermore, there is
no domestic hot water included in the heat demand of the apartment
complex. The HP does not obey any locking times meaning that it can
be freely operated by the agent. Fig. 4 shows a schematic overview
of the learning environment. The agent can choose its action from a
continuous range from 0 kW to 100 kW. This is called the action space.
To make its choice the agent sees an observation space that consists
of multiple observables. Two of these observables are of endogenous
nature since they are determined by the heating model and the agent’s
action respectively. These two variables are the scalars 𝑆𝑂𝐶 which
denotes the state of charge of the HWT and 𝑙𝑜𝑠𝑠h which accounts for
heat losses of the HWT. The 𝑆𝑂𝐶 stays in a range from 0 to 100% and
is determined via the mean temperature of the HWT 𝑇mean according to
the following equation.

𝑆𝑂𝐶 =
𝑇mean − 𝑇min
𝑇max − 𝑇min

(4)

Thus, if 𝑇mean = 𝑇min the 𝑆𝑂𝐶 resolves to 0% while in case of 𝑇mean =
𝑇max the 𝑆𝑂𝐶 resolves to 100%. 𝑇min is chosen to be 20 °C which is the
ambient temperature of the HWT. 𝑇max is chosen to be 50 °C which is
the water temperature that is provided by the HP. The remaining ob-
servation space is of exogenous nature and consists of the scalars 𝐶𝑂𝑃 ,
the ambient temperature 𝑇amb (see Fig. 1) as well as the time features ℎ,
𝑚𝑖𝑛𝑢𝑡𝑒 and 𝑑𝑎𝑦. All of these scalars are depending on the current time
step. The observation space also consists of two time series that provide
the agent with information that is to be expected in the next 24 h,
thus 96 time steps. Firstly, the agent sees the future electricity prices
𝑝𝑟𝑖𝑐𝑒el obtained from the day-ahead market as explained in Section 2.
Secondly, the agent sees the future demand 𝐷. In reality, the future
demand cannot be perfectly known. Therefore, over the course of this
work, the following four cases are considered for 𝐷:

∗ Perfect: The next 96 values from the real data are taken
∗ Persistence: The previous 96 values from the data are taken as

expected demand for the next 96 points in time
∗ Forecast: The forecasts as described in Section 3.6 are taken
∗ No demand: No demand is visible at all for the agent

Both the variables of the action space as well as the variables of the
observation space are normalized to a range from −1 to 1.

3.5. Reward function design

The reward function consists of a positive part 𝑟pos that rewards the
agent to keep the SOC in a specific range as well as a negative part 𝑟neg
that penalizes the agent in form of electricity costs. For the positive part
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Fig. 5. Representation of the positive part of the reward function.

of the reward function two different functions are used interchangeably
for later comparisons:

Firstly, 𝑟pos is described by a parabola with a maximum reward at
n SOC value of 0.5 and a minimum reward at an SOC value of 0.01
nd 0.99 (see Eq. (5)). For SOC values of less than 0.01 and more than
.99 the agent gets a negative reward of 10000 and is restarted. It is
hosen so large to train the agent to never reach these low and high
OC values.

Secondly, 𝑟pos is calculated with a step function with a step at a SOC
value of 0.2. Below this threshold there is no reward while for SOC
values larger than 0.2 there is a constant reward of 1 (see Eq. (6)).

𝑟parapos (SOC) = −
(SOC − 0.5)2

(0.01 − 0.5)2
+ 1 (5)

step
pos (SOC) =

{

0 if SOC < 0.2
1 else

(6)

display of the two functions can be seen in Fig. 5. The negative part of
he reward function or penalty 𝑟neg depends on the demand 𝐷, the heat
oss 𝑙𝑜𝑠𝑠h as well as the electricity price 𝑝𝑟𝑖𝑐𝑒el and can be expressed
ia

neg =
−(𝐷 + 𝑙𝑜𝑠𝑠h) ⋅ 𝑝𝑟𝑖𝑐𝑒el

Euro
. (7)

The division by Euro is necessary to achieve a unitless reward
function. The two final reward functions used in this study are thus

𝑟para = 𝑟parapos + 𝑟neg (8)

and

𝑟step = 𝑟steppos + 𝑟neg. (9)

As these two functions only differ in the positive part, they are
referred to as parabolic reward function 𝑟para and step-shaped reward
function 𝑟step in the following.

3.6. Demand forecast creation

The demand forecast has been created using an LSTM trained on
the first two of all five years of the heat demand data described in
Section 2. The third year was used for validation of the LSTM while
the fourth and fifth year are considered test set and can therefore be
used as input for the RL agent. The hyperparameters of the LSTM have
been found using optuna’s TPESampler [39] performing 500 trials. The
LSTM gets an input of 96 values which equals one day and outputs 96
values as well to forecast the next day’s demand. To assess the forecasts
of the LSTM it is compared to the persistence forecasts which are 96
values of the previous day. The mean absolute error (MAE) is chosen
5

as an evaluation metric. For every 96 values an MAE is calculated with
the LSTM forecast and the persistence forecast. The average of all these
values over the whole test set is then compared between both cases. The
average MAE for the LSTM forecasts is 900.0Wh and 998.9Wh for the
persistence forecasts. Thus, the LSTM forecast is about 10% better than
the persistence forecast. From now on the LSTM forecast is referred
to as forecast and the persistence forecast is referred to as persistence.
The true data is denoted with the label perfect. Fig. 6 shows the heat
demand for a day in the winter and a day in the summer. It can be
seen that on a winter day the forecast is generally slightly better than
persistence. On a summer day, due to the absence of domestic hot water,
no heat demand is expected. The fluctuations of the forecast in the
right hand plot of Fig. 6 are caused by the LSTM that struggles to
predict exactly zero. As can be seen from the 𝑦-axis scale the forecast
is < 1% compared to demands during winter. Thus, these fluctuations
in summer can be interpreted as noise of the prediction model. For the
RL agent the negative values in such a case have been set to zero since
a negative heat demand is not possible.

3.7. Benchmarking against rule-based operation

In order to benchmark the performance of the RL agent a rule-based
approach to operation is used which will be referred to as hysteresis in
the following. Hysteresis strategies are commonly applied in residential
heating systems and consist mainly of two rules or thresholds: A lower
threshold of the SOC value of the HWT where the HP starts to operate
in order to increase the SOC as well as an upper threshold of the SOC
value where the HP stops operating. In this work, the lower and upper
thresholds are 20% and 100% respectively. When active for hysteresis
operation, the HP is always operated at nominal electrical power which
is 100 kW in this work.

3.8. Evaluation metrics

To evaluate the performance of the agent the following metrics
have been chosen. They relate to electricity costs as well as quantities
concerning the HP and HWT:

∗ 𝐂tot : Total electricity costs
∗ 𝐂con: Electricity costs due to heat demand
∗ 𝐂loss: Electricity costs due to heat loss
∗ 𝐄tot : Total electricity consumption of the HP
∗ 𝐍on∕off : Number of on/off state changes of the HP
∗ 𝐏avg: Average operating electrical power of the HP
∗ 𝐏max: Maximum operating electrical power of the HP
∗ 𝐒𝐎𝐂avg: Average SOC of the HWT
∗ 𝐒𝐎𝐂max: Maximum SOC of the HWT

The most important measure is 𝐶tot since it provides information
bout how cost efficient the agent is compared to the hysteresis opera-
ion. 𝐶tot is the sum of 𝐶con and 𝐶loss. The latter two give insight about
he distribution of costs. Another important measure is 𝐸tot because it
an be used to assess how much energy can be saved with an intelligent
ontrol compared to a rule-based approach. Since the demand of the
partment complex is fixed 𝐸tot enables an evaluation of the heat losses
f the HWT. With that it can be assessed how much of the electricity
ost savings are due to exploitation of electricity prices and how much
re due to energy savings. 𝑁on∕off measures the amount of on/off state
hanges of the HP which is an important quantity to foresee its lifetime.

high number of on/off state changes can significantly reduce the
ifetime. Finally, the mean and max of the HP’s electrical power as
ell as the HWT’s SOC are looked at. These values provide information
bout their sizing.
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.9. Learning setup

The PPO algorithm as described in Section 3.1 has mainly been
sed with its default settings which can be found in this documenta-
ion [40]. However, the following hyperparameters were adapted since

smoother learning curve and a faster learning has been observed
hen using them.

• The learning rate is set to decrease from 0.001 to 0 along the
learning process.

• The parameter 𝑛steps describes after how many observed steps the
policy is being updated and has been set to one year of data.
The default value of this parameter is 2048 which corresponds
to roughly 21 days of the given data set at 15 min granularity. In
our case, this leads to fluctuations in the learning process. This is
mostly likely due to the fact that in 21 days the agent does not
see enough variations of the heat demand compared to what will
occur over the whole year.

• The batch size has been chosen to be 10 days (960 time steps)
which speeds up the learning process compared to the default
batch size of 64 which in our case equals only 18 h.

All other hyperparameters are kept at their default values as sug-
ested by Stable-Baselines3 [32]. To further speed up the training
rocess the environment has been vectorized to train on 10 environ-
ents in parallel. The last year (2021) of the given five years of data

erves as a test set and will not be seen by the agent during training.
n order to save the best model a callback that frequently checks the
odel performance on the test set is used. Finally, it has to be addressed

hat PPO is strongly depending on the random seed. As a result, the
earned policies can differ heavily among different training runs with
ifferent seeds. Therefore, ten agents have been trained independently
rom each other for each of the four cases perfect, persistence, forecast
nd no demand.

. Results

This section firstly shows the results of the RL agents with regard
o the evaluation metrics defined in Section 3.8. All shown metrics are
ased on the mean and standard deviation of the individual agents in
rder to show the robustness of the algorithms. Subsequently, we will
ave a look at how the different agents operate and which strategies
ave been learned. To produce these results the trained agents have
een tested on the before unseen test set as described in Section 3.9.

.1. Evaluation of RL agent

The total electricity costs 𝐶tot of the RL agents as well as of the
ysteresis operation on the test set for both reward functions can be
een in Fig. 7. The ratio between costs due to consumption and costs
6

t

ue to heat loss is visualized for every case. Additionally, the number
f on/off state changes of the HP 𝑁on∕off can be seen. The cases perfect,
persistence and forecast result in approximately 10000 Euro of total
electricity costs with no significant differences within the error bars.
Generally, the mean total electricity costs for the parabolic reward
function are slightly lower than the ones using the step-shaped reward
function. The costs due to heat losses are approximately 2000 Euro
for the parabolic reward function and 1500 Euro for the step-shaped
reward function, respectively. The total electricity costs for the case no
demand amounts to approximately 11000 Euro in case of the parabolic
reward function and 12,000 Euro in case of the step-shaped reward
function. The hysteresis operation causes total electricity costs of al-
most 15,000 Euro. The number of on/off state changes of the HP in
the cases perfect, persistence, forecast and no demand fluctuates between
values of 1000 and 7000 while the hysteresis operation only causes
224 on/off switches. The high error of these values is caused by the
different policies the agent has learned. A closer look at this behavior
can be seen in Fig. 8 which shows the operation of the HP and HWT of
two different policies over one day. While 𝑁on∕off is different by almost
a factor of four 𝐶tot has about the same value. A correlation between

on∕off and 𝐶tot could not be observed.
The remaining metrics are shown in Table 2. It can be seen that

he average HP operating electrical power of all RL agents is below
0 kW. By definition the hysteresis control always operates at 100 kW.
he maximum electrical power ever used by the RL agents is in a range
f about 23 to 41 kW with respect to the different cases. The average
OC is around 45% for the parabolic reward function and around 30%
or the step-shaped reward function which explains the smaller ratio
f heat losses in the latter case. The average SOC of the hysteresis
peration is at 55% which causes the higher ratio of costs due to heat
osses in the total electricity costs. The maximum value of the SOC ever
eached differs among all cases and lies in the range of about 58 to 94%.
egarding the total energy consumption of the HP it can be seen that

or the parabolic reward function there are energy savings of around
3% for all cases while for the step-shaped reward function there are
nergy savings of around 15% for all cases compared to the hysteresis
peration.

.2. Operation of RL agent

The results shown in this section are based on the respective run
ith the lowest total electricity costs. Fig. 9 shows the agents actions
n the HP as well as the behavior of the HWT for a week with a high
eat demand. The same analysis for a week with a low heat demand
an be seen in Fig. 10. In both plots the results on the left hand side
ave been produced with the parabolic reward function while the right
and side uses a step-shaped reward function.

It can clearly be seen that the agent learned to avoid operating
he HP when the electricity price is high. The charts also display the
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Fig. 7. Total electricity costs of the optimized agent using a parabola as the reward function (left) and a step function as the reward function (right) for the four different
environments and the hysteresis operation. The total electricity costs are divided in costs due to consumption (blue) and costs due to heat loss (yellow).
Fig. 8. Operation of two different policies for the case forecast with the parabolic
reward function. (Time interval: 15min)

Table 2
Mean and standard deviation of the evaluation metrics described in Section 3.8.

𝐏avg [kW] 𝐏max [kW] 𝐒𝐎𝐂avg [%] 𝐒𝐎𝐂max [%] 𝐄tot [kWh]
Hysteresis 100.0(0.0) 100.0(0.0) 55.0(0.0) 100.0(0.0) 20475(0)

Reward function: parabola

Perfect 9.5(1.2) 36.2(5.1) 46.1(0.9) 83.1(4.4) 17782(48)
Persistence 9.9(1.4) 41.1(9.4) 46.0(0.8) 87.3(6.5) 17775(69)
Forecast 8.3(1.4) 28.7(4.3) 45.8(1.0) 88.2(8.7) 17792(68)
No demand 7.7(2.5) 39.8(18.5) 41.5(4.5) 69.2(6.9) 17731(92)

Reward function: step function

Perfect 9.0(2.6) 30.2(8.4) 30.9(3.4) 89.5(13.8) 17492(96)
Persistence 9.6(1.5) 34.4(7.4) 30.4(3.4) 94.0(4.7) 17473(115)
Forecast 7.3(1.4) 24.2(3.9) 29.4(6.5) 80.0(16.8) 17492(118)
No demand 5.3(0.4) 22.8(5.4) 28.4(3.6) 58.1(10.7) 17436(96)

behavior of the SOC that is intended by the reward function. For
the parabolic reward function case, the agent tries to keep the SOC
at around 50% while for the step-shaped reward function case the
agent tries to keep the SOC just above 20%. The behavior of the SOC
among the three cases forecast, persistence and perfect is very similar
while for the case no demand the agent reflects a slightly different
behavior. Nevertheless, even if the RL agent does not see any demand
information, it still finds an operational strategy with significantly
lower electricity costs compared to the hysteresis operation. It can also
be observed in Fig. 10 that the electrical power is fluctuating a lot. The
reason for this is the design of the reward function. At time steps the
7

HP is operated the agent is penalized according to Eq. (7). To reach
a positive reward for its action the agent tries to select the action so
small that the reward due to the SOC value as described by Eq. (5)
and Eq. (6) is not exceeded. A closer look at these fluctuations can be
seen in Fig. 11.

5. Discussion

The RL agent has learned to exploit the variable electricity prices
very well during summer but also during winter. This leads to signif-
icantly lower electricity costs compared to a conventional hysteresis
operation. The electricity cost savings of the RL agents using the
parabolic reward function for the case persistence compared to the
hysteresis operation reach 34.9%. A similar work using rainbow deep
reinforcement learning reports a reduction of 22.2% of electricity costs
compared to a rule-based control [41]. In another work reinforcement
learning is used to control a HVAC system with a regular thermostat
control with the findings of an approximate cost reduction of 15%
comparing the two approaches [42]. Note, that we used scaled elec-
tricity prices from SMARD [27] which might overestimate the price
fluctuations in the residential sector since additional grid fees and
charges are not considered there. Thus, with more realistic residential
electricity prices, the reported electricity cost savings might be lower.
In future work, one could therefore rerun the simulations with different
electricity price time series. However, the electricity cost savings are
not only due to exploitation of price fluctuations but also due to pure
energy savings. We observe energy savings of 13% with the parabolic
reward function and 15% with the step-shaped reward function. Since
the heat demand from the apartment complex is a fixed time series,
these energy consumption savings arise from reducing losses within
the HWT and shifting the operation of the HP to times with higher
COPs. The RL agents are mainly able to reduce losses since they keep
the SOC of the HWT lower compared to the hysteresis operation. The
step-shaped reward function reaches higher loss savings due to the fact
that the SOC is tried to be kept at an even lower level by the RL agent
compared to the parabolic reward function.

Reviewing our approach we find that the parabolic reward function
slightly outperforms the step-shaped reward function by means of total
electricity costs. Additionally the parabolic reward function effects that
the average SOC is between 40% and 50% ensuring a greater flexibility
of the storage.

As a mandatory condition of the environment, demand is met at
all times, therefore living comfort is never compromised. Comparable
work often requires a building model like [43] whereas our approach
only relies on the future demands, electricity prices and temperature
information. All of the above are easily attainable by e.g., using simple
persistence forecasts, available day-ahead prices and publicly available
weather forecasts. Thus, our approach would likely increase the ac-
ceptability of RL as operational management technique in real world
applications.
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f

w

Fig. 9. Operation of the HP with the optimized agent on a week with a high heat demand using a parabola as the reward function (left) and a step function as the reward
function (right) for the four different cases and the hysteresis operation. (Time interval: 15min)
Fig. 10. Operation of the HP with the optimized agent on a week with no heat demand using a parabola as the reward function (left) and a step function as the reward function
(right) for the four different cases and the hysteresis operation. (Time interval: 15min)
Fig. 11. Operation of the HP with the optimized agent on a winter day using a parabola as the reward function (left) and a step function as the reward function (right) for the
our different cases and the hysteresis operation. (Time interval: 15min)
A very interesting observation is that the agent performs equally
ell in the cases perfect, persistence and forecast. When forecasts are

available, the RL agent decreases operating electricity costs by up to
approximately 35% with differences being insignificant regarding the
three different forecast cases. Unlike other publications like [44] and
[45] that stress the importance of accurate forecasts our approach does
not require high quality forecasts but only a rough prognosis like the
persistence case. Even if there is no forecast at all the agent performs
a lot better than the hysteresis operation: For the parabolic reward
function electricity cost savings result to 24.7% and for the step-shaped
8

reward functions the electricity cost savings are 18.5%. This is due
to the installed HWT which is big enough to provide enough inertia
and flexibility to compensate for missing or slightly incorrect demand
information. However, it is likely that the importance of quality of
demand forecasts increases at smaller storage capacities.

Looking at the maximum electrical power used by the agent it
gets clear that the installed nominal electrical power of the apartment
complex’s HP is not fully utilized. Dependent on the RL agent’s setup,
only 23–41% of the heat pump’s installed nominal electrical power of
100 kW are exploited. With an intelligent operational management as
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we show in this work, the size of the installed HP could be therefore
potentially decreased as long as security concerns for peak demands
are still taken into account. Note, that decreasing the installed nominal
electrical power would only affect the hysteresis operation in the first
place as long as the nominal electrical power is greater than the
maximum electrical power used by the RL agents.

Nevertheless, the hysteresis approach requires a lot less state
switches of the HP compared to the operation of all RL agents. Frequent
state switches increase degradation of HP components and would lead
to higher maintenance costs. Therefore, the reward function could
eventually be adapted to penalize frequent state switches more to
ensure a smoother operation.

The environment used for the presented results has been idealized.
The heat transfer between the HP and the apartment complex and the
heat transfer between the HP and the HWT have been assumed to be
loss free. While for the purpose of this work it is a valid assumption one
should incorporate this loss in future work. If this cannot be addressed
by a simulation one could simply choose a constant value to represent
this loss for each time step. Additionally, we assumed the temperature
difference at the heat exchangers between the apartment complex and
the hot water tank to always be 5 °C in order to determine the SOC of
the HWT.

This value of the temperature spread is a realistic assumption for
a residential floor heating system, however the fixed spread is a sim-
plification. In a real world system, small fluctuations of the spread are
to be expected which is dependent on the heat demand. Theoretically,
the spread can be fixed by setting the flow velocity which is called
hydraulic levelization but this is rarely done. However, the fluctuations
of a real world heating system could easily be included into the model
by measuring the temperature of the respective flow when transferring
the approach to a real building.

In our work, we model one central HWT with only one big water
volume while in a real apartment complex, this central volume would
likely be divided into multiple sub-volumes in close proximity to each
other. They would share a common operational strategy and can be
seen as a single heat storage. However, the heat losses via the surface
of the hot water tank would be higher, since the surface of multiple
smaller volumes is higher compared to one big volume. Additionally,
the ambient temperatures of the sub-volumes might differ due to differ-
ent positioning which also influences the losses. Currently, we assume
a constant ambient temperature of the hot water tank of 20 ◦C. This
ould be elaborated in future work.

We also did not incorporate locking periods of the HP after a state
witch which could be implemented in future work. Since in Germany
pecifically energy suppliers can reserve the right to disconnect the HP
rom the grid for the sake of grid stability, this external steering signal
ould be taken into account in further studies.

Lastly, the presented approach does not require any building infor-
ation other than the respective demand data and very basic measure-
ents of the installed HWT. Note, that we assume a simple heat pump
odel based on the regression of temperature-dependent COP values

nd the possibility to set the electrical operational power anywhere
etween 0 kW and 100 kW. We neglect the COP dependence on the
lectrical operational power of the HP. Given these assumption and
rocedure, our heat pump model is a simplification and idealization
nd could be elaborated in future work.

In order to apply our approach into real world systems, one could
irstly collect demand data for a certain period of time – ideally for
t least one year to get data from all seasons – while still operating
he HP using a classical rule-based approach. In parallel, the RL agent
ould be pre-trained and take over at a certain point in time. Since
ith our approach we also observed significant electricity cost savings
nd energy savings without demand forecasts one could even reject the
ule-based approach and use the RL agent immediately. The required
T infrastructure for this could easily be installed on-site near the HP.
9

s a safety measure, the rule-based approach could always serve as a
allback solution that kicks in when specific parameters are met. The
raining of the agent was performed on a NVIDIA Quadro RTX 6000 and

took around 24 h for one year of data where the HWT simulation is the
main bottleneck. Therefore, the training would have to be performed
off-site or cloud-based while in production the agent is fast enough to
work on-site. At least in production, the demand data can be processed
decentrally on-site near the HP operation. Security and safety concerns
are thereby minimized.

6. Conclusion and outlook

This work shows a successful utilization of a RL approach to operate
a HP in a residential apartment complex. It has been discovered that
such an approach can significantly reduce electricity costs by approx-
imately 35 % by exploiting the variations of a variable electricity
price and by reducing the total energy consumption of the heat pump
by up to 15 %. Additionally, we show that the intelligent operation
of HPs does not use the full installed nominal electrical power and
could therefore reduce investment costs. We investigated the impact
of demand forecasts on the results of a RL-based operation of the
respective HP and find that the quality of demand forecasts is only of
minor importance. Even agents having no demand information at all
still exceed a rule-based approach significantly. Two different reward
functions are applied. A parabolic reward function leads to a RL-
based operation of the HP keeping the SOC of the HWT at around
50 % which could enable further business models of selling upward
and downward flexibility to the grid operators. The RL agent and its
reward function respectively could also be expanded to account for
this business model. On the other hand, a step-shaped reward function
leads to a RL-based operation that uses the full flexibility of the HWT to
minimize electricity costs especially due to losses in the HWT. The high
robustness and repeatability of results is proven by showing means and
standard deviations of all evaluation metrics based on ten independent
runs of the RL agents. Although the learned policies differ significantly
in their number of state changes of the HP, electricity costs are very
similar for each run.

Improvements for further studies could be to increase the complex-
ity of the environment. In Section 3 a few idealizations have been
mentioned that could be replaced with more sophisticated information.
One example would be to include heat losses during heat transfer.
Another one is to take into account locking periods in which the state
of the HP cannot be changed after a switch occurred. A discretization
of the agent’s action space would additionally enable other algorithms
than PPO to be applied to the given control problem.

Besides a business model to sell flexibility to the grid operators,
maximizing the own consumption of a given PV system could be pos-
sible by widening the action space of the RL agent. Also multiple HPs
and/or multiple HWTs can be considered by expanding the observation
and action space of the RL agent.

Furthermore, the results of this work are based on space heating
data only. Thus, it would be interesting to see the performance when
domestic hot water is included. This would not change the complexity
of the control problem but would only change the given demand time
series to be more erratic. We expect that in this case the maximum
electrical power needed for the HP will roughly double.
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