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ABSTRACT:

Nowadays, deep learning allows to automatically learn features from data. Buildings are one of the most important objects in 
urban environments. They are used in applications such as inputs to building reconstruction, disaster monitoring, city planing and 
environment modelling for autonomous driving. However, it is not enough to represent them in raster format, since applications 
require buildings as polygons. We use an existing, learning based approach to extract building footprints from ortho imagery and 
digital surface model (DSM) and propose a pipeline for building polygon extraction, which we call primary orientation learning 
(POL). The first step is to extract initial polygons, that contain a vertex for each pixel in the boundary of the footprint. Afterwards, 
the two primary orientation angles are regressed continuously. Using these orientation, we insert vertices such that all consecutive 
edges are perpendicular. To the best of our knowledge, our approach is the first to predict a continuous orientation angle for building 
boundary regularization. Furthermore, the proposed method is highly efficient with an average processing time of 2.879 ms for a 
single building.

1. INTRODUCTION

1.1 Problem Statement

In applications such as building reconstruction, disaster monit-
oring, city planning and environment modelling for autonom-
ous driving, building footprints are crucial. Most works on
building footprint extraction produce raster outputs, whereas
applications require them in vector format. A robust approach
to obtain buildings in vector format is to first predict raster
buildings using a neural network and then applying postpro-
cessing that outputs polygons. The results achieved by con-
ventional methods are either limited in terms of generalization
capacity (Zebedin et al., 2008; Cui et al., 2012; Tian and Rein-
artz, 2013) or are not restricted sufficiently to prior knowledge
of regularity (Marcos et al., 2018; Gur et al., 2019; Hatamizadeh
et al., 2020; Zhao et al., 2021; Zorzi and Fraundorfer, 2023).

Our goal is to achieve regularized building polygons, assuming
that all vertices of buildings should have a rectangular angle.
Whereas this assumption not always holds, it is sufficient for
most buildings, especially residential houses and industrial build-
ings. A 90° angle always needs a reference axis, which is the
primary orientation of a polygon. Even though for perfectly
regularized polygons, in most cases the primary orientation is
that of the longest sidelength, we are dealing with irregular
polygons. Deep learning allows us to automatically learn fea-
tures from a large training dataset. First, we use deep learning to
extract building footprints from ortho imagery and photogram-
metric digital surface model (DSM). Next, with our regulariz-
ation framework called primary orientation learning (POL), we
train a 1D convolutional neural network (CNN), from whose
output we compute the primary orientation angle in continu-
ous space. Subsequently, we use a learning free and iterative
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Figure 1. A building boundary regularization example in our test
region, Braunschweig, Germany. The left figure represents the

initial vectorization of the building footprint and the right one is
the final regularized building boundary.

approach to insert vertices that make the initial polygon recti-
linear, i.e. having 90° angles at every vertex. Figure 1 shows
an example of a regularized building outline obtained by our
method.

1.2 Related Work

Some research has been carried out on building footprint regu-
larization. Most relevant to this paper are two works: The first
one is that of Li et al. (2019), which inspired us to utilizing the
primary orientation angle together with their simple yet effect-
ive rectilinearization algorithm. However, the way they com-
pute the primary orientation angle is not robust. It relies on the
minimal point density in the directions of the x and y axis after
rotating the initial polygon by a candidate angle. But along the
primary orientation direction, there may be an arbitrary number
of vertices, depending on the roughness of the initial polygon.
The second important work is frame field learning (Girard et
al., 2021), where the idea of orientation is generalized to each
pixel at the border of a building. The border orientation and
its perpendicular direction are predicted along with the build-
ing footprint by a neural network. In a post-processing step, a
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Figure 2. Visualization of a regular polygon (blue), an irregular
polygon (brown), the primary orientation axis (orange) and the

secondary orientation axis (green).

polygon is fit with vertices that align with the predicted border
orientations. This allows to obtain regular polygons, even in
complex cases. However, frame field learning does not guaran-
tee rectilinearity, as Li et al. (2019) does.

Other work that includes the regularization of building outlines
is that of Zebedin et al. (2008), where initial lines are filtered by
forming a histogram of orientation and then removing outliers.
The filtered line directions are used to reconstruct the building
with regular appearance. This approach is flexible, as it is not
restricted to 90° angles. Cui et al. (2012) use Hough transform
to group an initial set of line segments into two perpendicular
sets of parallel lines to represent the building boundary. Using
those lines to construct an initial graph, edges in low-contrast
regions are removed, since they do not represent building edges.
Searching for cycles in the graph, the final building boundary is
determined. This approach relies on the completeness of the
initial line detection and is restricted to rectangular buildings.
Tian and Reinartz (2013) also use Hough transform and inter-
section of line segments to form building boundaries, but allow
two arbitrary main orientation directions.

More recently, end-to-end deep learning approaches have been
utilized to improve building outline regularization. Marcos et
al. (2018) propose to learn the parameterizations of active con-
tour models to refine initial building blobs to regular polygons.
Gur et al. (2019) came up with end-to-end trainable pipeline
that iteratively updates an initial set of points similar as in act-
ive contour models. However, the predicted polygon is not ne-
cessarily reguarlized. Similar to Marcos et al. (2018); Gur et
al. (2019), Hatamizadeh et al. (2020) proposes an active con-
tour model based building boundary extraction which is end-
to-end trainable and extents these capabilities to many arbitrary
buildings in a patch, since initial contours are predicted by a
CNN. Zhao et al. (2021) improve PolyMapper, which uses a
recurrent neural network (RNN) to predict vertices recursively.
Zorzi and Fraundorfer (2023) propose Re:PolyWorld, which is
a multi-stage end-to-end trainable deep learning framework that
predicts initial vertices, refines them and finally connects them
to form polygons. It manages to score state-of-the-art (SOTA)
metrics on the CrowdAI (Mohanty et al., 2020) building seg-
mentation challenge.

2. METHOD

To obtain regularized building footprints, two steps are required.
In the first step, we trained a neural network to extract build-
ing footprints. In the second step, we extracted building border
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Figure 3. Visualization of the architecture of our proposed POL
network. Convolutional layers extract local features for every

vertex and linear layers compute global features and the
regression output.

pixels to form a polygon, followed by predicting the corres-
ponding primary orientation, and then applied our rectilineariz-
ation algorithm to obtain regular polygons.

2.1 Building Footprint Extraction

We closely followed our previous work (Schuegraf et al., 2023)
to obtain building instances. We trained UNet to predict a 3-
class segmentation map that allows it to obtain building sections
even if they are directly neighboring, using a post-processing
step based on the watershed transformation. On the contrary, in
this work we merge the obtained instances, since our aim is to
regularize building blocks. We trained a UResNet34 with two
ResNet34 encoders, where one encoder received an RGB patch
and the other a DSM patch as input. At each level of resolution
the feature maps of the encoder were merged by summing them.
Then, the merged feature maps were passed to the decoder by
providing them to the corresponding level of resolution. These
so called skip-connection allow to gradually regain spatial res-
olution based on features, instead of unguided upsampling. The
output of the UResNet34 were three logits from the same spa-
tial resolution as the input patches. The three logits were in-
put to the softmax function, which produces probability maps
for three classes, which were background (0), building section
(1) and separation line (2). Based on the probability maps, the
argmax class was taken as the predicted class. Since we are in-
terested in complete building blocks, we used both class 1 and
2 as the building class. To obtain instances, we used the water-
shed transform similar to Schuegraf et al. (2023), which, in this
case without separation line, is equivalent to connected com-
ponent analysis. Hence, we obtained a single instance for each
building block.

2.2 Primary Orientation Learning: Vectorization and Reg-
ularization

The previously described method to obtain building footprints
delivers them in raster format. To obtain instances, we first
generate initial polygons and then refine them based on their
primary orientation.

2.2.1 Initial Polygon Generation We applied a tree search
to obtain an ordered set of boundary pixels, forming a polygon.
This polygon has many redundant vertices and has irregular ap-
pearance, because of limited ground sampling distance (GSD)
and imperfect building footprints. To remove many redundant
vertices and simplify the polygon, we applied Douglas-Peucker
(Douglas, 1973) with tolerance ϵ = 1.2 m.
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RGB DSM Footprints

Figure 4. Our test area in Braunschweig, Germany. Three layers included within the data are shown, RGB image (left), DSM
(middle), and the ground truth building footprints (right).

2.2.2 Direction Prediction & Rectilinearization The next
step is based on the assumption, that the boundaries of a build-
ing are aligned with only two directions. We define the direc-
tion, along which the regular polygon stretches most, the primary
orientation α∗. The 90° rotated primary axis is called second-
ary orientation β∗ = α∗ + 90°. This can be seen in Figure 2,
where the orange arrow represents the primary orientation axis,
being rotated with respect to the blue, dashed arrow by angle
α∗. For regular polygons, α∗ can be obtained by computing the
angle of the linesegment with the longest sidelength with re-
spect to the positive x-axis (blue, dashed line). But for irregular
polygons, the longest sidelength has no meaning. We represent
a polygon P = [v0, v1, ..., vn−1], which is a clockwise ordered
set of n vertices vi ∈ V with V = {v0, v1, ..., vn−1} as a vector
p = [x0, y0, x1, y1, ..., xn−1, yn−1,
0, ..., 0]T with trailing zeros to bring each vector to the fixed
length 400, which facilitates the length of all polygons in our
dataset. We passed a minibatch of such vectors to a network
consisting of 1D convolutional, rectified linear unit (ReLU),
batch normalization, dropout and linear layers (see Figure 3).
This network predicts the primary and secondary orientation
angles α̂ and β̂ by the parameters c0 and c2 of the complex
polynomial

f(z) = z4 + c2z
2 + c0, (1)

where

c0 = u2 (2)

c2 = −(u2 + v2) (3)

⇔


u =

√
− 1

2

(
c2 +

√
c22 − 4c0

)
v =

√
− 1

2

(
c2 −

√
c22 − 4c0

)
.

(4)

The ambiguity of the sign and order when regressing an angle
directly is resolved in this representation of the orientation. We
borrow this idea from Girard et al. (2021), where the coeffi-
cients are predicted at each pixel of an image along the bound-
ary of buildings. However, we only predict a single complex
value for each c0 and c2 for each polygon. Hence, we obtained
4 scalars for each input p from the network, from which we
calculate the two complex numbers u and v using Equation (4).
Then, we converted each of u and v into an angle with respect
to the positive x-axis using trigonometry.

The network is trained using two loss functions, the first loss

function
Lalign = |f(eiθ

∗
; ĉ0, ĉ2)|2, (5)

where ĉ0 and ĉ2 are the predicted complex polynomial coef-
ficients, enforces alignment of the prediction with the ground
truth primary orientation angle θ∗. The second loss function

Lalign90 = |f(eiθ
∗T ; ĉ0, ĉ2)|2, (6)

enforces that the predicted secondary angle is aligned with θ∗T =
θ∗ − π. The total loss is

L = Lalign + 0.2× Lalign90 (7)

Next, we applied the following rectilinearization algorithm for
each of α̂ and β̂, closely following Li et al. (2019):

1. Rotate the irregular polygon by θ̂ ∈ {−α̂,−β̂}

2. Given a clockwise ordered set of vertices V = {v0, v1, ...,
vn−1}, where vertex vi has coordinates (xi, yi), generate
a line list L = {l0, l1, ..., ln−1};

3. Select the oblique line segments in L. Then for each ob-
lique line segment li ∈ L,

a. Calculate two candidate points to be inserted based
on the two subsequent vertices vi and vi+1:

v1c = (xi, yi+1)

v2c = (xi+1, yi)

b. The relative position of each candidate point relative
to li is determined using

d1 =

∣∣∣∣∣∣
xi xi+1 xi

yi yi+1 yi+1

1 1 1

∣∣∣∣∣∣ ,
d2 =

∣∣∣∣∣∣
xi xi+1 xi+1

yi yi+1 yi
1 1 1

∣∣∣∣∣∣ ,
where d1 is the relative position of v1c and d2 that
of v2c.

c. Since we are dealing with clockwise-oriented poly-
gons, a negative d1 or d2 means that either v1c or
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v2c is outside the polygon and hence is inserted into
the polygon between vi and vi+1.

Since we applied the above algorithm twice for two different
angles, we selected the rectilinear polygon that has the higher
intersection over union (IoU) with the irregular polygon.

3. EXPERIMENTS

We carried out two experiments. Both experiments are based
on the footprints from our raster footprint extraction method,
trained according to Schuegraf et al. (2023). The first exper-
iment is the baseline evaluating the method on our Braunsch-
weig, Germany test region. The second experiment is our neural
network based regularization on the same test region. See a
visualization of the test area in Figure 4.

3.1 Baseline

The baseline method is that of Li et al. (2019). The main dif-
ference to our approach is that the baseline uses a learning free
procedure to obtain the primary orientation angle.

3.2 Primary Orientation Learning

We trained the proposed POL network on a dataset consisting
of 92600 regular building polygons from public sources of the
cities of Berlin, Cologne and Hamburg, Germany, as well as
Medellin, Columbia and validated after every epoch on 958
polygons of Cologne, Germany. Since the trained model should
work on irregular polygons, we slightly shifted each vertex of
the regular polygons by a 2D normal distribution centered at
the original vertex position with standard deviation 0.5m. Ad-
ditionally, we randomly rotated every polygon and adjusted the
corresponding ground truth angle accordingly to increase the
variety of training samples. We used the Adam optimizer with
learning rate 0.001, batch size 128 and multiplied the learning
rate by 0.9 after every ten epochs. We let the training run for
500 epochs and selected the model that performed best on the
validation dataset.

We extracted the initial polygons from the predicted raster foot-
prints by tracing the pixels along the boundary of each connec-
ted component. Then, we applied Douglas-Peucker with tol-
erance 1.2m to simplify the initial polygon. We applied our
trained POL network to the simplified polygon to obtain two
orientation angles. Then, we applied the rectilinearization al-
gorithm for each of the predicted angles and selected the poly-
gon that has the larger IoU with the simplified polygon.

3.3 Evaluation

To judge the capability of our proposed method, we evaluated
it on an RGB and DSM showing an area in Braunschweig, Ger-
many. The data was captured by an aerial 3K camera at 0.1m
GSD and downsized to 0.3m GSD.

Common metrics to evaluate building footprint quality are

IoU =
TP

TP + FP + FN
, (8)

Prec =
TP

TP + FP
, (9)

Rec =
TP

TP + FN
, (10)

and

F1 = 2× Prec×Rec

Prec+Rec
, (11)

where TP , FP , FN are the true positive, false positive and
false negative of the building class. Additionally, we provide
the inference time, training time and the angle prediction error

ε = |θ̂ − θ∗|. (12)

For POL, we processed the polygons of the whole test area at
once and divided the inference time by the number of poly-
gons. The experiments were carried out on a server with an
NVIDIA GeForce RTX 2080 Ti GPU with 11019 MB for the
neural network inference and a Intel® Xeon® Gold 6230 CPU
@ 2.10GHz for the baseline inference. The server has 504 GB
working memory. To gain more insight into the results, we visu-
alized both results next to the ground truth.

4. RESULTS

We listed the metrics of resulting building footprint quality and
training/inference time in Table 1. It shows that both the baseline
method and our proposed POL achieve very similar or almost
identical results in IoU and F1, whereas POL has a higher pre-
cision and the baseline has a higher recall. The similarity in
IoU and F1 are explained by the fact that we used the identical
initial footprints and regularization does not have a large ef-
fect on these metrics. On the other hand, the baseline method
tends to add the new vertices more on the outside of the ground
truth polygon. These results show that our approach for foot-
print regularization is not worse than the baseline in terms of
quality. This can be verified visually in Figure 6, where both
the baseline and our method have perfectly regular appearance.
In Figure 5, the high quality of most of the resulting building
footprints is visualized. Although the satisfying overall result,
we encountered some missing detections. Those are due to tiny
building size, low contrast or lack of visibility in the RGB im-
age, which makes it hard for the footprint predictor to recognize
them. Furthermore, the baseline achieves an angular error ε of
about 1.5° lower than our POL. POL predicts angles continu-
ously which removes ambiguity from the angle prediction and
avoids a method intrinsic error of up to 1.0°, which the baseline
method includes. On the other hand, our learning based method
was trained only on slightly alternations of the regular ground
truth polygons, which leads to a domain gap between training
and test polygons. Furthermore, we used the orientation of the
longest side as the ground truth annotation, which is inaccurate
in many cases but easy to obtain for large quantities of ground
truth polygons. However, the error of 4.2447° is still very low,
but the baseline needs to test 181 possible angles to achieve
this results, which results in the inference time of 78.261 ms,
whereas POL only needs 2.879 ms to infer a single primary ori-
entation angle. This computational advantage can be explained
by two reasons. The first is the aforementioned necessity of the
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Figure 5. Our results in vector format on some part of the test area. Red polygons represent predicted building outlines, green
polygons are ground truth polygons. The resulting polygons have regular shapes, i.e. right angles at every vertex with a low number of

vertices. Even non-rectangular buildings are successfully regularized.

baseline to compute the axis density for 181 possible angles.
The second one is the capability of batch processing in POL.
POL can process the about 500 predicted initial polygons in the
test area in a single forward pass in parallel.

5. CONCLUSION

We presented primary orientation learning (POL), a framework
to predict real-valued, primary orientations of initial, irregu-
lar polygons in an end-to-end trainable manner. We leveraged
those angles for accurate and efficient building polygon regular-
ization, using a simple yet effective rectilinearization algorithm.
Furthermore, we demonstrated the generalization capability of
POL on polygons that are very different to those in the training
dataset. Our analysis showed that our method achieves similar
results as those of the reference method but overcomes the lim-
itation of discrete valued angles. Since many buildings, espe-
cially in urban areas are not of rectangular structure, our future
research will be centered on regularizing general buildings.
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