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Abstract

Recent advancements in deep learning have enabled the possibility to identify unit-level building sections from very high resolution
satellite images. By learning from the examples, deep models can capture patterns from the low-resolution roof textures to separate
building units from duplex buildings. This paper demonstrates that such unit-level segmentation can further advance level of
details (LoD)2 modeling. We extend a building boundary regularization method by adapting noisy unit-level segmentation results.
Specifically, we propose a novel polygon composition approach to ensure the individually segmented units within a duplex building
or dense adjacent buildings are consistent in their shared boundaries. Results of the experiments show that, our unit-level LoD2
modeling has favorably outperformed the state-of-the-art LoD2 modeling results from satellite images.

1. Introduction

1.1 Background

Level of Detail (LoD)2 building models describe architectural
features and topological structures of building roofs (Gröger
et al., 2008; Biljecki et al., 2016), therefore, are of high in-
terest in various applications such as mapping, urban planning,
architectural design, virtual reality environments, and risk man-
agement. Typically, creating high-quality LoD2 models involves
a manual and very expensive process, while recent research
efforts aim to automate this process. Out of many sources, very-
high-resolution (VHR) satellite stereo imagery (with ground
sampling distance (GSD) < 1 m) is beneficial due to its global
coverage and low cost per unit area (Facciolo et al., 2017; Li
et al., 2023b). Previous works have shown that it is possible to
reconstruct LoD2 (Gui and Qin, 2021; Gui et al., 2022; Partovi
et al., 2019) from such data, which typically follow a standard
process takes pre-processed digital surface model (DSM) and
orthophotos from stereo satellite imagery as input data: first,
perform building detection to obtain building masks; second,
vectorize individual building masks with topologically consist-
ent line primitives, third, determine the types of roofs and then
join individual small buildings into more complex building mod-
els. Although these methods produce reasonable results for
individual and single structured buildings, due to the lack of
resolution of satellite images, reconstructing models in densely
built areas and duplex buildings remains a significant challenge
(Chen et al., 2018).

Challenges of reconstructing duplex buildings, or buildings in
densely built regions, arise from the difficulties of building seg-
mentation algorithms to identify distinct boundaries for duplex
and adjacent buildings (Huang et al., 2023) based on the mere
low-resolution orthophoto and DSM. Duplex building consists
of two or more separate units, typically side-by-side or stacked
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(a) Orthophoto (b) 3D building models

Figure 1. Sample figure for unit-level LoD2 building
reconstruction. (a) Orthophoto for weak texture buildings; (b) 3D

building models by using unit-level reconstruction

on top of each other, sharing a common wall but operating
independently. Complex buildings usually consist of several
rectangular units with similar roof materials and textures. Com-
plex/duplex buildings are often constructed from smaller, and
contextually separate building units, while it is traditionally ex-
tremely challenging to infer information at the unit-level. The
recent work in (Schuegraf et al., 2023) has shown that, by learn-
ing from examples, it is possible to infer unit-level segmentation
from the low-resolution image textures, which, if successfully
applied, can be used to extract unit-level models for LoD2 model
reconstruction.

In this study, we integrate unit-level building segmentation with
building model reconstruction, introducing an effective compos-
ition method for level of details (LoD)2 building model gen-
eration. This method preserves boundary consistency among
segmented units in duplex buildings, and then apply unit-level
building shapes into LoD2 3D building model. Upon evalu-
ation in seven distinct regions, the experiments show that our
unit-level LoD2 modeling approach significantly outperforms
existing LoD2 models derived from satellite imagery in terms of
accuracy and detail.
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1.2 Related works

As mentioned earlier, reconstructing building models from pho-
togrammetric data typically entails a multi-stage process that
starts with the detection of building masks. This is followed
by the extraction of 2D parameters (regularized footprint), and
concludes with the derivation of 3D parameters (roof primitive)
using specialized algorithms (Alidoost et al., 2019; Partovi et al.,
2019).

Building Segmentation: Building segmentation has moved to-
wards unit-level segmentation. Hence, recent studies have not
only tackled the segmentation of each pixel as building or non-
building, but also into instances. PolyMapper (Li et al., 2019)
directly predicts building and road vectors on the instance level
(or unit level for buildings). Approximating shapes in images
with polygons (ASIP) (Li et al., 2020) surpasses the perform-
ance of PolyMapper on the CrowdAI (Mohanty et al., 2020)
benchmark dataset for building instance segmentation. Then,
Frame Field Learning set new standards for building instance
segmentation on the CrowdAI benchmark by first predicting
a pixel-level segmentation of buildings and building borders
together with a map of two tangent directions per pixel. The
tangent directions, called Frame Field, are used in an iterative
optimization procedure to produce building polygons with reg-
ular appearance. Exceeding the performance of Frame Field
Learning on CrowdAI, PolyWorld (Zorzi et al., 2022) is an end-
to-end trainable building instance segmentation approach. It
includes multiple steps of extracting vertices and learning the
adjacency matrix that is used to connect the vertices. This pro-
cedure is error-prone, since a false negative vertex can strongly
alter the appearance of the predicted polygon. Missing links in
the adjacency matrix can cause missing polygons. Furthermore,
PolyWorld does not separate directly adjacent buildings. Tack-
ling this issue, Schuegraf et al. (2023) predict separation lines
between buildings together with the building segment and use
the watershed transform to robustly predict building instances.
The results of Schuegraf et al. (2023) surpass those of Frame
Field Learning for complex urban scenarios.

Footprint regularization: The process of extracting regular-
ized building footprints begins with the vectorization of images
into regularized polylines, designated as building boundaries,
subsequently generating rectangular-shaped building footprints.
The preliminary processing of building segments employs shape
reconstruction methods, such as alpha-shape (Kada and Wich-
mann, 2012) and Hough Transform (?), to establish initial build-
ing boundary formation. These are further refined through poly-
line simplification techniques, including the Random Sampling
Consensus (RANSAC) (Fischler and Bolles, 1981; Schnabel
et al., 2007) and the Douglas–Peucker algorithm (Douglas and
Peucker, 1973). Next, post-processing of line segments from
polyline can be facilitated based on orthophoto and algorithms
like line segment detector (LSD) (Von Gioi et al., 2008), KInetic
Polygonal Partitioning of Images (KIPPI) (Bauchet and Lafarge,
2018), and PolyCity (Li et al., 2023c). Subsequent steps involve
further decomposition to delineate individual buildings, aligning
them with preliminary rectangular or circular 2D models. An
illustrative method is the orthogonal line-based 2D rectangle
extraction technique by Partovi et al. (2019), which decomposes
building footprints into rectangle shapes starting from the longest
boundary lines.

Model Reconstruction: The methods for building 3D recon-
struction from images are generally classified into two distinct
strategies: bottom-up and top-down, and both depend on 3D

elevation generated by photogrammetric methods (Xu et al., n.d.;
Han et al., 2020) or LiDAR (Jayaraj and Ramiya, 2018). The
bottom-up, or data-driven approach, treats buildings as collec-
tions of roof planes and other elements, assembling them based
on geometric relationships observed in DSMs and point clouds.
This strategy may employ techniques such as feature filling
(Zhou et al., 2016) and region growing (Sun and Salvaggio,
2013) to merge the structural components. Conversely, the top-
down, or model-driven approach, relies on a predefined library
of 3D building models (Lafarge et al., 2008; Huang et al., 2013).
It selects the most suitable model for a given set of data (like
DSMs or point clouds), but this method often requires complex
processes or adaptable parameters to match the diverse nature of
building architectures. Many advanced techniques adapt deep
learning methods for object recognition and meshing, and are in-
creasingly being incorporated into primitives estimation (Wang
et al., 2021; Li et al., 2023a; Mao et al., 2023).

2. Method

The method described in this paper employs pre-processed
satellite-derived DSM and Orthophoto data, along with image
processing techniques and deep models, to create 3D geomet-
ric models of buildings (LoD). The input data, DSM and Or-
thophoto, can be generated through standard photogrammetric
workflow using the provided Rational Polynomial Coefficients
(RPC), as for example, our input data are generated by using the
RSP (RPC stereo processor) software (Qin, 2016). As shown in
Figure 2, with this input data, the proposed workflow initiates
with unit-level building segmentation and then reconstructing
building models in 2D and 3D. Specifically, the unit-level se-
mantic segmentation process aims to detect and segment discern-
able building units from Orthophoto and DSM, which stands for
standard single-unit buildings, or multiple units of duplex build-
ings. The LoD2 building footprint extraction process extracts
regularized rectangular building footprints from these individual
building segments, further dividing bigger segments into basic
building units. Finally, it utilizes the most appropriate building
model with 3D primitives to represent the building units at 3D
level.

Figure 2. Workflow of unit-level building LoD2 model
reconstruction

2.1 Unit-level semantic segmentation

Buildings in large cities exhibit complex structures comprising
of various interconnected units and components. To perform
as detailed as possible 3D reconstruction, the modeling of each
building component as a separate unit is the correct way to pro-
ceed. Supporting the LoD2 modeling methodology, this paper
employs a unit-level semantic segmentation strategy previously
developed by Schuegraf et al. (2023).

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-2-2024 
ISPRS TC II Mid-term Symposium “The Role of Photogrammetry for a Sustainable World”, 11–14 June 2024, Las Vegas, Nevada, USA

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-X-2-2024-81-2024 | © Author(s) 2024. CC BY 4.0 License.

 
82



Our method uses a deep convolutional neural network at its
core for a 3-class problem: building component, separation
line and background. The inputs to the network are the DSM
and orthorectified RGB satellite images tiled to patches of size
512×512 px. We employ the well-proven U-Net shape architec-
ture (Ronneberger et al., 2015), consisting in our case of two
ResNet34 encoders (He et al., 2016) for each input modality and
one decoder. In order to maintain detailed spatial information,
we aggregate feature maps acquired at four distinct scales from
the two encoders through summation. These aggregated feature
maps then serve as input for the full-scale skip-connections.

We follow the same training procedure as in (Schuegraf et al.,
2023) and employ a combination of segmentation and regular-
ization losses. To minimize the dissimilarity between predicted
and true probability distributions, we incorporate the weighted
cross-entropy loss function

LCE(x, y, p, w) = −
∑
i

yiwi · log(p(xi)), (1)

to achieve accurate and meaningful outcomes in the context of
multi-class semantic segmentation. Here, y denotes the ground
truth, x is the input tensor, p(.) is the softmax output of the
neural network model, i is the respective class and w is an array
of manually selected loss weighting coefficients, which we set
to [1, 1, 4]. Often, the utilization of cross-entropy loss leads
to smoothed or indistinct boundaries for objects. To suppress
this issue and push the model towards more precise delineation
of boundaries, we used the generalized dice loss (Sudre et al.,
2017)

LDICE(x, y, p) = 1− 2 ·
∑

i vi
∑

n yin · p(xi)n∑
i vi

∑
n yin + p(xi)n

, (2)

where vi is the inverse frequency of the class i. LDICE is
developed for precise boundary detection.

To penalizes structural irregularities like curved corners or un-
even edges we employed the topological loss (Mosinska et al.,
2018)

LTOP (x, y, p)C =

N∑
n=1

Mn∑
m=1

||lmn (yC)− lmn (p(x)C)||22, (3)

which minimizes the differences between the VGG19 (Simonyan
and Zisserman, 2014) descriptors of the ground-truth images and
the corresponding predicted delineations, in our case for both
the building and separation line classes separately. In eq. (3), we
denote the class on which to apply the term as C, lmn describes
feature map m of layer n of a pre-trained VGG19.

The final objective function combines three above-described
losses

LTOTAL = LCE + LDICE + λBM · (LTOP )BM

+ λTB · (LTOP )TB ,
, (4)

where λ controls the influence of the topological term on the
overall training procedure, abbreviations BM and TB relate to
building mask and touching border classes.

Following this, a map representing instances of building sec-
tions is created through the application of the watershed trans-
form (Beucher and Meyer, 2018) in a post-processing stage.

Essentially, the watershed transform interprets the obtained three-
class map, consisting of background, building, and separation
line, along with a seed image and a mask, as a topographical
surface. The seed map and mask are derived from the pre-
dicted information related to buildings and separation lines. Sub-
sequently, the watershed transform simulates a flooding scenario,
wherein water begins flooding from the seeds and settles into
basins. These basins are delineated by watershed lines, aligning
with high image intensities. The mask confines the virtual water
flow to specific regions, and the enclosed regions marked by
watershed lines are then identified as objects.

2.2 LoD2 building reconstruction

Upon obtaining unit-level building segments, we apply 2D foot-
print extraction process and 3D primitives computation process
for each building unit to generate rectangular-based 3D building
models. The Orthophoto and DSM, derived from very high-
resolution satellite imagery, typically have spatial resolutions
ranging from 0.3 m to 1 m. Due to this resolution constraint,
accurately detecting small buildings and detailed roof structures
from complex buildings remains a challenge. To address this, we
employ a model-driven approach for 3D building reconstruction
from studies (Gui and Qin, 2021; Partovi et al., 2019). This
approach assumes that a complex building footprint can rep-
resented by 2D rectangles, thus it turns the LoD2 modeling
problems into a topology fusion problems from 3D primtives
buildings (extended from the 2D rectangle footprints).

In order to represent building footprints as regularized 2D shapes,
unit-level building segments are vectorized into polygons and
subsequently refined into rectangular footprints. This process
contains three steps from satellite-derived data: initially, coarse
boundary delineation is achieved using the Douglas-Peucker
algorithm (Douglas and Peucker, 1973), effectively primary
vectorizing building segments into initial polylines of building
boundaries. This is followed by a polyline adjustment step,
where the main orientations of each building unit are calculated,
and shorter line segments with similar orientations are merged
into more extended line segments. The final step involves poly-
line regularization with the LSD algorithm (Von Gioi et al.,
2008), aligning the orientations of line segments with detected
line segments with texture information from Orthophotos. The
culmination of this process not only identifies the main orient-
ation of each building segment but also accurately vectorizes
the building polygons from rasters, facilitating the extraction of
rectangular building footprints without DSM data and refining
building shapes from satellite images with enhanced precision.

The vectorized building footprints may still be in arbitrary poly-
gon with a number of vertex. To facilitate the process of generat-
ing 3D primitives, it is necessary to decompose these polygons
into multiple simple rectangles. Our approach employs a grid-
based decomposition approach (Gui and Qin, 2021), predicated
on the concept that complex building polygons can be funda-
mentally broken down into multiple, simpler rectangular entities,
which then serve as the regularized building 2D model for the
subsequent 3D reconstruction stage. The procedural workflow
of this decomposition is divided into four distinct parts: First,
for each unit, the 2D building polygon is rotated to align its
primary local orientation orthogonally. Second, initial separa-
tion of the building mask is performed, using DSM and Ortho-
photo gradients. Third, a three-tier image pyramid approach
is applied to iteratively identify and refine the largest possible
inner rectangles, progressing from the coarsest to the finer layers.
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Table 1. Study areas basic information

Region Image size (pixel) GSD (pixel size) Location Building area proportion Building instances
Columbus 1 1003×890 0.5 m USA, North America 0.2305 224
Columbus 2 1646×1118 0.5 m USA, North America 0.2866 151

Buenos Aires 1 2000×2000 0.3 m Argentina, South America 0.2704 352
Buenos Aires 2 2000×2000 0.3 m Argentina, South America 0.0587 111

London 1 3000×3000 0.5 m UK, Europe 0.5985 676
London 2 3000×3000 0.5 m UK, Europe 0.2968 910

Trento 3680×3309 0.5 m Italy, Europe 0.3114 1556

Finally, excessively segmented adjacent rectangles are consol-
idated, leveraging both Orthophoto and DSM data to ensure
accurate and efficient footprint reconstruction. To determine
if two neighboring rectangles should be merged, the following
criteria are proposed:


merge, |C1 − C2| < Td⋂

|H1 −H2| < Th1⋂
max|∆Hedge| < Th2

not merge, otherwise

(5)

As in equation 5, there are multiple thresholds based on color
and height information of buildings used to control the merging
process, including 1) color threshold Td set for color differ-
ence between two rectangles projected onto the Orthophoto,
where the absolute difference in mean color values |C1 − C2|
of the two rectangles (projected onto the Orthophoto); 2) height
threshold Th1 set for mean height difference |H1 −H2| between
the rectangles; and 3) gap threshold Th2 set as the threshold for
significant height variations in a buffered area encompassing the
shared edge of two adjacent rectangles.

After determining the rectangular footprint of each building
unit, 3D roof structure can be fitted based on rectangular mod-
els derived from satellite-based DSM. These primilary model
shapes include five types of rectangular building roof models:
flat, gable, hip, pyramid, and mansard, and each roof model
represents a specific architectural style and primitives. A set
of 3D parameters, including ridge height, eave height, and hip
structure, is utilized to characterize the detailed roof primitives
across all five model types (Gui and Qin, 2021). These paramet-
ers are computed and optimized through an exhaustive search
strategy designed to identify the parameters set that minimizes
the root mean square error (RMSE) between the fitted roof height
and DSM data. The optimization includes iterative parameter
updates informed by DSM, starting with the determination of ter-
rain height as the local minimum of the building height. Despite
the DSM data noise since resolution or stereo matching limita-
tion (Ling and Qin, 2022; Huang and Qin, 2020), our exhaustive
search approach efficiently selects the most accurate roof type
and parameter set, maintaining computational accuracy even for
buildings only with a few hundred pixels. The final output of
this process includes detailed 3D parameters for the building
model, which reconstructs buildings into LoD2 levels.

3. Experiments

3.1 Study areas

Our experiments include four cities, each exemplifying unique
geographical locations and distinctive urban landscapes, includ-

ing 1) Columbus, Ohio, a typical U.S. city characterized by
low-density residential and industrial areas; 2) Buenos Aires,
Argentina, a South American megacity, that contains a mix
of sparsely populated residential areas and densely inhabited
slums; 3) London, UK, a European megacity with a compact
urban structure and high-density development; 4) Trento, Italy, a
medium-sized European city with numerous adjacent buildings.

The accuracy of model-driven 3D building reconstruction, which
deduces a set of 3D primitives based on texture and height data
from individual building sections, depends entirely on the accur-
acy and comprehensiveness of the regularized building footprint
in producing the final LoD2 model. Furthermore, the density
or urban complexity represents the difficulty of 3D building re-
construction. In areas characterized by a high concentration of
buildings, accurately delineating individual building perimeters
becomes particularly challenging. This challenge is compoun-
ded in scenarios where adjacent buildings feature roofs with low
texture contrast, often leading to the aggregation of multiple
structures into a single reconstruction section, thereby adversely
affecting the accuracy of the LoD2 model. Hence, the success of
building reconstruction in densely populated regions is heavily
dependent on the segmentation effectiveness for Orthophotos
with weak textures.

The 3-band (RGB) Orthophotos and DSMs for all study areas
are generated using a multi-view stereo matching approach (RSP,
Qin 2016, 2019) from multiple World-view-2 stereo pairs for
the Columbus, London, and Trento dataset, and Worldview-3
for Buenos Aires dataset.

Table 1 shows the information of each study area. In total,
there are three low building density regions with small numbers
of buildings, and most buildings are isolated, and four high
building density regions have dense building distribution with
large numbers of buildings, and many buildings are densely
located with a sharing wall to their neighborhoods.

3.2 Evaluation in 2D and 3D level

The evaluation of 2D segmentation and 3D geometry are com-
puted separately using both a 2D intersection over union (IOU2D)
and 3D intersection over union (IOU3D) based on manually cre-
ated reference data for building footprint and light detection
and ranging (LiDAR)-based DSM for 3D geometry (Kunwar et
al., 2020). IOU2D assesses the accuracy of 2D building foot-
print extraction, while IOU3D evaluates the accuracy of 3D
model fitting. The IOU2D and IOU3D are defined following as
follows:

IOU2D =
TP

TP + FP + FN
(6)

IOU3D =
TP3D

TP3D + FP + FN
(7)
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where TP is the number of true positive pixels that are de-
termined as extracted and manually labeled building footprint
simultaneously, FP is the number of false positives and FN is
the number of false negatives. TP3D is TP pixels whose 3D
vertical difference from the ground-truth LiDAR is within 2 m.

Figure 3. Building semantic segmentation results for each study
region and the ground truth

Other than unit-level building segmentation, two publicly avail-
able semantic segmentation methods for building footprint de-
tection are compared to evaluate the performance at 2D and 3D
levels. The first one is based on HRNetV2 (Wang et al., 2020)
to get building segments by using Orthophoto with RGB bands.
The training and validation datasets were combined with satellite
and aerial imagery (Gui et al., 2022). The second one is High
Resolution Land Cover Classification – USA (Ronneberger et
al., 2015; Robinson et al., 2019), developed by ESRI for ArcGIS
multi-classes semantic segmentation. This approach uses the
UNet model architecture and is trained based on aerial imagery
with 0.8m-1m resolution, which can also be used to segment
buildings.

Figure 3 displays the segmentation results from three semantic-
based segmentation methods and ground truth building mask.
The visual comparison indicates that compared to normal se-
mantic segmentation methods, our unit-level segmentation method
can extract building sections from very dense urban and com-
plex structure buildings. Besides, since the training dataset for
ESRI’s segmentation method is aerial imagery, the segmentation

result in Buenos Aires regions (from Worldview-3) is not as
good as other study regions (from Worldview-2).

The numerical results comparing 2D and 3D levels are presented
in Table 2. These findings reveal that unit-level building seg-
mentation performs best in three regions for 2D building masks
and in five regions for 3D building models. The overall accuracy
for IOU metrics indicate that the performance of building model
reconstruction is largely contingent upon the initial building
segmentation accuracy. Nonetheless, unit-level segmentation
significantly enhances the accuracy of 3D primitives for each
building section.

Figure 4 and Figure 5 display building 3D models in two high
building density regions, London area 1 and Trento area. From
instance-level comparison for each building unit, it indicates that
unit-level segmentation of building masks effectively divides
complex or densely packed buildings in areas with weak tex-
tures into individually segmented units, maintaining consistency
along their shared boundaries, and then computing fine 3D roof
parameters. In contrast, building models generated by the other
two methods often treat complex structures or buildings in close
proximity as a single and large building section.

4. Discussion

The experimental results indicate that unit-level building re-
construction method obviously improves the granularity and
accuracy of the building LoD2 model, particularly in densely
populated urban environments. This approach significantly im-
proves the delineation of building boundaries and the calcula-
tion of 3D roof primitives by segmenting complex and adjacent
buildings into distinct sections. Such precise urban modeling is
crucial for creating more accurate and reliable representations
of building structures.

The enhanced detail is particularly advantageous for planning
and analysis in urban development, notably in areas character-
ized by dense, irregularly shaped buildings with non-distinct tex-
tures, such as slums and poorly maintained neighborhoods—areas
that previous reconstruction methods struggled to accurately
model. The unit-level method has considerable capacity for
simulating highly intricate and business-oriented structures. Pro-
ficiently analyzing and precisely depicting the complex forma-
tions of these edifices can significantly assist in diverse urban
planning and architectural implementations. This approach can
offer a more intricate comprehension of the urban environment,
particularly in the case of commercial structures that frequently
showcase distinctive and intricate architectural styles.

5. Conclusion

This paper introduces an effective level of details (LoD)2 build-
ing reconstruction approach at the unit-level, leveraging unit-
level building segmentation results from satellite-derived Ortho-
photo and digital surface model (DSM) and a model-derived
approach for 3D modeling. This method initiates with the seg-
mentation to get unit-level building segments, followed by a
polygon composition strategy designed to distinguish duplex
or dense buildings as separate entities equipped with 3D prim-
itives. Our technique effectively segments complex buildings
and immediately adjacent buildings in densely populated urban
areas with low-texture quality, subsequently reconstructing 3D
building models utilizing a comprehensive library of predefined
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Table 2. Accuracy comparison in 2D label (semantic segmentation), 2D footprint, and 3D model (reconstruction) for all regions. The
difference in the method is the input of building mask.

IoU HRNet
2D label

ESRI
2D label

Unit-
level 2D

label

HRNet
2D foot-

print

ESRI
2D foot-

print

Unit-
level 2D
footprint

HRNet
3D

model

ESRI
3D

model

Unit-
level 3D
model

Columbus 1 0.7140 0.6647 0.7360 0.5389 0.6151 0.6248 0.4881 0.5342 0.5801
Columbus 2 0.8492 0.8306 0.7980 0.7526 0.7815 0.7309 0.7403 0.7649 0.7196

Buenos Aires 1 0.6706 0.4434 0.6324 0.6149 0.4043 0.5662 0.5610 0.3296 0.5314
Buenos Aires 2 0.5635 0.1534 0.6010 0.4965 0.1233 0.5255 0.4480 0.0932 0.4970

London 1 0.6826 0.5993 0.7471 0.5668 0.5222 0.6265 0.3857 0.3067 0.4382
London 2 0.5974 0.4846 0.6115 0.4882 0.4404 0.5377 0.4154 0.3348 0.4728

Trento 0.6578 0.4071 0.6400 0.5808 0.3573 0.6021 0.3010 0.1418 0.3311

Figure 4. Building 3D models in London 1 region with dense urban structures

Figure 5. Building 3D models in Trento region with both dense and sparse buildings

models. The empirical evaluation of experiments shows that our
unit-level LoD2 modeling surpasses the construction result from
publicly available building segmentation methods, especially in
dense and complex urban environments.
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R., Schmitt, M., Sun, X., Huang, H. et al., 2023. Urban Building
Classification (UBC) V2-A Benchmark for Global Building
Detection and Fine-grained Classification from Satellite Imagery.
IEEE Transactions on Geoscience and Remote Sensing.

Huang, X., Qin, R., 2020. Post-filtering with surface orientation
constraints for stereo dense image matching. The Photogram-
metric Record, 35(171), 375–401.

Jayaraj, P., Ramiya, A. M., 2018. 3D CityGML building model-
ling from lidar point cloud data. The International Archives of
the Photogrammetry, Remote Sensing and Spatial Information
Sciences, 42, 175–180.

Kada, M., Wichmann, A., 2012. Sub-surface growing and bound-
ary generalization for 3D building reconstruction. ISPRS Annals
of the Photogrammetry, Remote Sensing and Spatial Information
Sciences, 1, 233–238.

Lafarge, F., Descombes, X., Zerubia, J., Pierrot-Deseilligny,
M., 2008. Structural approach for building reconstruction from a
single DSM. IEEE Transactions on pattern analysis and machine
intelligence, 32(1), 135–147.

Li, M., Lafarge, F., Marlet, R., 2020. Approximating shapes
in images with low-complexity polygons. Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition, 8630 ff.

Li, Q., Mou, L., Hua, Y., Shi, Y., Chen, S., Sun, Y., Zhu, X. X.,
2023a. 3DCentripetalNet: Building height retrieval from mon-
ocular remote sensing imagery. International Journal of Applied
Earth Observation and Geoinformation, 120, 103311.

Li, S., He, S., Jiang, S., Jiang, W., Zhang, L., 2023b. WHU-
Stereo: A Challenging Benchmark for Stereo Matching of High-
Resolution Satellite Images. IEEE Transactions on Geoscience
and Remote Sensing, 61, 1–14.

Li, W., Zhao, W., Yu, J., Zheng, J., He, C., Fu, H., Lin, D., 2023c.
Joint semantic–geometric learning for polygonal building seg-
mentation from high-resolution remote sensing images. ISPRS
Journal of Photogrammetry and Remote Sensing, 201, 26–37.

Li, Z., Wegner, J. D., Lucchi, A., 2019. Topological Map Ex-
traction From Overhead Images. Proceedings of the IEEE/CVF
International Conference on Computer Vision, 1715 ff.

Ling, X., Qin, R., 2022. A graph-matching approach for cross-
view registration of over-view and street-view based point clouds.
ISPRS Journal of Photogrammetry and Remote Sensing, 185,
2–15.

Mao, Y., Chen, K., Zhao, L., Chen, W., Tang, D., Liu, W., Wang,
Z., Diao, W., Sun, X., Fu, K., 2023. Elevation Estimation-Driven
Building 3D Reconstruction from Single-View Remote Sensing
Imagery. IEEE Transactions on Geoscience and Remote Sensing.

Mohanty, S. P., Czakon, J., Kaczmarek, K. A., Pyskir, A.,
Tarasiewicz, P., Kunwar, S., Rohrbach, J., Luo, D., Prasad, M.,
Fleer, S. et al., 2020. Deep Learning for Understanding Satel-
lite Imagery: An Experimental Survey. Frontiers in Artificial
Intelligence, 3.

Mosinska, A., Marquez-Neila, P., Koziński, M., Fua, P., 2018.
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