
Master Thesis

Derivation and implementation of a
hanging nodes resolution scheme for

hexahedral non-conforming meshes in
t8code

Tabea Leistikow
February 21, 2024

First Reviewer: Prof. Dr.-Ing. Gregor Gassner
Second Reviewer: Dr. Johannes Markert

Numerical Simulation
Division of Mathematics

University of Cologne

Faculty of Mathematics and Natural Sciences of
University of Cologne

and
German Aerospace Center

Contents
1 Introduction 1

2 Theory 4
2.1 Adaptive Mesh Refinement . 4
2.2 Space-Filling Curves . 8
2.3 Morton Index For Hexahedral Elements 10
2.4 A SFC Index For Forests . 11

3 Transitioning 14
3.1 Hanging Nodes On Hexahedral Faces 14
3.2 What Do Other People Do To Solve Hanging Nodes 15
3.3 Transition Cells . 16
3.4 SFC In Transition Cells . 19
3.5 A SFC Index For Transitioned Forests 20

4 Implementations In t8code 22
4.1 High-level Algorithms Of t8code 22

4.1.1 New . 22
4.1.2 Adapt . 22
4.1.3 Balance . 23
4.1.4 Partition . 24

4.2 Fundamentals For Transition Cells In t8code 24
4.2.1 Transition Type . 24
4.2.2 Subelement ID Type . 26
4.2.3 Adjustment Of The Element Data Structure 27

4.3 Implementing Transition Cells In t8code 28
4.3.1 t8_element_compute_transition_type 28
4.3.2 t8_element_num_subelements 29
4.3.3 t8_element_initialize_transition_cell 30

4.4 Transition . 31

5 Identifying Face-Neighbors 37
5.1 Face-Neighbors In Transitioned Forests 37

5.1.1 t8_element_get_location_of_subelement 39
5.2 Finding Face-Neighbors In Transition Cells 40

6 Analysis Of The Influence Of t8_transition 44
6.1 Measurements Of The Amount Of Elements 44
6.2 Runtime Measurements Of t8_transition 47
6.3 Runtime Measurements t8_element_leaf_face_neighbor 50
6.4 Parameters For Mesh Quality . 53

6.4.1 Jacobian-Based Quality Metrics 53
6.4.2 Aspect-Ratio Based Quality Metrics 57

I

7 Outlook 59
7.1 Edge-Balancing . 59
7.2 Hanging Edges . 60
7.3 Conclusion . 62

A Appendix 64

II

1 Introduction
Partial differential equations (PDEs) are often used to describe processes in the
natural world [38]. To solve PDEs on geometries, an appropriate discretization
is required. The discretization is usually given in the form of a mesh structure.
There are several different methods in order to solve PDEs on meshes, for example,
the finite difference (FD), finite element method (FEM), finite volume (FV), and
the discontinuous Galerkin method (DG) [15, 31].

In order to discretize a 3-dimensional domain, it is very common to either use
hexahedral or tetrahedral elements. The advantages and disadvantages of using
hexahedral or tetrahedral elements are a much-discussed topic in the literature [42,
39, 12, 44]. In general, tetrahedral elements are more suitable to discretize complex
geometries. Although, hexahedral elements need fewer elements to discretize the
same geometry size.

However, depending on the geometry, it can also be advantageous to use tetra-
hedral and hexahedral elements for discretizing different parts of the domain. This
results in a hybrid mesh. Thereby, it is possible to use the favorable properties
of each element type. When using tetrahedral and hexahedral elements it may
be necessary to use prisms and/or pyramids between those two element types [48,
34]. Naturally, it is also possible to use tetrahedral and prismatic elements like in
[25], but this is rare.

Not only the element type is decisive in improving the quality of the discretiza-
tion. The elements size is also an important property. The initial discretization
may not be sufficient. One possible approach to enhance the discretization is to use
smaller elements, called uniform mesh. With this approach, consequently, more el-
ements are needed to discretize the whole domain resulting in extensive additional
computational effort. Therefore, using smaller elements all over the underlying
domain would decrease the numerical simulation’s performance.

Another approach is to define particular regions, called refinement regions,
where the initial discretization is insufficient, and thus, a more precise approxima-
tion is needed. This approach is called adaptive mesh refinement (AMR), see for
instance [2, 14]. The use of error estimators is beneficial to identify the regions
where a finer mesh is necessary [6, 2, 47]. Refining an element thereby means
replacing it by mostly equally shaped, smaller elements. For example, refining
a hexahedron means replacing it with eight smaller ones. Refining a pyramid,
however, leads to smaller pyramids and tetrahedra, discussed in detail in [27].
Consequently, with AMR, it is possible to refine the mesh locally to discretize
particular regions more precisely and leave the rest coarse.

Thus, the big advantage of AMR compared to a uniform mesh is the lower
number of elements, smaller memory footprint, and a faster runtime of numerical
solvers. However, a disadvantage of AMR is the accompanying mesh management.
Especially when parallelizing the computations, a lot of additional tasks such as
the random access of elements and the partition on different processes need to be
realized. Due to the high complexity of this mesh management, there are AMR-
specialized software libraries like p4est [10], t8code [20] that builds on p4est and
libMesh [26].

Refining an element leads to parent-child relation and, therefore, to a tree
structure. Considering a hexahedral mesh, one obtains an octree [40, 45].

1

One main task of AMR software is to identify each element uniquely. There
are different ways of approaching this, for example, by using the concept of space-
filling curves (SFCs) [19, 37, 3]. The idea of a SFC is that it maps each mesh
element to a linear index, like numbering. This index is then a unique ID of the
element. The AMR software t8code uses the Morton-SFC. Thus, its Morton index
can uniquely address each element.

Most numerical PDE solvers, for example, those using the FV method, need
neighbor-relations of elements to update their values over different time steps.
Thus, they need a one-to-one correspondence between the faces of elements and
their face-neighbors. Meshes that fulfill this one-to-one correspondence are called
conformal. Conformal meshes are even a precondition for some solvers, see [49].

A mesh with AMR is, in general, not conformal. That means there are face-
neighbored elements with different sizes. These neighbor-relations create so-called
hanging faces. For example, if a hexahedral element has a hexahedral face-neighbor
that is refined once, then there is a face with four face-neighbors, thus, there is no
one-to-one correspondence.

There are different ways to handle hanging nodes [16, 36, 13, 50, 43, 39].
One approach is to identify hanging nodes and insert transition cells into the
corresponding elements of the mesh in order to eliminate these hanging nodes.
This approach is discussed in detail in this thesis.

In [5], Becker analyzed 2-dimensional quadrilateral meshes with hanging nodes.
He developed different transition patterns and a transition algorithm that makes
a mesh conformal there. This thesis builds on the work of Becker and extends
this approach to 3-dimensional hexahedral meshes. The main challenge is that
there are a lot of different cases that can cause hanging nodes leading to many
different transition cells. Moreover, refining an element into a transition cell brings
irregularities into the SFC. Additionally, a new face-neighboring algorithm needs
to be developed.

All presented algorithms are implemented in a new transition-scheme in the
open-source software t8code. The goal is to enable transition as a new key-
feature of t8code.

This thesis is organized as follows: First, in Chapter 2, the fundamentals of
AMR and SFCs are presented. After that, in Chapter 3, the problem of hanging
nodes is discussed. Therefore, the overall problem of hanging nodes is discussed
first in Chapter 3.1. After that, in Chapter 3.2, different approaches to solving
the problem of hanging nodes are proposed. Afterward, in Chapter 3.3, the dif-
ferent transition cells are introduced. After that the modified SFC is presented in
Chapter 3.4 for transition cells and Chapter 3.5 for forests. Chapter 4 covers the
implementations in t8code. First, in Chapter 4.1, the high-level algorithms are in-
troduced. After that, in Chapters 4.2 and 4.3, the requirements for implementing
the transition algorithm are presented. In Chapter 4.4, the transition algo-
rithm is presented. Chapter 5 discusses the problem of identifying face neighbors
in a transitioned mesh. Chapter 5.1 focuses on identifying face-neighbors inside
a forest, while Chapter 5.2 handles identifying face-neighbors inside a transition
cell. Afterward, in Chapter 6, the impact of the transition cells on the amount of
elements, Chapter 6.1, on the general runtime, Chapter 6.2, and the runtime of
the neighbor-identifying algorithm of t8code, Chapter 6.3, are discussed. Then, in
Chapter 6.4, two different quality metrics are discussed on the transitioned mesh.

2

One is jacobian-based in Chapter 6.4.1, and one is based on the aspect-ratio in
Chapter 6.4.2. In the last part, Chapter 7, problems and remaining tasks of this
approach are discussed. Therefore, the remaining task of edge-balancing is intro-
duced in Chapter 7.1. Afterward, in Chapter 7.2, the problem of the occurrence
of hanging edges inside the presented transition cells is discussed. A summary of
all problems and solution strategies is given at the end of Chapter 7.

3

2 Theory
This chapter is guided by [20] and [27]. First, theoretical fundamentals of adap-
tive mesh refinement are given. After that, the concept of space-filling curves
(SFC) is introduced. Afterward, the Morton index for hexahedral elements and
the extension of SFC for forests are presented.

2.1 Adaptive Mesh Refinement
First, we need to describe what a mesh is and how to manage the elements in a
mesh. To approximate the original geometry we use polygons as geometric ele-
ments. In this thesis, we mainly focus on hexahedral and pyramid-shaped elements.
Therefore, we define a legal discretization as follows:

Definition 2.1.1. Let Ω⊂ Rd be bounded and with a polygonal boundary.
A = {Ai | i ∈ I, Ai is a Polygon} is a legal discretization of Ω with indices I, if

(i) Ω = ⋃
i∈I Ai

(ii) If Ai∩Aj ̸= ∅, then Ai∩Aj is an (d−k)-dimensional sub-polygon of Ai and
Aj with 0≤ k ≤ d.

This means that the intersection of boundaries is either a common face in 3D,
an edge, a vertex or empty. We call a legal discretization of Ω a mesh.

There are different ways to discretize an object. One possibility is to only us
one type of polygons, such as quadrilaterals or triangles in 2D and hexahedra or
tetrahedra in 3D. The mesh is called hybrid if different types of polygons are used in
one mesh. If every element in a mesh has the same size, we call the mesh uniform.
It always depends on the underlying geometry which type(s) of polygon(s) fit the
best.

A wide range of discussions on the type of mesh can be found in the litera-
ture. For example, in [39], they discuss the differences between unstructured tri-
angular/tetrahedral and structured quadrilateral/hexahedral meshes. In [12] they
conduct a performance study of tetrahedral and hexahedral meshes. The result is
that the tetrahedral and hexahedral are fairly equivalent in terms of CPU time and
accuracy. In [39, 46], they show that a clear benefit of quadrilateral/hexahedral
meshes is that we can use fewer elements to model the same domain size compared
to a triangular/tetrahedral mesh.

With the initial discretization, details of the discretized object may get lost,
or the solution error may be very high in a specific region. Then, it is necessary
to improve the discretization. The idea of AMR is to refine the mesh only where
it is needed. The finer the mesh, the smaller the computational error and the
more accurate the discretization. Therefore, one can subdivide polygons of the
mesh into smaller ones. In this way, we achieve a hierarchical structure of the
elements. The smaller ones are called "children" and the bigger ones that have
been refined are called "parent". The children have the same polygonal structure
as their parent for some element types like hexahedra, triangles, or quadrilaterals.
Refining a pyramid, however, leads to partly different polygonal structures of the
children. In [27], pyramidal adaptive meshes are discussed in detail.

4

This thesis follows the idea of recursive refinement patterns. This means that
elements are replaced by smaller ones via a repeated refinement process. Figure 2.1
shows a recursive 1 : 4 refinement on triangles and a 1 : 8 refinement on hexahedra.
Note that every element thus has a specific refinement level which increases while
refining.

Refinement Refinement

RefinementRefinement

level i level i+ 1 level i+ 2

Figure 2.1: This figure illustrates recursively refined triangles in 2D (top) and
hexahedral elements in 3D (bottom). The level of each element increases from the
initial level i (left) to level i+2 (right).

AMR aims to achieve the same computational error with less elements and
consequently with less memory use and a faster runtime for numerical solvers.
Due to the use of elements with different levels and hence differing sizes the mesh
management becomes more complicated compared to a uniform mesh [21]. In Fig-
ure 2.2, the difference between a uniform and an adaptive mesh is illustrated.

Figure 2.2: This figure shows a uniform mesh on the left and an adaptive mesh
on the right. In the adaptive mesh, a higher level, thus a smaller element size, is
depicted in a darker color.

There are different kinds of AMR like unstructured, block-structured or tree-
based AMR. This thesis explores the topic of tree-based AMR. The core idea of
tree-based AMR is to mesh a domain, for example, with a coarse hexahedron.
Thus, the mesh contains only one element at first. This element is called the root
element. Refining this element, i.e., replacing it with eight smaller hexahedra can
be represented in a refinement tree. The leaves of the refinement tree represent
the elements of the mesh. The refining operation can be repeated arbitrarily. The
root element has level zero. Refining an element increases the element’s level by

5

one.
A refinement space represents one specific mesh and holds all the possible mesh
configurations.

Definition 2.1.2. A refinement space G is a triple (S, ℓ,R), where

• Elements: S is a set of elements,

• Level: ℓ : S → N0 is the level function

• Refinement maps: R = {Rl | l ∈ N0} is a set of refinement maps Rl : S l →
P(S l+1) with S l = ℓ−1(l) and the power set P , such that

(i) there exists exactly one element E ∈ S with ℓ(E) = 0 (the root element)
and

(ii) the image of Rl is a partition of S l+1 :

Rl(E)∩Rl(E′) = ∅ for E ̸= E′ ∈ Sl⋃
E∈Sl

Rl(E) = S l+1 (1)

In the context of tree-based AMR, the level function ℓ of an element E de-
termines its distance to the root element. The refinement map Rl specifies how
to refine an element of level l into multiple smaller ones. In this thesis, only
isotropic refinements are considered. This means that if we refine an element,
we slice it along all dimensions. Using the example of a hexahedron, we slice it
in x- y- and z-direction. In the case of anisotropic refinements, specific dimen-
sions are needed to be determined for cutting. Thus, refining, for example, a
regular-shaped hexahedron in an anisotropic way can result in children who are
not regular-shaped hexahedra. Nevertheless, considering isotropic refinement of a
regular-shaped hexahedron always results in regular-shaped hexahedra. To state
that recursive refinements are valid, the following definition of a refinement is
needed.

Definition 2.1.3. Let S be the set of elements of a refinement space G. A re-
finement K is a subset K ∈ S that is recursively defined by the following two
rules:

(1) K = S0 is a refinement and

(2) if K is a refinement and E ∈ K, then K\E∪Rℓ(E)(E) is a refinement.

It follows that a refinement space containing elements at different levels can be
valid. We say that a mesh fulfills a 2:1 balance-condition, if the level of face neigh-
bors in the mesh differs at most by ±1. If the balance-condition is not fulfilled,
we call the mesh unbalanced. As already mentioned, the focus of this thesis is
on hexahedral elements. Therefore, the following definition explains the faces and
children of a hexahedron. Figure 2.3 illustrates the vertices, edges and faces of a
regular hexahedron.

6

Definition 2.1.4. A hexahedral element E is defined by its eight vertices

E := [v⃗0, v⃗1, v⃗2, v⃗3, v⃗4, v⃗5, v⃗6, v⃗7], (2)

where f0 := [v⃗0, v⃗2, v⃗4, v⃗6] defines the left, f1 := [v⃗1, v⃗3, v⃗5, v⃗7] defines the right,
f2 := [v⃗0, v⃗1, v⃗4, v⃗5] defines the front, f3 := [v⃗2, v⃗3, v⃗6, v⃗7] defines the back, f4 :=
[v⃗0, v⃗1, v⃗2, v⃗3] defines the bottom and f5 := [v⃗4, v⃗5, v⃗6, v⃗7] defines the top face.
The eight hexahedral children H0, . . . ,H7 of the hexahedron E are given by:

H0 := [v⃗0, v⃗01, v⃗02, v⃗03, v⃗04, v⃗05, v⃗06, v⃗07]
H1 := [v⃗01, v⃗1, v⃗03, v⃗13, v⃗05, v⃗15, v⃗07, v⃗17]
H2 := [v⃗02, v⃗03, v⃗2, v⃗23, v⃗06, v⃗07, v⃗26, v⃗27]
H3 := [v⃗03, v⃗13, v⃗23, v⃗3, v⃗07, v⃗17, v⃗27, v⃗37]
H4 := [v⃗04, v⃗05, v⃗06, v⃗07, v⃗4, v⃗45, v⃗46, v⃗47]
H5 := [v⃗05, v⃗15, v⃗07, v⃗17, v⃗45, v⃗5, v⃗47, v⃗57]
H6 := [v⃗06, v⃗07, v⃗26, v⃗27, v⃗46, v⃗47, v⃗6, v⃗67]
H7 := [v⃗07, v⃗17, v⃗27, v⃗37, v⃗47, v⃗57, v⃗67, v⃗7],

(3)

where v⃗ij := v⃗i+v⃗j

2 .

Figure 2.4 shows the children of a regular hexahedron and its orientation. The
given orientation is the underlying orientation of every element that will be intro-
duced in this thesis.

a) b) c)

v0 v1

v2 v3

v4

v v7

e0

e2

e3
e4

e6

e7e10
f0

f2

f4

Figure 2.3: Illustration a) shows the vertices v0, . . . ,v7 of a regular hexahedron.
Part b) depicts the edges e0, . . . , e11 and c) shows the faces f0, . . . ,f5, as defined in
2.1.4.

In the following we define different tree-based AMR specific expressions.

Definition 2.1.5. Let G be a refinement space as determined in Definition 2.1.2
and E,E′ ∈ S.

• E is named the child of E′ if E ∈ Rℓ(E′)(E′). E′ is then called the parent
of E.

• The set C = {C0, . . . ,Ck}= Rℓ(E)(E) forms a family of children of E. From
the point of view of a child Ci with 0 ≤ i ≤ k, the elements in C \{Ci} are
its siblings.

• Refinement maps can be concatenated via Rℓ(E′)−1 ◦ · · · ◦Rℓ(E) to construct
a set D of elements with a higher refinement level than E. The set D

7

possesses the following property: In order to construct an element in D from
the root element, one has to construct the element E at some point. Hence,
if E′ ∈ Rℓ(E)(E) and ℓ(E′) > ℓ(E), then E′ is a descendant of E and vice
versa, E is an ancestor of E′.

H0 H1

H4 H5

H6

H2

X

Z

Y

Figure 2.4: This figure shows the eight children H0, . . . ,H7 of a hexahedron with
the underlying orientation.

2.2 Space-Filling Curves
This chapter discusses discrete space-filling curves (SFC) that lead to a unique enu-
meration of the elements in the mesh [20]. Due to the fact that a mesh can consist
of a multitude of elements, a method to handle mesh management is needed. We
use the concept of space-filling curves to address each element with a unique ID.
Detailed discussions about different space-filling curves are given in [18, 3, 23].
In this thesis, the Morton SFC for hexahedral elements is discussed. The Mor-
ton curve, also called Z-curve because of its shape, was first published in [30] by
Lebesgue for quadrilaterals in 2D and hexahedra in 3D. In Figure 2.5 we see some
examples of the Morton curve on two quadrilaterals and hexahedra.

The following definition explains a space-filling curve in an analytical way.

Definition 2.2.1. Let f : I → En be a continuous map, where En is the n-
dimensional euclidean space, n ≥ 2 and Jn(im(f)) > 0, with the n−dimensional
Jordan-volume Jn then im(f) is a space-filling curve [37].

In [20] Holke worked on a discretized version of a SFC in order to manage a
finite amount of elements of a mesh. Therefore, he defines a SFC index given in
the following definition.

Definition 2.2.2. (Definition 3.13 in [20]) A space-filling curve index on a
refinement space G = (S, ℓ,R), as determined in Definition 2.1.2, is a map

I : S → N0 (4)

that fulfills the following properties for any E,E′, Ê ∈ S :

(i) The map I × ℓ : S → N0×N0 is injective.

(ii) If E is an ancestor of E′ then I(E)≤ I(E′).

(iii) If I(E) < I(Ê) and Ê is not a descendant of E, then I(E)≤ I(E′) < I(Ê).

8

a) b)

c) d)

Figure 2.5: This figure shows the Morton curve on two quadrilaterals and hexahe-
dra. The Morton curve in b) equals the front face of the hexahedron in a). The
same applies to the Morton curve in d) and the front face in c).

Because of the one-to-one correspondence stated in the first point of Definition
2.2.2, an element of S can be uniquely identified with its index and level. Fur-
thermore, because of point two, refining an element cannot lead to a smaller SFC
index. Additionally, refining an element is a local operation, according to point
three.

It is important to emphasize that if K is a refinement in a refinement space S
with a SFC index I, as determined in Definition 2.2.2, then two different elements
of a mesh cannot have the same SFC index:

E ̸= E′ ∈ K⇒ I(E) ̸= I(E′) (5)

A proof of this statement can be found in [20], Proposition 3.14.
Finally, we can define a discrete space-filling curve as an SFC index restricted to
a certain refinement S, I|S : S → N0.

To identify an element in an adaptive mesh we only need its anchor node
and its level. The anchor node of a hexahedral element is the left, front and lower
node of the element.

Example 2.2.1. For example, we discuss a hexahedral elements 1 : 8 refinement.
Let L be the fixed maximum refinement level. Let H = [0,2L]3 be the scaled
unit cube. The root element is given by E = [0,2L]3. All further elements in the
refinement space are given by refining a hexahedron into eight smaller hexahedra.
This refining operation increases the level of the smaller hexahedra by one. The
resulting refinement tree is an octree. Each vertex in the octree, if it is not a leaf
and thus has level l < L, has exactly eight children.
Let G = (S, ℓ,R) be the corresponding refinement space. We can describe the set

9

of elements S in terms of the level and the refinement maps. Starting with the
set S0 = {E}, each set S l of level l can be recursively constructed from S l−1 by
refining each element with the 1 : 8 refinement rule. The union of all S l with
0≤ l ≤ L defines the set S of the refinement space. Thus, let S l be the set of all
sub hexahedra of E with side length 2L−l. The coordinates of each sub hexahedron
are an integer multiple of 2L−l. Thus, their anchor node is given by the left, lower,
front corner A= (r2L−l, s2L−l, t2L−l) and its level l, with r,s, t∈N0, 0≤ r,s, t < 2l.
A graphical illustration of refinement maps is given in Figure 2.6. In terms of the
corner coordinates, we describe the refinement maps Rl in the following way:

Rl((r2L−l, s2L−l, t2L−l)) = {(2r2L−l−1,2s2L−l−1,2t2L−l−1),
(2(r +1)2L−l−1,2s2L−l−1,2t2L−l−1),
(2r2L−l−1,2(s+1)2L−l−1,2t2L−l−1),
(2(r +1)2L−l−1,2(s+1)2L−l−1,2t2L−l−1),
(2r2L−l−1,2s2L−l−1,2(t+1)2L−l−1),
(2(r +1)2L−l−1,2s2L−l−1,2(t+1)2L−l−1),
(2r2L−l−1,2(s+1)2L−l−1,2(t+1)2L−l−1),
(2(r +1)2L−l−1,2(s+1)2L−l−1,2(t+1)2L−l−1)}

(6)

A

2L

2L

2L

R
ℓ(E)

2L−1

0 2L

a) b)

Figure 2.6: In a) on the left, we see the root element E with equal side length
2L and anchor node A. In a) on the right, we can see the regular refinement
archived with the refinement map Rℓ(E). It is valid that Rℓ(E) = R0 because the
root element always has level zero. Illustration b) shows a possible configuration in
the refinement space. The coordinates x,y, and z of each anchor node are integer
multiples of 2L−l and lie within [0,2L]3

2.3 Morton Index For Hexahedral Elements
In [35], G. M. Morton describes the applications of data storage of the Z-curve
(aka Morton curve). Defining the Morton index is generally possible in any space
dimension n on the n- dimensional hypercube with a 1 : 2n refinement. This thesis
mainly discusses the 3-dimensional case with the 1 : 8 refinement as shown in
Definition 2.1.4.

An illustration of a space-filling curve index based on the Morton index, due to
clarity for quadrilateral elements and thus in the case of a 1 : 4 refinement, is given
in Figure 2.7 a). Figure 2.7 b) shows the according representation by a refinement
tree.

The following definition determines the Morton index.

10

a) b)

0

0

49 50 5148

52 564

48

48

Figure 2.7: In a), we see the Morton SFC on a quadrilateral starting at the lower
left element. In b), we see the corresponding refinement tree with the assigned
Morton indexes. The root element always has a Morton index of 0. Every element
is a leaf and is depicted in green. The parent elements are depicted in white.

Definition 2.3.1. Let H be a hexahedron with level l < L and anchor node
A= (x,y,z) ∈ [0,2L]3∩N0. The binary representation of x,y and z is given by:

x =
L−1∑
j=0

xj2j , y =
L−1∑
j=0

yj2j and z =
L−1∑
j=0

zj2j . (7)

With X,Y and Z we define the L-tuples containing the binary digits of x,y and z
respectively:

X = X(H) = (xL−1xL−2 . . .x0),
Y = Y (H) = (yL−1yL−2 . . .y0),
Z = Z(H) = (zL−1zL−2 . . . z0),

(8)

The following theorem states how to compute the Morton index of a hexahe-
dron.

Theorem 2.1. Let G = (S, l,R) be a hexahedral refinement space. Let m : S →N0
be the Morton index of a hexahedron H ∈ S. m(H) is defined by the bit-wise
interleaving of the L-tuples Z,Y and X:

m(H) := Z⊥̇Y ⊥̇X = (zL−1yL−1xL−1zL−2yL−2xL−2 . . . z0y0x0) ∈ [0,23L] (9)

Because of bit-wise interleaving, computing the Morton index of an element is
possible in constant time. As only the anchor node and level of an element are
stored, the Morton index is very memory efficient. It is worth mentioning that
the usage of the Morton index is not restricted to AMR applications. In [11], for
example, the Morton index is used for 2D image encryption.

Figure 2.8 illustrates an exemplary computation of the Morton index. Once,
the Morton index is computed based on bit-wise interleaving and in an alternative
way using the corresponding refinement tree.

2.4 A SFC Index For Forests
In this chapter, we handle the topic of forests. We allow meshes to consist of
multiple different refinement trees. The sum of all refinement trees in a mesh is
called a forest. In 2.4.1, the definition of a forest is given. For a more detailed
discussion about forests of adaptive meshes, see, for example, [4, 20].

11

0 2L = 24

0

E ′

0

24

248

8

⇒ m(E ′) = (111000000000)2 = (3584)10

A′ = (x, y, z) = (8, 8, 8)10 = (1000, 1000, 1000)2a)

b)

Alternative : m(E) = (0500)8 = (320)10

4

A = (x, y, z) = (4, 0, 4)10 = (0100, 0000, 0100)2
⇒ m(E) = (000101000000)2 = (320)10

X

Y

Z

4

Alternative : m(E′) = (7000)8 = (3584)10

A′

A

Figure 2.8: On the left, we see the underlying refined hexahedron. Example a)
shows the calculation of the Morton index of E′ with level 1. Example b) shows
the calculation of the Morton index of E with level 2. In a) and b), two different
methods of calculating the Morton index are given. First, the method defined in
Definition 2.3.1 is shown. Secondly, the alternative method, with the help of the
appropriate refinement tree, is presented. There, the octal system is used because
of the underlying octree.

Definition 2.4.1. Let {S0, . . . ,SS−1} be refinements of respective refinement spaces
G0, . . . ,GS−1. Then, the forest F with trees {Ss}s<S is the set of all leaves of the
individual refinements paired with their tree number s:

F :=
S−1⋃
s=0
{s}×Ss (10)

The elements of F are the leaves of the forest.
It is worth mentioning that the element shapes of the refinement spaces

{G0, . . . ,GS−1} can differ from each other. For example, one tree builds a mesh
with tetrahedral elements, and another tree of the forest builds a mesh with hex-
ahedral elements. Then, this forest describes a hybrid mesh. It can be helpful to
create hybrid meshes in order to approximate complex geometries more precisely.
Generally, we define a maximum refinement level L ∈ N for all elements in a re-
finement S. Then it holds for all elements E that ℓ(E)≤ L.

It is apparent that if a maximum refinement level L exists, it holds RL(E) = ∅
for all E ∈ S and thus S l = ∅ for all l > L.

To obtain the unique identification of each element in a forest, and not only
in one single tree, the Morton SFC index must be extended. This extension is
described in the following definition.

Definition 2.4.2. If for a forest F each refinement space Ss has an SFC index
{Is}, then we extend these to an index I on the leaves of F by

I : F → {0, . . . ,S−1}×N0

(s,E) 7→ (s,Is(E))
(11)

with the order

(s,I) < (s′, I ′) :⇔ s < s′ or (s = s′ and I < I ′) (12)

12

on {0, . . . ,S− 1}×N0, which extends the individual SFC orders across the trees.
By extension of notation we call I an SFC index of forest F . (Definition 3.20 [20])

However, the SFC in a forest has discontinuities when jumping from one tree
to another. Moreover, if the forest holds a hybrid mesh, the connection of differ-
ent trees interrupts the recursive structure of the SFC. Furthermore, this leads to
challenges regarding identifying neighbor elements over tree boundaries. In Chap-
ter 5 the problem of finding neighbors in one tree and inside transition cells is
discussed in detail. In [20], Holke discusses the neighbor-relations of elements over
tree boundaries in Chapter 6.

13

3 Transitioning
In this chapter a transition scheme to resolve hanging nodes on faces in a hexahe-
dral adaptive mesh is presented. First, in Chapter 3.1, we introduce hanging nodes
on faces in hexahedral meshes. After that, we discuss some possible approaches
handling these hanging nodes. One possibility is to insert transition cells. This ap-
proach is the main focus in this thesis and is presented in Chapter 3.3. Afterward,
the SFC index for transition cells is introduced in Chapter 3.4, and the extension
to transitioned forests is given in Chapter 3.5.

3.1 Hanging Nodes On Hexahedral Faces
The following discusses which problems occur when two face-neighbored elements
have different levels. We consider only face-balanced meshes. Consequently, the
level of face-neighboring elements can only differ at most by ±1. This chapter
focuses on hanging nodes on faces while in Outlook, Chapter 7, the problem of
hanging nodes on edges is discussed in detail.

Definition 3.1.1. Let G = (S, ℓ,R) be refinement space. Let E,E′ ∈ S and f be
a face of E and f ′ be a face of E′.

• E is called face-neighbor of E′ at face f , if

E∩E′ = f ′ (13)

is a sub-face of face f .

• If E is a face-neighbor of E′, then E′ is a face-neighbor of E and vice versa.

• E is called hanging, if it has at least one face f such that E has more than
one face-neighbor at f .

• Let Nf = {N0, . . . ,Nk} with N0, . . . ,Nk ∈ S be the set that denotes all face-
neighbors of E at f with |Nf |> 1 and

f = E∩
(⋃

Ni∈Nf

Ni

)
, (14)

then f is a hanging face of E.

• Let Ne = {N0, . . . ,Nk} with N0, . . .Nk ∈ S be the set that denotes all edge-
neighbors of E at e with |Ne|> 1 and

e = E∩
(⋃

Ni∈Ne

Ni

)
, (15)

then e is a hanging edge of E.

Therefore, we say that an element has no hanging nodes, if no nodes exist in
their face centers. Consequently, if an element’s corner node is a hanging node
from the perspective of another element, we do not consider this node a hanging
node. In Figure 3.1, hanging nodes of quadrilateral and hexahedral elements are
illustrated in detail.

14

Element with hanging node

Elements without hanging nodes

hanging node on a face

hanging node on an edgea) b)

Figure 3.1: Illustration a) shows the quadrilateral case with one hanging node,
presented in orange. Illustration b) presents the hexahedral case with, in total,
two hanging nodes on faces (orange) and seven hanging nodes on edges (red).

The irregular index k denotes the maximum difference of refinement levels
between face neighbored elements in the mesh and, consequently, the maximum
number of hanging nodes [1]. In this thesis, we only consider 1-irregular meshes
as a consequence of discussing balanced meshes. It is worth mentioning that all
nodes that lie on the boundary of the mesh cannot be hanging.

Definition 3.1.2. A hexahedral element mesh is conformal if two distinct, non-
disjoint elements intersect at common nodes, edges or faces only. (Definition 2 in
[39])

Thus, a mesh is conformal if it does not contain any hanging nodes.

Definition 3.1.3. If f is a hanging face of an element E and Nf its set of face-
neighbors with |Nf |> 1, then we say that

HE,f := E∩
(⋃

Ni,Nj∈Nf ,i̸=j

(Ni∩Nj)
)

(16)

is the hanging set of E at f . If f is no hanging face of E, then we define HE,f

as the empty set, HE,f := ∅. (Definition. 3.1.3 in [5])

Hence, HE,f is a set containing vertices and edges in 3D. An exemplary set
HE,f can be found in Figure 3.1 in a) in orange and in b) in orange and red.

Especially for the case of a face-balanced mesh, it’s worth mentioning that
HE,f does not always need to contain vertices and edges. There, it can also be the
case, that HE,f only contains vertices. These cases of hanging nodes on edges are
discussed in Chapter 7. In the following, we assume that if HE,f is not empty, it
always contains vertices and edges.

3.2 What Do Other People Do To Solve Hanging Nodes
There are different ways to handle hanging nodes. Generally, there are two different
overall approaches. Whether adapting the numerical solver or transitioning the
mesh, the fundamental decision needs to be made. First, some approaches to
adapting the numerical solver are presented.

One possible way is to adjust the shape functions in the sense of constrained
approximation to ensure continuity. There, the hanging nodes are expressed in

15

terms of their bigger face-neighbor. This approach is prevalent and is discussed in
detail in [36, 13]. An algorithm using constrained shape functions can be found in
[43].

An alternative approach is to not insert refined elements in the mesh but refine
the region of interest by superposing it with a finer layer. This is an entirely differ-
ent approach compared to the conventional approach of adaptive mesh refinement.
In [50], the theory of this approach for 3D elements is given.

In the following, different techniques that modify the underlying mesh are
presented. One possible method is the template-based approach among others
shown by Schneiders in [39]. Schneiders presents transition patterns for a 1 : 9
quadrilateral refinement in 2D and a 1:12 hexahedral refinement in 3D.

In [5], Becker derived another type of transition pattern for a 1 : 4 quadrilateral
refinement out of Schneiders idea and implemented it in t8code. An exemplary
mesh consisting of transition cells presented by Becker can be found in Figure 3.2.
The transition cells shown by Becker consist of triangles. These from Schneiders
consist of regular and non-regular quadrilaterals. What Becker’s and Schneiders’
approach have in common is that they both insert additional nodes. In [24],
they present transition patterns for a 2D quadrilateral mesh without inserting
additional nodes. Evidently, these transition patterns contain different kinds of
elements, such as regular and non-regular triangles and quadrilaterals.

Removing hanging nodes in a 1 : 8 hexahedral mesh proves to be a more difficult
task. Each of the six square faces of a hexahedron can contain hanging nodes.
Furthermore, each of the twelve edges can contain either hanging nodes or not.
This results in ∑6

i=1
(

6
i

)
+∑12

i=1
(

12
i

)
= 4157 different cases that can occur. However,

with the removal of equivalent classes (due to rotation), 325 different cases remain.
In [24], they also present templates for the 3D case without inserting additional
nodes. However, one case exists where no template can be found without inserting
an additional node.

Templates exist that solve the hanging-node problem completely. For example,
in [32], over 325 templates are presented. These transition cells can consist of
prisms, pyramids, hexahedra, or tetrahedra. In 260 of the 325, no additional
nodes were inserted, and in the rest of the 65 patterns, a central node inside
the transition pattern was inserted. This immense selection of different element
types and the massive amount of different templates can lead to an overload of
implementation and decrease the mesh quality.

In this thesis transition templates for a 1 : 8 hexahedral refinement, derived
from the transition patterns from Becker, will be presented. These transition pat-
terns do not resolve hanging nodes completely. Nevertheless, after inserting the
transition templates into the mesh there are no more hanging nodes on faces any-
more. The transition cells presented in this thesis merely consist of pyramids, and
there are "only" 63 different templates used, which is rather a difference compared
to 325 as described above.

3.3 Transition Cells
We call a mesh with inserted transition templates a transitioned mesh. This thesis
considers balanced meshes concerning faces and, hence, face-neighbored elements

16

Transitioning

Figure 3.2: On the left, a non-conforming can be seen. The right side shows
the mesh with inserted transition templates, introduced by Becker in [5]. Each
transition cell adds a central node.

with hanging nodes on faces. Therefore, we end up with 26 = 64 different transi-
tion cells. Figure 3.3 shows each equivalent class of the transition templates. This
also includes the case, where each face of an element contains hanging nodes. In
this particular case, no transition cell will be inserted due to the more extensive
set of elements and one additional node in a transition cell compared to a regular
refined hexahedron. Figure A.1 in Appendix A shows a complete list of all possible
transition cells.

a) one face refined b) two faces refined c) three faces refined

d) four faces refined e) five faces refined f) all faces refined

Figure 3.3: This figure shows the different equivalent classes of transition cells
with hanging nodes on faces.

Definition 3.3.1. Let E = [v⃗0, v⃗1, v⃗2, v⃗3, v⃗4, v⃗5, v⃗6, v⃗7] be a regular hexahedron. The
transition cell T of E consists of a subset of set S consisting of 30 different pyramid
shaped subelement children. The top of each pyramidal subelement is in the
center, v⃗07, of E. The square base sides of each pyramid are either given by the
faces f0, . . . ,f5 of E, or by the corresponding refined square faces, that cause the
hanging nodes.
Each transition cell of E can be constructed from this pyramid shaped subelements.

One subelement can be described by three indices i, j and k. The first index
i ∈ {0,1,2,3,4,5} equals the face of the hexahedron where the base side of the
pyramid lies. The index j ∈ {0,1,2,3} enumerates the pyramids of the hexahedral
face fi. If the face is split, j provides information about which pyramid of the four

17

is possible according to the coordinate system given in 2.4. The index k ∈ {0,1}
thereby denotes whether the subelement is split (k = 1) or not (k = 0). In Figure
3.4, two subelements with their according describing indices inside a transition cell
are shown.

S021

S100

hanging edge

Figure 3.4: This figure shows a split subelement S021 in green on hexahedral face
f0 and a non-split subelement S100 in gray on hexahedral face f1. One (of four)
occurring hanging edge inside the transition is shown in red.

In Definition 2.1.1 a legal discretization is defined. Thus, when transitioning
a mesh, we have to make sure that inserting the transition cells, presented in
Figure 3.3, does not violate these conditions. Therefore, we have to ensure that a
transition cell T of an element E fulfills the following properties:

(i) E = ⋃
Sijk∈T Sijk

(ii) Sijk ̸= Slmn ∀ Sijk,Slmn ∈ T with ijk ̸= lmn

(iii) if Sij0 ∈ T ⇔ Sij1 /∈ T

Regarding (i): Considering the construction of T as determined in Definition 3.3.1,
condition (i) is trivially fulfilled. Condition (ii) is also trivial due to the construc-
tion of T , and condition (iii) is obviously valid because a subelement can not be
split and not split at the same time.

Each transition cell is assigned to exactly one transition type t. The tran-
sition type is a six-digit binary number that defines how the transition cell is
composed. Thereby denotes ti with 0≤ i≤ 5 the i-th digit of t. If ti equals 1, the
face fi of the corresponding hexahedral element E is a hanging face. Thus, there
are four split pyramidal subelements with the base side on face fi. The different
equivalent classes of transition types are also shown in Figure 3.3.

Definition 3.3.2. A hexahedral refinement map with transition cells is
a map Rl

t(E) : Sl → P(Sl+1) that maps an element E ∈ S, with S as the set of
elements of the underlying refinement space, of level l to a transition cell of type
t with 0≤ t≤ 63. If t = 0, Rl

t = Rl ,as in Definition 2.1.2, Rl
t fulfills the following

properties:

(i) Rl
t(E) = T if t > 0 and Rl

t(E) = C if t = 0 and

(ii) if E is a subelement, then Rl
t(E) = ∅ for all t.

18

(c.f. Definition 3.3.4 in [5])

It is essential to say that because of property (ii), a subelement can not be
refined any further. With the given refinement map, we are now able to define a
refinement space for transitioned meshes.

Definition 3.3.3. The hexahedral refinement space for transitioned meshes
Ĝ is given by:

• The set S = {E|E is a descendant of E with 0≤ ℓ(E)≤L} of elements, that
are either hexahedral elements or pyramidal subelements. E thereby denotes
the root element.

• The level map ℓ : S → N0, defined as the distance of E to the root element
E .

• The refinement maps R = {Rl
t|l ∈ N0 and 0 ≤ t ≤ 63}, where t denotes the

transition type.

3.4 SFC In Transition Cells
Inserting transition cells brings irregularities. Therefore, one remaining task is to
adjust the SFC index according to a transitioned mesh. The goal is to modify
the Morton index in such a way that we achieve a unique enumeration of the
elements and subelements. If element E is hanging and thus will be replaced by
the corresponding transition cell T , the subelements of T need to follow a specific
enumeration. Therefore, we define the subelement index in the following definition.

Definition 3.4.1. Let S be the set of elements of a refinement space Ĝ as described
in Definition 3.3.3. The subelement index is a mapping s : S → N0 with the
following properties:

• If {S} is the set of subelement of a transition cell T , then
s : {S}→ {0, . . . |T |−1} is bijective.

• If E is a no subelement, then s(E) := 0.

The subelement index is based on the orientation given by the coordinate
system in Figure 2.4. Therefore, if Sijk is a subelement of a transition cell T , the
subelement index of Sijk can be computed in the following way:

s(Sijk) =
i∑

l=0

(
χl ̸=i · (4χS01l∈T + χS00l∈T)

)
+ j, (17)

where χ denotes the indicator function. The calculation can be explained as
follows: We have to calculate how many subelements exist in the transition cell be-
fore Sijk itself. Before is meant in the context of the given orientation, in this case,
from left to right, then from front to back and at least from the bottom to top. If
χl ̸=i = 1 we know that we must sum up the elements on face l. It can either be the
case that the face l is split, then χS01l∈T = 1 and χS00l∈T = 0 and four subelements
have to be taken into account. Otherwise, face l is not split, and thus, there is
one subelement with base side on face l, and thus, χS01l∈T = 0 and χS00l∈T = 1.

19

f0
f1

f5

f4

f2

f3

S431

S300

⇒ s(S431) = 4 + 1 + 1 + 1 + 3 = 8

⇒ s(S300) = 4 + 1 + 1 = 6

Figure 3.5: This figure shows an expanded view of a transition cell T with tran-
sition type t = (100010)2 = 34. Exemplary two different subelement indices are
computed. Subelement S431 is the third (j = 3) split subelement (k = 1) with base
side on hexahedral face f4 (i = 4). Due to t, we sum up all elements up to face f3
(inclusive) and then add j = 3. Hence, S431 is the eighth element in T . The calcu-
lation follows analogously for subelement S300 that is non-split (j = 0 and k = 0)
with the base side on the hexahedral face f3 (i = 3). The color scheme of the split
subelements is based on the underlying orientation.

The index j is only not equal to zero, if the face is split and hence only takes
into account if k = 1. For clarification, see an example of an expanded view of a
transition cell with transition type 100010 = 34 in Figure 3.5.

The following required step is to define the Morton index for subelements. The
key concept here is that if the element E got transitioned into a transition cell T ,
the Morton index of all subelements S of T is the same as the Morton index of
E. That means if S ∈Rl

t(E) is a subelement out of a transition cell T with parent
element E. Then with the Morton index m it applies that

m(S) = m(E). (18)
It is important to keep in mind that if an element E gets transitioned, the

anchor node of E keeps unchanged. Furthermore, it is valid that if two elements
E,E′ have the same Morton index, they are both subelements in the same tran-
sition cell. That means that we can not identify a subelement uniquely by the
Morton index and level. Additionally we need the subelement index computed in
equation (17).

Figure 3.6 shows exemplary how the Morton curve looks in a transition cell
with transition type t = 32.

3.5 A SFC Index For Transitioned Forests
The property of the uniqueness of the Morton index, introduced in 2.3.1, is not
fulfilled in transitioned forests because each subelement in a family has the same
Morton index. Therefore, it is necessary to use the subelement index to obtain a
global unique encoding of elements in a transitioned forest. The following definition
describes the Morton index for transitioned forests.

20

. . .
C0 C7 S001 S011 S021 S031 S100 S200 S300 S400 S500

Figure 3.6: This figure shows the Morton curve inside a transition cell on the left
and the corresponding refinement tree on the right. For clarity, the Morton curve
does not go through the midpoint of each subelement but through the midpoint of
each base side. Furthermore, for illustrative reasons, not every element is depicted
in the refinement tree on the right.

Definition 3.5.1. Let {mk}k<K be the Morton indices of refinement spaces
{G0, . . . ,GK−1} within a forest F . The Morton index for transitioned forests It

is given by:

It : F → {0, . . . ,K−1}×N0×N0

(k,E) 7→ (k,mk(E), sk(E))
(19)

with the order:

(k,m,s) < (k′,m′, s′)⇔k < k′∨
(k = k′∧m < m′)∨
(k = k′∧m = m′∧ s < s′)

(20)

on {0, . . . ,K−1}×N0×N0. This procedure extends the SFC index across transi-
tion cells. It is then called the SFC index of the transitioned forest F

Proposition 3.5.1. Let F be a transitioned forest with SFC index It from Defi-
nition 3.5.1. Let N be a finite number of leaf elements in F . Then, there exists a
unique bijective map

ItF : F → {0, . . . ,N −1} (21)
that is monotonous under It, thus

(k,It(k,E), sk(E)) < (k′,It(k′,E′), sk′(E′))⇔ItF (k,E) < ItF (k′,E′) (22)

([5])

A proof can be found in [5], Proposition 3.4.1.

21

4 Implementations In t8code

As mentioned in the Introduction of this thesis, we present an implementation of
a transition scheme in the open-source software t8code. In this chapter, we give a
brief overview of the t8code library. The algorithms of t8code are subdivided into
high- and low-level algorithms. High-level algorithms are mesh-specific algorithms.
That means they operate on the whole mesh, such as new, adapt, balance, and
partition presented in the next chapters. Low-level algorithms, however, are
element-specific algorithms. Every low-level algorithm is labeled with the prefix
t8_element. This means that they operate on a specific element in the mesh.
One advantage of t8code is that the high-level algorithms are detached from the
low-level algorithms and vice versa.

4.1 High-level Algorithms Of t8code

In the following the high-level algorithms new, adapt, balance, partition are
presented.

4.1.1 New

The starting point is always an initial uniform refinement of a mesh, the coarse
mesh. This initial mesh can be computed via the new algorithm. This mesh
contains all of the root elements of a forest. For the new routine, it is necessary to
specify an initial level that determines the size of each root element.

4.1.2 Adapt

The adapt algorithm is the key-algorithm of t8code. In order to refine and coarsen
different areas of a mesh, the adapt algorithm is used regarding a given refinement
criterion. According to the SFC, the adapt routine iterates over every mesh el-
ement. The refinement criterion then decides whether the element should stay
unchanged, be refined to the next higher level, or be coarsened to the next lower
level. This refinement rule can be represented with the following refine function φ
where S is the set of elements and E ∈ S:

φ : S → Z
E 7→ {−1,0,1}

(23)

The interpretation of the values −1,0 and 1 is given as follows:

φ(E) =


−1 E and its siblings should be coarsened to its parent
0 E should stay unchanged
1 E should be regularly refined into its children

(24)

In the case of φ(E) =−1, the element and its n siblings, in terms of SFC so-called
successors, have to be coarsened to their parent element. Thus, a whole family,
which is the element itself and its siblings, will be coarsened into their parent
element. In order to get the parent of an element, the function t8_element_parent
is implemented. This example of a low-level function is discussed in detail in
chapter 4.2. In applications, it is possible that different refinement rules are applied

22

after another. In this context it is essential to note that the refinement rule is a
user-provided function.

4.1.3 Balance

t8code offers the opportunity to balance the mesh with a 2:1 face-balance condi-
tion via the balance algorithm. That means that all face-neighbor levels differ
at most by ±1, see Chapter 2. It follows that in balanced meshes the number of
face-neighbors is limited. In the case of a hexahedral balanced mesh, the number
of possible face-neighbors is at most four. Hence, the number of possible occur-
ring hanging faces is also restricted. Nevertheless, it is essential to mention that
there are also applications that manage an arbitrary number of hanging nodes at
elements with a differing refinement level greater than one, see [17] for example.

A balanced mesh can be beneficial for numerical applications because it sim-
plifies the interpolation schemes and reduces the number of neighboring processes.
The refinement criterion presented in chapter 4.1.2 is based on error estimation
and/or geometric constraints. Therefore, the resulting meshes may not fulfill the
balance condition. For this reason, the core algorithms t8_adapt and t8_balance
are decoupled in t8code. First, the mesh is adapted, and afterwards, it is up to
the user to call the balance algorithm. Thus, it depends on the application if a
balanced mesh is valuable or not.

The input of balance is an arbitrary forest. The output is a forest that ful-
fills the balance property. To detect the level differences between face-neighbors,
t8_balance uses similar low-level algorithms as t8_adapt. Hence, finding neigh-
bors in a forest is a key feature of the balance algorithm. It is important to note
that t8_balance never coarsens any elements to preserve the desired accuracy.

t8_balance iterates through every element of the starting forest F0 and verifies
whether face-neighbors have a larger level that differs more than 1. If so, the
children of the elements children are added into a new forest Fi+1, which is created
in every iteration. If not, the element itself is added into Fi+1. These refinement
steps are repeated until the current forest does not change anymore. The final
forest is denoted by F̂ . The pseudo-code of t8_balance is given in Algorithm
8.2.1 in [20]. Furthermore, the proof that the algorithm terminates and produces
a balanced forest is given in Proposition 8.1 in [20]. In Figure 4.1, you can see an
example of t8_balance on a hexahedral mesh.

1. iteration 2. iteration

F0 F1 F2 = F̂

a) b) c)

Figure 4.1: This figure shows two iterations of t8_balance. In a) and b), the
mesh is unbalanced. The mesh shown in c) fulfills the face-balance condition. The
elements that are refined in each iteration step are depicted in green.

23

4.1.4 Partition

t8code allows the distribution of the forest among multiple processes to ensure
applications’ scalability. To avoid an unbalanced distribution, partition spreads
the forest elements evenly over the processes. An evenly distributed workload
for each process is the goal of partition. In [9], the partition of a coarse mesh
is discussed in detail. The following definition shows how partition divides N
elements over P processes:

Definition 4.1.1. Let F be a forest with N leaves. Let IF ∈ {0, . . . ,N − 1} be
the consecutive Morton index. Then the process i ∈ {0≤ i < P} has the elements
F(i):

F(i) :=
{

(k,E) ∈ F
∣∣∣∣ ⌊

N · i
P

⌋
≤ IF (k,E) <

⌊
N · (i+1)

P

⌋}
(25)

Thus, the SFC index induces a straight-forward allocation to load-balance the
leaves of a tree across multiple processes.

Note that after adapting a forest the amount of elements changes and thus
may not be partitioned equally anymore. Then, it might be necessary to migrate
elements from one process to another. This procedure is called re-partitioning.
In [20], Holke presents numerous numerical results. In [8, 22], the scalability of
t8code is analyzed. The authors validated the scalability of thousands of processes
of supercomputers such as, among others, JUQUEEN consisting of 28,675 compute
nodes, each with 16 IBM PowerPC-A2 cores at 1.6 GHz at the research center
Jülich, Germany.

The last high-level algorithm of t8code is the ghost algorithm. t8_ghost
enables the exchange of information about the boundary elements of different
processes. t8_ghost will not be discussed further here because, at this time,
transitioning forests on multiple processes is a future project and has not been
implemented yet. The reader is referred to [20] where t8_ghost is discussed in
detail in Section 7.

In Chapter 4.3, a new high-level algorithm t8_transition is presented.

4.2 Fundamentals For Transition Cells In t8code

In this chapter, some fundamentals of transition cells used by low-level algorithms
to enable the high-level transitioning algorithm are presented. A selection of low-
level algorithms, showing key principles of t8code, are shown here. Each low-level
algorithm in t8code is labeled with the prefix t8_element. In Chapter 4.2.1, the
binary encoding of transition cells is presented. After that, in Chapter 4.2.2, the
subelement ID type is introduced. Finally, in Chapter 4.2.3, adjustments of the
element structure are presented.

4.2.1 Transition Type

In order to remove hanging faces in a non-conformal hexahedral mesh, they must
first be identified. Each element with hanging faces will be refined into the cor-
responding transition cell, consisting of a set of pyramids. These pyramids are
called subelements. It is important to mention, that a subelement can not be
refined again. Therefore, if, however, a transition cell is refined according to

24

the refinement rule, it will be coarsened to its parent first. That means that
all subelements will be removed in this operation. Then the parent element will
be refined into its children. The function t8_element_parent maps an element
to its parent. The reverse routine t8_element_children maps an element to
its children. Consequently, a transition cell can never be a parent element. If
t8_element_children is called with a subelement, it always returns the chil-
dren of its parent element, thus regular hexahedral elements. In Figure 4.2, the
functionalities of t8_element_parent and t8_element_children with a regular
refinement and a transition cell are illustrated.

t8 element children(E)

t8 element parent(Ci)

t8 element parent(Si)

C0 C1

C4 C5

C6 C7

C2 C3

2
L−(l+1) 2

L−l

2L−(l+1) 2L−(l+1)

AE

AT

t8 element children(Si)

AC0
AC1

AC4

Transition type of T :

Binary concatenation:
f0 f1 f2 f3 f4 f5

0 0 0 0 0 1

Decimal representation: 0000012 = 110

T :

Figure 4.2: This figure shows how the functions t8_element_children and
t8_element_parent work with regular refinement and transition cells. For rea-
sons of clarity only two anchor nodes of the regular children Ci are depicted. Note
that T only has one anchor node.

Definition 4.2.1. Let E be a 3D hexahedral element and b0, b1, b2, b3, b4, b5 ∈
{0,1}. Let bi,0≤ i≤ 5 represent the boolean parameter, stating whether the face
fi of E is hanging or not. Then the binary concatenation (b0b1b2b3b4b5)2 is called
the binary transition type of E. We often refer to the decimal representation
of this binary encoding in the following.

Therefore, there are 26 = 64 different transition types possible. A selection of
different transition types is shown in Figure 3.3. It is important to mention that
the transition types (111111)2 = 63 (shown in Figure 3.3 f)) and (000000)2 = 0 are
special cases. If all faces of a hexahedron are hanging we do not insert a transition
cell. We refine the element with the regular 1 : 8 hexahedral refinement. If the
transition type equals zero, we do not insert any transition cell because the element
is not hanging.

Hence, all geometrical properties that specify the transition cell can be derived
from the transition type. To be more precise, the transition type implicitly deter-
mines every vertex, edge and face of the transition cell. Thus, the transition type
determines the refinement map Rl

t that has to be applied to remove hanging faces.

25

4.2.2 Subelement ID Type

This chapter focuses on the subelement ID type. The subelement ID type is a
three-digit binary number derived from the transition type of a transition cell
and the subelement ID of a subelement. The subelement ID type indicates for
split subelements where the subelement is located in the transition cell. To be
more precise, that means that the subelement ID type states whether the split
subelement lies on the left/right side, on the front/back, or at the bottom/top of
the four split subelements on this face. For non-split subelements, the subelement
ID type is always zero.

Definition 4.2.2. Let E be a 3D hexahedral element and b0, b1, b2 ∈ {0,1}. b0
states whether the subelement base side lies on the left (b0 = 0) or right (b0 = 1)
side of the hexahedral face. Analogously b1 states whether the subelement base side
lies on the front (b1 = 0) or back (b1 = 1) and b2 states whether it lies on the bottom
(b2 = 0) or top (b2 = 1). Then the binary concatenation (b0b1b2)2 ∈ {0, . . . ,7} is
called the binary subelement ID type of E. We often refer to the decimal
representation of this binary encoding in the following.

The binary subelement ID type can contain at most two ones. That means
that the binary subelement ID type (111)2 = 710 is not possible, because the base
side of a subelement cannot lie on the right, back and top side simultaneously
because it is a 2D quadrilateral face. Moreover, this implies that not every subele-
ment ID type is possible for each hexahedral face fi. For example, if face f0 of
a transition cell T is split, the sublements with base side on f0 can either be in
the front/back or on the bottom/top but trivially not on the left/right. Thus, the
subelement ID type of face f0 is between 0 (front and bottom) and 3 (back and
top). The following stype(Sk) denotes the subelement ID type for subelement Sk.
It is worth mentioning that a subelement ID type can be zero even if the subele-
ment is split, but if it is not the type is always zero. For clarification, see Figure 4.3.

S4

stype(S4) = 0

stype(S10) = (000)2 = 0

stype(S1) = (010)2 = 2

stype(S8) = (001)2 = 1

a) b)
face

stype

f0, f1

{0, 1, 2, 3}

f2, f3 f4, f5

{0, 1, 4, 5} {0, 2, 4, 6}

Figure 4.3: Illustration a) shows the computation of different subelement ID types
of a transition cell with transition type t = (100110)2 = 38. stype(S1) = 2 because
S1 lies in the back and bottom. stype(S4) = 0 because this subelement is not split.
stype(S10) = 0, thus, the subelement ID type can be zero even if the subelement is
split. Part b) shows a table of all valid subelement ID types for the corresponding
faces.

To compute the subelement ID type, the subelement ID is needed and the un-
derlying transition type needs to be analyzed. The corresponding pseudo-code is

26

given in Appendix A.

4.2.3 Adjustment Of The Element Data Structure

As described in Chapter 2, each element in t8code can be uniquely determined
by its anchor node A and level l. Thus, for each element in t8code its level and
anchor node are stored. However, inserting transition cells into a mesh, brings
irregularities. Therefore, the element data structure has to be extended.
In a transitioned hexahedral mesh all routines have to manage hexahedral and
pyramidal element types. Thus, we need an element data structure that differen-
tiates the standard hexahedral elements between pyramidal subelements. In order
to do so, the element data structure is extended by two additional parameters,
the transition type (transition_type) and the subelement ID (subelement_id).
The anchor node, level, transition type, and subelement ID offer all required in-
formation for implementing the transition algorithm in t8code. An overview of
the new element data structure can be seen in Table 1.

Component Declaration
A The anchor node A ∈ {0,1, . . . ,219}3 defining the

left, front, lower corner of the hexahedral element,
given by E.A.

l The refinement level l ∈ {0, . . . ,19}, E.l. In t8code
the maximum refinement level for all hexahedral
elements is L= 19.

transition_type If E = Sijk is a subelement in a transition cell T ,
E. transition_type describes the transition type
of E in the sense of Definition 4.2.1. Thus, if E
is no subelement E.transition_type is equal to
zero.

subelement_id If E = Sijk is a subelement in a transition cell T ,
E.subelement_id describes its location within the
transition cell T in the sense of Definition 3.4.1. If
E is no subelement E.subelement_id is equal to
zero.

Table 1: This table shows the element data structure within a transitioned mesh
extended by the transition type and the subelement ID.

It is worth mentioning, that the Morton index is not stored explicitly in the
element struct but in the subelement ID. It is important to bear in mind, that
when an element gets refined into a transition cell, the resulting subelement takes
over the anchor node and the level of its hexahedral parent element.

Remark 1. Compared to Becker’s work [5], we do not store the flag is_sub to
minimize the memory effort. The flag is_sub is true if the element is a subelement
and false otherwise. We do not store this flag because we can derive its informative
value through the transition type. If the transition type is greater than zero, we
know that the element is a subelement and the flag is_sub is no longer needed.

27

4.3 Implementing Transition Cells In t8code

To finally implement t8_transition, we need to introduce some essential algo-
rithms. t8_transition iterates through a given forest and exchanges elements
with hanging faces with suitable transition cells.

Therefore, we first need to implement a function that computes the transition
type t. Thus, this function specifies a refinement criterion whether, and if yes,
which transition cell needs to be inserted. This function is called
t8_element_compute_transition_type and gets as input an element E and the
corresponding forest F and returns the underlying transition type.

4.3.1 t8_element_compute_transition_type

t8_element_compute_transition_type, shown in Algorithm 1, uses the function
t8_element_face_neighbor, provided by t8code, that returns a virtual face-
neighbor of an element at a specific face. This virtual face-neighbor has the same
level as the element itself. The idea of t8_element_compute_transition_type is
to check whether a descendant of this virtual face-neighbor does exist in the mesh.
The function t8_element_has_leaf_desc can do this. If this function returns
true, a hanging face is identified, and thus, a bit-shift by one is performed.

Algorithm 1: Compute the transition type t of an element E

Data: A forest F and an element E
Result: Transition type t ∈ {0, . . . ,64}
t8_element_compute_transition_type(F ,E)
begin

t← 0
// iterate through every face

for 0≤ f < P8EST_FACES do
// create virtual face-neighbor

Nn← t8_element_face_neighbor(F ,E,f)
// Check if descendant of virtual face-neighbor exists

if t8_element_has_leaf_desc(F ,Nn) then
t← t+1 << ((P8EST_FACES−1)−f)

end
end
// If t > 0 increase it by one to avoid t = 1

if t > 0 then
t← t+1

end
return t

end

Looking at the definition of the refinement rule in equation (23), we see that
if φ(E) = 1, we interpret it as the element E should be refined into its regular

28

children. Therefore, we do not want to allow the transition type 1, computed in
Algorithm 1 and increase it by one if its greater than zero.

Remark 2. It is important to mention, that t8code uses some implementations
of the p4est library by Carsten Burstedde from the University of Bonn [10]. The
p4est library contains implementations for quadrilateral refinement in 2D and
hexahedral refinement in 3D. The data structure for the 3D hexahedral elements,
called p8est arises from the two-dimensional quadrilateral structure by extending
with a third coordinate z. The macro P8EST_FACES defines the number of faces
of a hexahedron. Thus, it equals 6. Analogously, the macro P4EST_FACES defines
the number of faces of a quadrilateral which is 4.

4.3.2 t8_element_num_subelements

If the computed transition type t of an element E is greater than zero, to be more
precise, if t > 1, E needs to be refined into a transition cell, and thus, a family of
subelements arises. Therefore, the data structure of E needs to be adjusted, like
in Table 1.

The number of subelements, and thus the number of siblings in a transition cell
that form a family, depends on its transition type. The function
t8_element_num_subelements gets as input data a transition type t and returns
how many subelements in the corresponding transition cell exist, see Algorithm 2.

Algorithm 2: Counts the number of subelements in a transition cell with
transition type t

Data: A transition type t
Result: Number of subelements num_subs ∈ {0, . . . ,24}
t8_element_num_subelements(t)
begin

num_subs← 0
HE ← 0
// Iterate through every face of element E

for 0≤ i < P8EST_FACES do
// Count hanging faces of E

HE ←HE +
(
t and (1 << i)

)
>> i

end
num_subs← P8EST_FACES+HE ·3
return num_subs

end

t8_element_num_subelements iterates through the faces of the element and,
thus, through the binary representation of the given transition type t. While iter-
ating t and (1 << i) checks whether the i-th position of t equals one or zero. The
operator and means the bit-wise and-operation here. The right-bit-shift executed
afterward transforms the received number to one if it’s not equal to zero. The
amount of subelements is stored in num_subs and the amount of hanging faces is

29

stored in HE . The amount of subelements is then the amount of faces of E, six,
plus the amount of hanging faces times three, because one element of each face is
already counted.

4.3.3 t8_element_initialize_transition_cell

The following Algorithm 3 shows the initialization of a family of subelements that
forms a transition cell. The function is called
t8_element_initialize_transition_cell. The amount of subelements in a
family can differ and is computed by t8_element_num_subelements, shown in
Algorithm 2.

While initializing, the anchor node and level of the parent element E are handed
over to each subelement and remain unchanged. Naturally, keeping the level un-
changed does not fit the definition of transitioned refinement maps. However, it
is necessary because it simplifies the implementation in some parts, for example,
when identifying neighbors in the transitioned forest. Additionally, keeping the
anchor node unchanged does not match the underlying idea but it also simplifies
the implementation in many places.

Moreover, the unique identification of an element is also given in the transi-
tioned forest because of the assigned subelement ID and transition type of each
element. Therefore, the enumeration of subelements follows the SFC index for
transitioned forests from Definition 2.4.2. In Figure 4.4, the initialization of a
transition cell is illustrated.

Algorithm 3: Initialize a family of subelements that form a transition
cell of an element E.

Data: A hexahedral element E and its transition type t

t8_element_initialize_transition_cell(E,t)
begin

for 0≤ i < t8_element_num_subelements(t) do
S[i].A← E.A
S[i].l← E.l
S[i].transition_type← t
S[i].subelement_id← i

end
return S[]

end

The general refinement function φ, introduced in equation (23), maps each
element E either to −1, which means E shall be coarsened, to 0, which means E
shall remain unchanged or to 1, which means that E shall be regularly refined. In a
transitioned forest, we may not want to refine all elements regularly but irregularly
into a transition cell. Therefore, we extend the general refinement function to φt

to allow returning values higher than one, in particularly to the transition types.

30

φt : S → Z
E 7→ {−1,0,1,2, . . .}

(26)

with

φt(E) =


−1 E and its siblings should be coarsened to its parent
0 E should stay unchanged
1 E should be regulary refined into its children
> 1 E should be refined into a transition cell

(27)

where φt(E) = k > 1 indicates that the element E has to be refined into
the transition cell with transition type k− 1. The definition of φt justifies why
t8_element_compute_transition_type, shown in Algorithm 1, does not return
transition type 1 because then it would be ambiguous whether the element should
be refined regularly or into a transition cell.

t8 element initialize transition cell(E, 16)

AE AT

Figure 4.4: This figure shows an example of the function
t8_element_initialize_transition_cell of a transition cell T with tran-
sition type 16, that means only the right face, f1 of E, is hanging. It
applies that t8_element_num_subelements(E) = 9,AE = AT , ℓ(E) = ℓ(T) and
t8_element_compute_transition_type(F ,E) = (010000)2 = 16.

4.4 Transition

Now, the presented algorithms can be merged into a general routine, called
t8_transition, that removes hanging faces out of a balanced forest.
t8_transition works similarly to the balance algorithm presented in Chapter
4.1.3.

Let F be a forest that got modified by t8_balance. t8_transition copies
the forest F to F∗ and iterates through the elements of F∗. If t8_transition
identifies an element E with at least one hanging face, it exchanges it with the
corresponding transition cell T , according to the rule F∗←F∗\E ∪T . In Algo-
rithm 4 t8_transition is presented .

Remark 3. All elements of a tree Ki in a forest F∗ are stored in an element array.
In Algorithm 4 the array Ki.elements stores every element of the tree Ki. Thus,

31

all elements of F∗ are stored in an element array of the corresponding tree. The
elements in Ki.elements are stored in Morton-SFC order.

Algorithm 4: Remove all hanging faces of a given forest F and return
the transitioned forest F∗

Data: A balanced forest F
Result: A transitioned forest F∗

t8_transition(F)
begin

// Copy F to F∗

F∗←F
// Iterate through the trees of F∗

for Ki ∈ F∗.trees do
// Iterate through the elements of tree Ki

for 0≤ j < |Ki| do
// Get the j-th element of Ki and store it in E

E←Ki.elements[j]
// Compute the transition type

t← t8_element_compute_transition_type(F∗,E)
// Check whether E needs to be transitioned or not

if t > 0 then
// Get the corrected transition type

t← t−1
// Exchange E by its corresponding transition cell
Ki.elements[j]←
Ki.elements[j]\E∪t8_element_transition(E,t)

end
end

end
return F∗

end

More low-level functions are needed to implement the t8_transition in t8code.
One crucial algorithm is, of course, computing the coordinates of the subelements.
This is achieved with the function t8_element_vertex_coords_of_subelement.
The coordinates of the subelements are given in Definition 3.3.1.

Figure 4.7 shows the different call-pipelines of high-level algorithms in t8code
with enabling transition cells on the right and without them on the left. It is
essential to bear in mind, that the balance algorithm is optional in the non-
transitioning case but mandatory if the user wants to transition its mesh.

Furthermore, we see that if the high-level algorithm t8_transition is called
before t8_adapt, then t8_adapt is likely to deal with a transitioned forest, thus
with a mesh containing regular hexahedra and subelements in pyramid shape.
Consequently, we must consider how t8_adapt works on a transitioned forest.
Thus, if an element E shall be coarsened into its parent E, all of its siblings shall

32

be coarsened, too.
Figure 4.5 depicts an exemplary adapted and then transitioned mesh.

If E is a subelement, the number of siblings in the transition cell has to be
determined. This is done by the function t8_element_num_siblings presented in
the following Algorithm 5 that uses the function t8_element_num_subelements
shown in Algorithm 2.

Algorithm 5: Return the number of siblings of an element E

Data: An element E
Result: Number of siblings of E

t8_element_num_siblings(E) begin
// Check if E is a subelement

if E.transition_type > 0 then
return t8_element_num_subelements(E.transition_type)

else
return P8EST_CHILDREN

end
end

t8_element_num_subelements first examines whether the input element E is
a subelement or not. If it is a subelement, its transition type is greater than zero
and the amount of subelements gives the number of siblings in the corresponding
transition cell. If E is a regular hexahedron, the number of siblings is always eight,
which equals P8EST_CHILDREN.

Now, a function can be constructed that states whether a set of elements forms
a family. The pseudo-code of this function t8_element_is_family is presented
in Algorithm 6.

The presented algorithm has a performance advantage compared to the algo-
rithm presented in Becker’s work [5]. Becker constructs the parent element of
the first element of the element set E[]. That means if E[0] is a subelement, the
transition type and the subelement ID of E[0] are set to zero. Then, he builds
the parent element’s transition cell according to the transition type of E[0]. If E
is no subelement the function t8_element_parent, shown in Figure 4.2, is used,
and the children of the parent element are constructed via t8_element_children.
After that, he inspects if, in the case of a subelement, the transition cell or in case
of no subelement, the set of regular children is equal to the input set of elements.
If true, they form a family; if not, the elements are not siblings. Analyzing this
approach, it is apparent that in every scenario, a parent element is constructed,
and then the resulting children of this parent element. It follows that at least eight
children and one parent element are built, in every scenario. Additionally, two sets
of elements need to be compared.

In the approach presented in Algorithm 6 there is an initial screening to see if
element E[0] is a subelement or not. If true, we already know that the following
#num_siblings, which equals the amount of elements in E[], are its siblings and

33

therefore we can quit the function prematurely without constructing additional
elements.

Algorithm 6: Check if a set of elements E[] form a family or not

Data: A set of elements E[]
Result: True if E[] forms a family, false if not
t8_element_is_family(E[]) begin

// Check if E[0] is a subelement we assume to be the following
num_siblings its siblings

if E[0].transition_type > 0 then
return TRUE

// If the first element is no subelement we check the following seven
elements

else
// If any of the following elements is a subelement, E[] can not

form a family
if E[i].transition_type > 0 for any 1≤ i≤ 7 then

return FALSE
else

return p8est_quadrant_is_family(E[])
end

end
end

The pseudo-code of how to transition an adapted forest is given in [5], Algo-
rithm 7. Therefore, we only sketch the procedure here. Since we have to iterate
through all elements of the input forest F to obtain the transitioned and adapted
forest F∗, we first copy F into F∗. Afterward, we iterate through all trees and
then through all elements of the tree. Subsequently, we compute the refinement
value of each element according to the user-defined refinement rule. After that, we
check whether the element is a subelement. If it is a subelement, it first has to be
coarsened into its parent. Thus, the refine value gets updated to −1, which means
coarsen; see Figure 4.2 for explanation. Afterward, an inspection is required to see
whether the refine value is equal to minus zero (Case 1), equal to zero (Case 2),
equal to one (Case 3), or greater than one (Case 4).

Case 1: The element and its siblings should be coarsened into its parent. That means
the number of siblings has to be determined. This is done by
t8_element_num_siblings shown in Algorithm 5. Then a family check, see
Algorithm 6, is done, and if the family is identified, all children are replaced
by its parent element in the new forest F∗. Afterward, the element-iterator
increases by the number of siblings. If the family check is not successful,
nothing happens, and the element-iterator increases by one.

34

Figure 4.5: On the left, we see a two-times adapted mesh. In every adaptation
step, the element with element ID zero was refined. t8_balance does not insert
any elements because the mesh is already balanced. On the right, we see the
transitioned mesh with inserted transition cells.

Case 2: In this case the element has to be inserted in the new forest F∗, and the
element-iterator increases by one.

Case 3: The element should be regularly refined into its eight hexahedral children.
The parent element has to be excluded and the children elements inserted in
the new forest F∗. Because the element-iterator iterates over the "old" forest
F , it increases by one.

Case 4: This case is the transitioning case. This case can not occur if the user does
not set the transitioning flag to one. First of all the refinement value has to
be decreased by one, see Algorithm 1 for explanation. The transition type
then equals the refine value needed as input data to initialize the transition
cell via t8_element_initialize_transition_cell.

In the following remark, the changes/differences to the implementation of
Becker in [5] are presented.

Remark 4. Case 1: Naturally, elements can only be coarsened to its parent if
their level is greater than zero. This must be confirmed first.
Case 3: Analogue, the refinement level has to be inspected. If it is already at
maximum level (in the hexahedral case 19) the element can not be refined any
further and gets inserted unchanged into the new forest.

The workflow of the high-level algorithms of a regular t8code application with
and without transitioning can be seen in Figure 4.7.

In [39], Schneiders defines a numerical stable refinement, given in the following
definition.

Definition 4.4.1. A refinement is stable if the minimum angle αmin of any ele-
ment of a refined mesh does not depend on the refinement level l Thus,

αmin ≥ γ > 0 (28)

(Definition 4 in [39])

Naturally, the presented transitioning algorithm does not depend on the un-
derlying refinement level because of the decomposition of each subelement before
re-adapting the mesh. Therefore, the transition algorithm is numerically stable.

35

(a) t8_adapt (b) t8_balance

(c) t8_transition

Figure 4.6: Illustration (a) shows a mesh that is only adapted via t8_adapt. Fig-
ure (b) shows this mesh with a fulfilled face-balancing condition via t8_balance.
Illustration c) shows the transitioned mesh via t8_transition.

Build coarse mesh

New

Adapt
Application
Refinement
criterion

Balance

Partition

Ghost

Application

Solve

Build coarse mesh

New

Adapt

Balance

Transition

Partition

Ghost

Application

Solve

a) b)

Application
Refinement
criterion

Figure 4.7: Figure a) illustrates the workflow of a regular t8code application. We
see that only partitioning the mesh is a must. The algorithms t8_balance (and
t8_ghost) are optional. Figure b) shows an application workflow with the option
of transitioning the mesh. We see that t8_balance is not optional anymore.

36

5 Identifying Face-Neighbors
Identifying face-neighbors is a crucial task because most numerical PDE solvers
need information about the connectivity of elements to update a given element’s
numerical values. Therefore, it is necessary that face-neighbors can be identified
in an efficient way. In Chapter 4.3 a SFC index based on the Morton index and
the subelement ID was introduced in order to identify elements in a transitioned
forest. The low-level algorithm t8_element_leaf_face_neighbors, implemented
in t8code, computes face-neighbor elements. In this chapter, this algorithm will
be extended in order to identify face-neighbors in a hexahedral transitioned forest.

Therefore, we first discuss the case when a face-neighbor of an element is not
its sibling in Chapter 5.1. Afterward, in Chapter 5.1.1, an algorithm is presented
that computes the exact location of a subelement inside a transition cell. Following
this, we discuss how to identify a face-neighbor inside a transition cell in Chapter
5.2.

The key logic of t8_element_leaf_face_neighbors for a transitioned forest is
the use of virtual face-neighbors and the binary search with the use of the extended
Morton SFC index.

A distinction is made between finding face-neighbors inside a transition cell,
thus, the neighbor is a sibling, too, and finding face-neighbors of outer faces of a
transition cell or regular hexahedron.

In the presented approach, there is not always a one-to-one correspondence be-
tween elements faces and their neighbors. Because of the occurring hanging edges,
shown in Figure 3.4, there are cases where one subelement has two face-neighbors,
which are siblings. In Chapter 5.2, we discuss this case in detail. In all of the other
cases, there exists a one-to-one correspondence. That means that every element
has exactly one face-neighbor at one face.

5.1 Face-Neighbors In Transitioned Forests
This chapter discusses the face-neighbor relations of subelements if the face-neighbor
is not a sibling. If the face-neighbor of E is not a sibling but E is a subelement
it follows that we are looking for the face-neighbor at face f4 of E because f4
is always pointing outwards to its transition cell. This situation is illustrated in
Figure 5.1 below.

The face-neighbor of a subelement at face f4 can either be a hexahedron or
a subelement. The following definition describes the coordinates of a hexahedral
face-neighbor of a subelement.

Definition 5.1.1. Let Sijk = [x⃗0, x⃗1, x⃗2, x⃗3, x⃗4] be a subelement with indices as
given in Definition 3.3.1. The hexahedral face-neighbors NSijk

of Sijk are given by

37

f1

2

f3

Figure 5.1: This figure shows a possible scenario where the face-neighbor of a
subelement S0 at face f4 is a regular hexahedron E on face f1. All other face-
neighbors of S0 are siblings.

the following coordinates:

NSij0 := [x⃗0−x, x⃗0, x⃗1−x, x⃗1, x⃗2−x, x⃗2, x⃗3−x, x⃗3]
NSij1 := [x⃗0, x⃗0 +x, x⃗1, x⃗1 +x, x⃗2, x⃗2 +x, x⃗3, x⃗3 +x]
NSij2 := [x⃗0−y, x⃗1−y, x⃗0, x⃗1, x⃗2−y, x⃗3−y, x⃗2, x⃗3]
NSij3 := [x⃗0, x⃗1, x⃗0 +y, x⃗1 +y, x⃗2, x⃗3, x⃗2 +y, x⃗3 +y]
NSij4 := [x⃗0− z, x⃗1− z, x⃗2− z, x⃗3− z, x⃗0, x⃗1, x⃗2, x⃗3]
NSij5 := [x⃗0, x⃗1, x⃗2, x⃗3, x⃗0 + z, x⃗1 + z, x⃗2 + z, x⃗3 + z].

(29)

Thereby x,y and z denote the shift value in x-,y- and z-direction, which is de-
termined by the side length of the parent of Sijk. To be more precise, x,y,z =
|x⃗0− x⃗1|.
If Sijk has a pyramid-shaped face-neighbor at face f4, thus its neighbor is a subele-
ment, its coordinates are given by:

NSij0 = [x⃗0, x⃗1, x⃗2, x⃗3,
x⃗3− x⃗0

2 − x

2]

NSij1 = [x⃗0, x⃗1, x⃗2, x⃗3,
x⃗3− x⃗0

2 + x

2]

NSij2 = [x⃗0, x⃗1, x⃗2, x⃗3,
x⃗3− x⃗0

2 − y

2]

NSij3 = [x⃗0, x⃗1, x⃗2, x⃗3,
x⃗3− x⃗0

2 + y

2]

NSij4 = [x⃗0, x⃗1, x⃗2, x⃗3,
x⃗3− x⃗0

2 − z

2]

NSij5 = [x⃗0, x⃗1, x⃗2, x⃗3,
x⃗3− x⃗0

2 + z

2]

(30)

or shorter, with s = |x⃗0−x⃗1|
2 :

NSijk
= [x⃗0, x⃗1, x⃗2, x⃗3,

x⃗3− x⃗0
2 +(−1)1+k · s] (31)

38

Notice that the face-neighbor of a subelement can either have the same level
as the subelement or one level higher but, of course, never lower. An illustration
is given in Figure 5.2.

The t8code function t8_element_face_neighbor computes a virtual face-
neighbor inside the root tree of a given element E and a face f . Notice that
this function does not compute a neighbor inside a transition cell but accepts a
subelement as an input element. From this, it follows that if the input element is
a subelement it is only valid to call this function if the face equals f4 because this
is the only outward-pointing face of a subelement.

Figure 5.2: This figure shows neighborhood relations of subelements to regular
hexahedra. The level of E equals the level of S0, and the level of E′ is one higher
than that of S1.

The function t8_element_face_neighbor computes the coordinates of the
face-neighbor according to Definition 5.1.1. To compute the face-neighbor of f4
of a subelement, t8_element_face_neighbor needs to know where exactly the
subelement lies in the transition cell. For that reason, I implemented the function
t8_element_get_location_of_subelement. This function is discussed in detail
in the following Chapter 5.1.1.

5.1.1 t8_element_get_location_of_subelement

In order to determine the exact location of a subelement in a transition cell, the
function t8_element_get_location_of_subelement is needed. The aim is to
create a location array L with the length of three unsigned integers. The location
array is constructed as follows: L = [faceH ,split,subelement_id_type].
The first entry faceP determines the face of the parent element P where the
face f4 of the subelement lies on, thus faceP ∈ {0,1,2,3,4,5}. The second entry
split ∈ {0,1} specifies whether the subelement is split (split = 1) or not (split
= 0). The third entry states the subelement_id_type as determined in Definition
4.2.2. In Figure 5.3, the location array is calculated for three subelements as an
example.

The split-value and the subelement_id_type can both be derived from the
transition type. Therefore, the transition type must be converted into the bitwise-
form stored in an array. This procedure is implemented in the function
transition_type_to_binary_array with transition type t as input data.

Furthermore, a cumulative array derived from the binary array, which is six
digits long and stores the cumulative amount of subelements for each face, must
be calculated. That means, if the binary array is equal to zero/one at position i,
we derive that there are one/four more subelements to add up at face fi. So, we

39

t8 element get location of subelement(Si)

LS2
= [0, 1, 1]

LS7
= [4, 0, 0]

LS11
= [5, 1, 5]

Figure 5.3: This figure shows three exemplary location arrays for three different
subelements. The function t8_element_get_location_of_subelement generates
the location arrays. The first entry of the location array LS2 is equal to zero
because the face f4 lies on the face f0 of the parent element, see Figure 2.3.

can derive the amount of subelements up to each single face from the cumulative
array. The input data for this function is the binary array of the transition type
computed by the function transition_type_to_binary_array.

For reasons of readability, the algorithm of transition_type_to_binary_array
and compute_cumulative_array are shown in Algorithm 8 and Algorithm 9 in
Appendix A.

The function t8_element_get_location_of_subelement works as follows:
First, the corresponding hex-face, where the face f4 of the subelement lies, is
determined. This is done by comparing the subelement ID with the entries of the
cumulative array. If the subelement ID is greater or equal to the i-th entry and
smaller than the i + 1-th entry, we know that face fi+1 of the parent element is
the corresponding hex-face.
Then, the split-value is determined by verifying whether the binary array is equal
to one at the corresponding hex-face. If so, the split-value equals one.

If the subelement is split, the subelement ID type must be specified. This
is done by comparing the subelement ID with the entry of the cumulative array
at the position of the face-value. In doing so, different cases that occur for the
different faces of the parent element must be distinguished. A list of all possible
subelement ID types and the corresponding hex-faces is given in Figure 4.3 b).

Note that all subelements in a transition cell do have the same anchor node.
Thus, the question remains to identify the right subelement-neighbor if only the
Morton index of the transition cell is given. Therefore, we must determine the exact
location via the algorithm t8_element_get_location_of_subelement presented
above.

5.2 Finding Face-Neighbors In Transition Cells
In this chapter the essential low-level function t8_element_get_sibling_neighbor-

_in_transition_cell is introduced. The pivotal question is:

If S is a subelement, what is the sibling neighbor N of S at face f0, . . . ,f3?

Notice that the face-neighbor of f4 of a subelement can not be a sibling neigh-
bor. This case is discussed in detail in Chapter 5.1.

40

Case 1) Subelement S8 is not split,
and so is its neighbor at face f0.

f1

Case 2) Subelement S8 is not split,
but so is its neighbor at face f1.

Case 3) Subelement S2 is split,

not split.
so is its neighbor at face f2.

Case 4) Subelement S3 is split, and
but its neighbor at face f2 is

Figure 5.4: Four cases can occur when identifying a sibling neighbor in a transition
cell. The presented transition cell has transition type 16. Notice that in case 2)
we identify two sibling neighbors at one face. This is because of the hanging edge,
colored in red.

We have to distinguish between four cases that can occur:

1. The subelement S is not split, so is its face-neighbor N .

2. The subelement S is not split, but its face-neighbor N is split.

3. The subelement S is split, but its face-neighbor N is not split.

4. The subelement S is split and so is its face-neighbor N .

All of these different cases are illustrated in Figure 5.4. Notice that if the
subelement S is not split, but its neighbor is split, it follows that S has two
neighbors at this face. This occurs because of the hanging edges in the transition
cell. This problem and how to solve it is discussed in Chapter 7. The algo-
rithm t8_element_get_num_sibling_neighbors_at_face returns the amount of
siblings inside a transition cell by comparing the own split-value with the neigh-
bor’s one. Thus, t8_element_get_num_sibling_neighbors_at_face returns ei-
ther two if the own split-value is equal to zero and the neighbor’s one is equal to
one or one otherwise.

In order to identify a sibling neighbor in a transition cell, a relevant concept is
dual faces described in the following definition.

Definition 5.2.1. Let E and E′ be two face-neighbored elements, that intersect
at the face FE of E and the face fE′ of E′ respectively. We say that the index of

41

fE is the dual face of fE′ , from the perspective of E′. Vice versa, fE′ is the dual
face of fE from the perspective of E.

The face duals of a regular hexahedral can be found in Appendix in Definition
A.0.1.

Additionally, we distinguish between subelement face duals and dual subele-
ments to a face of a subelement. The following two look-up tables show the
relations.

P
S f0

f0

f1

f1 f2 f3 f4

f2

f3

f4

f5

0 0 0 0

0 0

1 1 1 1

1

2 2

2 2 2 2

3 3 3 3

3 3 3

4

4

4

4

4

4

a) b)

Figure 5.5: a) shows the look-up table subelement_face_dual[6][5]. Illustra-
tion b) shows an example at entry subelement_face_dual[0][3]: The face-dual of
subelement S at face f3 is face f0 from subelement N .

The look-up table subelement_face_dual, shown in Table 5.5, describes the
relationship between a subelement and its face neighbors. The rows determine
which subelement is considered by assigning the face of the parent hexahedron to
the base side of the subelement. This means that row zero shows the face-dual
relations of a subelement with the basal face on face f0 of its parent. Naturally,
face f4 does not have a face-dual in its transition cell. Thus, we establish the rule
that face f4 is dual to itself. A complete list of all non-split subelement face labels
can be found in Appendix A.2.

P
S f0

fP0

fP1

f1 f2 f3 f4

fP2

fP3

fP5

2 3 4 5 −1

0 1 4 5 −1

0 1 4 5 −1

0 1 2 3 −1

0 1 2 3 −1

2 3 4 5 −1

a)

f1

N

S

b)

fP4

Figure 5.6: a) shows the look-up table subelement_face_to_dual_subelement[6][5].
Illustration b) shows an exemplary entry at
subelement_face_to_dual_subelement[4][1]: For clarity, the faces of the
parent P are declared with fP i to distinguish them from the subelement faces.
Thus, the subelement S, with basal face fP 4, dual on face f1 is subelement N
with base side fP 1.

In addition, we store the relation between a subelement’s face and its neighbor-
ing subelement in a second look-up table subelement_face_to_dual_subelement,

42

shown in Table 5.6. Again, the rows determine which subelement is considered,
and the columns state the basal face of the face-neighbored subelement. Notice
the convention to assign f4 to −1 because f4 has no face-neighboring siblings.

The advantage of look-up tables is that they reduce run-time computations,
and the code is relatively easy to maintain with good documentation. The dis-
advantage is that the RAM is relatively slow. Thus, many RAM accesses due to
look-up tables can decrease the performance. But, the presented look-up tables
do not store much data and thus, they fit into the caches. Therefore, the perfor-
mance is hardly negatively affected by the look-up tables. Nevertheless, if simple
calculations can replace look-up tables, they should be preferred.

All of the key algorithms, needed to implement the function
t8_element_get_sibling_neighbor_in_transition_cell_hex are introduced.
The input data consists of a subelement S and a face f . The returning data is
an array filled with one or two face-neighboring subelements and the correspond-
ing dual face/faces. For a more detailed description of the implementation, the
pseudo-code of t8_element_get _sibling_neighbor_in_transition_cell_hex
is presented Algorithm 7 in Appendix A.

t8_element_get_sibling_neighbor_in_transition_cell_hex works as fol-
lows: First of all, the location array L of the subelement is created by calling the
function t8_element_get_location_of_subelement(S). Then, the face-index of
the neighboring subelement is identified by checking the subelement_face_dual
look-up table in row f and column L[0]. Afterward, the algorithm checks which
case is the correct one. Therefore, the algorithm distinguishes whether the subele-
ment S is split or not. Then, the subelement ID of the face-neighbor/face-neighbors
is calculated by counting the subelements up to the sought-after.

It is worth mentioning that there are some special cases that can occur if
the subelement S is split: First, if the subelement is split, a distinction must
be made as to whether the face-neighbored subelement base side lies on the same
parental face or not. This can be done with a helper variable, which covers all cases
where the face-neighbored subelement lies on the same parental face. The helper
variable equals one if the neighbor-subelement lies on the same face, and thus,
the corresponding scenario is case 4. Otherwise, the binary representation of the
transition type needs to be checked at the position of the dual subelement, stored
in the look-up table subelement_face_to_dual_subelement, shown in Table 5.6.

Regarding case 4, there is one exception in calculating the subelement ID of
the face-neighbor stated in the following remark.

Remark 5. If the face-neighbored element’s base side is on the same parental face
as the subelement itself, the calculation of the subelement ID of the face-neighbored
subelement differs. In that scenario, the subelement ID gets calculated by analyz-
ing the subelement ID type and subelement ID of S to derive the subelement ID
of the face-neighbor.

43

6 Analysis Of The Influence Of t8_transition

In this chapter, we discuss the advantages and disadvantages of transition cells.
Certainly, inserting transition cells leads to an additional programming effort and
computation time. Thus, it is important to discuss whether this is in proportion
to the advantages of a transitioned, respectively conformal mesh.

First, the amount of elements in transitioned meshes is analyzed compared to
non-transitioned meshes in Chapter 6.1. The amount of elements depends on the
amount of subelements, and thus, it also depends on the different transition types
of the used transition cells. Certainly, with an increasing amount of hanging faces
of an element, the number of subelements also increases. Then, some runtime
measurements are done by comparing a transitioned mesh to a non-transitioned
mesh in Chapter 6.2. After that, in Chapter 6.3, some runtimes of identifying
a leaf-face-neighbor via the function t8_element_leaf_face_neighbor are pre-
sented and discussed. Finally, the influence of transitioning according to the mesh
quality is discussed in Chapter 6.4.

6.1 Measurements Of The Amount Of Elements
First, we look at the number of regular hexahedra compared to the amount of
subelements. Therefore, we need to determine a refinement criterion and an initial
level of the coarse mesh.

Different refinement regions are considered to analyze the impact of subele-
ments in a transitioned mesh. First, two different static refinement regions are
discussed. After that, a dynamic refinement region is considered.

As the coarse mesh, we always take a regular cube. The first considered re-
finement area is a sphere in the middle of the coarse mesh with a centroid at
(0.5,0.5,0.5). The radius of the sphere is 0.25. All elements inside of this sphere
will be refined at each adaptation step. In order to measure the distance between
the element and the sphere, the midpoint of each element is calculated. The ini-
tial refinement level is 3. Thus, the initial amount of hexahedra is 83 = 512. Six
adaptation steps are conducted. The refinement region is called static because it
does not change over time. The results are shown in a histogram in Figure 6.1.

In Figure 6.1, we see that the ratio of subelements to regular hexahedral ele-
ments increases while refining more elements. In the first adapt step the ratio of
subelements to regular elements is ≈ 29.6%. After adaptation step 6, it increases
to a ratio of ≈ 59.5%. Thus, the amount of subelements makes up a large part,
namely over half. So, the proportion of subelements dominates.

Naturally, increasing the initial refinement level leads to a decreasing part of
the subelements. To prove that, the presented scenario above is conducted for the
initial refinement levels 3,4,5 and 6. The results are presented in Figure 6.2. It
is worth mentioning that a higher initial refinement level leads to a more accurate
approximation of the geometry and thus can be useful.

We clearly see that the ratio of subelements decreases sharply when increasing

44

ad
ap

t ste
p 1

ad
ap

t ste
p 2

ad
ap

t ste
p 3

ad
ap

t ste
p 4

ad
ap

t ste
p 5

ad
ap

t ste
p 6

1,000

2,000

#
el

em
en

ts

Num hexahedral elements Num subelements

Figure 6.1: The histogram shows the amount of subelements and regular hexa-
hedral elements. The refinement criterion is a sphere Sr(0.5,0.5,0.5) with radius
r = 0.25 and centroid at (0.5,0.5,0.5). All inner elements of the sphere are refined
in each adaptation step.

1 2 3 4 5 6
0

0.2

0.4

0.6

Adaptation step

R
at

io
of

su
be

le
m

en
ts Initial refinement level 3

Initial refinement level 4
Initial refinement level 5
Initial refinement level 6

Figure 6.2: This figure shows the ratio of subelements to regular hexahedral el-
ements when refining inside a sphere Sr(0.5,0.5,0.5) with radius r = 0.25 and
centroid at (0.5,0.5,0.5).

the initial refinement level from 3 to 4 and from 4 to 5. The ratio of subelements
with initial level 4 after the sixth adaptation step is equal to 24,5%, and with
initial refinement level 6, it is only 0.056%. The difference between the ratio of
subelements in a mesh with initial level 6 does not differ as much from a mesh
with initial refinement level 5—the proportion there is in both cases deficient. In
general, the impact of subelements decreases strongly. Furthermore, we can see
that the graph of initial refinement level 3 resembles a logarithmic function. In
contrast, all other graphs look more linearly, if not even constant, for initial refine-
ment level 6. We can conclude from this that the impact of subelements decreases
when the initial refinement level increases.

Next, a different static refinement region will be considered. Every element on

45

(a) front side (b) top side

Figure 6.3: This figure shows a refinement of one-half side of a cube. The elements
on the left side have level 3, and those on the right side have level 2.

the cube’s left side is being refined. That means all elements with an x-coordinate
of their anchor node smaller than 0.5 are refined. The resulting mesh with initial
refinement level 2 (due to the better perceptibility) from two different perspectives
can be found in Figure 6.3.
The measurements are conducted with initial level 3. The resulting mesh then
consists of one transition layer. The additional amount of subelements is 576, but
every transition cell has transition type 32 and thus consists of "only" 9 subele-
ments, which is the smallest amount of subelements a transition cell can consist
of. In total, there are 2,816 elements, and therefore, the ratio of subelements is
approximately 20.45%. Compared to the results of 6.2, this ratio is quite small for
initial level 3. In Figure 6.2, we see that already after the first adaptation step the
ratio of subelements was about 30%. Additionally, the ratio of subelements is also
compared to the results of Figure 6.1, with 20.45% relatively small. This indicates
that the share of subelements depends on the underlying refinement criterion.
The amount of subelements in a transitioned mesh is also related to the amount
of nodes in a mesh. We discuss the additional amount of inserted nodes, which
equals 576/9 = 64. This is ≈ 2% of the total amount of nodes, which is 2,624, and
thus relatively small.

The now-considered refinement region is dynamic. Thus, it changes from step
to step. We consider a sphere with an initial radius equal to zero and a band
around this sphere with a bandwidth of 2.0. Every element within the band will
be refined in each adaptation step. If an element lies outside of the band, it gets
coarsened. After each adaptation step, the radius of the sphere increases by 0.05.
Six adaptation steps are conducted. After the sixth adaptation step, the refine-
ment area reaches the boundary of the cube. Figure 6.4 shows the amount of
elements. A distinction is made between a mesh that is transitioned, a mesh that
is adapted and balanced and a mesh that is just adapted according to the refine-
ment criterion.
We see that the additional amount of elements after transitioning the mesh in step
6 is 72,718. The additional amount of elements caused to t8_balance after step 6

46

is 16,919. That means that t8_transition increases the amount of elements by
factor ≈ 4.15, and t8_balance demonstrates a smaller increase of the amount by
factor ≈ 1.595. That shows that the impact of transitioning, in the sense of addi-
tional elements, in this case, is about 2.6 times as high as the influence of balancing
the mesh. The ratio of subelements after step 6 is quite high, with approximately
60%. After transitioning, the mesh consists of 6,955 transition cells. That results
in an additional 6,955 nodes. The average amount of subelements in one transition
cell is 10.24 and thus relatively small (9 subelements is the minimum amount per
transition cell). That means that, on average, a transition cell has between 2 and
3 hanging faces.

1 2 3 4 5 6
0

0.5

1

·105

Adaptation step

A
m

ou
nt

of
el

em
en

ts

With t8_adapt, t8_balance and t8_transition
With t8_adapt and t8_balance

With t8_adapt

Gap of 72,718 elements

Gap of 16,919 elements

Figure 6.4: This figure shows the amount of elements in a transitioned mesh (red),
a non-transitioned but balanced mesh (blue), and a mesh that is only adapted
(green). The underlying refinement criterion is a band of width 2.0 around a sphere
with an initial radius of 0.0 in the center of a unit cube. After each adaptation
step, the radius of the sphere increases by 0.05. Every element inside the band gets
refined. If an element and its siblings lie outside the band, they will be coarsened.
The initial level is equal to 3.

6.2 Runtime Measurements Of t8_transition

Now, various runtime measurements of t8_transition will be discussed. As the
first refinement criterion, we consider a static refinement of one-half of a unit cube,
as shown in Figure 6.3. The initial level varies from 2 to 5. The measurements are
conducted with and without t8_transition. Notice that the balance algorithm
does not insert extra elements because the resulting mesh is already balanced.
Nevertheless, t8_balance needs time to verify the necessary balance condition
for transitioning. Therefore, the runtime measurements are also conducted with
t8_balance to clarify the impact. The results are shown in Figure 6.5.

We see that the difference between a non-transitioned and balanced mesh is
minimal until initial level 4. With initial level 4 the difference is 0.16 seconds.

47

2 3 4 5
0

0.5

1

1.5

Initial level

Ru
nt

im
e

in
[s]

With t8_adapt, t8_balance and t8_transition
With t8_adapt and t8_balance

With t8_adapt

Figure 6.5: This figure shows the runtime of t8_adapt, t8_balance, and
t8_transition in (red), the runtime of t8_adapt and t8_balance in (blue), and
the runtime of just adapting the mesh via t8_adapt in (green). The underlying
refinement region is one-half side of a unit cube. To be more precise, every element
with an x-coordinate of its anchor node smaller than 0.5 is refined.

In relation to that result, it must be noted that the balance algorithm checks the
balance condition and does not insert any elements for the reason that the balance
condition is already fulfilled, as explained above. Whereby t8_transition inserts
2,304 subelements, which equals 11.25% of the total subelements.

With initial level 5, the difference is more significant. There, the difference
between transitioning and balancing the mesh amounts to 1.29 seconds. The dif-
ference between transitioning and adapting the mesh is 1.36 seconds. That means
that transitioning and balancing increase the commit time by an increasing factor
of 23.9 with initial level 2 to 34.2 with initial level 5. Balancing increases from
factor 4.3 to 4.9 while transitioning increases from factor 4.6 to 7.6. In summary,
the additional runtime of t8_transition is quite low up to initial level 5.

Now we consider the dynamic refinement region with a fixed band of width 2.0
around a sphere with an initial radius of zero, as presented in Chapter 6.1.

After each adaptation step, the radius increases by 0.05. Six adaptation steps
are conducted. All of the elements that are entirely inside the band will be refined.
All elements outside the band will be coarsened until the predefined minimum level
is reached. The minimum level equals the initial level, which is 3. The runtime
measurements are conducted separately for the adapt, balance, and transition
algorithms. The results are shown in Figure 6.6.

We see that the most significant part of the runtime is caused by balancing
the mesh with about 60.9%. Nevertheless, transitioning makes about 35.8% af-
ter step 6. It is noticeable that whilst a significant number of computations are
done, compared, for instance, to the static refinement of the half side of the cube
as explained above. For example, the t8_adapt algorithm needs to compute the
centroid of each element to compute the distance of the element to the center of

48

ad
ap

t ste
p 1

ad
ap

t ste
p 2

ad
ap

t ste
p 3

ad
ap

t ste
p 4

ad
ap

t ste
p 5

ad
ap

t ste
p 6

0

0.5

1

Ru
nt

im
e

in
[s]

t8_adapt t8_balance t8_transition

Figure 6.6: The histogram shows the individual runtimes of adapting, balancing,
and transitioning the mesh. The underlying refinement criterion is a band of width
2.0 around a sphere with an initial radius of 0.0 in the center of a unit cube at
(0.5,0.5,0.5). After each adaptation step, the radius of the sphere increases by
0.05. Every element inside the band will be refined. If an element and its siblings
lie outside the band, they will be coarsened. The initial level is equal to 3.

the sphere. Furthermore, it computes the size of each element, with the help of
an approximate diameter. Finally, it has to inspect whether the element is within
the band. And, of course, adapt needs to refine elements and coarsen them if it is
the case. Thus, it may seem questionable that the influence is so small. However,
there is a major difference to t8_balance and t8_transition. t8_adapt does
not need to check any face-neighbor relations. The significant influence of finding
face-neighbors is discussed in detail in Chapter 6.3.

Furthermore, it is interesting to see how long, on average, the balance and
transition algorithm needs per element to run through the mesh. It is appar-
ent that the transitioned mesh contains more elements than a non-transitioned
mesh, see Figure 6.4. To determine the runtime per element of t8_balance and
t8_transition, the individual runtimes are put in relation to the amount of ele-
ments of the mesh. To make this observation more general, we look at the static
half-side refinement and at the dynamic refined, as explained above. The results
are shown in the following Figure 6.7.

In the dynamic case, the balancing algorithm takes relatively more time per
element than transitioning. One reason is that t8_balance needs several times to
completely fulfill the balance condition. Meanwhile, t8_transition always needs
one round, thus one visit per element. In the static refinement, the opposite case
is valid. However, it is worth mentioning that the balancing algorithm examines
the balancing condition by neighboring relations and does not insert any elements.
With this in mind, the impact of transitioning is low.

To sum up, transitioning always increases the amount of elements and run-
times in a significant way. Nevertheless, some specific refinement criteria may lead
to a relatively small influence. A distinction must be made between the relative

49

1 2 3 4 5 6
0

2

4
·10−5

Adaptation step

Ru
nt

im
e

pe
r

el
em

en
t

in
[s]

t8_transition
t8_balance

(a) Dynamic refinement

1 2 3 4
0

0.5

1

1.5

·10−5

Initial level

Ru
nt

im
e

pe
r

el
em

en
t

in
[s]

t8_transition
t8_balance

(b) Static refinement

Figure 6.7: This figure shows the relative runtime per element of t8_transition in
(red) and t8_balance in (blue) of a dynamic refinement. The refinement criterion
is a band of width 2.0 around a sphere with an initial radius of 0.0 in the center of
a unit cube at (0.5,0.5,0.5). After each adaptation step, the radius of the sphere
increases by 0.05. Every element inside the band will be refined. If an element
and its siblings lie outside the band, they will be coarsened.

influence of transitioning on the runtime/amount of elements and the absolute.
For example, in the case of the presented dynamic refinement region, the relative
influence on the amount of elements and runtime is relatively small (the smallest
of all presented scenarios). In the case of the half-side refinement the total time is
quite fast and thus the total influence of transitioning is quite small there. Never-
theless, in relative terms, the influence is immense. Thus, checking the refinement
region before transitioning can be very useful in order to not increase the amount
of elements and runtime in an inefficient way.

6.3 Runtime Measurements t8_element_leaf_face_neighbor

This chapter discusses the runtime of finding neighbors in transitioned meshes.
Therefore, we examine different refinement regions and compute each element’s
face-neighbors. This is done by iterating through the elements and their faces and
call the t8_element_leaf_face_neighbor function, short LFN. That means that
LFN is called six times per hexahedral element and five times per subelement. We
examine the total runtime and the relative runtime per call of LFN.

First, we look at the total runtime of t8_balance and t8_transition at the
dynamic refinement region with six adaptation steps and an increasing radius of
0.05 at each step. The initial level increases from 2 to 5. The results are shown in
Figure 6.8. For the sake of clarity, the results are split into two figures.

One immediately observes that in all four cases t8_transition and t8_balance
are very close. However, with a closer look, one can see that from adaptation step
2 at the latest, t8_transition takes more time than t8_balance. From a previ-

50

1 2 3 4 5 6
0

0.5

1

Adaptation step

To
ta

lr
un

tim
e

in
[s]

Transitioned mesh, initial level 2
Balanced mesh, initial level 2

Transitioned mesh, initial level 3
Balanced mesh, initial level 3

1 2 3 4 5 6
0

0.5

1

1.5

Adaptation step

To
ta

lr
un

tim
e

in
[s]

Transitioned mesh, initial level 4
Balanced mesh, initial level 4

Transitioned mesh, initial level 5
Balanced mesh, initial level 5

Figure 6.8: This figure shows the total runtime of LFN in a transitioned mesh
(red) and a balanced mesh (blue). The underlying refinement criterion is a band
of width 2.0 around a sphere with an initial radius of 0.0 in the center of a unit cube
at (0.5,0.5,0.5). After each adaptation step, the radius of the sphere increases by
0.05. Every element inside the band will be refined. If an element and its siblings
lie outside the band, they will be coarsened.

ous chapter, we know that the ratio of subelements increases with each step with
a maximum of ≈ 60% at step 6 with initial level 3. Figure 6.4 shows the amount
of elements. Because of this, examining the relative runtime per call of LFN is
interesting. The relative runtimes are shown in Figure 6.9. The results are also
shown in two figures to obtain a better overview.

In Figure 6.9, we see that in all cases, LFN takes relatively less time in a transi-
tioned mesh than in a balanced one. This can be an indicator for a relatively good
performance of LFN in a transitioned mesh. However, of course, we must mention
that balancing the mesh may take several rounds while transitioning always visits
each element only once. For example, with initial level 4 t8_balance needs four
rounds to balance the whole mesh in the sixth adaptation step, which is quite
time-consuming.

Now, the already presented static refinement where one-half of the coarse mesh
gets refined will be inspected. Here, we also examine the effect of different initial
levels on the runtime of LFN. We also analyze LFN’s runtimes on a transitioned
mesh and balanced mesh. The absolute and relative runtimes per call are shown
in Figure 6.10.

In Figure 6.10, we see that the runtime of LFN is smaller in absolute and
relative terms in the transitioned case. Compared to Figure 6.8, where the absolute
runtime of a dynamic refinement region is shown, it appears that the presented
static refinement of the cube might be more practical than the dynamic one. In
relative terms, the runtime measurements of the static refinement are pretty high,
compared to the results of the dynamic refinement region shown in Figure 6.9.

Naturally, it is worth mentioning that LFN can identify at most two neighbors

51

1 2 3 4 5 6

2

4

6
·10−6

Adaptation step

Ru
nt

im
e

pe
r

ca
ll

in
[s]

Transitioned mesh with initial level 2
Balanced mesh with initial level 2

Transitioned mesh with initial level 3
Balanced mesh with initial level 3

1 2 3 4 5 6

2

2.5

·10−6

Adaptation step

Ru
nt

im
e

pe
r

ca
ll

in
[s]

Transitioned mesh with initial level 4
Balanced mesh with initial level 4

Transitioned mesh with initial level 5
Balanced mesh with initial level 5

Figure 6.9: This figure shows the relative runtime per element of t8_transition
in (red) and t8_balance in (blue). The underlying refinement criterion is a band
of width 2.0 around a sphere with an initial radius of 0.0 in the center of a unit cube
at (0.5,0.5,0.5). After each adaptation step, the radius of the sphere increases by
0.05. Every element inside the band will be refined. If an element and its siblings
lie outside the band, they will be coarsened.

2 3 4 5
0

1

2

Initial level

To
ta

lr
un

tim
e

in
[s]

Transitioned mesh
Balanced mesh

2 3 4 5

2

4

6

8 ·10−6

Initial level

Ru
nt

im
e

pe
r

ca
ll

in
[s]

Transitioned mesh
Balanced mesh

Figure 6.10: This figure shows LFN on a transitioned mesh in (red) and on a
balanced mesh in (blue). The left side depicts the absolute runtimes. The right
side shows the relative runtimes per call. The underlying refinement region is one-
half side of a unit cube. To be more precise, every element with an x-coordinate
of its anchor node smaller than 0.5 is refined.

52

in a transitioned mesh and four neighbors at most in a balanced mesh.
To summarize, the runtime of LFN in a transitioned mesh is comparable to the

runtime of LFN in a balanced mesh. The relative runtime per call is even lower in
a transitioned mesh.

6.4 Parameters For Mesh Quality
In this chapter, some mesh quality parameters for the transitioned mesh are dis-
cussed. A good mesh quality can be a crucial factor in the sense of accuracy
and efficiency for solving PDE’s. Nevertheless, many other factors influence the
accuracy, for example, the type of geometry being discretized or details of the
solution. However, a good mesh quality is fundamental for a good simulation. In
[28], Knupp defines mesh quality for PDE applications as follows:

"Mesh quality concerns the characteristics of a mesh that permit a particular
numerical PDE simulation to be efficiently performed, with fidelity to the underly-
ing physics, and with the accuracy required for the problem."

Due to the dependence of mesh quality on the underlying simulation, no gener-
ally applicable parameter determines whether the elements of a mesh are of good
or poor quality.

In literature, there are several mesh quality parameters for hexahedral and
tetrahedral meshes but there are very poor for pyramids and prism. In the Verdict
Geometry Quality Library [29], a number of quality metrics, like the aspect–ratio
and the Jacobian, are given for triangles, quadrilaterals, tetrahedra, and hexahe-
dra. For pyramids, there is only one simple volume metric given.

6.4.1 Jacobian-Based Quality Metrics

First, we introduce the Jacobian (J) and the scaled Jacobian (JS) for hexahedra.
For computation, the determinant of edge vectors of the hexahedron needs to be
taken. Figure 6.11 illustrates the computation of J and JS of a hexahedron as in
the Verdict library of mesh quality metrics [29]. If J > 0, respectively JS > 0, the
element is valid due to positive volume. If J < 0 (JS < 0), the element is inverted
and therefore invalid.

v0 v1

v2 v3

v4 v5

v6 v7

v0 v1

v4

v2

det(A0) = −−→v1v0 · (−−→v2v0 ×−−→v4v0)

J = min{det(Ai), i = 0, . . . , 7}

det(Â0) =
−−→v1v0

‖
−−→v1v0‖

·
(−−→v2v0
‖
−−→v2v0‖

×
−−→v4v0

‖
−−→v4v0‖

)

JS = min{det(Âi), i = 0, . . . , 7}

Figure 6.11: Computation of the Jacobian J and the scaled Jacobian JS by the
example of a regular hexahedron. Ai with i = 0, . . . ,7 is called the Jacobian matrix.

53

In Figure 6.11, we see that J ∈ [−∞,∞] and JS ∈ [−1,1]. Thus, J depends
on the element’s size (level respectively). This means, for example, that a regular
hexahedron with level l has a greater Jacobian than a regular hexahedron with
level l + 1. Thus, J states the validity of an element, but it does not necessarily
replicate the quality of an element. Therefore, it makes sense to consider the scaled
Jacobian JS . If JS = 1 the nodes are in optimal position regarding their direct
node-neighbors. In [41], the scaled Jacobian is discussed in detail and it is stated
that if JS < 0.2, the quality of the hexahedron is questionable.

In [7] they introduced a general approach to computing JS for elements where
every node has three neighbors. Notice that if the underlying element is in a
pyramid shape the Jacobian matrix for the apex is not a square matrix. The
apex is the only node in a pyramid that has four node-neighbors. Therefore, the
computation of JS is not as straightforward as for a tetrahedron, for example.

In [33], they introduced the element normalized scaled Jacobian JENS that is
suitable for measuring the quality of tetrahedra, pyramids, prisms, and hexahedra.
JENS ranges in [−1,1], where a negative value states that the element is invalid.
The following equation 32, shows the definition of JENS of a node i.

J i
ENS =


(1+ke)−J i

S if J i
S > ke

J i
S/ke if −ke ≤ J i

S ≤ ke

−(1+ke)−J i
S if J i

S <−ke

(32)

The value of constant ke depends on the element type under consideration. To
obtain ke, the theory of perfectly shaped elements needs to be introduced.

It may be intuitive to think that equilateral elements are always the perfect
shaped elements. In fact, this is true for tetrahedra and hexahedra but not for
prism and pyramids as shown in [33].

However, the perfectly shaped pyramid should be inside the cone containing
the equilateral tetrahedron. The same goes for a perfectly shaped prism with the
cylinder that contains the equilateral hexahedron. This cone is h =

√
6

3 high and
has diameter of d =

√
12
3 . With the use of trigonometry, it can be deduced that the

perfectly shaped pyramid has a basal square face with edge size b =
√

6
3 , which is

equal to the height h. The edges connected to the apex are all the same size s = 1.
With the kind permission of the author C. Lobos of [33] a perfectly shaped

tetrahedron, pyramid, hexahedron and prism is shown in Figure 6.12.

Figure 6.12: This figure shows a perfectly shaped tetrahedron in (a) and a pyramid
in (b) inside a cone of height h =

√
6

3 and diameter d =
√

12
3 . The perfectly shaped

hexahedron in (c) and prism in (d) are shown inside a cylinder with height h = 1
and diameter d =

√
2. Source: C. Lobos Figure 3.11 in [33]

54

In order to compute the constant ke of equation (32) we need to calculate the
JS of each node of the perfectly shaped element of the corresponding type. In this
chapter, we only consider pyramid-shaped elements because of the composition of
transition cells. Computing JS for pyramids is more complex than for the other
types because of the node connectivity of the apex. The apex is connected to all
four nodes of the basal square face. Thus, JS cannot be directly computed for the
apex. The approach of [33] is to decompose the perfectly shaped pyramid into four
virtual tetrahedra, each with the apex and three basal nodes. Figure 6.13 shows
this decomposition. Then, JS needs to be computed for all four decompositions.
However, the chosen JS will be the smallest positive value of all four. If all four
values of JS for the apex are negative, the whole pyramid is inverted.

v0 v1

v2 v3

v4

h

v0 v1

v2

v4

v1

v3
v2

v4

v1

v3

v0

v4

v0

v2 v3

v4

Figure 6.13: Decomposition of a pyramid into four different tetrahedra.

The resulting values of JS are KB =
√

6
3 for the basal nodes and KA = 2

√
6

9 for
the apex. The quality of a pyramid-shaped element Pq is given in the following
definition:

Definition 6.4.1. Let P be a pyramid shaped element. The quality of P is defined
as follows:

Pq =
mini{J i

ENS} if ∀ i : J i
ENS > 0

maxi{J i
ENS} : J i

ENS < 0 if ∃ i : J i
ENS < 0

(33)

J i
ENS thereby denotes the element normalized scaled Jacobian as shown in equa-

tion (32) with constant ke =
√

6
3 if i is a basal node and ke = 2

√
6

9 if node i is the
apex of the pyramid.

Now, we compute the quality of the two different shaped pyramids inside a
transition cell based on Definition 6.4.1.

First, we start with the pyramid type whose basal face equals the face of its
parent element. This type of pyramid is called type 1, in the following. The
pyramids whose basal face is at the face with a hanging node are called type 2.
The two types of pyramids inside a transition cell are shown in Figure 6.14.

The size of basal edges of type 1 pyramids is then, of course, btype 1 = 1. The
apex is of height htype 1 = 0.5 because it is the midpoint of the parent element.
The edges that are connected to the apex are of size stype 1 =

√
3

2 . Computing J i
S

for all basal nodes results in:

55

a) b)

Figure 6.14: Illustration a) shows a pyramid of type 1. Its base face equals the face
f4 of its parent element. Illustration b) shows a pyramid of type 2. The hanging
node on the face is marked in red. One can directly see the differing sizes of edges
connected to the apex.

J i
S =
√

3
3 for i = 0, . . . ,3

⇒ J i
ENS = J i

S

ke
=

√
3

3√
6

3

=
√

2
2 .

(34)

For the apex we get the following results:

J4
S = 4

√
3

9

⇒ J4
ENS =

(
1+ 2

√
6

9
)
− 4
√

3
9 = 1+ 2

√
2−4

3
√

3

(35)

Therefore, the quality of pyramid type 1 is:

P type 1
q = 1√

2
≈ 0.71 (36)

Now, we compute the quality of type 2 pyramids. The basal edges are of size
btype 2 = 0.5. The height is again htype 2 = 0.5. The edges connected to the apex
are not all of the same size. The shortest edge equals the height of the pyramid,
and the longest edge equals the size of apex-connected edges of type 1 pyramids.
The two other edges are of size 1√

2 . Analogous to the above calculation, we get
the following results:

J i
S =
√

3
3 ⇒ J i

ENS =
√

2
2 for i = 1, . . . ,3

J4
S =
√

3
6 ⇒ J4

ENS =
√

3
6

2
√

6
9

= 3
√

2
6

(37)

Thus the quality of pyramid type 2 is given by:

P type 2
q = 3

√
2

6 ≈ 0.53 (38)

We see that the quality of type 2 pyramids is not as good as that of type 1 pyramids.
Therefore, it might be advantageous to minimize the use of transition cells with a
high number of type 2 pyramids.

56

6.4.2 Aspect-Ratio Based Quality Metrics

In this chapter, we look at aspect-ratio (AR) metrics. The most common AR for
hexahedra is the quotient between minimum and maximum edge length AR = emin

emax
.

This quality metric can be used to examine whether the hexahedron is stretched
or flattened. In order to analyze the validity of a hexahedron, the AR might
fail to detect a poor-quality element because it does not take the volume into
account, compared to Jacobian-based quality metrics introduced in the previous
Chapter 6.4.1. Imagine an equilateral hexahedron that is completely flat. The AR
would not be very bad but the element is invalid because of its empty volume.
According to [33], AR can be a good metric for measuring pyramid and prism
quality. Nevertheless, it is worth mentioning that even if the AR is equal to one,
it does not describe the perfectly shaped pyramid/prism, see Figure 6.12 b) and
d). So, the AR might be useful for detecting stretched or flattened elements but
does not reproduce their validity.

In the previous chapter, we examined the validity of the two types of subele-
ments. In the next step the AR will be computed. For this, we first calculate
the standard AR. After that, we compare it with the Element Normalized Aspect
Ratio (AREN) introduced in [33].

The standard AR for a pyramid of type 1 is:

ARtype 1 =
√

3
2
1 ≈ 0.866 (39)

Compared to this, the standard AR for pyramid of type 2 is:

ARtype 2 =
1
2√
3

2

=
√

3
3 ≈ 0.577 (40)

We see that the results confirm the quality measurement of the Jacobian-based
metrics. The pyramid of type 2 is more distorted than the pyramid of type 1.

Now, we present the Element Normalized Aspect Ratio (AREN).

AREN =
(1+ke)−AR if AR > ke

AR
ke if AR≤ ke

(41)

For pyramids the constant ke =
√

6
3 as derived in the previous chapter. So, the

AREN for pyramids of type 1 is:

ARtype 1
EN = 1+

√
6

3 −
√

3
2 ≈ 0.95 (42)

and the AREN for pyramids of type 2 is:

ARtype 2
EN =

√
3

3√
6

3

=
√

2
2 ≈ 0.707 (43)

We see that the AREN is greater for the pyramid of type 1 than for type 2. For type
1, it is nearly perfect, which suggests that the distortion is very small compared
to a perfectly shaped pyramid.

57

In summary, one can say that with the Jacobian-based metrics and the pre-
sented aspect-ratio metrics the quality of type 1 pyramids seems to be better.
However, neither pyramid is perfectly shaped. Therefore, transitioning a mesh
always decreases the quality of the mesh. Nevertheless, if the amount of type 2
pyramids is minimized the entire quality loss is minimized, too.

58

7 Outlook
In this chapter, possible improvements of t8_transition are discussed. Thus
far, we only focused on hanging nodes on faces. Unfortunately, this is not the
only hanging node type in hexahedral meshes. Another type of hanging nodes
occurs if a mesh only fulfills the face-balance condition but is not edge-balanced.
That means there are hanging nodes on edges, another yet to be discussed kind of
hanging node. These particular types of hanging nodes are discussed in Chapter
7.1.

Then, in Chapter 7.2, the problem of hanging edges that occur inside the
presented transition cells will be considered. There, we present and discuss a
possible solution strategy, based on the results from Chapter 7.1, to adjust the
whole transition process in order to receive a conformal mesh with no hanging
nodes and edges.

In the last chapter, 7.3, all results and findings pertaining to this thesis will be
summarized.

7.1 Edge-Balancing
This chapter will focus on the topic of edge-balancing. When introducing the
balance condition in Chapter 2, we only looked at the face-balance condition.
That means that the levels of two elements that are each other’s face-neighbor
differ at most by ±1. But in a hexahedral mesh there are three different possible
types of neighborhoods (face, edge, and node), see Figure 7.1.

a) face-neighboring elements b) edge-neighboring elements c) node-neighboring elements

Figure 7.1: This figure shows the three different possible neighborhood types in
an octree.

We see that not only face-neighboring but also edge-neighboring elements can
cause hanging nodes. So, even if the face-balance condition is fulfilled, two sce-
narios with hanging nodes that are not covered by the presented transition cells
can occur. The reason for this is that the level of a face-neighbor of an element’s
face-neighbor can differ at most by ±2. For an illustration of this, see Figure 7.2.

One possible way to handle edge-hanging nodes is to create a lot of more
different transition cells that can deal with all these possible scenarios. However,
this results in over 8000 different cases that must be covered. Therefore, it appears
important to restrict the amount of possible scenarios with edge-hanging nodes.
So, due to this enormous overload of transition cells and a probably high loss of
mesh quality, we discuss one possible way to solve the edge-balance condition in
t8code. If the edge-balance condition is fulfilled scenarios like those shown in

59

a) b)

Figure 7.2: This figure shows two scenarios that can occur in a face-balanced mesh.
In a), we see a hanging node in red on a blue edge of the green hexahedron. This
hanging node occurs on the edge of the green hexahedron and is thus ignored by
t8_transition. Notice that the elements in scenario a) fulfill the edge-balance
condition. In b), we see three hanging nodes on one blue edge of the green hexa-
hedron. The one in the middle, labeled in orange, is the kind of hanging node we
know how to deal with. The other two hanging nodes depicted in red still need to
be dealt with.

Figure 7.2 b) are not possible anymore. That eliminates already ∑12
i=1

(
12
i

)
= 4094

different cases.
In order to adjust t8_balance to create edge-balance, the first thing that needs

to be done is to implement a method that identifies edge-neighbors.
In [24], an edge structure for octrees is introduced that stores neighbor infor-

mation of each edge in a five integers long array. Thereby, the first integer states
whether the edge is split or not, and the following four integers describe the po-
tential neighbors in terms of their unique ID; in t8code, it would be the Morton
index. For more details, see [24]. Naturally, edge-balancing leads to an additional
amount of hexahedral elements.

So, we see that the edge-balancing condition is a basic requirement in order to
limit the amount of transition cells so that the impact of transitioning is minimized.
Nevertheless, remember that scenario a) in Figure 7.2 also leads to an additional
amount of 4094 different cases. Therefore, it seems reasonable to restrict further
hanging-node-producing scenarios but edge-balancing. Some possible restrictions
are discussed in the following Chapter 7.2. There, we assume the underlying mesh
to fulfill the edge-balance condition.

7.2 Hanging Edges
In this chapter one disadvantage of the presented approach to solving hanging
faces in a hexahedral mesh, the so-called hanging edges, is discussed.

At this point, it is worth mentioning that there are numerical solvers that
are not concerned with hanging edges. They might be concerned only with the
conformal node-connectivity.

In the presented transition cells, hanging edges occur when split subelements
are face-neighbored with a non-split subelement, see Figure 3.4. That means there
are edges that lie in the face of another element. This problem can only be solved
by changing the structure of the transition cell. In the following, this modified
transition cell is called transition cell A.

60

In order to keep the additional amount and complexity of elements inside a
transition cell as small as possible, one idea is to limit the possible scenarios
with hanging nodes to transition cells with only one hanging face or one hanging
edge. Notice that for this restriction, the balance algorithm needs to be modified.
Furthermore, this restriction will also, as the edge-balance condition, lead to an
increasing amount of hexahedral elements and, thus, additional computational
effort.

So, in the following discussion, it will be assumed that the mesh is edge-
balanced and modified in such a way, that an element has at most one hanging
node at a face (which induces four hanging edges) or one hanging node at an edge.

In the following, the modification of the transition cell is explained. The aim
is to translate the apex of the opposite pyramid, which corresponds to the node
in the center, to the hanging node inside the face. This type of pyramid is called
a type 1 pyramid, in the following. The apexes of the smaller pyramids, called
type 2 pyramids are translated to an opposite-lying node. The remaining parts
of the transition cell is filled with tetrahedra. This results in a transition cell
containing five pyramids and four tetrahedra. Thus, we do not increase the amount
of elements inside a transition cell of this specific type. Furthermore, we do not
add an additional node. To make this idea clear, see Figure 7.3.

v0 v1

v3

v4

v6 v7

h1

h4

h1

v5

v1

v1

v3

h0

h2

v1

v3

h2

v7

v7

v3

h2h2

h4

v7

v0 v1

v3

v7

v4

v6

h1

h4

Figure 7.3: This figure shows an exploded view of transition cell A. Transition
cell A is a modified transition cell with no hanging edges inside. It consists of five
pyramids, shown in dark blue and blue, and four tetrahedra, shown in green. The
hanging nodes are marked in red.

Notice that the modified transition cell shown in Figure 7.3 does not contain
hanging edges inside the transition cell but may produce hanging edges to the
face of neighboring elements. Therefore, we need to transition the face-neighbored
element as well. In Chapter 7.1 an approach to store edge-data information to
identify leaf-edge-neighbors was presented. With this hypothetical function, one
could modify the transition algorithm in the sense of not only detecting face-
hanging nodes but also edge-hanging nodes, as shown in Figure 7.2 a). Therefore, a
second type of transition cell needs to be introduced. We call this type of transition

61

cell transition cell B. An exploded view of this transition cell can be seen in Figure
7.4. This transition cell consists of four pyramids with their apex at the hanging
node.

Figure 7.4: This figure shows an exploded view of transition cell B. Transition cell
B consists of four pyramids with their apex at the edge-hanging node.

We see that both, the transition cell that eliminates hanging nodes at one face,
transition cell A, and the transition cell that eliminates a hanging node at one
edge, transition cell B, generate edges on their outer faces. However, due to the
construction, these edges match with the other transition cell. To make this clear:
If an element consists of one hanging node on an edge, it follows that the faces
that are adjacent to this edge are the outer faces of a transition cell. The edges
inside these outer faces of transition cell A then match the edges of transition cell
B.

Thus, the presented restrictions allow only the following three scenarios:

(i) One element has five hanging nodes that are all located at one face.
(ii) One element has one hanging node in total at one edge.
(iii) One element has no hanging nodes.

(44)

Thus, for a mesh restricted to the scenarios given in (44), the transition cells
A and B would be sufficient to make this modified mesh conformal. Another
advantage of that kind of modified mesh is that a lot of functions, like the LFN-
function could be implemented in a more hard-coded way because fewer options
are possible. This would significantly accelerate the runtime of transitioning the
mesh.

Furthermore, looking at the refinement region, discussed in Chapter 6, where
one-half of a cube is refined, the use of transition cell A would be sufficient to make
the mesh conformal. So, this could result in a very low implementation effort and
a manageable additional amount of elements.

7.3 Conclusion
We have seen that many possible scenarios can cause hanging nodes. In order
to keep the expenditure as small as possible, potential restrictions were presented.

62

Foremost, enabling edge-balancing would be an essential task for the future. More-
over, additional restrictions can be useful in order to keep the amount of transition
cells as small as possible. For example, the presented restrictions in the previous
Chapter 7.2, only require two different transition cells in order to make a mesh
conformal.

Therefore, checking the underlying refinement regions before transitioning the
mesh can be useful. If there are clear boundaries between refined regions and non-
refined regions, transitioning the mesh with transition cells can be very useful.
For example, the presented refinement region in Figure 6.3, where just one-half of
a cube is refined would be quite simple to transition. There is only one type of
transition cell needed. This might lead to a very low impact of transitioning.

If the refinement region is curved, more different types of transition patterns
may be needed. It still seems useful to restrict the amount to minimize the impact
of transition. This can exemplary be done by "straightening" the refinement region
to receive straight boundaries. In terms of the dynamic refinement region presented
in Chapter 6, it may be useful to modify the sphere into a cube.

Naturally, restricting possible scenarios for occurring hanging nodes always
leads to an increasing amount of hexahedral elements. Consequently, it is always
a trade-off between modifying the mesh to restrict possible scenarios of hanging
nodes with the cost of additional elements and a manageable number of transition
patterns in order to make the mesh conformal. Therefore, not only the additional
amount of elements must be considered but also a potential loss of quality as
analyzed in Chapter 6.4.

The pictures in this theses were made by the open source software IPE https:
//ipe.otfried.org.

63

https://ipe.otfried.org
https://ipe.otfried.org

A Appendix

t = 16 t = 32 t = 3 t = 5

t = 9 t = 17

t = 1 t = 2 t = 4 t = 8

t = 33 t = 6

t = 10 t = 18 t = 34 t = 12

t = 20 t = 36 t = 18 t = 34

t = 48 t = 7 t = 11 t = 19

t = 35 t = 14 t = 22 t = 38

64

t = 28 t = 44 t = 13 t = 21

t = 37 t = 25 t = 41 t = 49

t = 26 t = 42 t = 50 t = 52

t = 56 t = 15 t = 23 t = 39

t = 29 t = 45 t = 57 t = 30

t = 46 t = 58 t = 60 t = 31

65

t = 51 t = 53 t = 43 t = 27

t = 54 t = 31 t = 47 t = 55

t = 62 t = 61 t = 59 t = 63

Figure A.1: A complete list of all possible transition types t ∈ {1, . . . ,63}

Definition A.0.1. The face duals of a regular hexahedron with faces f0, . . . ,f5
are given by:

f0
dual−−→ f1, f1

dual−−→ f0, f2
dual−−→ f3, f3

dual−−→ f2, f4
dual−−→ f5, f5

dual−−→ f4 (45)

f0
f0

f0

f0

f0

f0

f1

f1

f1

f1

f1

f1

f3

f2

f4

f2

f3

f2

f3

f4

f4

f2

f3

f4

f2

f3

f4

f4

f2

f3

Figure A.2: This figure shows the face labels of a non-split subelement.

66

Algorithm 7: Compute the location array of a subelement S

Data: A subelement S
Result: Location array L of subelement S

1 t8_element_get_location_of_sub(S) Begin
2 // Compute binary array of transition type
3 b[]← transition_type_to_binary_array(S.transition_type)
4 // Compute cumulative array of the binary array
5 bcum[]← compute_cumulative_array(b[])
6 // Create array for the subelement_id_type and initialize with zero
7 sub_id_type_array[] = {0,0,0}
8 // Use bcum[] to determine the face number of the parent on which

the subelement lies
9 if S.subelement_id < bcum[0] then

10 face = 0
11 else
12 for 0≤ P8EST_FACES−1 do
13 if bcum[i]≤ S.subelement_id < bcum[i+1] then
14 face = i+1
15 break
16 end
17 end
18 end
19 // Determine whether the subelement is split or not
20 if b[face] = 0 then
21 split = 0
22 else
23 split = 1
24 end

67

// Determine the subelement_id_type, if split = 1
26 if split = 1 then
27 // Check whether the subelement is on the right or left side
28 // This can only be the case for faces f2, . . . ,f5
29 if face > 1 then
30 if S.subelement_id+1 =

bcum[face] OR S.subelement_id+3 = bcum[face] then
31 sub_id_type_array[0] = 1
32 end
33 end
34 // Check whether the subelement is on the front or back
35 if face≤ 1 then
36 if S.subelement_id+1 =

bcum[face] OR S.subelement_id+3 = bcum[face] then
37 sub_id_type_array[1] = 1
38 end
39 else
40 if face≥ 4 then
41 if S.subelement_id+1 =

bcum[face] OR S.subelement_id+2 = bcum[face] then
42 sub_id_type_array[1] = 1
43 end
44 end
45 end
46 end
47 // Check whether the subelement is on the top or bottom
48 if face < 4 then
49 if S.subelement_id+1 = bcum[face] OR S.subelement_id+2 =

bcum[face] then
50 sub_id_type_array[2] = 1
51 end
52 end
53 // Calculate the subelement id type out of the sub_id_type_array
54 for 0≤ i < 3 do
55 if sub_id_type_array[i] = 1 then
56 sub_id_type + = 22−i

57 end
58 end

end

68

Algorithm 8: Convert transition type t to a binary array b[]
Data: Transition type t
Result: Binary array b of transition type t

1 transition_type_to_binary_array(transition_type) begin
2 for 0≤ i < P8EST_FACES do
3 b[(P8EST_FACES−1)− i]← (transition_type and (1 << i)) >> i
4 end
5 end

Algorithm 9: Compute cumulative array bcum[] of the binary array b[]
Data: Binary array b[]
Result: Cumulative array bcum of binary array b[]

1 compute_cumulative_array(b[]) begin
2 bcum[0] = b[0]∗3+1
3 for 0≤ i < P8EST_FACES do
4 bcum← bcum[i−1]+ b[i]+1
5 end
6 end

69

Declaration of Authorship
Hiermit versichere ich an Eides statt, dass ich die vorliegende Arbeit selbstständig
und ohne die Benutzung anderer als der angegebenen Hilfsmittel angefertigt habe.
Alle Stellen, die wörtlich oder sinngemäß aus veröffentlichten und nicht veröf-
fentlichten Schriften entnommen wurden, sind als solche kenntlich gemacht. Die
Arbeit ist in gleicher oder ähnlicher Form oder auszugsweise im Rahmen einer an-
deren Prüfung noch nicht vorgelegt worden. Ich versichere, dass die eingereichte
elektronische Fassung der eingereichten Druckfassung vollständig entspricht.

Ort, Datum Unterschrift

References
[1] Ivo Babuska and Werner C Rheinboldt. “Reliable error estimation and mesh

adaptation for the finite element method”. In: Computational methods in
nonlinear mechanics (1980), pp. 67–108.

[2] I Babuvška and Werner C Rheinboldt. “Error estimates for adaptive finite el-
ement computations”. In: SIAM Journal on Numerical Analysis 15.4 (1978),
pp. 736–754.

[3] Michael Bader. Space-Filling Curves. Springer Berlin, Heidelberg, Oct. 2012.
isbn: 978-3-642-31046-1. doi: https://doi.org/10.1007/978-3-642-
31046-1.

[4] Santiago Badia et al. “A generic finite element framework on parallel tree-
based adaptive meshes”. In: CoRR abs/1907.03709 (2019). arXiv: 1907 .
03709. url: http://arxiv.org/abs/1907.03709.

[5] Florian Becker. “Removing hanging faces from tree-based adaptive meshes
for numerical simulations”. Erstgutachter: Prof. Dr. Gregor Gassner, Zweitgutachter:
Dr. Johannes Holke. MA thesis. Universität zu Köln, Dec. 2021. url: https:
//elib.dlr.de/187499/.

[6] Dietrich Braess and Rüdiger Verfürth. “A posteriori error estimators for the
Raviart–Thomas element”. In: SIAM Journal on Numerical Analysis 33.6
(1996), pp. 2431–2444.

[7] Marek Bucki et al. “Jacobian-based repair method for finite element meshes
after registration”. In: Engineering with Computers 27 (July 2011). doi:
10.1007/s00366-010-0198-2.

[8] Carsten Burstedde and Johannes Holke. “A Tetrahedral Space-Filling Curve
for Nonconforming Adaptive Meshes”. In: SIAM Journal of Scientific Com-
puting 38 (2016), pp. C471–C503. issn: 1064-8275. doi: 10.1137/15m1040049.

[9] Carsten Burstedde and Johannes Holke. “Coarse Mesh Partitioning for Tree-
Based AMR”. In: SIAM Journal on Scientific Computing 39.5 (Jan. 2017),
pp. C364–C392. doi: 10.1137/16m1103518.

[10] Carsten Burstedde, Lucas C. Wilcox, and Omar Ghattas. “p4est: Scalable
Algorithms for Parallel Adaptive Mesh Refinement on Forests of Octrees”.
In: SIAM Journal on Scientific Computing 33.3 (2011), pp. 1103–1133. doi:
10.1137/100791634.

[11] Henry Ker-Chang Chang and Jiang-Long Liu. “A linear quadtree compres-
sion scheme for image encryption”. In: Signal Processing: Image Communi-
cation 10.4 (1997), pp. 279–290. issn: 0923-5965. doi: https://doi.org/
10.1016/S0923-5965(96)00025-2. url: https://www.sciencedirect.
com/science/article/pii/S0923596596000252.

[12] A.O. Cifuentes and A. Kalbag. “A performance study of tetrahedral and
hexahedral elements in 3-D finite element structural analysis”. In: Finite
Elements in Analysis and Design 12.3 (1992), pp. 313–318. issn: 0168-874X.
doi: https://doi.org/10.1016/0168-874X(92)90040-J. url: https:
//www.sciencedirect.com/science/article/pii/0168874X9290040J.

71

https://doi.org/https://doi.org/10.1007/978-3-642-31046-1
https://doi.org/https://doi.org/10.1007/978-3-642-31046-1
https://arxiv.org/abs/1907.03709
https://arxiv.org/abs/1907.03709
http://arxiv.org/abs/1907.03709
https://elib.dlr.de/187499/
https://elib.dlr.de/187499/
https://doi.org/10.1007/s00366-010-0198-2
https://doi.org/10.1137/15m1040049
https://doi.org/10.1137/16m1103518
https://doi.org/10.1137/100791634
https://doi.org/https://doi.org/10.1016/S0923-5965(96)00025-2
https://doi.org/https://doi.org/10.1016/S0923-5965(96)00025-2
https://www.sciencedirect.com/science/article/pii/S0923596596000252
https://www.sciencedirect.com/science/article/pii/S0923596596000252
https://doi.org/https://doi.org/10.1016/0168-874X(92)90040-J
https://www.sciencedirect.com/science/article/pii/0168874X9290040J
https://www.sciencedirect.com/science/article/pii/0168874X9290040J

[13] L. Demkowicz et al. “Toward a universal h-p adaptive finite element strat-
egy, part 1. Constrained approximation and data structure”. In: Computer
Methods in Applied Mechanics and Engineering 77.1 (1989), pp. 79–112.
issn: 0045-7825. doi: https://doi.org/10.1016/0045-7825(89)90129-
1. url: https : / / www . sciencedirect . com / science / article / pii /
0045782589901291.

[14] Willy Dörfler. “A convergent adaptive algorithm for Poisson’s equation”. In:
SIAM Journal on Numerical Analysis 33.3 (1996), pp. 1106–1124.

[15] Luca Formaggia, Fausto Saleri, and Alessandro Veneziani. Solving numerical
PDEs: problems, applications, exercises. Springer Science & Business Media,
2012.

[16] Thomas-Peter Fries et al. “Hanging nodes and XFEM”. In: International
Journal for Numerical Methods in Engineering 86.4-5 (2011), pp. 404–430.

[17] Arthur Guittet, Maxime Theillard, and Frédéric Gibou. “A stable projection
method for the incompressible Navier–Stokes equations on arbitrary geome-
tries and adaptive Quad/Octrees”. In: Journal of Computational Physics 292
(2015), pp. 215–238. issn: 0021-9991. doi: https://doi.org/10.1016/j.
jcp.2015.03.024. url: https://www.sciencedirect.com/science/
article/pii/S0021999115001710.

[18] Herman Haverkort. Sixteen space-filling curves and traversals for d-dimensional
cubes and simplices. 2018. arXiv: 1711.04473 [cs.CG].

[19] Herman Haverkort and Freek van Walderveen. “Locality and bounding-box
quality of two-dimensional space-filling curves”. In: Computational Geometry
43.2 (2010), pp. 131–147.

[20] Johannes Holke. “Scalable Algorithms for Parallel Tree-based Adaptive Mesh
Refinement with General Element Types”. In: CoRR abs/1803.04970 (2018).
arXiv: 1803.04970. url: http://arxiv.org/abs/1803.04970.

[21] Johannes Holke and Carsten Burstedde. “Scalable algorithms for adaptive
mesh refinement with arbitrary element types”. In: Scalable algorithms for
adaptive mesh refinement with arbitrary element types. Nov. 2018. url:
https://elib.dlr.de/124383/.

[22] Johannes Holke, David Knapp, and Carsten Burstedde. “An Optimized, Par-
allel Computation of the Ghost Layer for Adaptive Hybrid Forest Meshes”.
In: SIAM Journal on Scientific Computing 43.6 (Nov. 2021). Ed. by Jan
Hesthaven, pp. 359–385. url: https://elib.dlr.de/130166/.

[23] Jan Hungershöfer and Jens-Michael Wierum. “On the Quality of Partitions
Based on Space-Filling Curves”. In: Computational Science — ICCS 2002.
Ed. by Peter M. A. Sloot et al. Berlin, Heidelberg: Springer Berlin Heidel-
berg, 2002, pp. 36–45. isbn: 978-3-540-47789-1.

[24] Fabrice Jaillet and Claudio Lobos. “Fast Quadtree/Octree adaptive meshing
and re-meshing with linear mixed elements”. In: Engineering with Computers
38.4 (Mar. 2022), pp. 3399–3416. issn: 0177-0667. doi: 10.1007/s00366-
021-01330-w.

72

https://doi.org/https://doi.org/10.1016/0045-7825(89)90129-1
https://doi.org/https://doi.org/10.1016/0045-7825(89)90129-1
https://www.sciencedirect.com/science/article/pii/0045782589901291
https://www.sciencedirect.com/science/article/pii/0045782589901291
https://doi.org/https://doi.org/10.1016/j.jcp.2015.03.024
https://doi.org/https://doi.org/10.1016/j.jcp.2015.03.024
https://www.sciencedirect.com/science/article/pii/S0021999115001710
https://www.sciencedirect.com/science/article/pii/S0021999115001710
https://arxiv.org/abs/1711.04473
https://arxiv.org/abs/1803.04970
http://arxiv.org/abs/1803.04970
https://elib.dlr.de/124383/
https://elib.dlr.de/130166/
https://doi.org/10.1007/s00366-021-01330-w
https://doi.org/10.1007/s00366-021-01330-w

[25] Aly Khawaja and Yannis Kallinderis. “Hybrid grid generation for turboma-
chinery and aerospace applications”. In: International Journal for Numerical
Methods in Engineering 49.1-2 (2000), pp. 145–166.

[26] Benjamin S Kirk et al. “libMesh: a C++ library for parallel adaptive mesh re-
finement/coarsening simulations”. In: Engineering with Computers 22 (2006),
pp. 237–254.

[27] David Knapp. “A space-filling curve for pyramidal adaptive mesh refine-
ment”. Erstgutachter: Prof. Dr. Reinhard Klein, Zweitgutachter: Dr. Jo-
hannes Holke. MA thesis. Rheinische Friedrich-Wilhems-Universität Bonn,
May 2022, p. 107205. doi: 10.1016/j.tws.2020.107205. url: https:
//elib.dlr.de/138982/.

[28] Patrick M. Knupp. “Remarks on Mesh Quality.” In: 2007. url: https :
//api.semanticscholar.org/CorpusID:35978553.

[29] Patrick M. Knupp et al. “The verdict geometric quality library.” In: 2006.
url: https://api.semanticscholar.org/CorpusID:124174134.

[30] Henry Lebesgue. “Leçons sur l’intégration et la recherche des fonctions prim-
itives”. In: Monatshefte für Mathematik und Physik 15.1 (Dec. 1904), A46–
A47. doi: 10.1007/bf01692367.

[31] Randall J LeVeque. Finite volume methods for hyperbolic problems. Vol. 31.
Cambridge university press, 2002.

[32] Claudio Lobos. A set of mixed-element transition patterns for adaptive 3d
meshing. Tech. rep. June 2015. doi: 10.13140/RG.2.1.3367.4400.

[33] Claudio Lobos et al. “Measuring geometrical quality of different 3D linear
element types”. In: Numerical Algorithms 90 (2022). doi: 10.1007/s11075-
021-01193-8.

[34] David Martineau et al. “Anisotropic hybrid mesh generation for industrial
RANS applications”. In: 44th AIAA Aerospace Sciences Meeting and Exhibit.
2006, p. 534.

[35] G.M. Morton. A Computer Oriented Geodetic Data Base and a New Tech-
nique in File Sequencing. International Business Machines Company, 1966.

[36] W. Rachowicz and L. Demkowicz. “An hp-adaptive finite element method
for electromagnetics: Part 1: Data structure and constrained approximation”.
In: Computer Methods in Applied Mechanics and Engineering 187.1 (2000),
pp. 307–335. issn: 0045-7825. doi: https://doi.org/10.1016/S0045-
7825(99)00137- 1. url: https://www.sciencedirect.com/science/
article/pii/S0045782599001371.

[37] Hans Sagan. Space-Filling Curve. New York, NY: Springer New York, 1994.
isbn: 978-1-4612-0871-6. doi: 10 . 1007 / 978 - 1 - 4612 - 0871 - 6 _ 5. url:
https://doi.org/10.1007/978-1-4612-0871-6_5.

[38] Sandro Salsa and Gianmaria Verzini. Partial differential equations in action:
from modelling to theory. Vol. 147. Springer Nature, 2022.

73

https://doi.org/10.1016/j.tws.2020.107205
https://elib.dlr.de/138982/
https://elib.dlr.de/138982/
https://api.semanticscholar.org/CorpusID:35978553
https://api.semanticscholar.org/CorpusID:35978553
https://api.semanticscholar.org/CorpusID:124174134
https://doi.org/10.1007/bf01692367
https://doi.org/10.13140/RG.2.1.3367.4400
https://doi.org/10.1007/s11075-021-01193-8
https://doi.org/10.1007/s11075-021-01193-8
https://doi.org/https://doi.org/10.1016/S0045-7825(99)00137-1
https://doi.org/https://doi.org/10.1016/S0045-7825(99)00137-1
https://www.sciencedirect.com/science/article/pii/S0045782599001371
https://www.sciencedirect.com/science/article/pii/S0045782599001371
https://doi.org/10.1007/978-1-4612-0871-6_5
https://doi.org/10.1007/978-1-4612-0871-6_5

[39] Teseo Schneider et al. “A Large-Scale Comparison of Tetrahedral and Hexa-
hedral Elements for Solving Elliptic PDEs with the Finite Element Method”.
In: ACM Trans. Graph. 41.3 (Mar. 2022). issn: 0730-0301. doi: 10.1145/
3508372. url: https://doi.org/10.1145/3508372.

[40] Robert Schneiders. “Octree-based hexahedral mesh generation”. In: Inter-
national Journal of Computational Geometry & Applications 10.04 (2000),
pp. 383–398.

[41] Jason F. Shepherd and Chris R. Johnson. “Hexahedral mesh generation for
biomedical models in SCIRun”. In: Engineering with Computers (2009). doi:
10.1007/s00366-008-0108-z.

[42] Hang Si and A TetGen. “A quality tetrahedral mesh generator and three-
dimensional delaunay triangulator”. In: Weierstrass Institute for Applied
Analysis and Stochastic, Berlin, Germany 81 (2006), p. 12.

[43] Pavel Šolín, Jakub Červený, and Ivo Doležel. “Arbitrary-level hanging nodes
and automatic adaptivity in the hp-FEM”. In: Mathematics and Comput-
ers in Simulation 77.1 (2008), pp. 117–132. issn: 0378-4754. doi: https:
/ / doi . org / 10 . 1016 / j . matcom . 2007 . 02 . 011. url: https : / / www .
sciencedirect.com/science/article/pii/S0378475407001504.

[44] Srinivas C Tadepalli, Ahmet Erdemir, and Peter R Cavanagh. “Comparison
of hexahedral and tetrahedral elements in finite element analysis of the foot
and footwear”. In: Journal of biomechanics 44.12 (2011), pp. 2337–2343.

[45] Tiankai Tu, David R O’Hallaron, and Omar Ghattas. “Scalable parallel oc-
tree meshing for terascale applications”. In: SC’05: Proceedings of the 2005
ACM/IEEE conference on Supercomputing. IEEE. 2005, pp. 4–4.

[46] TIANKAI TU, DAVID R. O’HALLARON, and OMAR GHATTAS. “Scal-
able Parallel Octree Meshing for TeraScale Applications”. In: Proceedings of
the 2005 ACM/IEEE Conference on Supercomputing. SC ’05. USA: IEEE
Computer Society, 2005, p. 4. isbn: 1595930612. doi: 10.1109/SC.2005.61.
url: https://doi.org/10.1109/SC.2005.61.

[47] David A Venditti and David L Darmofal. “Adjoint error estimation and
grid adaptation for functional outputs: Application to quasi-one-dimensional
flow”. In: Journal of Computational Physics 164.1 (2000), pp. 204–227.

[48] Samir Vinchurkar and P Worth Longest. “Evaluation of hexahedral, pris-
matic and hybrid mesh styles for simulating respiratory aerosol dynamics”.
In: Computers & Fluids 37.3 (2008), pp. 317–331.

[49] Nils Zander et al. “Multi-level hp-adaptivity: high-order mesh adaptivity
without the difficulties of constraining hanging nodes”. In: Computational
Mechanics 55.3 (2015), pp. 499–517.

[50] Nils Zander et al. “The multi-level hp-method for three-dimensional prob-
lems: Dynamically changing high-order mesh refinement with arbitrary hang-
ing nodes”. In: Computer Methods in Applied Mechanics and Engineering 310
(2016), pp. 252–277. issn: 0045-7825. doi: https://doi.org/10.1016/j.
cma.2016.07.007. url: https://www.sciencedirect.com/science/
article/pii/S0045782516307289.

74

https://doi.org/10.1145/3508372
https://doi.org/10.1145/3508372
https://doi.org/10.1145/3508372
https://doi.org/10.1007/s00366-008-0108-z
https://doi.org/https://doi.org/10.1016/j.matcom.2007.02.011
https://doi.org/https://doi.org/10.1016/j.matcom.2007.02.011
https://www.sciencedirect.com/science/article/pii/S0378475407001504
https://www.sciencedirect.com/science/article/pii/S0378475407001504
https://doi.org/10.1109/SC.2005.61
https://doi.org/10.1109/SC.2005.61
https://doi.org/https://doi.org/10.1016/j.cma.2016.07.007
https://doi.org/https://doi.org/10.1016/j.cma.2016.07.007
https://www.sciencedirect.com/science/article/pii/S0045782516307289
https://www.sciencedirect.com/science/article/pii/S0045782516307289

	Introduction
	Theory
	Adaptive Mesh Refinement
	Space-Filling Curves
	Morton Index For Hexahedral Elements
	A SFC Index For Forests

	Transitioning
	Hanging Nodes On Hexahedral Faces
	What Do Other People Do To Solve Hanging Nodes
	Transition Cells
	SFC In Transition Cells
	A SFC Index For Transitioned Forests

	Implementations In t8code
	High-level Algorithms Of t8code
	New
	Adapt
	Balance
	Partition

	Fundamentals For Transition Cells In t8code
	Transition Type
	Subelement ID Type
	Adjustment Of The Element Data Structure

	Implementing Transition Cells In t8code
	t8_element_compute_transition_type
	t8_element_num_subelements
	t8_element_initialize_transition_cell

	Transition

	Identifying Face-Neighbors
	Face-Neighbors In Transitioned Forests
	t8_element_get_location_of_subelement

	Finding Face-Neighbors In Transition Cells

	Analysis Of The Influence Of t8_transition
	Measurements Of The Amount Of Elements
	Runtime Measurements Of t8_transition
	Runtime Measurements t8_element_leaf_face_neighbor
	Parameters For Mesh Quality
	Jacobian-Based Quality Metrics
	Aspect-Ratio Based Quality Metrics

	Outlook
	Edge-Balancing
	Hanging Edges
	Conclusion

	Appendix

