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Abstract

With impacts of climate change already noticeable in every region of the world, understanding
and accurately simulating the drivers of climate change is crucial. In particular, the global
carbon cycle and its responses to changing carbon dioxide (CO2) emissions plays an important
role. State-of-the-art Earth System Models (ESMs) are able to simulate the complex interactions
and feedbacks of physical and biogeochemical processes involved in the carbon cycle, and
are routinely used to project climate change. A comprehensive evaluation of their ability
to reproduce observed present-day climate is a prerequisite for reliable climate projections
that are used as guidelines for climate policy. The goal of this thesis is to identify important
improvements and key processes relevant to accurately simulate the carbon cycle under climate
change and to provide recommendations for further model developments. This is done by
a comprehensive evaluation of historical simulations from ESMs participating in the last two
phases of the Coupled Model Intercomparison Project (CMIP) with satellite observations.

In a first study of this thesis, column-average CO2 mole fraction (XCO2) from CMIP5
and CMIP6 emission-driven ESM simulations are compared to satellite observations in the
time period 2003–2014. The satellite data are a combined data product based on the SCIA-
MACHY/Envisat (2003-–2012) and TANSO-FTS/GOSAT (2009-–2014) instruments. The ob-
servational data are limited in their data coverage, for example due to clouds, surface reflec-
tivity or sun elevation. Model simulations on the contrary provide data on every single grid
cell around the globe. To accurately compare these simulations with gridded satellite data,
the models are therefore sampled the same way as the observations in this thesis. Previous
studies on CMIP data found the seasonal cycle amplitude (SCA) of atmospheric CO2, arising
due to carbon uptake by photosynthesis and release through respiration, to be increasing with
increasing atmospheric CO2 in the northern midlatitudes. In contrast, they found that the
SCA based on XCO2 satellite data shows a clear negative trend. This thesis could resolve
this discrepancy and attribute it to different spatial coverage of the two satellite instruments
contributing to the data set, with SCIAMACHY operating at earlier times from 2003—2012
with a higher mean SCA than the GOSAT satellite operating since 2009. Additionally, differ-
ences in spatial coverage can influence the SCA of CO2 when missing data occur at peaks or
troughs, lowering the computed SCA. This thesis could therefore show that XCO2 data from
satellite instruments provide a promising new way to evaluate the performance of ESMs on a
global scale, also allowing investigation of regional effects, such as the increasing SCA at high
latitudes.
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Taking this observational sampling into account, the same satellite XCO2 data are used
to further evaluate climate model simulations. CMIP models are found to overestimate the
carbon content of the atmosphere compared to the satellite observations. CMIP5 models have
a mean bias of +10 ppm while in CMIP6 models the mean bias is reduced to +2 ppm. The
spread remains large in both ensembles. The bias can be explained through the overestimation
of the observed mean atmospheric growth rate (GR) of 2.0 ppm yr−1 that is overestimated by
0.4 ppm yr−1 in CMIP5 and 0.3 ppm yr−1 in CMIP6. Overall, this thesis showed that the
CMIP6 ensemble shows better agreement with the satellite data than the CMIP5 ensemble in
all considered quantities (XCO2, GR, SCA and trend in SCA).

After investigating the atmospheric CO2 concentration itself, the second study of this the-
sis evaluates present-day land carbon cycle variables with a focus on differences between
concentration- and emission-driven simulations, as well as the inclusion of an interactive ni-
trogen cycle coupled to the carbon cycle in the models. Weaknesses in the land carbon cycle of
CMIP5 have been previously found in the form of an overestimation of photosynthesis (GPP)
as well as a large range in carbon stocks. Generally, CMIP6 models show an improvement
over CMIP5 models in all analysed variables selected for this study (Leaf Area Index (LAI),
GPP, land carbon uptake (NBP), and carbon stocks) to differing degrees. Overestimations
of GPP in CMIP5 simulations are resolved in CMIP6 for models including a nitrogen cycle,
but remain for models without, while the simulation of LAI remains challenging with large
model spreads in both CMIP phases. While global mean land carbon uptake is well repro-
duced in the multi-model means, this is the result of an overestimation of NBP in the northern
hemisphere, compensated by an underestimation in the southern hemisphere and the tropics.
Carbon stocks remain a large uncertainty in models, and should be an area of further model
improvements. Despite the increased process complexity in emission-driven simulations that
fully account for the influence of climate-carbon feedbacks on atmospheric CO2, they perform
just as well as CO2 concentration-driven simulations. Therefore, this thesis recommends the
use of emission-driven over concentration-driven simulations as a default setting for future
CMIP phases to represent important future Earth system feedbacks. In addition, the large
improvements of photosynthesis through the inclusion of an interactive nitrogen cycle, with
no adverse effects found in other areas, suggests the need to view the nitrogen cycle as a
necessary part of all future carbon cycle models and raises the question about the importance
of including further nutrient limitations, such as the phosphorus cycle.

All diagnostics of this thesis have been made publicly-available as part of the community-
developed open source ESMValTool. This facilitates future analysis of the carbon cycle in
upcoming CMIP phases and climate reports, and can easily be extended for analysing further
specific model characteristics, such as dynamic vegetation. This thesis added to the under-
standing of the representation of the carbon and nitrogen cycles in CMIP models and leads to
clear recommendations for further model improvement.
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1. Introduction

1.1. Motivation

Climate change is one of the most impactful topics in the world today, with many of its
consequences posing a great challenge which affects the lives of people all over the world. The
Intergovernmental Panel on Climate Change (IPCC) Sixth Assessment Report (AR6) has found
unequivocal evidence that the warming of the atmosphere, ocean and land is due to human
influence (anthropogenic) and that "human-induced climate change is already affecting many
weather and climate extremes in every region across the globe" (IPCC 2021b). It is further
stated that the global surface temperature has increased by 1.1 ◦C in 2011–2020 compared to
1850–1900, which is commonly referred to as pre-industrial times. Further impacts of climate
change include sea level rise, ocean acidification and an increased frequency of extreme events
such as droughts. Changes brought about by past and future greenhouse gas emissions are
found to be irreversible for centuries to millennia (IPCC 2021b). The 1 ◦𝐶 warming since the
pre-industrial time is a combined effect of greenhouse gases (GHGs) warming (+1.5 ◦𝐶), of
which about half was contributed by carbon dioxide (CO2), and cooling from anthropogenic
aerosols (-0.5 ◦𝐶) (IPCC 2021b). The amount of CO2 in the atmosphere has drastically increased
since pre-industrial times with an average CO2 concentration in 2023 of 419 parts per million
(ppm) compared to 278 ppm in 1750 (Friedlingstein et al. 2023). Monitoring the long-term
changes in atmospheric CO2 concentrations is important to understand sources and sinks of
carbon. These observations can be used to evaluate climate models, with better performance
of present-day sources, sinks, and concentrations leading to a higher confidence in the models’
ability to reliably simulate future projections of CO2 concentrations under various scenarios.

The Earths’ warming through GHGs is explained through the greenhouse effect: The in-
coming solar (shortwave) radiation passes through the atmosphere, but the outgoing infrared
(longwave) radiation from the planet’s surface is absorbed by GHG molecules by exciting the
corresponding vibrational modes. When re-emitted, this energy is distributed isotropically,
and thus some of this energy is trapped in the lower atmosphere (the troposphere) leading
to a warming of the Earth’s surface. The higher the concentration of GHG molecules, the
stronger this heating effect becomes. CO2 is a long-lived GHG, but not all CO2 emitted stays in
the atmosphere. Instead, land and ocean are currently acting as carbon sinks, together taking
up 56 % of the emitted carbon (Friedlingstein et al. 2023; IPCC 2021b). However, while the
natural land and ocean carbon sinks are projected to take up more carbon in the future under
scenarios with increasing CO2 emissions, this increase is smaller than the increase in CO2
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emissions and thus results in a smaller relative uptake (IPCC 2021b). To better understand
the temporal evolution of carbon sources and sinks, the carbon cycle needs to be analyzed.
On land, CO2 in the atmosphere is absorbed by plants through photosynthesis. During the
dormant season there is a net release of CO2 due to respiration. This results in a seasonal cycle
of the atmospheric CO2 concentration.

To be able to anticipate the larger changes in the climate and its impact on a variety of
environmental factors, such as temperature and the frequency of extreme events, as well as
to understand the drivers of climate change, simulations by climate models are vital. These
can reproduce the past observed climate, as well as project the evolution of climate change
for given future scenarios. Climate models are based on a set of fundamental equations
that represent the climate system with different degree of complexity (Gettelman and Rood
2016). Early General Circulation Models have been used in the community since the 1960s and
simulate the physical conditions in the ocean or atmosphere. Since the 1980s, coupled climate
models emerged which combine several of the individual components of ocean, atmosphere,
land, and sea ice (Gettelman and Rood 2016). Climate models going beyond the representation
of physical processes and additionally including biological and chemical processes such as
the carbon cycle are called Earth System Models (ESMs). A large number of these models
are being developed all over the world, often with a focus on different processes. To facilitate
the comparison of climate model output with other climate models, an initiative was needed
to standardize these modeling efforts. The objective of the Coupled Model Intercomparison
Project (CMIP), which was initiated in 1995 by the Working Group on Coupled Modelling
(WGCM) of the World Climate Research Programme (WCRP), aims to "better understand
past, present and future climate changes" (WCRP 2024). It is a successful initiative allowing
for a meaningful comparison of different model outputs by setting a framework of model
experiments with common forcings and setups. An important part of CMIP is the availability
of model output in a standardized and specified output format and for it to be distributed
publicly through the Earth System Grid Federation (ESGF) (Eyring et al. 2016c). The most
recent completed phase of CMIP is the 6th Phase (CMIP6) (Eyring et al. 2016c) with more than
100 registered contributors (PCMDI 2024). The CMIP model output is used for providing
crucial input for international climate assessments, with the latest AR6 supported by data
from CMIP6.

With this large amount of model data, there is a need for making the evaluation of the models
more routine (Eyring et al. 2016a). The Earth System Model Evaluation Tool (ESMValTool)
(Eyring et al. 2020; Lauer et al. 2020; Righi et al. 2020; Weigel et al. 2021), which is an
open source community tool developed for the routine evaluation of CMIP models, fills this
need. With the ability to easily include any observational datasets necessary for analysis,
it facilitates the inclusion of newer observations for analysis, such as satellite observations.
These satellite observations bring an opportunity for different analysis types, especially with
respect to spatially resolved comparisons as opposed to requiring upscaling of in-situ data or
subsampling models to areas with observational sites.

2



1.2. Key Science Questions

1.2. Key Science Questions

The goal of this thesis is to investigate the terrestrial carbon cycle in CMIP models with the
help of satellite observations, identifying improvements and weaknesses in the new model
generation and attributing these to specific advancements. This thesis therefore addresses the
following three key science questions:

1. How can recent satellite observations be used to evaluate climate model simulations,
and how does sparse data coverage affect results?

2. How do CMIP6 models compare to CMIP5 models in simulating atmospheric CO2 and
terrestrial carbon cycle variables, on the basis of observational and reanalysis data?

3. What effect does increased process complexity, through the inclusion of an interactively
coupled nitrogen cycle and the forcing of carbon emissions instead of carbon concentra-
tions, have on model performance?

1.3. Structure of the Thesis

Some parts of this thesis have already been published in peer-reviewed studies, listed on
page vii. Chapters based on these publications are prefaced by a detailed description of the
author’s contributions to those publications. While the pronoun "we" is kept the same as in
the published papers for consistency, all content used in this thesis from these publications
including text, figures and tables were created by the author of this thesis unless specifically
stated otherwise.

The structure of the thesis is as follows: Chapter 2 introduces the scientific background to
frame this thesis and references literature upon which the studies of the following chapters are
built upon. Chapter 3 introduces ESMValTool, a community-developed open-source software
package for the analysis of Earth system models (ESMs). ESMValTool has been used for
all studies in this thesis, and contributions to its code base led to co-authorship in several
peer-reviewed studies (Eyring et al. 2020; Lauer et al. 2020; Weigel et al. 2021). Furthermore,
this chapter also discusses contributions as contributing author to Chapter 5 (Canadell et al.
2021) and acknowledged graphic developer for Chapter 3 (Eyring et al. 2021) of the IPCC
AR6, as the graphical and numerical input to these chapters was done with ESMValTool.
Chapters 4 and 5 present the main results of this thesis. In Chapter 4 of this thesis, satellite
column-averaged CO2 data is used for a spatially resolved evaluation of output from CMIP5
and CMIP6 simulations, following Gier et al. 2020. With the knowledge from this study, the
representation of the terrestrial carbon cycle in CMIP6 is analyzed in Chapter 5 based on Gier
et al. 2024, focusing on the differences between models with and without interactive nitrogen
cycle. Finally, Chapter 6 summarizes the results of this thesis and outlines possible future
studies in an outlook.
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2. Scientific Background

In this chapter, the scientific background relating to the thesis is introduced. This consists of the
carbon cycle (Section 2.1) with a focus on the terrestrial part, an introduction to climate models
(Section 2.2), and the implementation of the carbon cycle in Earth system models (ESMs) in
general (Section 2.3), as well as specifics for each ESM used. Furthermore, as many different
kinds of reference data sets are used throughout the thesis, Section 2.4 covers the available
types of data procurement for carbon cycle variables.

2.1. The Carbon Cycle

The global carbon cycle describes how carbon is exchanged between components of the earth
system, which includes the carbon emitted by humanity to the atmosphere, of which 56 %
is currently absorbed by carbon sinks of the land and the ocean (Friedlingstein et al. 2023).
When emitting more carbon into the atmosphere, the carbon content in the ocean and on
land changes, which can in turn affect the mechanisms responsible for taking up carbon from
the atmosphere, leading to feedback processes. As only carbon staying in the atmosphere is
relevant for the greenhouse effect (in the form of atmospheric carbon dioxide (CO2) acting as
a greenhouse gas (GHG)), the land and ocean sinks slow down climate change. Thus, inves-
tigating the exchange processes between the different reservoirs is vital to better understand
the rate of climate change.

While CO2 is the most important GHG, it only makes up a small part of the air. The global
mean atmospheric CO2 concentration was 278 ppm in 1750 (pre-industrial level), while in 2023
it has risen to 419.3 ppm (Friedlingstein et al. 2023). ppm stands for "parts per million"; 1 ppm
would correspond to one CO2 molecule per one million particles of air. The global exchange
fluxes between the atmosphere and land or ocean are usually given in GtC yr−1, with 3.7 Gt
of CO2 constituting 1 GtC, or alternatively 1 PgC.

The following sections discuss the scientific background of the global carbon cycle, as well
as additional details of the terrestrial carbon cycle. Unless indicated otherwise through a
specific reference, this section is mainly derived from the Intergovernmental Panel on Climate
Change (IPCC) Fifth Assessment Report (AR5) Chapter 6 (Ciais et al. 2013) and references
therein.
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2. Scientific Background

Figure 2.1.: Simplified schematic of the global carbon cycle showing the typical turnover time scales
for carbon transfers through the major reservoirs. Reproduced with permission from Ciais et al. 2013
(their FAQ 6.2, Figure 1).

2.1.1. Global Carbon Cycle

Figure 2.1 shows a schematic overview of the global carbon cycle. Carbon exchanges between
reservoirs in the ocean, land, and atmosphere occur on widely differing timescales, which
can be split into a fast and a slow domain. Turnover times, defined as reservoir mass of
carbon divided by exchange flux, of more than 10,000 years belong to reservoirs in the slow
domain. This slow domain mainly consists of large carbon stores in rocks and sediments
and is connected to the fast domain with turnover times up to millennia through chemical
weathering, volcanic emissions, erosion, as well as sediment formation on the sea floor. The
natural exchange fluxes between the slow and fast domain are relatively small (< 0.3 GtC yr−1)
and have been found to be relatively constant in time over the past few centuries.

The fast domain consists of the carbon in the atmosphere, the ocean, as well as the ter-
restrial biosphere. Carbon in the atmosphere is mainly stored in trace gases, predominantly
CO2, but also methane (CH4), carbon monoxide (CO), further hydrocarbons, black carbon
aerosols and organic compounds. In the ocean reservoir, dissolved organic carbon (DIC),
made up of carbonic acid, bicarbonate and carbonate ions, dominates the carbon storage
with 38,000 GtC, followed by ocean and floor sediments (1,750 GtC), dissolved organic carbon
(DOC) with 700 GtC, and a small organic carbon pool of 3 GtC made predominantly of phyto-
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2.1. The Carbon Cycle

plankton. Gas exchange driven by the partial CO2 pressure difference between the atmosphere
and ocean drives the air-sea CO2 exchange, with the ocean currently taking up 2.8 GtC yr−1

(Friedlingstein et al. 2023). Within the ocean, carbon is transported through three mechanisms
- the solubility pump, the biological pump, and the marine carbonate pump. In the terrestrial
biosphere, carbon is mainly stored in organic compounds, namely 450-650 GtC in vegetation
living biomass, 1500-2400 GtC in dead organic matter in litter and soils, as well as 300-700 GtC
in wetland soils and approximately 1700 GtC in permafrost soils. The processes of carbon
exchange between land and atmosphere, as well as the carbon exchange fluxes within the
terrestrial biosphere are discussed in detail in Section 2.1.2.

As inferred from ice core measurements, the global carbon cycle was in a dynamic equilib-
rium before the industrial era, with a constant CO2 concentration in the atmosphere. Since the
industrial revolution, humans have been releasing large amounts of CO2 into the atmosphere
through the burning of fossil fuels and changes in land use such as deforestation. These emis-
sions are called "anthropogenic emissions", contrasting to natural emissions (e.g., from natural
fires or volcanic eruptions) and lead to an increased amount of CO2 in the atmosphere, almost
doubling the value of pre-industrial times (278 pm in 1750) at 419.3 ppm in 2023 (Friedlingstein
et al. 2023). The increasing CO2 amount in the atmosphere also impacts the carbon sinks of
the ocean and land. On the ocean side, the rising CO2 in the atmosphere leads to an increased
partial pressure difference and thus a stronger ocean sink, while on land the CO2 fertilisation
effect increases photosynthesis and resulting in a larger carbon uptake on land. These are the
so-called concentration-carbon feedbacks (Friedlingstein et al. 2006). Increased CO2 also leads
to global warming and other changes to the climate, giving rise to climate-carbon feedbacks
(Friedlingstein et al. 2006). The rising temperature is generally found to decrease the uptake
of both the land and ocean, such as through higher respiration fluxes and a lower solubility of
CO2 in a warmer ocean, with analysis on these feedbacks finding larger uncertainties on land
than in the ocean (Arora et al. 2020; Friedlingstein et al. 2014; Hajima et al. 2014).

2.1.2. Land Carbon Cycle

Plant photosynthesis causes a net uptake of CO2 from the atmosphere by land of about 120 GtC
yr−1. This process is also called gross primary production (GPP). Photosynthesis refers to
the process of plants using energy from solar radiation to turn CO2 from the atmosphere and
water into Glucose (C6H12O6) and oxygen (O2). Carbon fixed into plants through photosyn-
thesis is either directly released through autotrophic respiration, or further cycled through
the plant to grow leaves, stems and roots. When herbivores eat plants, they also take up the
carbon stored within and the CO2 generated from cellular respiration is emitted back into
the atmosphere. After the death of a plant or parts of it, litter is produced and the carbon
therein enters the litter pools. Decomposing litter releases carbon to the atmosphere through
hetereotrophic respiration, or is incorporated into soil and becomes soil organic matter. While
carbon released to the atmosphere remains constant throughout the whole year, photosyn-
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thesis only occurs during the growing season, resulting in a net release of CO2 from the land
and thus rising atmospheric CO2 in the dormant season, which eventually leads to a seasonal
cycle of atmospheric CO2 (Keeling et al. 1989). Due to the greater land mass in the Northern
Hemisphere (NH), the global atmospheric CO2 concentration follows the seasonal cycle of the
NH, with peaks during northern winter and troughs during northern summer. The ampli-
tude of that seasonal CO2 cycle (hereafter referred to as SCA - seasonal cycle amplitude), has
increased over the last 50 years, with larger increases in higher latitudes (Barnes et al. 2016;
Graven et al. 2013; Keeling et al. 1995; Keeling et al. 1996; Myneni et al. 1997; Piao et al. 2018;
Yin et al. 2018). Multiple drivers of this process have been explored in various studies, like CO2

fertilization, land-use change and climate warming (Bastos et al. 2019; Fernández-Martínez
et al. 2019; Zhao et al. 2016). All processes combined, land currently takes up 3.8 GtC yr−1

from the atmosphere (Friedlingstein et al. 2023).
The land carbon cycle is tightly coupled to the nitrogen cycle, as plants require reactive

nitrogen (every nitrogen species other than N2) to grow. Reactive nitrogen can be created
through two natural processes (lightning and biological nitrogen fixation (BNF)), as well as
three anthropogenic methods: the Haber-Bosch process, agricultural BNF, and fossil fuel
combustion. The anthropogenic production has been larger than the natural production in
the last decades. Plants in nitrogen-poor ecosystems will be limited in their uptake of carbon
as plant growth cannot occur without nitrogen. The availability of reactive nitrogen changes
in response to climate change, generally increasing with warmer temperatures and increased
precipitation. Similarly, phosphorus also plays a role in the terrestrial carbon uptake, with a
phosphorus limitation being more likely in high latitudes, while nitrogen limitation dominates
in the tropics. While the land carbon cycle has been extensively studied, its fundamental
properties have not been fully understood yet (Luo and Smith 2022).

2.2. Climate Models

Due to the sheer size and complexity of the earth system, it is not possible to research and fully
understand it by solely performing laboratory experiments under controlled circumstances.
While we can measure some aspects of its past and current state (see Section 2.4), for predictions
related to the earth system, numerical climate models are indispensable. These models come
in different forms, from simple 1D energy balance models calculating the temperature of the
earth’s surface using the Stefan-Boltzmann equation to ESMs with hundreds of thousands of
lines of code (Alexander and Easterbrook 2015) simulating the entire earth system beyond
just physical processes. No matter their complexity, they are based on fundamental laws of
physics, such as the primitive equations describing the conservation of mass, momentum,
energy and moisture which are solved numerically in the models. Due to the large scale and
complexity of the earth system and the finite computational resources, climate models split
the earth into three-dimensional boxes called grid cells, whose size can vary substantially
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2.2. Climate Models

Figure 2.2.: Evolution of earth system components treated in climate models over time. Adapted with
permission from Gettelman and Rood 2016.

across models. A typical ESM has a horizontal resolution, corresponding to latitudes and
longitudes, of about 100 km and a vertical resolution, typically measured in pressure level
or height, of approximately 1 km (Eyring et al. 2021). There are many processes, such as the
formation of clouds or photosynthesis in plants, which occur on scales much smaller than
the size of the grid cells, yet have a significant impact on the overall climate system. These
processes are parameterized to approximate their effect at the scale of a grid cell by generating
additional terms for the rest of the system (Gettelman and Rood 2016). Forcings are external
inputs as boundary conditions to a climate model, often split into natural processes such as
the solar radiation, or anthropogenic drivers such as GHG emissions and concentrations.

2.2.1. History of Climate Models

First numerical climate models were created in the 1960s (Gettelman and Rood 2016) and
have been developed with increasing complexity (Figure 2.2) ever since. The first numerical
climate models originated from weather prediction models and simulated purely physical
aspects of individual components of the climate system like atmosphere, land, and ocean.
While for in-depth analysis of specific parts the simulation of individual components of the
climate system may be sufficient, for a general overview of the whole climate system the
interactions between these components need to be considered in a consistent fashion. In 1975,
Manabe et al. 1975 published the first paper detailing the results of a global Atmosphere-Ocean
General Circulation Model (AOGCM), which is a model that couples the atmosphere and
ocean. AOGCMs were the standard climate models assessed in the climate reports up to and
including the IPCC Fourth Assessment Report (AR4) (Flato et al. 2013). Throughout the years,
the resolution of climate models has increased. A typical gridbox for the first AOGCM had a
width of 500 km, while those used in AR4 were finer at a scale of 110 km (Le Treut et al. 2007).
The Sixth Assessment Report (AR6) in 2021 included some high resolution models with scales
smaller than 25 km (Eyring et al. 2021). Besides increasing the resolution, the complexity
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of the models has increased with time by adding additional components or considering a
wider range of processes within existing components. Cox et al. 2000 show results of coupling
a dynamic global vegetation model to an AOGCM, highlighting the effect of carbon-cycle
feedbacks on climate change. Climate models coupling AOGCMs with atmospheric chemistry
and biogeochemical modules such as the carbon cycle are called ESMs (Jones 2020), and are
the basis for model analysis in AR5 and the current AR6 (Canadell et al. 2021). More details
about the carbon cycle in ESMs are discussed in Section 2.3. Throughout this history of
climate models, modeling groups have shared their code or schemes, and some modeling
groups built on top of existing models to supplement their own components. This results
in relationships between models and statistically dependent projections to be considered in
multi model ensembles (Kuma et al. 2023).

2.2.2. The Coupled Model Intercomparison Project (CMIP)

With the rising number of climate models, an initiative was needed to set up a common
framework that would help facilitate the comparison of model output. In 1995, the Working
Group on Coupled Modelling (WGCM) of the World Climate Research Programme (WCRP)
initiated the Coupled Model Intercomparison Project (CMIP) (Meehl et al. 2000) with aims to
"better understand past, present and future climate changes arising from natural, unforced
variability or in response to changes in radiative forcing in a multi-model context" (WCRP
2024). CMIP model output provides crucial input for international climate assessments, with
the latest AR6 supported by data from CMIP6. CMIP6 is the last completed phase of CMIP
(Eyring et al. 2016c) with 114 registered contributors (PCMDI 2024). By setting up a framework
of model experiments with common forcings and a uniform output structure, CMIP allows
direct comparisons of the output from a large ensemble of climate model simulations.

CMIP6 consists of three elements (Eyring et al. 2016c). The first element is a handful
of common experiments which include a historical simulation from 1850–2014 (the historical
setup of the predecessor model generation CMIP5 covered 1850–2005) as well as the so-called
DECK (Diagnostic, Evaluation and Characterization of Klima) experiments. These DECK
experiments are four baseline experiments, a historical atmospheric Model Intercomparison
Project (MIP) simulation (amip) with prescribed sea surface temperature and sea ice concentra-
tions, a pre-industrial control run (pi-control), a simulation forced with an abrupt quadrupling
of CO2 (abrupt-4xCO2), as well as a simulation forced with a 1 % yr−1 increase of CO2 (1pctCO2).
These constitute the core of figure 2.3, which shows the experimental design of CMIP6. All
models participating in CMIP6 are required to run these experiments with the aim to docu-
ment basic characteristics of models and maintain continuity to facilitate evaluations across
different CMIP phases.

The second element of CMIP6 is to ensure "common standards, coordination, infrastructure,
and documentation that will facilitate the distribution of model outputs and the characteriza-
tion of the model ensemble" (Eyring et al. 2016c), and is mandatory for all models participating
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Figure 2.3.: Schematic of the overall design of CMIP/CMIP6 and the 23 CMIP6-Endorsed MIPs.
Adapted with permission from Simpkins 2017.

in CMIP. It manifests in the use of common controlled vocabularys (CVs) which describe mod-
els and simulations. This results in consistent variables names and abbreviations, as well as
a commonly defined output type. Model output is made publicly available on the Earth
System Grid Federation (ESGF) nodes, allowing for easy access to directly compare model
simulations.

The third and last part of CMIP6 is an ensemble of endorsed MIPs which build on the
DECK experiments to target specific research areas and scientific questions. Participation in
these MIPs is purely voluntary for the modeling groups. Of particulate note for this thesis
is the Scenario Model Intercomparison Project (ScenarioMIP) (O’Neill et al. 2016), which
provides forcings for runs simulating the future, and the Coupled Climate-Carbon Cycle
Model Intercomparison Project (C4MIP) (Jones et al. 2016) with specialized runs for carbon
cycle analysis. The ScenarioMIP experiments are based on Shared Socioeconomic Pathways
(SSPs) (Riahi et al. 2017), a set of pathways based on theoretical assumptions of societal
development (O’Neill et al. 2016). Five SSPs are considered, ranging from a sustainability
scenario (SSP1) to a future of fossil-fueled development (SSP5), and coupled with associated
global average forcing levels in the year 2100. For example, the SSP5-8.5 run follows the SSP5
scenario with a radiative forcing of 8.5 W m−2 in 2100. The CMIP5 equivalent to these SSPs are
the so-called Representative Concentration Pathways (RCPs) (van Vuuren et al. 2011), which
were only based on the radiative forcing in 2100, with RCP8.5 being the equivalent to SSP5-8.5.
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C4MIP focuses on carbon cycle feedbacks and interactions in climate simulations (Jones
et al. 2016). The core CMIP experiments also include simulations forced with prescribed
CO2 emissions instead of prescribed CO2 concentrations, such as a historical emission-driven
simulation (esm-hist). While these were not mandatory for models participating in CMIP,
they were considered prerequisites for all models participating in C4MIP, as the only two
simulations required for participation in C4MIP were a future extension of the emission-driven
historical simulation using the SSP5-8.5 scenario (esm-ssp585), as well as a biogeochemically
coupled version of the 1 % per year increasing CO2 simulation (1pctCO2-bgc). This refers to a
simulation where the radiation code of a model sees a constant, preindustrial concentration of
CO2, while the carbon cycle components of the model are allowed to respond to the increasing
CO2 concentration. Voluntary further simulations were divided into the categories of idealized
simulations with different couplings of the biogeochemistry module and nitrogen deposition,
as well as various scenario simulations of biogeochemically coupled SSP5 future scenarios.
C4MIP also existed for CMIP5, thus making emission-driven simulations available for both
CMIP phases.

With each new CMIP phase, additional models and improved model components are intro-
duced, highlighting the need for comparison between phases to see if model weaknesses were
identified and overcome, or to investigate potential reductions in systematic biases (Eyring
et al. 2019) or introductions of new biases through increasing model complexity with the
inclusion of additional processes. Even if the increase of process-realism of models does not
lead to a reduction of present-day biases, a neutral impact can still be considered a successful
step in model improvement and likely leads to more realistic future projections (Gier et al.
2024).

This thesis uses climate model data from CMIP5 and CMIP6 to evaluate the terrestrial carbon
cycle, with the variables and models specific to each study discussed in the corresponding
chapters.

2.3. Carbon Cycle in Earth System Models

Due to the key role of anthropogenic emissions of CO2 as driver of climate change, the carbon
cycle is an important process to be simulated in ESMs. Previous studies analysing the carbon
cycle in CMIP5 historical model simulations found that while models reproduce the main
climate variables and their seasonal evolution correctly, more carbon cycle–specific fields
showed weaknesses, like a general overestimation of photosynthesis (Anav et al. 2013a). Over
time, the process-realism has been increased to address weaknesses and biases, as well as to
be able to more accurately simulate the future. In this section, the historical evolution of the
representation of the land carbon cycle in models is briefly explained, followed by a general
overview of the processes to be considered in land models. A matrix approach to land carbon
cycle modeling is shown as a comprehensive way of representing the carbon cycle in models.
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Figure 2.4.: Schematic of the evolution of land surface model processes, depicting the timing for new
processes to be commonly included in ESMs. Individual models may differ from this series due to a
different focus or evolution pathway. Adapted with permission from Rosie and Koven 2020.

Finally, special features and details of each of the land models which are part of the CMIP
models used throughout this thesis are described.

2.3.1. Representation of the Land Carbon Cycle in Models over the Years

The carbon cycle in ESMs is split into different components. This thesis places a focus on the
land carbon cycle and its interaction with the atmosphere. The land carbon cycle is modeled in
land surface models (LSMs), which are numerical models calculating water, energy and carbon
fluxes between the land surface and the atmosphere. Figure 2.4 gives an approximate overview
on when certain processes became prevalent in LSMs. LSMs started with the need for physical
boundary terms to represent the influence of land on atmospheric processes using surface
energy fluxes. This was followed by basic modeling of soil moisture, stomatal resistance
and plant canopies, which were later separated into different plant functional types (PFTs).
In the early 2000’s, model results that showed that the carbon cycle coupled to the climate
system can substantially impact the rate of global warming (Cox et al. 2000) emphasized
the need to include biogeophysical and biogeochemical feedbacks to the climate system.
Thus, these processes became important targets for model development. One of the newest
broadly introduced processes is the coupling of the nitrogen cycle to the carbon cycle to
consider nutrient limitation. Modern LSMs encompass a large amount of fields: physics,
biochemistry, physiology, ecology, hydrology, geography, statistics, mathematics, and high-
performance computing (Fisher and Koven 2020). Figure 2.5 shows an example schematic
of the representation of the carbon, nitrogen and phosphorus cycles in the state-of-the-art
ORCHIDEE LSM.

13



2. Scientific Background

Figure 2.5.: Schematic of C, N, and P cycles considered in ORCHIDEE-CNP Adapted with permission
from Sun et al. 2021.

2.3.2. Basic Processes Modeled in Land Surface Models

The following brief overview of the processes considered in LSMs is largely based on Fisher
et al. 2014. Processes modeled in LSMs are split into four categories: leaf scale, canopy scale,
plant scale and ecosystem scale.

On the leaf scale, stomatal conductance is modeled to regulate the uptake of CO2 from
and the release of water to the atmosphere through the stomata, which are small pores on
leaves. These pores are not always open, nor do all plant species follow the same opening
times. The rate of this CO2 uptake (= the rate at which plants produce usable carbon through
photosynthesis) is called gross primary production (GPP). In modern LSMs, there are three
widely used approaches to parameterize GPP. The most common one is the biochemical
approach through enzyme kinetics which unifies carbon, water and energy fluxes through
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stomatal conductance with common parameterizations following Farquhar et al. 1980 and
Collatz et al. 1992. Further possibilities to model photosynthesis include the light-use efficiency
(light used in photosynthesis is a fraction of absorbed photosynthetically active radiation,
which can be measured), or the carbon assimilation which calculates a maximum possible
GPP which is downscaled by taking into account environmental properties.

Canopy scaling describes how to scale leaf properties to an entire canopy. This often employs
scaling an average leaf over the total leaf area index (LAI). LAI measures the total leaf area per
ground area. Further canopy scale processes include the canopy temperature, interception
of precipitation, aerodynamics and phenology, the latter describing the cycle of plant life.
Phenology is largely determined using temperature as a threshold for leaf photosynthesis.
Some models have moved from modeling phenology to prescribing it using observational
products. The most important canopy scale components are plant functional types (PFTs).
Each PFT combines a group of plants with similar behaviour, such as deciduous trees which
drop their leaves, or evergreen trees which do not. The most common PFTs used are broadleaf
evergreen trees, broadleaf deciduous trees, needleleaf deciduous trees, grasses and shrubs.
Some models may further split these classes into multiple subclasses.

On the plant scale, autotrophic respiration (𝑅𝑎), i.e., carbon returning to the atmosphere
through maintenance and growth of plants, is typically modeled to depend on temperature or
the maximum potential of plants to take up carbon. Net primary production (NPP) denotes
the carbon taken up by photosynthesis after accounting for the autotrophic respiration, and is
generally calculated as GPP minus 𝑅𝑎 . The net carbon taken up by plants is typically allocated
for growth and/or used for further survival and reproduction of the plant. LSMs generally
allocate carbon to wood, roots and leaves.

Most processes modeled by LSMs take place on the ecosystem scale. LSMs have different soil
layers and soil pools to store and cycle carbon, water and nutrients. The number of different
layers varies largely between models. Plant growth can be limited by nutrient availability such
as nitrogen or phosphorus. In CMIP5, only the Community Land Model (CLM) LSM included
an interactively coupled nitrogen cycle, while this has become more common in CMIP6, with
the ORCHIDEE LSM additionally including a coupled phosphorus cycle (Figure 2.5). As
plants turn into litter, litter decomposition occurs which releases CO2 into the atmosphere
through heterotrophic respiration (𝑅ℎ). This is often modeled based on temperature, but also
moisture and carbon content. The total amount of carbon available to the ecosystem after
accounting for respiration is called net ecosystem production (NEP), which is calculated as
GPP minus 𝑅𝑎 and 𝑅ℎ (a positive value denotes carbon uptake by land). Finally, the overall
land carbon uptake, often referred to as net biome productivity (NBP), additionally includes
carbon emissions from fires and other disturbances and is calculated as NEP minus disturbance
fluxes. Further processes to be considered include snowmelt, permafrost thawing, infiltration
and percolation, evapotranspiration, water balance, competition among PFTs for space, the
establishment of how plants occupy new spaces, and plant mortality. Disturbances like fires or
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volcanic eruptions affect vegetation in random and punctuated manners. Beside CO2, 𝑂2 and
𝐻2𝑂, further trace gases, such as methane, are emitted which can affect weather and climate.

Most ESMs in the current iteration of CMIP are run using prescribed CO2 concentrations.
Some models can additionally perform simulations driven by CO2 emissions, which requires
an interactive carbon cycle to model the carbon fluxes (Friedlingstein et al. 2014). We call
these concentration- and emission-driven simulations, respectively. Only emission-driven
simulations have fully active climate-carbon cycle feedbacks for future projections, which
are essential for the simulations to be self-consistent. Consequently, there are recommenda-
tions to prioritize the use of emission-driven simulations in CMIP7 (Sanderson et al. 2023).
This adds further relevance and importance to the evaluation of the carbon cycle with more
models required to implement an interactive carbon cycle to be able to compute CO2 concen-
tration from prescribed CO2 emissions. This thesis uses output from both concentration- and
emission-driven simulations.

2.3.3. Matrix Approach to Land Carbon Cycle Modeling

Luo and Smith 2022 describe a matrix approach to land carbon cycle modeling, which can be
used to unify the different models. It has already been applied to some land models of ESMs,
such as CLM (Huang et al. 2018a; Lu et al. 2020) and ORCHIDEE (Huang et al. 2018b). In this
section we explain the matrix approach following Luo and Smith 2022 as a way to model the
carbon cycle in models in a general form, while later sections discuss specific features of the
land surface models used throughout this study.

Considering the example of litter, two pools can be introduced: a donor pool donating the
litter, as well as a recipient pool which receives the litter. The transfer rate, or litterfall, is
proportional to the amount of litter in the donor pool, and independent of the recipient pool.
In mathematical terms, with 𝑋(t) denoting the donor pool size, 𝜉(t) an environmental scalar
describing the effects of phenology, wind, and other environmental factors, as well as the litter
decay constant 𝑘 varying with litter type and location, the rate of litterfall can be expressed as:

d𝑋(𝑡)
d𝑡 = 𝜉(𝑡)𝑘𝑋(𝑡) (2.1)

Figure 2.6 shows how to translate the basic processes of the land carbon cycle into a model
using carbon pools and fluxes. To describe this structure, equations need to consider both the
carbon input into the pools, as well as the carbon leaving the pools. The first carbon pool,
𝑋1 describes the carbon content of leaves. It receives carbon from photosynthesis and loses
carbon through litterfall and autotrophic respiration. This can be represented mathematically
by

d𝑋𝑙(𝑡)
d𝑡 = 𝑏1𝜇(𝑡) − 𝜉(𝑡)𝑘𝑙𝑋𝑙(𝑡) (2.2)

with 𝜇(𝑡) denoting the amount of total incoming carbon from NPP (= photosynthesis minus
autotrophic respiration), 𝑏𝑙 the fraction of incoming carbon attributed to leaves, 𝑘𝑙 the rate of
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Figure 2.6.: A generalized matrix model of the terrestrial carbon cycle. (A) The basic carbon cycle
processes are represented by four fundamental properties for all terrestrial ecosystems. (B) The four
properties have been incorporated into terrestrial carbon cycle models with a pool-and-flux structure.
(C) The structure is typically encoded using a set of balance equations with carbon input into and
output from each pool. (D) The balance equations of terrestrial carbon cycle models can be converted
to a matrix equation. Thus, the matrix equation can be considered as a general system equation (or
a dynamical equation) for the terrestrial carbon cycle Adapted with permission from Luo and Smith
2022.

senescene, describing the aging of leaves, as well as the environmental modifier 𝜉(𝑡). Equations
for the carbon balance of the other pools can be derived in the same way, with some pools
receiving CO2 from several other pools, and also removing CO2 from the system through
respiration. 𝑏𝑖 is the coefficient for incoming carbon to pool 𝑖, 𝑎𝑖 𝑗 the transfer coefficient
from pool 𝑖 to pool 𝑗 and 𝑘𝑖 the coefficient for carbon loss. All these single equations can be
combined into a matrix equation

d𝑋(𝑡)
d𝑡 = 𝐵𝜇(𝑡) + 𝐴𝜉(𝑡)𝐾𝑋(𝑡) (2.3)

where 𝑋(𝑡) is a vector denoting the pool sites, 𝐵 a vector of partitioning coefficients 𝑏𝑖 for
carbon input, 𝜇(𝑡) the total carbon input rate, 𝐴 a matrix with diagonal values of −1 and
transfer coefficients 𝑎𝑖 𝑗 for the pools in the off-diagonal, 𝐾 a diagonal matrix for the carbon
loss coefficients 𝑘𝑖 signifying mortality for plant pools and decomposition for litter and soil
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pools. 𝜉(𝑡) as an environmental modifier can either be a scalar or a diagonal matrix accounting
for carbon cycle responses to changes in temperature, moisture and oxygen.

This equation can be used for any land carbon cycle model which follows first-order kinetics
with a variable number of carbon pools. Several land models also include vertical layers of
soil pools. These models generally only consider carbon vertical transfers between adjacent
layers. To include the 10 vertical soil layers of CLM4.5, Huang et al. 2018a extended the matrix
equation by an additional term

d𝑋(𝑡)
d𝑡 = 𝐵𝜇(𝑡) + 𝐴𝜉(𝑡)𝐾𝑋(𝑡) +𝑉(𝑡)𝑋(𝑡) (2.4)

which explains the vertical movement with the matrix 𝑉 quantifying the transfers to the
layers above and below the current layer. For CLM5, Lu et al. 2020 used four matrix equations
to describe the carbon and nitrogen cycles, with two each for vegetation and soil. This included
the vegetation carbon dynamic equation

d𝑋v(𝑡)
d𝑡 = 𝐵𝜇(𝑡) +

(︁
𝐴phc(𝑡)𝐾phc + 𝐴gmc(𝑡)𝐾gmc + 𝐴fic(𝑡)𝐾fic

)︁
𝑋v(𝑡) (2.5)

where the transfer between pools from matrices 𝐴𝜉(𝑡) and 𝐾 is split into time dependent
contributions 𝐴 𝑗(𝑡)𝐾 𝑗 with j subscripts phc for phenology, gmc for gap mortality from harvest
and natural causes, and fic for fire processes. This split leads to a more intuitive equation
which is also computationally more efficient for spin-up.

2.3.4. Specifics of the Carbon Cycle in individual Land Surface Models

The special characteristics, such as the number of PFTs or the inclusion of a nitrogen cycle, of
the LSMs which are part of the ESMs used throughout this thesis are listed below, taken from
the Appendix of Gier et al. 2024. The sections are listed by LSM instead of ESMs as several
models share the same LSM.

CABLE + CASA-CNP

The Commmunity Atmosphere-Biosphere Land Exchange model (CABLE, Kowalczyk et al.
2013) version 2.4 is a LSM coupled to the biogeochemistry module Carnegie-Ames-Stanfoard
Approach carbon cycle model with nitrogen and phosphorus cycles (CASA-CNP, Wang et al.
2010) used in ACCESS-ESM1-5 (Ziehn et al. 2020). CASA-CNP and thus ACCESS-ESM1.5 is
the only model in this study to include a phosphorus cycle coupled to the land carbon-nitrogen
cycle. A sensitivity study of allowable emissions to nutrient limitation found a reduction of
the land carbon uptake by 35-40 % with nitrogen limitation and a further 20-30 % reduction
with nitrogen and phosphorus limitation on the carbon cycle (Zhang et al. 2013), showing the
importance of nutrient limitation.

A simple land-use scheme accounts for annual net change in the vegetation tile fractions
of each grid-cell which consider 10 vegetated and three non-vegetated surfaces. Three live
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and six dead carbon pools are modelled. LAI in ACCESS-ESM1-5 is calculated from specific
leaf area and the size of the leaf carbon pool, while phenology is prescribed. In the CMIP5
model ACCESS-ESM1, which is not considered in this paper due to a lack of variables on
the ESGF, LAI was significantly higher than observations, mainly due to an overestimation
of LAI in the NH, despite a significant underestimation of LAI in the tropics. To better
match the observations, two parameters were adjusted for ACCESS-ESM1-5: one PFT specific
parameter used in the parametrisation for the maximum carboxylation rate and thus related to
the nitrogen cycle, as well as one global parameter related to the daytime leaf respiration rate.
Further changes to the model since CMIP5 include the conservation of land carbon, which
was not conserved in CMIP5, as well as the inclusion of wetland tiles in the biogeochemistry
calculation and the removal of a spin-up condition which ensured a minimum nitrogen and
phosphorus level in soil pools.

CLASS + CTEM

The land component in the Canadian Earth System Models (CanESM) is divided into the
physical part represented by the Canadian Land Surface Scheme (CLASS, Verseghy et al.
1993; Verseghy 1991, 2000) and the biogeochemical processes as simulated by the Canadian
Terrestrial Ecosystem Model (CTEM, Arora and Boer 2003, 2005; Arora 2003). In the CMIP5
model (CanESM2, Arora et al. 2011) version 2.7 of CLASS was used, while the CMIP6 models
CanESM and CanESM-CanOE (Swart et al. 2019a) employ CLASS v3.6. While neither version
includes a nitrogen cycle, a parameter representing terrestrial photosynthesis downregulation
is included to simulate the effect of nutrient constraints. This parameter is increased in
CanESM5 compared to the previous version CanESM2, resulting in a higher land carbon
uptake in CanESM5. Four PFTs are considered in CLASS, while CTEM increases the number
to nine PFTs so that phenology can be simulated prognostically. LAI is dynamically simulated
and three live and two dead carbon pools are considered. Added features since CanESM2
include dynamic wetlands and their diagnostic methane emissions.

CLM

The Community Land Model (CLM, UCAR 2020) is the most commonly used land model
in this thesis, with 11 models across CMIP5 and CMIP6 using 3 different versions of it. For
the CMIP5 models, CLM3.5 (Oleson et al. 2008) was used by FIO-ESM and CLM4 (Lawrence
et al. 2011) was used in CESM1-BGC and NorESM1-ME. In CMIP6 CLM4 is used for SAM0-
UNICON and TaiESM who mainly adapted the CESM1 configuration (Lee et al. 2020). CMCC-
CM2-SR5 and CMCC-ESM2 use CLM4.5 (Koven et al. 2013), while the newest version CLM5
(Lawrence et al. 2019) is a part of CESM2, CESM2-WACCM, NorESM2-LM and NorESM2-MM.

While in CLM3.5 nitrogen limitation was merely represented by a downregulation fac-
tor, CLM4 introduced the coupled carbon-nitrogen cycle. Further improvements in CLM4
included transient land cover change modeling, changes to the PFT distribution and more
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realistic modeling of permafrost regions. To reduce biases found in CLM4 such as low soil
carbon stocks and unrealistic values for GPP and LAI in several regions, such as a stark overes-
timation in the tropics, several parametrisations were changed in CLM4.5. Modifications were
made to the canopy processes, including co-limitations on photosynthesis and photosynthetic
parameters. Newly introduced features included a vertically resolved soil biogeochemistry
with vertical mixing of soil carbon and nitrogen and a more realistic distribution of biological
fixation over the year. The structure of the litter and soil carbon and nitrogen pools was
adapted to the Century model and 13C and 14C carbon isotopes were introduced.

Finally, in CLM5 many major components of the land model were updated, with a focus on
a better representation of land use and land-cover change as well as a more mechanistic treat-
ment of key processes. Changes included a stronger soil moisture control on decomposition,
the use of 13C and 14C isotopes for crops, and several changes to the nitrogen cycle and its im-
pact on photosynthesis. Flexible plant C:N ratios were introduced to eliminate instantaneous
down-regulation of photosynthesis, leaf nitrogen was optimized in the form of the leaf use
of nitrogen for assimilation (LUNA, Ali et al. 2016) model and a model handling the fixation
and uptake of nitrogen (FUN, Shi et al. 2016) was included. With respect to the land use and
land cover aspect of the model, land unit weights are no longer fixed during the simulation
and the transient PFT distribution was updated. CLM5 considers 22 live and 7 dead carbon
pools as well as 22 PFTs.

CoLM+BNU-DGVM

The Common Land Model (CoLM, Dai et al. 2003) which shares an initial version with
CLM but was then developed separately, is the land model component for the CMIP5 model
BNU-ESM in the CoLM2005 version. CoLM includes a photosynthesis-stomatal conductance
model for sunlit and shaded leaves separately. While carbon-nitrogen cycle interactions were
included in the model, they were turned off for the CMIP5 simulations due to not being fully
evaluated at the time (Ji et al. 2014).

HAL

The land model for the MRI models in both its CMIP5 version MRI-ESM1 and the CMIP6
version MRI-ESM2-0 is the Hydrology, Atmosphere, and Landsurface model (HAL, Hosaka
2011). It consists of three submodels called SiByl (vegetation) with grass and canopy vegetation
layers, SNOWA (snow), and SOILA (soil) with 14 soil layers in the CMIP5 experiments.

ISBA-CTRIP

The land component for the CNRM-ESM2-1 model is presented by the Interaction Soil-
Biosphere-Atmosphere (ISBA) LSM and the total runoff integrating pathways (CTRIP) river
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routing model (Decharme et al. 2019; Delire et al. 2020). ISBA-CTRIP simulates plant physi-
ology, leaf phenology, carbon allocation and turnover, wild fires and carbon cycling through
litter and soil (Séférian et al. 2019). Land use processes are prescribed instead of simulated,
while land cover changes are used to represent anthropogenic disturbances. While the model
does not include an interactive nitrogen cycle, its effects are included through an artificial
downregulation of photosynthesis and a reduced specific leaf area with increasing CO2 con-
centration. Six live and seven dead carbon pools are considered, along with 16 PFTs (Gibelin
et al. 2008). Changes since the previous version used in CNRM-ESM-1 include improvements
to the photosynthetic and autotrophic respiration schemes.

CTRIP includes carbon leaching through the soil and subsequent transport of dissolved
organic carbon to the ocean. As chemical species such as dissolved inorganic carbon are not
included, the air-water carbon exchange in the river routing model CTRIP cannot be computed.
This leads to a carbon cycle which is not fully bounded.

JSBACH

JSBACH is the land component of the MPI-ESM model, with version 3.2 used for MPI-ESM1.2
(Mauritsen et al. 2019). In the previous version, parameters in the model for decomposition of
dead organic matter were tuned to reproduce the historical atmospheric CO2 concentrations,
with soil and litter carbon stocks merely being the result of this tuning. In version 3.2
decomposition is handled by the YASSO model (Tuomi et al. 2011) based on litter and soil data
resulting in no unconstrained parameters. YASSO simulates four fast soil carbon pools and one
slow pool. A total of 18 dead carbon pools are considered due to a different application based
on the woody and non-woody origins, as well as above and below ground decomposition.
Additionally, three live carbon pools (natural vegetation, crops, pasture) and 13 PFTs are
simulated by JSBACH, while permafrost carbon is not considered. The dynamical vegetation
component interacts with the land use changes, modifying the land use data set to conform
to the JSBACH setup. JSBACH3.2 includes an interactive terrestrial nitrogen cycle (Goll et al.
2017) driven by the nitrogen demand of the carbon cycle. Further adjustments in v3.2 include
the change for carbon timescales in wood pools to be PFT specific.

JULES

The joint UK land environment simulator (JULES, Best et al. 2011; Clark et al. 2011) is the land
model for the CMIP5 models HadGEM2-CC and HadGEM2-ES with the terrestrial carbon
cycle following the Top-down Representation of Interaction of Foliage and Flora Including
Dynamics (TRIFFID, Cox 2001) dynamic vegetation scheme, and the CMIP6 model UKESM1-
0-LL (Sellar et al. 2019) employs JULES version 5.0.

Improvements in the version used for UKESM1-0-LL include the introduction of nitrogen
cycling, as well as developments to plant physiology and functional types and land use. In
this model, nitrogen controls biomass and LAI within TRIFFID, thus only indirectly affecting
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photosynthetic capacity, as well as limiting the decomposition of litter into soil carbon. For
better agreement with observations, global total GPP was tuned down through a reduction
of the quantum efficiency of photosynthesis. Furthermore, crop and pasture areas were
separated and a harvest carbon flux was introduced. UKESM1 has four soil carbon pools, nine
natural PFTs - increased from five in prior versions - and four PFTs for crop and pasture.

LM

The GFDL Land Model (Anderson et al. 2004, p. LM) is used in the GFDL Earth System
Models, with the CMIP5 models GFDL-ESM2G and GFDL-ESM2M (Dunne et al. 2012; Dunne
et al. 2013) using version 2.0 while the CMIP6 model GFDL-ESM4 employs version 4.1 (Dunne
et al. 2020). Neither version includes an interactive nitrogen cycle.

Improvements since CMIP5 include updated soil types in the CORPSE model (Sulman et al.
2014; Sulman et al. 2019), hydrology, radiation, as well as the inclusion of a new fire model
FINAL (Rabin et al. 2018) with daily computations instead of previously annual figures and a
new model for vegetation dynamics through the Perfect Plasticity Approximation (Weng et al.
2015, PPA). LM4.1 includes six live carbon pools for leaves, fine roots, heartwood, sapwood,
seeds and nonstructural carbon, 20 vertical soil levels split into separate fast and slow pools
and pools for soil microbes and microbial products. Six PFTs are included representing C3
grass, C4 grass, tropical trees, temperate deciduous trees, and cold evergreen trees. Land
use is accounted for through annual wood harvesting, crop planting and harvesting, pasture
grazing, and newly included rangelands.

LPJ-GUESS

The Lund-Potsdam-Jena General Ecosystem Simulator (LPJ-GUESS, Smith et al. 2014) in com-
bination with the Hydrology Tiled ECMWF Scheme of Surface Exchanges over Land (HTES-
SEL, Balsamo et al. 2009) is the land model used in the EC-Earth models EC-Earth3-CC and
EC-Earth3-Veg (Döscher et al. 2022), the difference between the models consisting of CC hav-
ing additional ocean biogeochemistry (PISCES) and atmospheric composition for CO2 (TM5),
letting it perform CO2 emission-driven simulations.

HTESSEL solves the energy and water balance at the land surface, while vegetation types
and vegetation coverage is interactively provided by the coupled LPJ-GUESS, which includes
an interactive nitrogen cycle. Compared to the common area-based vegetation schemes,
the interactive coupling of LPJ-GUESS to an atmospheric model should improve realism on
longer timescales (Döscher et al. 2022). LPJ-GUESS includes 10 litter pools, seven vegetation
carbon pools, as well as five soil carbon pools. Wildfires, disturbances and land use change are
simulated on a yearly time step and distributed evenly throughout the year to conserve carbon
mass. Land-use change dynamics are considered together with a crop module (Lindeskog
et al. 2013) including five crop functional types. Three types of plant phenology - evergreen,
seasonal-deciduous, and stress-deciduous - are considered, with only the latter two being
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simulated with an explicit phenological cycle. Seasonal-deciduous PFTs have a fixed growing
season length of 210 days, while the growing season for stress-deciduous PFTs is determined
by a threshold for the water stress.

MATSIRO + SEIB-DGVM/VISIT-e

The Minimal Advanced Treatments of Surface Interaction and RunOff (MATSIRO, Takata et al.
2003) is the physical land model for the MIROC-ESM family — MIROC-ESM and MIROC-
ESM-CHEM (with coupled atmospheric chemistry) for CMIP5 (Watanabe et al. 2011) and
MIROC-ES2L for CMIP6 (Hajima et al. 2020a)—, which consists of a single layer canopy, three
snow layers and six soil layers down to a depth of 14 m. For the CMIP6 version a physically
based parametrization for snow distribution and snow-derived wetlands was added.

Biogeochemistry in MIROC-ESM and MIROC-ESM-CHEM is simulated by the Spatially
Explicit Individual-Based Dynamic Global Vegetation Model (SEIB-DGVM, Sato et al. 2007).
It includes 13 PFTs split into two for grass and eleven for trees, as well as two organic carbon
pools. Light capture competition among trees is explicitly modeled instead of parametrized.

MIROC-ES2L for CMIP6 uses the Vegetation integrative SImulator for Trace gases model
(VISIT, Ito and Inatomi 2012), with changes for coupling to the ESM (adding the -e suffix),
such as including leaf-nitrogen concentrations and thus limitations to enable fully coupled
climate-carbon-nitrogen projections, and land-use change processes to get more use out of
new LUC forcing data sets, such as using five types of land cover. The model does not
simulate explicit dynamic vegetation. Three Vegetation carbon pools (leaf, stem, and root) are
dynamically regulated and have constant turnover rates to three litter and three soil pools. 12
vegetation types are considered. A daily timestep is used for the land ecosystem and land
biogeochemistry.

ORCHIDEE

The ORganizing Carbon and Hydrology in Dynamic EcosystEms (ORCHIDEE, Boucher et al.
2020; Krinner et al. 2005) land model is used in the IPSL models, version 1 for the CMIP5
models IPSL-CM5A-LR, IPSL-CM5A-MR, and version 2 in the CMIP6 model IPSL-CM5B-LR.
The model considers 15 PFTs, as well as 8 vegetation carbon, 4 litter carbon and 3 soil carbon
pools. Plant and soil carbon fluxes are computed every 15 min, the same as the atmospheric
physics timestep, while slow processes like soil and litter carbon dynamics are computed
daily instead. The CMIP5 model used a two-layer bucket model for its soil hydrology, while
in CMIP6 an 11-layer soil hydrology scheme is employed. Photosynthesis is parametrized
based on the common Farquhar and Collatz schemes for C3 and C4 respectively. Nutrient
limitation in CMIP6 is introduced through downregulation using a logarithmic function of
the CO2 concentration.
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Figure 2.7.: Monthly mean atmospheric CO2 concentration at Mauna Loa, Hawaii. Adapted with
permission from NOAA 2005.

INMCM

The carbon cycle module for INMCM (Volodin 2007) includes a single soil carbon pool. The
most important changes with respect to INMCM4 for the CMIP6 models lie in the atmospheric
component of the model, as well as some upgrades to the oceanic component, but no changes
to the carbon cycle (Volodin et al. 2017b).

2.4. Observations for carbon cycle variables

To evaluate the present-day performance of climate models, observations of the current climate
are indispensable. In situ ground-based measurements of CO2 first started in 1958 in Mauna
Loa (Hawaii, USA). They provided the first evidence of an increase in atmospheric CO2

concentrations due to fossil fuel combustion (Keeling et al. 1976), and these measurements
persist to this day. This is the so-called Keeling Curve shown in Figure 2.7, which illustrates
the rising CO2 concentration in the atmosphere since the beginning of the measurements
superimposed by the seasonal cycle due to carbon uptake and release by plants. Since then
many further observatories around the globe have started measuring atmospheric CO2 and
other gases. However, most of these observatories are concentrated in the US and Europe,
with only sparse coverage in the rest of the world, such as the tropics.

While these ground-based measurements now cover a relatively long time period, they
are only point based and cannot accurately show regional and spatial distributions of CO2.
Satellite measurements of CO2 complementing these ground-based measurements started in
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2002 with near infrared (NIR)/short-wave infrared (SWIR) nadir-based (downward-looking)
satellite retrievals (Buchwitz et al. 2005). Unlike in situ measurements, satellite instruments
measure the column-average CO2 mole fraction (XCO2), a dimensionless quantity obtained by
dividing the vertical column of CO2 by the vertical column of dry air. Details on the calculation
of XCO2 are given in Section 2.4.1. To obtain surface fluxes from XCO2 measurements, they
are used as inputs for inverse modeling of atmospheric transports (Basu et al. 2013; Chevallier
et al. 2014; Houweling et al. 2015; Reuter et al. 2014). Alternatively, some models assimilate
observational data to constrain process parameters, e.g. CCDAS (Kaminski et al. 2013), while
some skepticism about the reliability of satellite observations remains, as XCO2 estimates can
differ vastly from inversion experiments in the tropics (Crisp et al. 2022).

Satellite measurements are also important for other carbon cycle variables. The only direct
way to measure LAI is to harvest leaves and measure the area of each leaf. This is not feasible
for tall forest canopies or for large scale measurements. As such, the only reliable means for a
global spatiotemporally continuous LAI data set is through remote sensing (Cao et al. 2023),
estimating LAI through the amount of light transmitted by a plant canopy. Commonly this
data is used alongside some regional ground-based measurements to feed machine learning
algorithms to arrive at a final data product. As such, while many LAI reference data sets use
the same underlying satellite measurements, their resulting data products can look different.
Another example is GPP, which can be measured by Solar-induced fluorescence (SIF), which
is directly correlated to GPP. SIF can be obtained through the oxygen-A band observed by
GHG satellites, enabling them to measure GPP alongside GHG concentrations (Sellers et al.
2018).

The specific reference datasets used in this study to analyze CMIP model output are dis-
cussed in the relevant chapters in more detail.

2.4.1. Computation of XCO2

Model simulations provide CO2 as a 3D variable on a latitude-longitude grid with a vertical
pressure coordinate. The calculation from this 3D CO2 to the 2D XCO2 coordinate for com-
parison with satellite XCO2 data as published in the Appendix of Gier et al. 2020, following
the description in Buchwitz and Reuter 2016, is reproduced here:

𝑋𝐶𝑂2 =

∑︁
𝑛d · 𝑐𝐶𝑂2∑︁

𝑛d
(2.6)

Here, 𝑐𝐶𝑂2 represents the modeled CO2 dry-air mole fraction on model layers (i.e., layer
centers or full levels) and 𝑛d the number of dry-air particles (air molecules excluding water
vapor) within these levels. The summations are performed over all model layers. The number
of dry-air particles can be computed as follows:

𝑛d =
𝑁a · Δ𝑝 · (1 − 𝑞)

𝑚d · 𝑔 . (2.7)
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𝑁a is the Avogadro constant (6.022140857 × 1023 mol−1) and 𝑚d the molar mass of dry air
(28.9644 × 10−3 kg mol−1). Δ𝑝 is the pressure difference (in hPa) computed from the model’s
pressure levels (i.e., layer boundaries or half levels) surrounding the model layers, 𝑞 is the
modeled specific humidity (in kg/kg), and 𝑔 is the gravitational acceleration approximated
by

𝑔 =

√︂
𝑔2

0 − 2 · 𝑓 · 𝜙. (2.8)

This includes the model’s geopotential 𝜙 (in m2 s−2) on layers, the free air correction constant
𝑓 = 3.0825959 × 10−6 s−2 and the gravitational acceleration 𝑔0 on the geoid approximated by
the international gravity formula depending only on the latitude 𝜑:

𝑔0 = 9.780327 ·
[︄
1 + 0.0053024 · sin2 (𝜑)

− 0.0000058 · sin2 (2𝜑)
]︄
.

(2.9)
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With the growing number of climate models and climate model output made available within
CMIP, with an expected total data volume of 20 PB for CMIP6 compared to the 2 PB of CMIP5
(Petrie et al. 2021), routine evaluation of these models becomes increasingly important for base-
line analysis. This was also discussed in a workshop on Earth System Model Evaluation to Improve
Process Understanding hosted by the Aspen Global Change Institute the author participated
in, which resulted in a perspective paper (Eyring et al. 2019) to summarize the discussions
and findings the participants arrived at. It stresses the importance of readily available climate
model evaluation tools to facilitate a more rapid and comprehensive evaluation of model sim-
ulations. A software facilitating such routine analysis is the Earth System Model Evaluation
Tool (ESMValTool) (https://www.esmvaltool.org), an open-source community-developed di-
agnostics and performance metrics tool. This chapter introduces the structure of ESMValTool
in Section 3.1, followed by the author’s contributions to its development not documented in
other chapters in Section 3.2. The author also used ESMValTool for contributions to the latest
IPCC AR6, which are detailed in Section 3.3.

3.1. Earth System Model Evaluation Tool (ESMValTool)

After its first release in 2016 (Eyring et al. 2016b), ESMValTool has undergone constant de-
velopment for new diagnostics, new preprocessing operations, and enhanced performance
capabilities. By attaching detailed provenance information to all output, all results produced
by the tool are fully traceable and reproducible. A schematic representation of the structure of
ESMValTool is shown in Figure 3.1. With the introduction of version 2, ESMValTool has been
split into two parts. The first part is the core functionalities of the ESMValTool (ESMValCore)
(Righi et al. 2020), which contains Python-based core functionalities for preprocessing the
data according to the users’ needs, as well as ensuring the technical standards of input data.
After loading the data, checks and fixes are performed to ensure that the input data are
compliant to the Climate Model Output Rewriter (CMOR) format, a common standard ex-
pected from all models participating in CMIP. ESMValTool uses this standard for all its data
processing. Optional preprocessing operations provided by ESMValCore include spatial and
temporal subsetting or regridding, masking, multi-model statistics, temporal or spatial statis-
tics, or unit conversions. Furthermore, ESMValCore can derive custom non-CMOR variables
from the input data. Since ESMValCore conveniently collects commonly used preprocessing
operations in one location, it can also be used as a standalone package for preprocessing data.
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Figure 3.1.: Schematic representation of the system architecture of Earth System Model Evaluation
Tool (ESMValTool) version 2. Input Data are preprocessed by core functionalities of the ESMValTool
(ESMValCore), which includes preprocessor operations for regridding, interpolation, data fixing, multi-
model statistics and more. These preprocessed data are fed into diagnostic scripts, which create the
final output files, most commonly plots and data in a Network Common Data Form (NetCDF) format,
for which full provenance are given. The configuration is done through the recipe, where the user
specifies the input datasets, the preprocessing functions and the diagnostic scripts to be used. Adapted
with permission from Righi et al. 2020.

The second part is ESMValTool, which uses the preprocessed data from ESMValCore to
run so-called diagnostics defined in recipes. These recipes are the main control files of
ESMValTool, and include the input datasets, the preprocessing functions and the diagnostic
scripts used. Diagnostic scripts, which may be written in Python, NCL, R or Julia, are
responsible for running scientific evaluations on the preprocessed data sets. There are many
different diagnostics covering a wide range of scientific topics. These include large-scale
diagnostics for quasi-operational and comprehensive evaluation of ESMs (Eyring et al. 2020),
diagnostics for emergent constraints and analysis of future projections (Lauer et al. 2020), and
diagnostics for extreme events, regional model and impact evaluation and analysis (Weigel et
al. 2021). Outputs of these diagnostics are usually figures and corresponding NetCDF files, as
well as log files containing provenance information. To use observations and reanalysis data in
ESMValTool which do not adhere to the CMOR standards, cmorizer scripts are included in the
software package to reformat these data into the CMOR standard. ESMValTool is developed
open-source on the GitHub repositories at https://github.com/ESMValGroup. It is released
under the Apache License, version 2.0, with the latest release publicly available on Zenodo
(Andela et al. 2023b; Andela et al. 2023a).

3.2. Contributions to ESMValTool

Apart from the author’s main studies presented in Chapters 4 and 5, several contributions
have been made to ESMValTool, partly covered in scientific documentation papers (Eyring
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et al. 2020; Lauer et al. 2020; Weigel et al. 2021). Additionally, the author of this thesis is part
of the scientific lead development team of ESMValTool.

ESMValTool includes recipes to reproduce analyses from international climate assessments.
One of these is the group of recipe_flato_13ipcc_figure_*.yml recipes in the ipccwg1ar5ch9 folder,
covering a large part of the figures from the climate model evaluation of Chapter 9 of the IPCC’s
AR5 (Flato et al. 2013). The author of this thesis implemented the three figures depicted in
Figure 3.2.

Firstly, Figure 9.6 of Flato et al. 2013 shows the centred pattern correlations, which measure
the similarity of two patterns between models and observations for the annual mean clima-
tology over the period 1980–1999 (after removing the global mean). While the figure was
coded to be able to be applied for several different projects and variables, the original figure
analyzed the CMIP3 and CMIP5 ensemble for the near-surface air temperature (tas), top of the
atmosphere outgoing longwave radiation (rlut), precipitation (pr), and top of the atmosphere
shortwave cloud radioactive effect (swcre). Improvements in all variables can be seen for the
CMIP5 ensemble, with tas and rlut showing the highest correlation, while pr and swcre show a
large model spread in both ensembles. This figure has also been used for the new IPCC AR6
Chapter 3 (Eyring et al. 2021) Figure 3.43 with small modifications. Secondly, Figure 9.9 of
Flato et al. 2013 was implemented in version 1 of ESMValTool. It shows a scatterplot for the
decadal trends of CMIP5 models for precipitable water as a function of the decadal trend in
lower tropospheric temperature (TLT), with a high correlation between the two variables. Due
to complications of porting the variable derivation of TLT in the initial version of ESMValTool
version 2, as well as the non-widespread use of this variable, this figure has not been ported to
the version 2 of ESMValTool. Lastly, Figure 9.26 of Flato et al. 2013 was added by the author to
this recipe, as well as recipe_anav13jclim.yml, which is the original source of this figure. It de-
picts the global land carbon uptake for CMIP5 models between 1900–2005 in comparison with
data from the Global Carbon Project (GCP; Le Quéré et al. 2009). Models and observations
agree well with each other and show large interannual variations with an increasingly higher
land carbon uptake since the mid 20th century. This is discussed in more detail in Chapter 5.

Another contribution included work on the implementation of the recipe_smpi.yml, as well
as its porting to version 2 of ESMValTool (Figure 3.3). This figure is based on the Single Model
Performance Index (SMPI) introduced in Reichler and Kim 2008. The SMPI combines different
climate variables of atmospheric, surface, and oceanic origin to compute a single normalized
index signifying the overall performance of a model. Smaller SMPI values correspond to
better-performing models, while a value of 1 marks the average performance. The radius of
the circle shown in the plot is the 95 % confidence interval of the index. The SMPI allows a
quick estimation the best-performing models across all considered variables.
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(a) (b)

(c)

Figure 3.2.: Figures contributed to recipe_flato13ipcc.yml which reproduces select figures from Flato
et al. 2013. (a) Figure 9.6: Centred pattern correlations between models and observations calculated
for the annual mean climatology over the period 1980–1999. The colors indicate the different CMIP
projects and observations, with individual models shown as a dash. The thicker dash represents the
ensemble mean and the open circle the ensemble median. Depicted are the four variables global mean
near-surface temperature at 2m (tas), top of the atmosphere (TOA) outgoing longwave radiation (rlut),
precipitation (pr) and TOA shortwave cloud radiative effect (swcre). (b) Figure 9.9: Scatterplot showing
the decadal trends of CMIP5 models for precipitable water as a function of the decadal trend in lower
tropospheric temperature (TLT) over the world’s oceans in the tropics (20 ◦S to 20 ◦N). The trends are
calculated over the 1988–2012 period, with CMIP5 models extended with the RCP8.5 simulations.
This figure was only included in version 1 of ESMValTool in the ESMValTool-private repository. (c)
Figure 9.26: Global Land carbon uptake for CMIP5 models for 1900–2005 against observations from the
Global Carbon Project (GCP; Le Quéré et al. 2009). The white line represents the multi-model mean,
with the colored shading corresponding to the confidence limits of the ensemble mean assuming a
𝑡-distribution, and the grey area representing the total range of the model ensemble.
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Figure 3.3.: Single Model Performance Index (SMPI) I2 for individual models (circles), and the multi-
model mean (black circle). The size of the circles indicate the length of the 95 % confidence intervals.
Implemented in ESMValTool (recipe_smpi.yml) based on the SMPI introduced by Reichler and Kim 2008.

3.3. Contributions to the IPCC AR6

The author of this thesis had the honor of contributing to two chapters of the IPCC AR6.
The contribution to Chapter 3 (Eyring et al. 2021) is in the form of an acknowledged graphic
developer for Figure 3.31 (Figure 3.4) and 3.32 (Figure 3.5). Figure 3.31 (Figure 3.4) shows
the evaluation of historical emission-driven CMIP6 simulations for 1850–2014 with observa-
tional data from the GCP (Friedlingstein et al. 2019). Panel (a) shows the atmospheric CO2

concentration of models, which are very similar to observations from NOAA (Dlugokencky
and Tans 2020). Panel (b) shows the near-surface air temperature anomaly with respect to the
1850–1900 mean compared to observations from HadCRUT4 (Morice et al. 2012). This panel
additionally shows the concentration driven simulations of the same models in dashed lines.
Models in both concentration- and emission-driven simulations show similar performance,
and both models and observations show an increasing temperature, reaching an average of
1 ◦C increase in 2014. Panels (c) and (d) show the global land and ocean carbon uptake, respec-
tively, against observations from the GCP (Friedlingstein et al. 2019). These panels employ a
10-year running mean for better visibility. The ocean uptake is further offset to be 0 in 1850
to correct for pre-industrial riverine-induced carbon fluxes. These panels show an increasing
carbon uptake by both land and ocean in response to the rising atmospheric CO2 concentra-
tion in panel (a). Both are in agreement with the observations, while the model spread and
interannual variability are larger over land than over the ocean.

Figure 3.32 (Figure 3.5) shows the relative change in the seasonal cycle amplitude (SCA)
of global land carbon uptake for CMIP6 simulations from 1961–2014 compared to CO2 ob-
servations and NBP estimations from JMA-TRANSCOM, as well as the seasonal cycle of the
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Figure 3.4.: IPCC AR6 Figure 3.31: Evaluation of historical emission-driven CMIP6 simulations for
1850-–2014. Observations (black) are compared to simulations of global mean (a) carbon dioxide
concentration (ppmv), with observations from the National Oceanic and Atmospheric Administration
(NOAA) Earth System Research Laboratories (ESRL) (Dlugokencky and Tans 2020); (b) surface air
temperature anomaly (◦C) with respect to the 1850-–1900 mean, with observations from HadCRUT4
(Morice et al. 2012); (c) land carbon uptake (PgC yr−1); and (d) ocean carbon uptake (PgC yr−1), both
with observations from the Global Carbon Project (GCP; Friedlingstein et al. 2019) and grey shading
indicating the observational uncertainty. Land and ocean carbon uptakes are plotted using a 10-year
running mean for better visibility. The ocean uptake is offset to 0 in 1850 to correct for pre-industrial
riverine-induced carbon fluxes. Reproduced with permission from Eyring et al. 2021.

models for the first (orange) and last (green) ten years in the inset. For comparison between
the NBP and CO2 data, the relative change is offset to the 1961–1970 mean for long time-
series and the last ten years for shorter timeseries. It is evident that the SCA has increased
over time, but the specific reasons for this increase are still debated. The code for the afore-
mentioned ESMValTool IPCC AR6 Chapter 3 figures is publicly available on GitHub in this
branch: https://github.com/ESMValGroup/ESMValTool-AR6-OriginalCode-FinalFigures/
tree/ar6_chapter_3_tina.

Furthermore, the author of this thesis contributed to Chapter 5 of the IPCC AR6 (Canadell
et al. 2021) as contributing author. In this chapter, the author worked in close collaboration
with Peter Cox (University of Exeter, UK) Prabir Patra (JAMSTEC, Japan) on Figures 5.23
(Section 3.3 top), 5.24 (Section 3.3 bottom) and 5.25 (Figure 3.7) by preprocessing CMIP6
model data with ESMValTool, and formatting the output in a requested format ready for
plotting. This included checking the data for errors and viability, as well as giving feedback
on the final figures produced using these data.
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3.3. Contributions to the IPCC AR6

Figure 3.5.: IPCC AR6 Figure 3.32: Relative change in the amplitude of the seasonal cycle of global
land carbon uptake in the historical CMIP6 simulations from 1961-–2014. Net biosphere production
estimates from 19 CMIP6 models (red), the data-led reconstruction JMA-TRANSCOM (Maki et al.
2010; dotted) and atmospheric CO2 seasonal cycle amplitude changes from observations (global as
dashed line, Mauna Loa Observatory (MLO) (Dlugokencky et al. 2018) in bold black). Seasonal
cycle amplitude is calculated using the curve fit algorithm package from the National Oceanic and
Atmospheric Administration Earth System Research Laboratory (NOAA ESRL). Relative changes are
referenced to the 1961-–1970 mean and for short time series adjusted to have the same mean as the
model ensemble in the last 10 years. Interannual variation was removed with a nine-year Gaussian
smoothing. Shaded areas show the one sigma model spread (grey) for the CMIP6 ensemble and the
one sigma standard deviation of the smoothing (red) for the CO2 MLO observations. Inset: average
seasonal cycle of ensemble mean net biosphere production and its one sigma model spread for 1961—
1970 (orange dashed line, light orange shading) and 2005-–2014 (solid green line, green shading).
Reproduced with permission from Eyring et al. 2021.

Figure 5.23 (Section 3.3 top) shows the changes in ocean (a) and land (b) carbon storage
against data from the GCP (Friedlingstein et al. 2019) similar to Figure 3.31 but for the cumu-
lative global sum and for concentration driven simulations. Similar to Figure 3.31, the models
fit well to the observations, with a larger range in the land carbon storage than the ocean.
In the report this range in the land carbon uptake is attributed in part to land-use change.
Figure 5.24 (Section 3.3 bottom) shows the mean uptake 2000–2009 in a zonal distribution for
both CMIP5 and CMIP6 models, compared to atmospheric inversion estimates. While the
ocean carbon sink is well simulated by the CMIP models, the land carbon uptake shows large
underestimations by the models in high latitudes and large uncertainties in the tropics. This
is also found in the analysis in Chapter 5 and analyzed in more detail there.

Figure 5.25 (Figure 3.7) shows the evolution of the land and ocean carbon sinks for several
different future projections in concentration driven simulations. As the land and ocean carbon
uptakes are primarily influenced by atmospheric CO2, the evolution of the sinks varies greatly
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Figure 3.6.: Figures from IPCC AR6 Chapter 5 for which historical data were provided after preprocess-
ing with Earth System Model Evaluation Tool (ESMValTool). Top: IPCC AR6 Figure 5.23. CMIP6 Earth
system model concentration-driven historical simulations for 1850 to 2014, compared to observation-
based estimates from the global carbon project (GCP). (a) Cumulative ocean carbon uptake from 1850
(PgC); (b) cumulative land carbon uptake from 1850 (PgC). Only models that simulate both land and
ocean carbon fluxes are shown here. Bottom: IPCC AR6 Figure 5.24. Comparison of modelled zonal
distribution of contemporary carbon sinks against atmospheric inversion estimates for 2000-–2009: (a)
ocean carbon uptake; (b) net land uptake. Latitude runs from 90 ◦S (i.e., –90 ◦N) to 90 ◦N. Positive
uptake represents a carbon sink to ocean/land while negative uptake represents a carbon source. The
land uptake is taken as net biome productivity (NBP) and so includes net land-use change emissions.
The bands show the mean ± 1 standard deviation across the available inversions (black bands, 3 mod-
els), CMIP5 ESMs (blue bands, 12 models for the ocean, 12 models for the land), and CMIP6 ESMs (red
bands, 11 models for ocean, 10 models for land). Reproduced with permission from Canadell et al.
2021.
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Figure 3.7.: IPCC AR6 Figure 5.25: Modelled evolution of the global land and ocean carbon sinks from
1900 to 2100 in concentration-driven CMIP6 Earth system model (ESM) scenario runs. (SSP1-2.6: blue;
SSP2-4.5: orange; SSP3-7.0: red; SSP5-8.5: brown): (a) prescribed atmospheric CO2 concentrations; (b)
five-year running mean ocean carbon sink (GtC yr−1); (c) five-year running mean net land carbon sink
(GtC yr−1); (d) inferred cumulative sink fraction of emissions from 1850; (e) change in ocean carbon
storage from 1850 (GtC); (f) change in land carbon storage from 1850 (GtC). Thick lines represent the
ensemble mean of the listed ESM runs, and the error bars represents ± 1 standard deviation about that
mean. The grey wedges represent estimates from the Global Carbon Project (GCP), assuming uncer-
tainties in the annual mean ocean and net land carbon sinks of 0.5 GtC yr−1 and 1 GtC yr−1 respectively,
and uncertainties in the changes in carbon stores (ocean, land and cumulative total emissions) of 25 GtC.
The net land carbon sink is taken as net biome productivity (NBP) and so includes any modelled net
land-use change emissions. Reproduced with permission from Canadell et al. 2021.

across the different SSP scenarios. Simulations with larger CO2 increases lead to larger carbon
and land sinks, but lower sink fractions. Again the land shows a much larger uncertainty in
the models than the ocean, evident in the larger bars representing the standard deviation.
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4. Spatially resolved evaluation of ESMs with
satellite column-averaged carbon dioxide

CO2 is the most important anthropogenic GHG. The uncertain remaining budget of CO2

emissions to reach specific temperature targets under global warming stresses the need for
models to correctly simulate atmospheric CO2 concentrations. As model projections cannot be
tested for their reliability through experiments, they are instead analyzed for their present-day
performance using observations of the earth system. While most long-term CO2 observations
are from ground-based stations which report an increase of about 45 % since pre-industrial
times (Ciais et al. 2013), they are spatially sparse. Satellite measurements instead can enable
spatially resolved evaluations of ESMs. This chapter addresses the research questions of how
recent satellite observations can be used to evaluate climate model simulations, and how
sparse data coverage can affect the results by comparing unsampled model data to model
data sampled in the same way as the satellite observations. Furthermore, on the basis of
the satellite XCO2 data, output from CMIP5 and CMIP6 model simulations is compared to
analyze the influence of the increased process complexity of the newer model generation. The
satellite data used in this chapter are introduced in Buchwitz et al. 2018, to which the author
contributed in discussions about computation methods. These discussions helped the author
familiarize with the data set.

This chapter is based on an already published study (Gier et al. 2020). The author of
this thesis led the writing and analysis of the paper, and also developed the diagnostics
which have since been included in the ESMValTool in the recipe recipe_gier2020bg.yml for
full reproducibility of all figures. Section 4.1 introduces the data products, models and
methods used in this study. Satellite XCO2 measurements are briefly compared to CO2 flask
measurements and model simulations in Section 4.2, while Section 4.3 evaluates CMIP5 and
CMIP6 simulations with XCO2 satellite data, split into individual sections focusing on the time
series, growth rate (GR), and SCA, respectively. The section on SCA additionally includes a
part detailing the influence of the observational sampling. Finally, Section 4.4 summarizes
and concludes this study.
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4. Spatially resolved evaluation of ESMs with satellite column-averaged carbon dioxide

4.1. Data and Methods

4.1.1. Observational datasets

Satellite XCO2

We use the Observations for Model Intercomparisons Project (obs4MIPs) version 3 (O4Mv3)
XCO2 satellite data (Buchwitz et al. 2017b; Buchwitz et al. 2018). obs4MIPs hosts obser-
vationally based datasets which have been formatted according to the CMIP model output
requirements (e.g., variable definitions, coordinates, frequencies) in order to facilitate an eas-
ier comparison between observations and models (Ferraro et al. 2015; Teixeira et al. 2014;
Waliser et al. 2020). The satellite product used here is a gridded (level-3) monthly data prod-
uct with a 5◦ × 5◦ spatial resolution following the obs4MIPs format, produced as part of
the Copernicus Climate Change Service (C3S). The O4Mv3 product is retrieved from two
satellite instruments: Scanning Imaging Absorption Spectrometer for Atmospheric CHar-
tographY (SCIAMACHY)/Envisat (Bovensmann et al. 1999; Burrows et al. 1995) and the
Thermal And Near infrared Sensor for carbon Observation Fourier transform spectrome-
ter (TANSO-FTS)/Greenhouse Gases Observing Satellite (GOSAT) (Kuze et al. 2009).

This monthly mean XCO2 satellite dataset covers a 14-year time span (2003–2016). It is
obtained by gridding the level-2 product (individual soundings) generated with the ensemble
median algorithm (EMMA) (Reuter et al. 2013), in this case EMMA version 3.0 (EMMAv3;
Reuter et al. 2017). EMMA combines several different XCO2 level-2 satellite data products from
SCIAMACHY/Envisat (2003–2012) and TANSO-FTS/GOSAT (2009–2016) and includes a bias
correction to all products during overlap phases, resulting in a good agreement during the
overlap period. This product was validated against Total Carbon Column Observing Network
(TCCON) (Wunch et al. 2011) ground-based observations of XCO2, revealing a +0.23 ppmv
global bias, a relative accuracy (defined as standard deviation of the station-to-station biases)
of 0.3 ppmv and a very good stability in terms of a linear bias trend (−0.02± 0.04 ppmv yr−1)
(Buchwitz et al. 2017a). While the dataset ends in 2016, our evaluation only goes up to the
year 2014 because the historical simulations for CMIP6 end in 2014 and scenarios from the
emission-driven simulations that could be used to extend the runs were not yet available at
the time of the study for all considered models.

The number of observations depends significantly on the location with most points over
locations with low cloud cover, high surface reflectivity and (at least) moderate to high Sun
elevation. Coverage over ocean is sparse as ocean retrievals are only included from GOSAT
Sun-glint mode observations – outside of glint conditions, the reflectivity of water is very
low in the NIR/SWIR spectral region. Figure 4.1 shows the mean monthly coverage of the
dataset for 2003–2014. In Section 4.3, we will show that taking into account this sampling in
the evaluation of ESMs is essential for a proper comparison.

The dataset also contains uncertainty estimates for each grid cell, with a mean value of
0.92 ppmv, accounting for both statistical uncertainties from the individual soundings and
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4.1. Data and Methods

Figure 4.1.: Mean fractional coverage of monthly XCO2 satellite data for 2003—2014. A value of 0
(white) signifies no available data, while a value of 1 (dark green) means that this grid cell contains
data for all years of this month. Adapted with permission from Gier et al. 2020.

uncertainties from potential regional and temporal biases (Buchwitz et al. 2017b). However,
the overall uncertainties are small compared to inter-model differences (see Section 4.1.3) and
are therefore neglected in our analysis.

Surface CO2 measurements

For the comparison of satellite XCO2 and surface CO2 data in Section 4.2, we have obtained
surface flask measurements from the NOAA ESRL Carbon Cycle Cooperative Global Air
Sampling Network (Dlugokencky et al. 2020). Measurement sites at locations with no available
satellite data were excluded from the analysis, which ruled out the four baseline observatories
in Mauna Loa and Samoa, as well as the South Pole and Point Barrow sites. Furthermore,
sites which did not collect data during the period from 2003–2014 were discarded. From the
remaining sites, a sample of five sites was chosen which had the best coverage of different
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latitudes, and when latitudes were similar, different longitudes were selected for increased
spatial coverage. The selected sites are listed in Table 4.1.

Code Location Latitude [◦] Longitude [◦] Altitude [m] Start year

ASK Assekrem, Algeria 23.2625 5.6322 2710 1995
CGO Cape Grim, Australia −40.6800 144.6800 94 1984
LEF Park Falls, United States 45-945 269.7300 868 1994
HUN Hegyhátsál, Hungary 46.950 16.650 248 1993
WIS Ketura, Israel 30.8595 34.7809 482 1995

Table 4.1.: List of active NOAA surface flask measurement sites used in this study.

4.1.2. Model simulations

We use monthly mean output data from 10 CMIP5 and 10 CMIP6 models which performed
emission-driven simulations, with two of the CMIP5 and five of the CMIP6 models including
a nitrogen cycle. Table 4.3 and Table 4.2 list all the CMIP5 and CMIP6 models used in this
paper along with their atmosphere, land and ocean model component, respectively. Only
models with an interactive carbon cycle are able to perform the emission-driven simulations,
in which the emissions rather than the concentrations of the greenhouse gases are prescribed
(Eyring et al. 2016c; Taylor et al. 2012). This allows the carbon cycle in the models to react to
changes in climate and atmospheric CO2 by adjusting their carbon fluxes to the new climate
conditions and providing the atmospheric CO2 concentration as an output (Friedlingstein
et al. 2014). In order to facilitate the comparison between the satellite data and the CMIP5
emission-driven simulations, the historical simulations (1850–2005) were extended beyond
2005 with simulations from Representative Concentration Pathway (RCP) 8.5 (2006–2100), for
which most ESM simulations are available. Since the period of observations only extends a
decade beyond the historical runs, the choice of emissions scenario has a negligible impact on
the results that we present below. For CMIP6, only the historical simulations are used, which
end in 2014. For CMIP5, only one model had more than one ensemble member performing
the emission-driven RCP8.5 simulation, and thus only one ensemble member for each model
has been used. In CMIP6, several models have three or more ensemble members. We consider
all of them in Figure 4.3 for the time series to show the models’ intrinsic variability but then
proceed with the analysis with only the first ensemble member for each model. The different
initial value ensemble members perform similarly to each other for the analysis presented in
this paper, and using an ensemble mean would reduce the interannual variability found in
each individual member.
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Table 4.2.: CMIP5 models analyzed in this study. D marks models including dynamic vegetation, and N marks models including nitrogen cycles.

Model Institute Atmosphere model Land model Ocean model Comment Main reference

BNU-ESM College of Global
Change and Earth
System Science, China

CAM3.5 CoLM + BNU-
DGVM

MOM4p1 +
IBGC

D Ji et al. 2014

CanESM2 Canadian Center for
Climate Modeling and
Analysis, BC, Canada

CanAM4 CLASS2.7 +
CTEM1

CMOC Arora et al. 2011

CESM1-BGC National Center for
Atmospheric Research
Boulder, CO, USA

CAM4 CLM4 POP2 + BEC N Gent et al. 2011; Lind-
say et al. 2014

FIO-ESM The First Institute of
Oceanography, SOA,
China

CAM3.0 CLM3.5 +
CASA

POP2.0 +
OCMIP-2

Bao et al. 2012; Qiao et
al. 2013

GFDL-ESM2G Geophysical Fluid Dy-
namics Laboratory,
United States

AM2 LM3.0 GOLD +
TOPAZ2

D Dunne et al. 2012;
Dunne et al. 2013

GFDL-ESM2M Geophysical Fluid Dy-
namics Laboratory,
United States

AM2 LM3.0 MOM4.1 +
TOPAZ2

D Dunne et al. 2012;
Dunne et al. 2013

MIROC-ESM MIROC, Japan MIROC-AGCM +
SPRINTARS

MATSIRO +
SEIB-DGVM

COCO3.4 +
NPZD

D Watanabe et al. 2011

MPI-ESM-LR Max Planck Institute for
Meteorology, Hamburg,
Germany

ECHAM6 JSBACH +
BETHY

MPIOM +
HAMOCC5

D Giorgetta et al. 2013
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MRI-ESM1 Meteorological Research
Institute, Japan

MRI-AGCM3.3 +
MASINGAR mk-2
+ MRI-CCM2

HAL MRI.COM3 D Adachi et al. 2013;
Yukimoto et al. 2011;
Yukimoto et al. 2012

NorESM1-ME Norwegian Climate Cen-
ter, Norway

CAM4-Oslo CLM4 HAMOCC5 N Tjiputra et al. 2013

Table 4.3.: CMIP6 models analyzed in this study. D marks models including dynamic vegetation, and N marks models including nitrogen cycles.

Model Institute Atmosphere
model

Land model Ocean model Comment Main reference
and data DOI

ACCESS-ESM1-5 Commonwealth Sci-
entific and Industrial
Research Organisation,
Australia

UM7.3 CABLE2.4
with CASA-
CNP

MOM5 +
WOMBAT

N Law et al. 2017; Ziehn
et al. 2017,
Data: Ziehn et al.
2019

CanESM5 Canadian Center for
Climate Modeling and
Analysis, BC, Canada

CanAM5 CLASS-CTEM NEMO 3.4.1.
+ CMOC

Swart et al. 2019a,
Data: Swart et al.
2019b

CanESM5-CanOE Canadian Center for
Climate Modeling and
Analysis, BC, Canada

CanAM5 CLASS-CTEM NEMO 3.4.1.
+ CanOE

Swart et al. 2019a,
Data: Swart et al.
2019c

CNRM-ESM2-1 CNRM-CERFACS,
France

ARPEGE-Climat
v6.3 + SURFEX
v8.0

ISBA + CTRIP NEMO v3.6
+ GELATO +
PISCESv2

Séférian et al. 2019,
Data: Seferian 2019

GFDL-ESM4 Geophysical Fluid
Dynamics Laboratory,
United States

AM4.1 LM4.1 OM4 MOM6 +
COBALTv2

D Dunne et al. 2020,
Data: Krasting et al.
2018
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MIROC-ES2L MIROC, Japan MIROC-AGCM +
SPRINTARS

VISIT-e +
MATSIRO6

COCO +
OECO v2

N Hajima et al. 2020a,
Data: Hajima et al.
2020b

MPI-ESM1-2-LR Max Planck Institute
for Meteorology, Ham-
burg, Germany

ECHAM6.3 JSBACH3.2 MPIOM1.6 +
HAMOCC6

N, D Mauritsen and
Roeckner 2020,
Data: Wieners et al.
2019

MRI-ESM2-0 Meteorological Re-
search Institute, Japan

MRI-AGCM3.5
+ MASINGAR
mk-2r4c + MRI-
CCM2.1

HAL MRI.COMv4 Yukimoto et al.
2019a,
Data: Yukimoto et al.
2019b

NorESM2-LM Norwegian Climate
Center, Norway

Modified CAM6 CLM5 HAMOCC N Seland et al. 2020,
Data: Seland et al.
2019

UKESM1-0-LL Met Office Hadley Cen-
tre, United Kingdom

Unified Model JULES-ES-1.0 NEMO +
MEDUSA-2

N, D Sellar et al. 2019,
Data: Tang et al. 2019
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4.1.3. Methods

Sampling of observations and models

For comparison of model and satellite data, first the CO2 data of the models were converted
to XCO2 data. The model data were interpolated to the grid of the satellite dataset using a
bilinear interpolation scheme and grid cells with missing values in the satellite data were also
set to missing values in the model fields. Further sampling considerations are discussed in
more detail in Section 4.3.3 and in Appendix A.

Most analysis is carried out with regional averages covering several grid cells. Unless
specifically stated otherwise, these are calculated by taking the arithmetic averages over all
grid cells weighted by their area for each month.

Calculation of growth rate, seasonal cycle amplitude and growing season temperature
anomaly

We compute the GR following the method described in Buchwitz et al. 2018. Monthly resolved
annual GRs are calculated by subtracting the XCO2 value 6 months in the future from the one
6 months in the past. Then these monthly resolved GRs are averaged to a yearly GR for a
calendar year, and any year with less than 7 months of data is flagged as missing. The addition
of the 7-month data availability was introduced to be consistent with the constraint on SCA
as explained below.

We define the SCA as the peak-to-trough amplitude in a calendar year of the detrended
time series. The time series is detrended with the cumulative sum of monthly GRs, using the
annual mean GRs as substitution for missing values where necessary. The SCA is calculated
by subtracting the minimum from the maximum value for each year with a minimum data
availability of 7 months. When investigating the seasonal cycle of observationally sampled
simulations at higher latitudes, the maximum value of the time series was generally only
accounted for if more than 7 months of data were available. We therefore introduce the cutoff
of 7-month data availability to preserve as many peaks as possible without restricting the data
too much. However, as peak preservation cannot be guaranteed when any missing values are
present, we can only speak of an effective SCA. The absolute SCA is not as important in our
comparison, because we use the same sampling for both the model and observations.

The growing season temperature anomaly Δ𝑇 is calculated from the NASA Goddard In-
stitute for Space Studies (GISS) Surface Temperature Analysis (GISTEMP) version 4 (Hansen
et al. 2010) temperature anomaly map following Schneising et al. 2014. The data are masked
to include only vegetated areas, using the MODIS land cover classification (Friedl et al. 2010).
Surface temperature anomalies are calculated with respect to their monthly climatologies.
The data are averaged over the growing season if they cover only one hemisphere (April–
September for the NH; December to May for the Southern Hemisphere (SH)). Additionally, if
the data cover both hemispheres, the whole year is taken into account. The growing season
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averages are taken because the temperature has a large influence on the plant growth and the
resulting biospheric CO2 fluxes, which in turn drive both the SCA and interannual variability
of the GR (Schneising et al. 2014).

4.2. Comparison of XCO2 and surface CO2

Until recent years, most model–observation comparisons have been carried out using in situ
surface CO2 data (e.g., Wenzel et al. 2016). As such, it is interesting to compare the differences
between XCO2 and surface CO2 at different locations. Figure 4.2 shows a comparison of time
series between both kinds of observations and the multi-model mean (MMM) for both XCO2

and surface CO2 for CMIP6 (top) and CMIP5 (bottom) models. The MMM for both XCO2 and
surface CO2 is offset to have the same mean value as the satellite data, and this offset is noted
above each time series panel. It is interesting to note that the offset appears to be larger at
higher latitudes, thus showing a different latitudinal gradient between the models and the
satellite data, indicating potential issues with surface fluxes or transport in the models. The
MMM and satellite data are averaged between all grid cells covering a 5◦ × 5◦ radius around
the stations, which results in a maximum of four grid cells to be considered. The mean and
GR of XCO2 and surface CO2 are in very good agreement, while the MMM overestimates both
variables at all sites, with the overestimated mean XCO2 arising from the effect of higher GRs
over time. Furthermore, the offset from the modeled surface CO2 is higher than that of XCO2,
while this difference is smaller for CMIP5. This might be due to the fact that the CMIP5 offset
for MMM XCO2 was larger overall with approximately 10 ppmv compared to the CMIP6 offset
of approximately 2 ppmv.

SCA is higher at higher latitudes and also generally higher at the surface compared to
the column average. This is to be expected as the processes dominating the seasonal cycle,
respiration and photosynthesis, take place at the surface, leading to the higher SCA for station
data and surface CO2from models compared to the XCO2 values. Mixing of air coming from
lower latitudes with lower SCA dampens the SCA in the column compared to surface SCA.
This is evident in the increasing SCA difference between XCO2 and surface CO2 going from
low-latitude to high-latitude stations, with no discernible seasonal cycle in the SH due to the
lack of land and vegetation. The MMM follows this trend in the observations, although it
underestimates the higher-latitude SCA, with a larger underestimation at the surface while
capturing the XCO2 SCA relatively well. As this study aims at evaluating model simulations
with satellite data, further analysis is restricted to XCO2.
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(a) CMIP6

(b) CMIP5

Figure 4.2.: Comparison of time series from satelliteXCO2 (black), MMM XCO2 (orange) and surface
CO2 (red), and NOAA surface CO2 station data (blue) at selected sites, with the coordinates noted in
brackets above the time series and the altitudes shown in the map plot (see Table 4.1). The MMM for
both XCO2 and surface CO2 was offset to have the same average value as the satellite XCO2 for better
comparison, and this offset is noted above each time series. CMIP6 and CMIP5 MMMs are shown in
the top (a) and bottom (b) panels, respectively. Adapted with permission from Gier et al. 2020.
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(a) CMIP6

Figure 4.3.: (a) Global time series of monthly mean XCO2 from 2003 to 2014 for the emission-driven
CMIP6 model simulations in comparison to satellite XCO2 data (bold black line). The model output is
sampled as the satellite data. The top panels show the time series, while the middle panels show the
computed monthly GR, which has been used to detrend the data to obtain the seasonal cycle shown
in the bottom panel. All available ensemble members for each model are shown to demonstrate the
intrinsic variability of the models. Adapted with permission from Gier et al. 2020.

4.3. Evaluation of CMIP simulations with satellite data

4.3.1. XCO2 time series

The globally averaged time series of XCO2 is shown in Figure 4.3 in the top panel, with
CMIP6 (a) and CMIP5 (b) models sampled as the satellite observations (see Section 4.1.3). The
observational uncertainty is too small to be seen in this plot and is therefore neglected. The
middle panel shows the monthly resolved annual GR and the bottom panel the detrended
seasonal cycle. All available ensemble members for CMIP6 models are used to show their
internal variability. All ensemble members perform similar to one another. The MMM
is computed using the first ensemble member, which is also used in the further analysis.
As in Figure 4.2, an increase of XCO2 with time and a pronounced seasonal cycle for all
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(b) CMIP5

Figure 4.3: (b) Same as Figure 4.3a but for CMIP5. Only one ensemble member is shown. Adapted
with permission from Gier et al. 2020.

models can be seen. The focus here is on the absolute values, as the trend (GR) and SCA are
discussed in dedicated sections below. The CMIP6 models display a large range of absolute
XCO2 values, ranging from an underestimation by 15 ppmv (MRI-ESM2.0 and MIROC-ES2L)
to an overestimation by 20 ppmv (GFDL-ESM4). The model closest to the observations is
CNRM-ESM2-1, which reproduces the mean value well, with the next closest models being
NorESM2-LM and MPI-ESM1.2-LR, both overestimating XCO2 by about 5 ppmv. The MMM
shows an overestimation by approximately 2 ppmv or equivalently a time shift of 1 year.
While the spread in the models has not decreased much since CMIP5, the overestimation
of the MMM has decreased from 10 to 2 ppmv. Furthermore, CMIP6 models which have
predecessors in CMIP5 show similar biases as their predecessors, besides the MIROC models,
which overestimated the mean by 15 ppmv in CMIP5 and underestimates it by that much in
CMIP6. Both MRI models underestimate XCO2 significantly, while GFDL-ESM4 overestimates
the atmospheric content even more. The MRI-ESM1 model was the only model in CMIP5 to
underestimate XCO2 with respect to the observations, and this was by about 20 ppmv. This
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model underestimates the historical warming, causing plant and soil respiration to be too low,
which leads to a larger land sink and a reduced atmospheric CO2 concentration (Adachi et al.
2013). This underestimation has been reduced by about 5 ppmv in CMIP6. The GFDL models
show an overestimation of about 15 ppmv in both ensembles, and both CanESM models are
10 ppmv too high. A minor improvement can be seen for NorESM-LM over NorESM1-ME,
with a decrease of the overestimation from 15 to 10 ppmv.

4.3.2. Growth rate

The middle panel of Figure 4.3 shows that while models capture the interannual variability
of the GR quite well, they overestimate the mean GR compared to the observations. The
correlation coefficient for the MMM is at 0.48 in CMIP6 and 0.07 in CMIP5 which shows a
large improvement in this area. The pronounced feature in 2009 is due to the introduction of
the GOSAT data which changed the shape of the seasonal cycle and thus due to its calculation
the monthly resolved annual GR. Fortunately, this feature gets averaged out when computing
the annual GR and does not tangibly affect our conclusions. Figure 4.4 shows the global mean
GR of XCO2 for 2003–2014 and its standard deviation over all years depicted as error bars, with
the observations shown in black and the MMM in red. The annual mean GR of the satellite
data is 1.9± 0.4 ppmv yr−1, while the CMIP5 models (right) range from 1.5± 0.4 (MRI-ESM1)
to 3.0± 0.9 ppmv yr−1 (CanESM2) with a MMM of 2.4± 0.4 ppmv yr−1. In CMIP6 (left), the
MMM is slightly lower at 2.3± 0.3 ppmv yr−1, and the spread has decreased by 0.6 ppmv yr−1,
with a range from 1.7± 0.4 (MRI-ESM2.0) to 2.6± 0.7 ppmv yr−1 (GFDL-ESM4). As expected
from Figure 4.3, the models – with the exception of MRI-ESM1, MRI-ESM2.0 and MIROC-
ES2L – overestimate the GR, leading to an increased XCO2 level in the present-day atmosphere
compared to observations. The interannual variability of the GR for the models is generally
higher than that of the observations but well reproduced in the MMM.

The spatial variability of the GR is small, as CO2 is long lived and well mixed in the
atmosphere with a 1-year mean interhemispheric crossing time. Thus, there should be no
significant regional changes on an annual level. Buchwitz et al. 2018 found the GR of the
satellite dataset to be in agreement with those quoted by NOAA ESRL’s global and Mauna
Loa time series, as well as robust over several latitude bands. Our own analysis also shows
only very small regional differences in the GR (not shown). No significant changes to the
annual GRs due to the satellite spatial coverage were found.

Trend of growing season temperature and interannual variability (IAV) of CO2 GR

Emergent constraint (EC)s are relationships defined using an ensemble of models, between
a measurable aspect of current or past climate and an aspect of Earth system feedback in
the future, which can be constrained using observational data (Eyring et al. 2019). Cox et
al. 2013 developed an EC on the sensitivity of tropical land carbon to climate change using
the sensitivity of the IAV of CO2 GR to the IAV of tropical temperature, which was later
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(a) CMIP6 (b) CMIP5

Figure 4.4.: Global mean and standard deviation over all years of annual GR of XCO2 during 2003–2014
for CMIP6 models (a) and CMIP5 models (b). The black bar represents the satellite observations, while
the red bar depicts the MMM. Adapted with permission from Gier et al. 2020.

adapted by Wenzel et al. 2014 to CMIP5 models. Figure 4.5 shows the sensitivity of the IAV
of XCO2 GR to the tropical growing season temperature IAV for CMIP6 (left) and CMIP5
(right) models, both compared with observations. The observational temperature is taken
from the GISTEMP v4 dataset (Lenssen et al. 2019) and the models use their own modeled
temperature. We find an observational value of −0.23± 0.70 ppmv yr−1 K−1 for the 2003–
2014 period. However, when using the full span of the satellite data until 2016, the slope
increases to 0.75± 0.6 ppmv yr−1 K−1 (not shown), as the additional years show both a high
growing season temperature and GR IAV, coinciding with a strong El Niño. This shows
that the time period 2003–2014 is not sufficiently long to reproduce the EC, although this may
become feasible once CMIP6 emission-driven future simulations are available for a longer time
overlap between models and observations. CMIP5 model values for the timeframe 2003–2014
range from 0.53± 0.51 (NorESM1-ME) to 3.14± 0.63 ppmv yr−1 K−1 (MRI-ESM1), with only
CESM1-BGC showing a negative trend of −0.64± 0.55 ppmv yr−1 K−1. The MMM has a value
of 1.79± 0.80 ppmv yr−1 K−1. In CMIP6, the range is significantly decreased with a minimum
of 1.14± 0.56 ppmv yr−1 K−1 (ACCESS-ESM1.5) to a maximum of 3.37± 0.71 ppmv yr−1 K−1

(CanESM5-CanOE) and a MMM of 1.14± 0.37 ppmv yr−1 K−1.
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(a) CMIP6 (b) CMIP5

Figure 4.5.: Sensitivity of the IAV of the XCO2 GR in the tropics (30◦ S–30◦ N) to the IAV of tropical
growing season temperature for CMIP6 models (a) and CMIP5 models (b). The observational temper-
ature taken from the GISTEMP temperature anomaly map, while the models use their own simulated
temperature. A linear regression is performed on the data for each dataset. Model colors are the same
as in Figure 4.3, and symbols denote the years. In the top left of each panel, the regression coefficient
and its uncertainty is shown, while the bottom right states the Pearson correlation coefficient and
𝑝 value. Adapted with permission from Gier et al. 2020.
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4.3.3. Seasonal cycle amplitude

This section about the SCA is divided into two subsections, with the first one taking a closer
look at inter-model differences, while the second subsection is devoted to the impact of
observational sampling.

Model differences

The lower panel in Figure 4.3 shows the detrended global seasonal cycle for all models. Models
in CMIP6 (a) show a strong improvement in their ability to capture both the SCA, as well as
its phase compared to CMIP5 (b) but still underestimate the SCA. The correlation coefficient
to the observed seasonal cycle is 0.93 in CMIP5 and 0.98 in CMIP6 for the MMM. The only
model in CMIP6 to significantly underestimate the SCA is CNRM-ESM2-1. Two errors have
been identified causing this dampened seasonal cycle: ocean carbon fluxes are lagged in time,
and in the emission-driven simulations, CO2 is considered as an active tracer and coupled
with atmospheric chemistry. These chemical fields are restored to global mean climatological
concentrations at the model surface, acting as a damping component to the CO2 concentrations
(Séférian et al. 2019). Figure 4.6 shows maps of the climatological mean SCA (2003–2014) for
all models, with the global mean given in the top right and the zonal averages shown in
the panel attached to the right of the maps. All CMIP6 models (Figure 4.6a) underestimate
the SCA compared to satellite observations (Figure 4.7, middle) in the global mean, with the
closest mean SCA being MIROC-ES2L. This underestimation was already present in CMIP5
(Figure 4.6b), with several studies discussing it for surface CO2 SCA (Graven et al. 2013; Wenzel
et al. 2016). In CMIP6, the MMM has a globally averaged mean SCA of 3.25 ppmv, compared to
2.92 ppmv for CMIP5, while the observations show an effective SCA of 5.89 ppmv (Figure 4.7).

Both models and observations show the well-known increasing SCA with increasing lat-
itude, due to the more pronounced seasonal cycle of the climate at higher latitudes. Most
models show a decreased growth from 0 to 30◦ N, with higher SCA increases in the lower
tropics and northern midlatitudes. Overall, the zonal distribution is quite similar throughout
the models, with UK-ESM1-0-LL showing increased SCA at 30–90◦ S. Tropical land regions in
northern South America, Africa and southeast Asia show increased SCA values compared to
the ocean SCA at this latitude for the same model. While in the GFDL CMIP5 models this was
so pronounced that these regions showed a higher CMIP5 than the higher latitudes (Dunne
et al. 2013), this is no longer the case for GFDL-ESM4 in CMIP6. Dunne et al. 2013 attributed
the GFDL problem in CMIP5 to the seasonality of respiration in the northern latitudes and
an Amazonian low-precipitation bias which reversed the seasonal cycle synchronizing it with
the African and Oceanian rain forests. The improvement in CMIP6 is due to a reduced ocean–
atmosphere CO2 flux in the Southern Hemisphere, as well as the reduction of the high tropical
land–atmosphere fluxes expressed over the ocean (Dunne et al. 2020).

The SCA in the CMIP5 MPI-ESM-LR model is on average twice as large as the observed
one. The high SCA has been discussed in Giorgetta et al. 2013, where it was attributed to a
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(a) CMIP6

Figure 4.6.: (a) Maps of mean annual SCA for 2003–2014 for the CMIP6 models. The model name is
given in the top left of each panel, and the top right shows the global average of the mean annual
seasonal cycle. The panel to the right of the maps shows the same zonal mean SCA. Adapted with
permission from Gier et al. 2020.

combination of an overestimation of net primary productivity in ocean and land biology and
uncertainties in atmospheric tracer transport. A particularly severe overestimation was seen
in the SH when comparing to station data. As shown in Figure 4.7, we additionally find a
large overestimation in XCO2 SCA in the NH, in particular in the extratropics. For the CMIP6
successor model, MPI-ESM1.2-LR, the SCA is still the highest of the model ensemble but is no
longer twice as high as the other models. However, it now shows a more pronounced SCA
over the tropical land regions mentioned above, which was not as dominant in CMIP5.

It is known that nitrogen limitations tend to suppress CO2 fertilization (Reich et al. 2006). Of
the four models with the lowest overall SCA in CMIP5 (CESM1-BGC, FIO-ESM, NorESM1-ME
and BNU-ESM), two of them – CESM1-BGC and NorESM1-ME – include a nitrogen cycle. The
SCAs of NorESM1-ME and CESM1-BGC are very similar, which can be attributed to sharing
the same land model (CLM4). FIO-ESM uses the predecessor CLM3.5 and is also comparable
to the other two models. It was found that CLM4 had an unrealistically strong nitrogen
limitation, which has been reduced in CLM5 (Wieder et al. 2019). In CMIP6, ACCESS-ESM1.5,
MPI-ESM1.2-LR, MIROC-ES2L, NorESM2-LM and UKESM1.0-LL include a nitrogen model
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(b) CMIP5

Figure 4.6: (b) Same as Figure 4.6a but for CMIP5.Adapted with permission from Gier et al. 2020.

but none of them share the same land model. While ACCESS-ESM1.5 has the second lowest
overall SCA, MPI-ESM1.2-LR and MIROC-ES2L have the highest, and thus the observation
from CMIP5 models that N-cycle models feature a lower SCA no longer stands for CMIP6.

Influence of sampling

There are a number of ways to compare model SCA to observational SCA, beginning with a
grid box comparison. Figure 4.7 shows a comparison of the MMM of CMIP6 (Figure 4.7a) and
CMIP5 (Figure 4.7b) to observations. The top right shows the unsampled SCA. The top left
panel shows the effective SCA when using observational sampling and the middle panel the
satellite data’s effective SCA. All numbers are given in ppmv. For an easier comparison, the
bottom panels show the absolute difference plots, with the left panel depicting the difference
between sampled model and observations, and the right panel the difference between the
sampled and unsampled model. Observational sampling slightly lowers the SCA, which is
to be expected, as it could lead to masking out the peaks or troughs. While this effect was
minimized by imposing the restriction of only computing the SCA of a year when at least
7 months of data are available, it is still a possibility. We therefore classify this SCA as an
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(a) CMIP6

Figure 4.7.: (a) Maps of mean SCA of the CMIP6 MMM for 2003–2014. Top: SCA of MMM with
observational sampling (left) and without sampling (right). Middle: SCA of the satellite observations.
Bottom: difference between observations and sampled model data (left) and sampled and unsampled
model (right). Adapted with permission from Gier et al. 2020.

“effective SCA”. However, the SCA does not seem to decrease significantly through sampling
and the difference does not follow a trend in latitude, so a grid box comparison seems feasible.
This paves the way for more comprehensive spatial investigations, which previously relied
on data from ground-based stations with sparse spatial coverage. While the stations provide
data in higher latitudes that the satellite dataset does not cover, in the tropics and midlatitudes
the spatial coverage of the satellite is superior to the ground-based stations. A downside with
this approach is the sparsity of the data when using observational sampling. Furthermore,
this becomes a computationally expensive operation, as the SCA will need to be calculated for
each grid box.
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(b) CMIP5

Figure 4.7: (b) Same as Figure 4.7a but for the CMIP5 MMM. Adapted with permission from
Gier et al. 2020

Another approach often used in model analysis is area averaging, e.g., over different latitude
bands like the tropics or the northern midlatitudes. Using surface flask measurements, Wenzel
et al. 2016 found an increased SCA with rising CO2 concentration for CMIP5 using model data
from the full historical simulation (1850–2005) – CO2 fertilization – and used this to establish
an EC on the fertilization of terrestrial GPP. Figure 4.8 shows the SCA trend of CMIP6
models versus XCO2 for 2003–2014 in the northern midlatitudes (30–60◦ N), including a linear
regression including slope, mean SCA, Pearson correlation coefficient and 𝑝 value. The left
panel shows the trend in the unsampled models, while the right one shows the trend when
following the sampling of the satellite data. The SCA was computed after a weighted area
average was determined on the XCO2 time series. While some of the unsampled models show
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(a) Unsampled (b) Sampled 

Figure 4.8.: Trend of SCA with XCO2 for 2003–2014 for the northern midlatitudes (30–60◦ N), including
a linear regression with slope and mean SCA given in the top left of each panel and the Pearson
correlation coefficient as well as the 𝑝 value in the bottom right. Symbols denote the different years and
model colors are consistent with previous figures. The left panels (a) show unsampled CMIP6 models,
while CMIP6 models sampled according to the satellite data are shown on the right (b). Note that the
𝑦-axis range for each plot is the same and only differs by a shift. Adapted with permission from Gier
et al. 2020.
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(a)

(b)

(c)

Figure 4.9.: Data coverage of the satellite observations for (a) 2003–2008 containing only SCIAMACHY
data, (b) 2009–2012 containing the overlap of SCIAMACHY and GOSAT data and (c) 2013–2014 con-
taining only GOSAT data. The patterned area highlights values above 0.5. Adapted with permission
from Gier et al. 2020.

an increasing SCA trend with increasing XCO2, which is in agreement with the findings from
Wenzel et al. 2016, others do not show a statistically significant trend and the MMM shows
an insignificant positive trend. The sampled model data (right) show a significant negative
trend. Calculating the average with a zonal average before summing up the latitude bands
does not change this result.

To investigate this change in trend due to observational sampling, Figure 4.9 shows the data
coverage for different time periods, 2003–2008 for SCIAMACHY only measurements (a), the
overlap between the two satellites in 2009–2012 (b) and 2013–2014 for the GOSAT satellite
only (c), with the pattern marking areas with a coverage of 50 % or above. Above 50◦ N,
SCIAMACHY measurements include more areas with 50 % or more coverage compared to
GOSAT measurements. With a larger SCA in higher latitudes, it implies that SCIAMACHY
would have a larger average SCA over this region compared to GOSAT, hence artificially
generating a decreasing trend in the observed SCA, when moving from SCIAMACHY to
GOSAT. Figure 4.10 shows the CMIP6 effective SCA trend with XCO2 using SCIAMACHY
and GOSAT masks obtained from masking out points with less than 50 % coverage. While
the slopes remain largely the same, the mean effective SCA is higher in the models using
the SCIAMACHY mask than when using the GOSAT mask. This mean SCA difference is
larger than the total SCA difference within a model using the same sampling for the whole
time period. Thus, when considering the observational time series and its full sampling,
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(a) SCIAMACHY mask (b) GOSAT mask

Figure 4.10.: Same as Figure 4.8 but with CMIP6 models masked using (a) the SCIAMACHY mask and
(b) the GOSAT mask, with the masks derived from Figure 4.9, masking out points with less than 50 %
coverage in those time periods.

the trend intrinsic to the model is dominated by the negative SCA difference going from the
SCIAMACHY to the GOSAT data coverage and thus changed to the negative trend seen in the
observations. We can therefore attribute at least part of the negative trend in the satellite data
to the different data coverage of the two satellites. We are able to reproduce this negative trend
with the models, when these are sampled consistently with the satellite data. This study on
sampling also holds true for CMIP5 models, with the equivalent figures shown in Appendix A
(Figure A.1 and Figure A.2).
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Further impacts on CO2 concentrations could come through temporal sampling, such as the
fact that the satellite data only include measurements with low cloud cover and are limited
to 13:00 Local Time (LT). While cloud cover can impact photosynthesis, the response can be
fundamentally different for various ecosystems (Still et al. 2009) we expect a larger effect from
the diurnal cycle in CO2 which is included in the model means but not the satellite data. Due
to a lack of CO2 data from models with a higher temporal resolution, this effect cannot be
estimated in this study.

4.4. Summary and conclusion

In this paper, we have evaluated the performance of CMIP5 and CMIP6 ESMs with interactive
carbon cycle (Table 4.3 and Table 4.2) against column-integral CO2 (XCO2) data from satellite
retrievals. Our analysis has compared ESM simulations to the 2003–2014 obs4MIPs XCO2 satel-
lite dataset O4Mv3 retrieved from radiance spectra measured by the SCIAMACHY/Envisat
(2003–2012) and TANSO-FTS/GOSAT (2009–2014) satellite instruments. The O4Mv3 data
product has a spatial resolution of 5◦ × 5◦ and monthly time resolution. For CMIP5, the his-
torical simulations covering the period 2003–2005 were combined with simulations from the
RCP8.5 scenario (2006–2014), and for CMIP6 the historical simulations were used (2003–2014).
The evaluation of the CMIP models with the satellite data focused on the time series, the
GR and the SCA XCO2. All SCAs computed with a masked time series are considered to be
“effective” SCAs due to the possibility of masking out peaks and troughs.

The XCO2 time series comparison shows that most models overestimate the carbon content
of the atmosphere relative to the satellite observations in both model ensembles, with a
lower overestimation for the CMIP6 models of 2 ppmv for the MMM and a wide range of
individual model differences of −15 to +20 ppmv. The CMIP5 models overestimate by 5
to 25 ppmv with the exception of the MRI-ESM1 model, which underestimates by 20 ppmv.
The CMIP5 MMM overestimates by 10 ppmv compared to the observations, which has also
previously been found for surface comparisons (Friedlingstein et al. 2014; Hoffman et al. 2014).
Overall, CMIP6 models follow the same trends as their CMIP5 counterparts but with reduced
systematic biases.

The XCO2 annual mean GR is typically slightly overestimated compared to the observa-
tional value of 1.9± 0.4 ppmv yr−1. CMIP6 models range from 1.7± 0.4 (MRI-ESM2.0) to
2.6± 0.7 ppmv yr−1 (GFDL-ESM4) with a MMM of 2.3± 0.3 ppmv yr−1. CMIP5 models have a
slightly higher MMM GR of 2.4± 0.4 ppmv yr−1 and a larger spread, with the CMIP5 lowest
model being MRI-ESM1 at 1.5± 0.4 ppmv yr−1 and the highest CMIP5 GR shown by CanESM2
at 3.0± 0.9 ppmv yr−1.

All models capture the expected increase of the SCA with increasing latitudes, but most
models underestimate the SCA to differing degrees in different regions. This result is in line
with previous studies (Graven et al. 2013; Wenzel et al. 2016). Models with similar model
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components show similar behavior, with models including a nitrogen cycle generally showing
a lower SCA in CMIP5, but this influence is not clear in CMIP6. Finally, the connection
between SCA and XCO2 was investigated in the northern midlatitudes. Most models from
both ensembles show a positive trend, i.e., an increase of the SCA with XCO2, consistent with
findings for surface CO2 (Wenzel et al. 2016). However, the satellite product shows a strong
negative trend in contrast to the models and surface based observations. We have attributed
this trend reversal to the sampling characteristics of the satellite products. The average effective
SCA is higher for models sampled according to the SCIAMACHY/Envisat as opposed to the
TANSO-FTS/GOSAT mean data coverage. As the early time series is based solely on the
SCIAMACHY/Envisat data and the last years only use data from TANSO-FTS/GOSAT, this
introduces an artificial negative trend which dominates the positive trend shown by the
unsampled models. This demonstrates the importance of equal sampling of models and
observations in model evaluation studies.

There are several ways to improve on this analysis in the future. With more available future
scenario simulations, the analysis can be extended to a longer time series, making use of
longer observational time series, such as the one introduced in Reuter et al. 2020. Higher
temporal resolution of the models would enable studies on the effect of the diurnal cycle
of CO2 on the monthly mean and also allow for the construction of a co-located time series
with the level-2 satellite data. This could help highlight some of the causes of model biases
by being able to pinpoint time and space where they occur more precisely. Model biases
may also result from the CMIP experimental design, such as requiring the climate state to
be in equilibrium in 1850 while the real world may not have been (Bronselaer et al. 2017), or
the parameterizations of biological and physical processes not allowing the system to change
rapidly enough (Hoffman et al. 2014). Along with a longer time series, newer satellites, such
as Orbiting Carbon Observatory-2 (OCO-2) or the planned Sentinel 7 bring higher resolutions
and more data, potentially helping to fill the gaps and reduce the impact of the sampling we
discussed in Section 4.3.3.

Overall, the CMIP6 ensemble shows improved agreement with the satellite data in all
considered quantities (mean XCO2, GR, SCA and trend in SCA), with the biggest improvement
shown in the mean XCO2 content of the atmosphere. The paper demonstrates the great
potential of satellite data for climate model evaluation as this allows us to go beyond regional
means or single point observations from in situ data and also enables the investigation of
regional effects on SCA, such as the increase in SCA at higher latitudes.
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5. Representation of the Terrestrial Carbon
Cycle in CMIP6

The study presented in Chapter 4 shows large improvements for CMIP6 models to simulate
the mean XCO2 content of the atmosphere compared to CMIP5, as well as the general ability
to reproduce the seasonal cycle of XCO2, albeit the SCA is underestimated by most models.
The seasonal cycle of CO2 in the atmosphere is predominantly the result of carbon uptake and
release by plants on land. Therefore, the next logical step in analyzing the carbon cycle and
understanding the reason for the underestimation of the SCA is to take a closer look at the
land carbon cycle and its representation in ESMs. The uncertainty of the global carbon cycle is
dominated by land (Canadell et al. 2021), further underlining the importance of understanding
the sources of this uncertainty. Previously, Anav et al. 2013a investigated both the land and
ocean carbon cycle for CMIP5 historical concentration-driven simulations. They found that
while most models were able to reproduce the main climatic variables and their seasonal
evolution correctly, some more specific fields showed weaknesses, like an overestimation of
photosynthesis. This lead to updates and enhancements of the LSMs for CMIP6 ESMs, such
as the inclusion of a nitrogen cycle coupled to the carbon cycle, as well as photosynthesis
updates and soil hydrology improvements (e.g., Danabasoglu et al. 2020; Delire et al. 2020;
Wiltshire et al. 2021).

To understand what effect the increased process complexity through the inclusion of the
interactively coupled nitrogen cycle, as well as the difference between concentration and
emission-driven simulations have on model performance, the study presented in this chapter
groups models according to three characteristics: their CMIP phase to see a general change
between the model generations, their inclusion of an interactive nitrogen cycle, and the simu-
lation type (concentration-driven vs. emission-driven).

This chapter is based on a recently submitted study (Gier et al. 2024). The author of this
thesis led the writing and analysis of the paper, and also produced all figures. The recipes will
be published in the ESMValTool upon final publication of the paper for full reproducibility
of all figures. The data used are described in Section 5.1. Section 5.2 analyzes important
carbon cycle variables (LAI, GPP, NBP) regarding their trends, growth rate, seasonal cycle
and spatially resolved temporal means in the different groupings. Lastly, the individual
model performance is evaluated regarding their climatological seasonal cycles and pattern
correlations. Section 5.3 summarizes and concludes the study.
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5.1. Data

5.1.1. CMIP simulations

Model simulations from both CMIP Phase 6 (Eyring et al. 2016c), and Phase 5 (Taylor et al. 2012)
are used, with Table 5.1 and Table 5.2 listing model characteristics such as their atmosphere
and land model components in addition to their main references. A more comprehensive
summary of the land model components of the CMIP models is given in Appendix A. Models
were selected due to their availability on ESGF nodes for the considered variables.

This study focuses on historical simulations, which aim to reproduce the observed climate
since the pre-industrial times. They span from 1850 to 2005 (CMIP5) and 1850 to 2014 (CMIP6).
Both simulations with prescribed greenhouse gas concentrations (concentration-driven) and
prescribed CO2 emissions (emission-driven) are considered, but evaluated separately and
compared to each other. Models participating in the emission-driven simulations, marked in
bold in the tables, use their interactive carbon cycle to determine the distribution of natural
and anthropogenic carbon fluxes across the land, marine and atmospheric reservoirs instead
of relying on prescribed atmospheric CO2 concentrations (Friedlingstein et al. 2014).

Very few CMIP5 models had a coupled carbon-nitrogen cycle. While the BNU-ESM model
included carbon-nitrogen interactions, they were turned off for the CMIP5 model simulations
as the nitrogen cycle had not been fully evaluated (Ji et al. 2014). Therefore, a nitrogen cycle
was included in two out of 18 CMIP5 models (CESM1-BGC, NorESM1-ME) which both use
the CLM4 land model and in 15 out of 23 CMIP6 models spread over six different land
models - with CLM in different versions accounting for eight CMIP6 models (v5: CESM2,
CESM2-WACCM, NorESM2-LM, NorESM2-MM, v4.5: CMCC-CM2-SR5, CMCC-ESM2, v4:
SAM0-UNICON, TaiESM1). The other land models in CMIP6 with a coupled nitrogen cycle
are LPJ-GUESS (EC-Earth3-CC, EC-Earth3-Veg), JSBACH (MPI-ESM-1-2-HAM, MPI-ESM1-2-
LR), CABLE+CASA-CNP (ACCESS-ESM1-5), JULES-ES (UKESM1-0-LL) and Visit-e (MIROC-
ES2L). This shows a large bias towards the CLM land model in CMIP6 which needs to be
considered while analyzing the MMM.

To facilitate a direct comparison of CMIP5 and CMIP6 data in figures containing temporal
means, only data up to 2005 representing the end of the CMIP5 historical simulations are
considered. Unless stated otherwise, figures use mean data over the time period 1986-2005.
Only one realization per model is used, as different ensemble members perform similarly
to each other with respect to the carbon cycle and using an ensemble mean would lead to
an under representation of the internal variability present in individual ensemble members.
MMMs were computed separately for each project and experiment combination, as well as an
additional distinction between models with and without interactive nitrogen models, and are
computed on the monthly gridded data, for which models are regridded to a common 2◦x2◦

grid. MMMs are neither weighted according to the interdependence of the models and model
components, nor according to their performance relative to observational products.
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Table 5.1.: CMIP6 models analysed in this study. Under Comments, D stands for models including dynamic vegetation and N for models including
Nitrogen cycles. Models for which emission driven simulations are also analysed are marked in bold script.

Model Institute Atmosphere model Land model Comment Main reference

ACCESS-ESM1-5 Commonwealth Scientific
and Industrial Research
Organisation, Australia

UM7.3 CABLE2.4,
CASA-CNP

N Law et al. 2017; Ziehn
et al. 2017; Ziehn et al.
2020

CanESM5 Canadian Center for Cli-
mate Modeling and Analy-
sis, Canada

CanAM5 CLASS3.6,
CTEM1.2

D Swart et al. 2019a

CanESM5-CanOE Canadian Center for Cli-
mate Modeling and Analy-
sis, Canada

CanAM5 CLASS3.6,
CTEM1.2

D Swart et al. 2019a

CESM2 National Center for Atmo-
spheric Research, USA

CAM6 CLM5 N, D Danabasoglu et al. 2020

CESM2-WACCM National Center for Atmo-
spheric Research, USA

WACCM6 CLM5 N, D Danabasoglu et al. 2020

CMCC-CM2-SR5 The Euro-Mediterranean
Centre on Climate Change,
Italy

CAM5 CLM4.5 N Cherchi et al. 2019

CMCC-ESM2 The Euro-Mediterranean
Centre on Climate Change,
Italy

CAM5 CLM4.5-BGC N Lovato et al. 2022

CNRM-ESM2-1 CNRM-CERFACS, France ARPEGE-Climate v6.3
+ SURFEX v8.0

ISBA + CTRIP Séférian et al. 2019

EC-Earth3-CC EC-Earth Consortium, Eu-
rope

IFS 36r4 + HTESSEL +
TM5

LPJ-GUESS N, D Döscher et al. 2022
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EC-Earth3-Veg EC-Earth Consortium, Eu-
rope

IFS 36r4 + HTESSEL LPJ-GUESS N, D Döscher et al. 2022

GFDL-ESM4 Geophysical Fluid Dynam-
ics Laboratory, United States

AM4.1 LM4.1 D Dunne et al. 2020

INM-CM4-8 Institute for Numerical
Mathematics, Russian
Academy of Science, Russia

Inbuilt Inbuilt Volodin et al. 2018

INM-CM5-0 Institute for Numerical
Mathematics, Russian
Academy of Science, Russia

Inbuilt Inbuilt Volodin et al. 2017a;
Volodin et al. 2017b

IPSL-CM6A-LR L’Institut Pierre-Simon
Laplace, France

LMDZ6A ORCHIDEEv2 Boucher et al. 2020

MIROC-ES2L MIROC, Japan MIROC-AGCM +
SPRINTARS

VISIT-e &
MATSIRO6

N Hajima et al. 2020a

MPI-ESM-1-2-HAM HAMMOZ-Consortium,
Europe

ECHAM6.3– HAM2.3 JSBACH3.2 Neubauer et al. 2019;
Tegen et al. 2019

MPI-ESM1-2-LR HAMMOZ-Consortium,
Europe

ECHAM6.3 JSBACH3.2 N, D Mauritsen et al. 2019

MRI-ESM2-0 Meteorological Research In-
stitute, Japan

MRI-AGCM3.5 +
MASINGAR mk-2r4c
+ MRI-CCM2.1

HAL Yukimoto et al. 2019a

NorESM2-LM NorESM Climate Modeling
Consortium, Norway

Modified CAM6 CLM5 N, D Seland et al. 2020

NorESM2-MM NorESM Climate Modeling
Consortium, Norway

Modified CAM6 CLM5 N, D Seland et al. 2020

UKESM1-0-LL Met Office Hadley Centre,
United Kingdom

Unified Model +
UKCA

JULES-ES-1.0 N, D Sellar et al. 2019
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SAM0-UNICON Seoul National University,

Republic of Korea
CAM5 + UNICON CLM4 N Park et al. 2019

TaiESM1 Research Centre for En-
vironmental Changes,
Academia Sinica, Taiwan

Modified CAM5.3 Modified
CLM4

N Lee et al. 2020

Table 5.2.: CMIP5 models used in this study, notations as in Table 5.1

Model Institute Atmosphere model Land model Comment Main reference

BNU-ESM College of Global Change
and Earth System Science,
China

CAM3.5 CoLM + BNU-
DGVM

D Ji et al. 2014

CanESM2 Canadian Center for Climate
Modeling and Analysis, BC,
Canada

CanAM4 CLASS2.7 +
CTEM1

Arora et al. 2011

CESM1-BGC National Center for Atmo-
spheric Research, United
States

CAM4 CLM4 N Hurrell et al. 2013

GFDL-ESM2G Geophysical Fluid Dynam-
ics Laboratory, USA

AM2 LM3.0 D Dunne et al. 2012;
Dunne et al. 2013

GFDL-ESM2M Geophysical Fluid Dynam-
ics Laboratory, USA

AM2 LM3.0 D Dunne et al. 2012;
Dunne et al. 2013

HadGEM2-CC Met Office Hadley Centre,
United Kingdom

Unified Model v6.6 JULES + TRIF-
FID

D Collins et al. 2011; Team
et al. 2011

HadGEM2-ES Met Office Hadley Centre,
United Kingdom

Unified Model v6.6 JULES + TRIF-
FID

D Collins et al. 2011; Team
et al. 2011
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Inmcm4 Institute for Numerical
Mathematics, Russia

Inbuilt Inbuilt Volodin et al. 2010

FIO-ESM The First Institute of
Oceanography, SOA, China

CAM3.0 CLM3.5 +
CASA

Bao et al. 2012; Qiao et
al. 2013

IPSL-CM5A-LR L’Institut Pierre-Simon
Laplace, France

LMDZ5 ORCHIDEE Dufresne et al. 2013

IPSL-CM5B-LR L’Institut Pierre-Simon
Laplace, France

LMDZ5 ORCHIDEE Dufresne et al. 2013

MIROC-ESM Japan Agency for Marine-
Earth Science and Technol-
ogy, Japan; Atmosphere and
Ocean Research Institute,
Japan

MIROC-AGCM +
SPRINTARS

MATSIRO +
SEIB-DGVM

D Watanabe et al. 2011

MIROC-ESM-CHEM Japan Agency for Marine-
Earth Science and Technol-
ogy, Japan; Atmosphere and
Ocean Research Institute,
Japan

MIROC-AGCM +
SPRINTARS

MATSIRO +
SEIB-DGVM

D Watanabe et al. 2011

MPI-ESM-LR Max Planck Institute for Me-
teorology, Germany

ECHAM6 JSBACH +
BETHY

D Giorgetta et al. 2013

MPI-ESM-MR Max Planck Institute for Me-
teorology, Germany

ECHAM6 JSBACH +
BETHY

D Giorgetta et al. 2013

MRI-ESM1 Meteorological Research In-
stitute, Japan

MRI-AGCM3.3 HAL Yukimoto et al. 2011

NorESM1-ME Norwegian Climate Center,
Norway

CAM4-Oslo CLM4 N Tjiputra et al. 2013
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While we split models into groups only dependent on the presence of an interactive nitrogen
cycle in this study, vegetation dynamics is another important process for ESM comparison.
Models interactively simulating vegetation cover may simulate trees or grasses in the wrong
areas compared to models using observational land cover maps, impacting variables with a
strong relation to land cover, such as LAI or GPP. While models with prescribed land cover
may show better LAI in the present day, they cannot predict future changes in vegetation
cover nor their impact on regional climate and carbon processes. For reference, Table 5.1 and
Table 5.2 note models with dynamic vegetation with a D in the comment column.

5.1.2. Reference Data

A large range of observations and reanalysis data sets have been used to assess model perfor-
mance. These data sets are listed in Table 5.3 along with their main reference(s), their source,
the variables used and their temporal coverage. Both observational and reanalysis data sets
will be referred to as “observations” from here on, to contrast the results from the CMIP model
simulations. The longest observational records are derived from reanalyses, while satellite
observations only provide data since the late 20th century. Since most reference data sets do
not come with observational uncertainty, a common approach is to use several reference data
sets per variable where available, as noted in Seiler et al. 2022. This approach is also taken in
this study.

For the LAI, we use the LAI3g product (Zhu et al. 2013) that provides global monthly gridded
data starting in the year 1981. It has been generated using an artificial neural network based
on data from the Advanced Very High Resolution Radiometer (AVHRR) and the Moderate
Resolution Imaging Spectroradiometer (MODIS). Furthermore, we also use the newly released
GIMMS LAI4g data set (Cao et al. 2023) which is based on the same satellite data as LAI3g
but employs a newer NDVI data set base which removes the effects of the satellite orbital
drift and AVHRR sensor degradation, which plagued many other LAI data sets. Furthermore,
LAI4g uses a large number of high-quality Landsat LAI samples to increase the spatiotemporal
consistency of the data set. Lastly, the Global Land Surface Satellite (GLASS; Liang et al. 2021)
is a product suite with 12 products, of which we employ both the LAI and GPP products.
Similarly to LAI3g and LAI4g, GLASS is based on data obtained from AVHRR and MODIS.
As newer GLASS data products only use MODIS and thus start from 2000, this paper uses a
previous GLASS version (v4.0) which includes AVHRR data and thus starts in 1981 for LAI
and 1982 for GPP respectively. GLASS LAI uses general regression neural networks trained
on preprocessed reflectance data of an entire year to estimate the one-year LAI profile for each
pixel. The LAI product is one of the variables used to estimate GLASS GPP with an Eddy
Covariance-Light Use Efficiency model. Both GLASS products are available on a 0.05° grid
with a frequency of 8 days.

Another GPP product, MTE (Jung et al. 2011), provides global monthly gridded data starting
in 1982. It uses an upscaling of data from the FLUXNET eddy covariance tower network based
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Table 5.3.: Reference data sets used in this study. data sets in bold are the main reference data set and
those in italics the alternate reference for Figures 5.16–5.18.

Data set Source Variable Start Year Reference

JENA-
CarboScope
(sEXToc-
NEET_v2020)

Inversion NBP 1957 Rödenbeck 2005

CAMS (v20r2) Inversion NBP 1979 Chevallier et al. 2005;
Chevallier et al. 2010;
Chevallier 2013

GCP Dynamic global
vegetation and
bookkeeping
model averages

NBP 1959 Friedlingstein et al.
2022; Global Carbon
Project 2021

FLUXCOM
ANN-v1

Mix GPP 1980 Jung et al. 2019

MTE Upscaled in situ GPP 1982 Jung et al. 2011
GLASS Satellite GPP, LAI 1982 (GPP),

1981 (LAI)
Liang et al. 2021;
Yuan et al. 2007

LAI3g Satellite LAI 1981 Zhu et al. 2013
LAI4g Satellite LAI 1982 Cao et al. 2023
NDP-017b Mix cVeg - Gibbs 2006
HWSD+NCSCD Empirical cSoil - Hugelius et al. 2013;

Wieder 2014

on the model tree ensembles (MTE) approach. Similarly, the FLUXCOM product (Jung et al.
2019) is also based on an upscaling of FLUXNET site level observations, but additionally
incorporates a larger variety of machine learning methods, and also includes remote sensing
(from MODIS) and meteorological data. Here, we use a global monthly gridded version
of FLUXCOM (starting in 1980) from the RS+METEO setup. Due to the assumption of an
unchanging average CO2 level, both MTE and FLUXCOM data are known to have an unrealistic
non-existent trend (0.01 PgC yr−2 globally) (Anav et al. 2015). Thus trend analysis on GPP
should exclude these data sets.

The main data set for the land-atmosphere carbon flux (NBP) is the JENA-CarboScope
(version sEXTocNEET_v2020) product (Rödenbeck 2005), which provides global daily gridded
data starting from the year 1957. This data set provides surface-atmosphere CO2 fluxes
based on atmospheric measurements calculated from an atmospheric transport inversion.
The inversion used here (NEE-T inversion) involves a regression of interannual net ecosystem
exchange (NEE) anomalies against air temperature anomalies (T). In total, JENA-CarboScope
uses data from 156 atmospheric measurement sites distributed across the entire globe. The
alternative data set for the land-atmosphere carbon flux is a further inversion product from
the Copernicus Atmosphere Monitoring Service (CAMS; Chevallier et al. 2005; Chevallier
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et al. 2010; Chevallier 2013). CAMS provides global gridded data on a monthly resolution
starting in 1979 (other temporal resolutions are also available). The inversion product we
use here (v20r2) is based on surface measurements from more than 100 sites. A third data
set used for comparing the global annual mean NBP is the Global Carbon Project (GCP;
Friedlingstein et al. 2022), which estimates the global carbon budget using several observations
and models. It provides estimates for emissions from fossil fuel combustion and industrial
processes, emissions from land-use change, atmospheric CO2 growth rate, ocean sink, land
sink, cement carbonation sink and the budget imbalance from combining all these terms. The
land-atmosphere carbon flux for GCP has to be calculated by subtracting the land-use change
emissions from the residual land sink. The land sink was obtained from averaging the results
from seventeen Dynamic Global Vegetation Models (DGVMs) which reproduce the observed
mean total land uptake of the 1990s and is given with an uncertainty of ± 0.5 PgC yr−1 on
average. The land use change emissions are estimated from the average of three bookkeeping
models with an uncertainty of ± 0.7 PgC yr−1, making it one of the only data sets with direct
estimations for uncertainties.

For each of the remaining carbon cycle variables, only a single reference data set is taken
into account. For carbon mass in vegetation (cVeg) and carbon mass in soil pool (cSoil), the
NDP-017b (Gibbs 2006) and HWSD+NCSCD (Hugelius et al. 2013; Wieder 2014) products
are used, respectively. Both data sets provide global gridded annual data for the single year
2000. NDP-017b uses an updated database that extends the methodology of Olson et al. 1985,
who developed a global carbon stocks map of above and below ground biomass using 20
years of field investigations, consultations and literature analysis, to more up-to-data land
cover conditions of the Global Land Cover Database (GLC2000). The Harmonized World Soil
Database (HWSD) uses large volumes of regional and national soil information to create an
empirical data set that provides soil parameter estimates for topsoil (0–30 cm) and subsoil
(30–100 cm). Similar to Varney et al. 2022 we combine the HWSD data set with the Northern
Circumpolar Soil Carbon Database (NCSCD; Hugelius et al. 2013) to complement the HWSD
data in the polar region. It uses data on soil order coverage to calculate soil organic carbon
content and mass with 1778 pedon (a three-dimensional body of soil) data. Wherever overlap
between the two data sets occurs, the NCSCD data are chosen.

5.2. CMIP model performance

General climate variables, such as temperature and precipitation have a large influence on the
carbon cycle. It is therefore important to assess how well these variables are simulated by
the ESMs. If they are well reproduced but carbon cycle variables are not, it is likely due to
a poor representation of processes specific to the carbon cycle, while a poor performance in
the physical variables makes an attribution of the cause of poor performance in the carbon
cycle variables more difficult. The CMIP6 and CMIP6 ensemble has been assessed compared
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to observations by Flato et al. 2013 and Eyring et al. 2021 respectively. A detailed analysis
was also done by Bock et al. 2020 and references therein, who compare the surface temper-
ature, pressure, precipitation, radiation, and clouds of CMIP3, CMIP5 and CMIP6 historical
simulations for annual means. The CMIP6 models show better correlations for these variables
than the CMIP5 models for all parameters, with smaller improvements for variables such as
temperature which were already well represented in previous CMIP phases. However, the
model spread is not significantly reduced but instead largely remains the same. Here, we
expand the analysis to the carbon cycle. However it should be mentioned, that many carbon
cycle processes are affected by physical variables on much smaller timescales, such as timing
of precipitation throughout the day, or if surface temperatures fall below the freezing point at
any time of the day may impact the growth of plants more than their monthly means suggest.
This study uses monthly mean data which do not resolve many of these important events
and thus does not investigate the impact of physical variables further, as any analysis would
still be lacking many possible impacts of sub-frequency effects. Future studies using higher
frequency data will put more emphasis also on the physical drivers of carbon processes.

5.2.1. Leaf Area Index

The LAI is the ratio of one-sided leaf area per unit ground area (Anav et al. 2013a) as a measure
of the canopy structure. Models use LAI to calculate the photosynthetic uptake of the total
canopy, also known as GPP. While LAI is an important building block for the carbon cycle, it
was also one of the weaknesses of the carbon cycle in the CMIP5 ensemble and tended to be
overestimated (Anav et al. 2013a; Anav et al. 2013b).

Carbon uptake by land follows a pronounced seasonal cycle, with CO2 removed from the at-
mosphere through plant photosynthesis and released back through plant and soil respiration.
With LAI describing the canopy structure and more plants thriving in summer, it is strongly
linked to the seasonal cycle of atmospheric CO2. The seasonal cycles for LAI for CMIP5 and
CMIP6 MMMs for concentration and emission-driven simulations are shown in Figure 5.1,
split into models with (Ncycle) and without interactive nitrogen cycle (non-Ncycle), as well
as different regional means: Global, Northern Hemisphere (20◦N - 90◦N; NH), Southern
Hemisphere (20◦S - 90◦S; SH) and Tropics (20◦S - 20◦N). From here on, concentration-driven
simulations will be denoted by c, such as CMIP5c and CMIP6c, and emission-driven simula-
tions by e (CMIP5e, CMIP6e). The BNU-ESM and MRI-ESM1 CMIP5 models were removed
from the MMM due to featuring an unrealistically high mean LAI, almost doubling the LAI of
the reference data and the other models in the SH and the tropics. A common mask is applied
to all data sets which includes all missing values in any data set to allow for direct comparison
between the models and reference data sets. This increases the LAI compared to unmasked
regional means, as missing values are more common in desert and mountainous regions with
low LAI (Figure 5.3). The chosen reference data sets LAI3g, LAI4g, and GLASS agree well
across all regions, which was to be expected as they are all based on the same raw satellite
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Figure 5.1.: Seasonal Cycle of LAI for a climatological mean of 1986-2005 for different regional averages:
Global, Northern Hemisphere (20◦N - 90◦N), Southern Hemisphere (20◦S - 90◦S) and Tropics (20◦S -
20◦N). The reference data sets (LAI3g, solid line; LAI4g, dashed line; GLASS, dotted line) are shown
in black, while the MMMs for the different project-experiment combinations are denoted by blue for
CMIP5, red for CMIP6, with darker colors for the emission-driven simulations (dark blue CMIP5e,
dark red CMIP6e) and lighter colors for concentration-driven simulations (light blue CMIP5c, light red
CMIP6c). MMMs derived from models with coupled nitrogen cycle (Ncycle) are dashed, while solid
lines represent MMMs of models without coupled nitrogen cycle (non-Ncycle). The shading represents
the standard deviation of the MMMs, with vertical hatching for models without and horizontal hatching
for models with coupled nitrogen cycle. For comparison with the reference data which contain many
missing values, a common mask was applied to all data sets, removing values where any data set is
missing a value. Adapted with permission from Gier et al. 2024.

data from AVHRR and MODIS. Xiao et al. 2017 found that the GLASS product outperformed
other products, which included LAI3g, when compared to LAI from high-resolution reference
maps. As such, GLASS, which is also the reference data set with the largest coverage, will be
considered the main reference data set for our analysis of LAI.

There is a strong seasonal cycle in the NH, dominated by high-latitude vegetation in Eurasia
and North America. The NH seasonal cycle is the dominant contribution to the global mean
due to the higher relative land fraction in the higher latitudes of the global north compared
to the global south. The tropics do not show a seasonal cycle due to the absence of strong
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seasons, while the vegetation in the SH is dominated by forests closer to the tropics, which
also lack strong seasonality. All models overestimate LAI in all regions, but the CMIP6 models
reproduce the reference data better than the CMIP5 models. According to Anav et al. 2013b,
the overestimation in the mid-latitudes is likely partly due to a wet bias and its control on soil
moisture, a saturation of satellite instrumentation, and missing parametrizations of distur-
bances. The annual mean precipitation wet bias is minimally reduced in CMIP6 (Bock et al.
2020) and new parametrizations such as nutrient limitations through interactive nitrogen cycle
have been introduced in some models, leading to a reduced LAI in the CMIP6 MMMs com-
pared to CMIP5. The seasonal cycle in the NH is reproduced, but while the CMIP5 non-Ncycle
models reproduce the amplitude well with a positive offset of approximately 0.7 m2/m2, the
CMIP6 non-Ncycle models are better at reproducing the peak value. Both CMIP5 Ncycle mod-
els (CESM1-BGC and NorESM1-ME) use the CLM4 land model with known issues regarding
LAI, such as underestimating LAI in dry regions due to elevated CO2 and overestimating
LAI in moist regions (Lee et al. 2013), as well as an unrealistically strong nitrogen limitation
(Wieder et al. 2019), hindering plant growth. This leads to these models showing a larger
overestimation in LAI in both the Southern Hemisphere and Tropics dominated by moist
rainforests. Additionally, the seasonal cycle amplitude is strongly reduced in the NH while
the mean LAI is larger than for the reference data sets. Both CMIP projects show a weakness in
simulating the end of the growing season, shown by the later decline of LAI in winter, which
also leads to a smaller seasonal cycle amplitude, consistent with the findings of Park and Jeong
2021. The drawdown in autumn signifying the end of the growing season is smaller in Ncy-
cle models compared to non-Ncyle models. The differences between the concentration and
emission-driven simulations are small, with models participating in both simulations having
very similar results (individual models not shown). Larger differences occurring here and in
later analysis between the concentration and emission-driven simulations are likely due to the
different subset of models in the historical simulations, and not due to the experiment design.

Figure 5.2 shows the mean and trend of LAI averaged over 1986-2005 and depicts project-
experiment simulations with one type of marker each for a better overview. Filled symbols
denote models with nitrogen cycle while the mean of the reference data is shown with black
markers, with error bars showing the standard deviation of the reference data. Exact numbers
for all data sets are found in the supplementary information (Tables B.1 and B.2). The errors
given refer to the standard deviation of the mean as a measure for the interannual variability
(IAV), while the standard error of the trend is the error of the linear regression calculating
the trend. For the individual reference data, LAI3g and LAI4g agree well in mean and trend,
while GLASS agrees with their mean but shows a significantly higher trend in all regions,
leading to the large trend error bar. Xiao et al. 2017 analyzed the trend of several LAI products
for different biome types for 1982-2011 and found GLASS to have significantly higher trends
in savannahs and shrubs compared to LAI3g, but lower trends in deciduous broadleaf forests,
evergreen needleleaf forests and even a negative trend for deciduous needleleaf forests, while
grasses, cereal crops and evergreen broadleaf forests trends are similar for GLASS and LAI3g.
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Figure 5.2.: Mean and Trend of LAI computed over 1986-2005 for different regions: Global, Northern
Hemisphere (20◦N - 90◦N), Southern Hemisphere (20◦S - 90◦S) and Tropics (20◦S - 20◦N). The mean
of the reference data sets (LAI3g, LAI4g and GLASS) is denoted by a black star, with errorbars for
the standard deviation. Models for project-experiment combinations are shown with a single symbol
each, blue smaller than (<) sign for CMIP5 and red greater than (>) sign for CMIP6, with darker colors
for emission-driven and lighter colors for concentration-driven simulations, as well as Ncycle models
being denoted with a filled symbol. MMMs are depicted with cross symbols, filled for Ncycle MMMs
and using the color assigned to their project-experiment combination. Adapted with permission from
Gier et al. 2024.

This results in larger trend differences in the SH (0.009 m2/m2 yr−1) and Tropics (0.010 m2/m2

yr−1) than the NH (0.003 m2/m2 yr−1). MMMs span the range of 1.98 ± 0.02 m2/m2 (non-
Ncycle CMIP6c) to 2.74 ± 0.05 m2/m2 (Ncycle CMIP5e), showing a significant overestimation
compared to the reference data, with the overestimation of the CMIP5 MMMs of 0.7 m2/m2

reduced by half for CMIP6 MMMs, as seen in Figure 5.1. This large improvement for the
CMIP6 models is not related to the difference between Ncycle and non-Ncycle models as their
LAI MMMs means are comparable. Due to the large difference in trends in the reference
data sets, the global mean trends of all CMIP MMMs lie within the range of the reference
data. The model trends range between slightly negative -0.0022 ± 0.0010 m2/m2 yr−1 (IPSL-
CM5A-LR CMIP5c) to strong positive 0.0120 ± 0.0013 m2/m2 yr−1 (BNU-ESM CMIP5e). As
BNU-ESM was not considered in the MMM due to its large mean LAI compared to all the
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other models, the highest global LAI trend considered for the MMM is CMIP6c MRI-ESM2-0
at 0.0094 ± 0.0019 m2/m2 yr−1, which is significantly larger than the trend in its CMIP6e
simulation at 0.0068 ± 0.0019 m2/m2 yr−1. The MMMs range between 0.0018 ± 0.0004 m2/m2

yr−1 (non-Ncycle CMIP5c) and 0.0050 ± 0.0015 m2/m2 yr−1 (Ncycle CMIP5e). Unlike the
mean, the LAI trend does not show a strong difference between CMIP5 projects, nor any other
grouping method we employed. The CMIP6 models only show a slightly smaller range in
trend compared to the CMIP5 models, but more CMIP5 models have a lower trend compared
to the reference data sets than CMIP6 models.

The other regions reflect these overall MMM comparisons as well. CMIP6 means are closer
to the reference data than CMIP5 in all regions, albeit still overestimating LAI, and agree well
with each other no matter the experiment or Ncycle status. The only exception is the NH
CMIP6c Ncycle MMM, which shows a larger mean at 1.71 ± 0.04 m2/m2 than the other three
CMIP6 groupings with means between 1.47± 0.03 m2/m2 and 1.53 ± 0.04 m2/m2. This is due
to the CMCC-ESM2 and CMCC-CM2-SR5 models, which show a much higher LAI in the NH
compared to the reference data, but fit well in the other regions. These two models use the
CLM4.5 land model, which Li et al. 2022 found to have a far longer peak growing season and
to overestimate LAI in boreal forests compared to MODIS reference data, consistent with our
results. The CLM5 models (CESM2, CESM2-WACCM, NorESM2-LM, NorESM2-MM) perform
much better in mean LAI than CLM4.5 in the NH, but are still overestimating LAI compared
to the reference data. The trend in the NH for the reference data set are 0.0014 ± 0.0003 m2/m2

yr−1 (LAI4g), 0.0018 ± 0.0008 m2/m2 yr−1 (LAI3g) and 0.0047 ± 0.0013 m2/m2 yr−1 (GLASS),
with the models showing a much larger range from 0.0008 ± 0.0008 m2/m2 yr−1 (GFDL-
ESM2M CMIP5e), with a significantly larger trend in CMIP5c at 0.0057 ± 0.0006 m2/m2 yr−1,
to 0.0156 ± 0.0023 m2/m2 yr−1 (MRI-ESM2-0 CMIP6c), although most models have a trend
below 0.01 m2/m2 yr−1. For the MMMs, only the CMIP5 non-Ncycle MMMs fall between
the reference data with 0.0023 ± 0.0003 m2/m2 yr−1 for non-Ncycle CMIP6c and 0.0030 ±
0.0003 m2/m2 yr−1 for non-Ncycle CMIP6e. The other MMMs show a larger trend than the
reference data but comparable to each other, ranging from 0.0053 ± 0.0004 m2/m2 yr−1 (non-
Ncycle CMIP6c) to 0.0061 ± 0.0004 m2/m2 yr−1 (Ncycle CMIP6c), with a slightly larger value
of 0.0071 ± 0.0012 m2/m2 yr−1 for Ncycle CMIP5e. CMIP6 MMM LAI mean (≈ 2.5 m2/m2

SH, 2.9 m2/m2 tropics) and trend (≈ 0.002 m2/m2 yr−1 SH, 0.002 m2/m2 yr−1 tropics) agree
well with the LAI3g and LAI4g (mean 2.2 m2/m2 SH, 2.7 m2/m2 tropics, trend 0.002 m2/m2

yr−1 SH, 0.002 m2/m2 yr−1 tropics) reference data in the tropics and the SH, while the CMIP5
MMMs overestimate the mean by ≈ 0.7 m2/m2 in the SH and ≈ 0.6 m2/m2 in the tropics
for non-Ncycle, as well as ≈ 1.2 m2/m2 in the SH and ≈ 1.1 m2/m2 in the tropics for Ncycle
MMMs, but show a similar trend to LAI3g, LAI4g, and CMIP6 MMMs. The larger mean LAI
in the CLM4 (CMIP5 Ncycle MMMs) can be traced back to the overestimation of LAI in moist
regions mentioned before. Some models show a significant negative trend in LAI in the SH
and the tropics resulting in a globally negative trend even with a positive trend in the NH.
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Figure 5.3.: Global maps of LAI averaged over 1986-2005 for all reference data sets, as well as the mean
and range between lowest and highest values per grid cell of the reference data sets. Adapted with
permission from Gier et al. 2024.

Maps of the LAI reference data are found in Figure 5.3, without the common mask to
see the different coverages. Coverage of the different reference data sets varies a lot due to
different quality control criteria and algorithms, with most missing values found in desert
or mountainous regions such as the Sahara and the Himalayas. Additionally, a mean of the
reference data and the range of the reference data per grid cell is shown, along with the global
mean of the values in the upper right corner. GLASS has a larger coverage over desert and
mountainous regions, which are regions with low plant coverage and thus low LAI, resulting
in a lower global mean LAI of 1.36 m2/m2 compared to 1.67 m2/m2 and 1.71 m2/m2 from
LAI3g and LAI4g respectively. This underlines the importance of the common mask used for
Figure 5.1 and Figure 5.2 to obtain comparable results. The different data sets show the same
pattern of LAI distribution, with the absolute values ranging between 1 and 6 m2/m2, while
the differences are below 2 m2/m2 with the largest difference occurring in tropical rain forests
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and northern high latitudes, the regions with the largest absolute LAI values. For a gridcell
bias comparison of the different model groupings (Figure 5.4) a combined reference data set
was computed as the mean of the other reference data sets. Due to the different coverages,
some areas are only calculated from the GLASS data, while others are an average of all three
data sets. The range of values per gridcell going into the combined data set is plotted in
the lower right of Figure 5.3. The largest difference occur in the areas with larger LAI as the
tropical rainforests followed by boreal forests, with a global mean average range of 0.38 m2/m2.
For the MMM bias maps shown in Figure 5.4 hatching is added where the MMMs agree with
the reference mean within the MMM standard deviation. CMIP5 Ncycle MMMs show the
issue of CLM4 in overestimating LAI in wet regions, with LAI in tropical rainforests almost
doubling the reference value, while drier regions show a significant negative bias. While this
results in a global mean bias of 0.66 to 0.67 m2/m2 smaller than 0.89 m2/m2 for CMIP5e non-
Ncycle MMMs, it is still the worst performing model grouping when considering a gridcell
basis due to its extreme biases in both directions. The hatching showing the agreement can be
ignored in this case, as only two models contributed to the MMM std. The CMIP5e non-Ncycle
MMM shows a strong overestimation across the northern latitudes besides Greenland. This
can be attributed to the GFDL-ESM2G and GFDL-ESM2M models, which are known to have
established coniferous trees in areas which should contain tundra or cold deciduous trees,
as its vegetation spin-up only coniferous trees are allowed to grow in cold regions, but not
grasses or deciduous trees which would have a lower LAI (Anav et al. 2013b). While the
GFDL models show this problem in both CMIP5c and CMIP5e, due to the larger number of
MMMs contributing to the concentration-driven simulations, their effect is reduced. In CMIP6,
GFDL-ESM4 still has a large positive LAI bias throughout these areas, but it is significantly
reduced compared to its CMIP5 predecessor. The second prominent overestimation is around
the tropical rainforests, where models like BNU-ESM, MRI-ESM1, and in lesser extent also
the GFDL models extend the LAI hotspot to larger areas around it compared to the reference
mean. In CMIP5c HadGEM2-CC and HadGEM2-ES also show this overestimation. CMIP5c
non-Ncycle MMM shows no special bias patterns, but instead a general overestimation in
almost all areas with hatching present throughout the globe. CMIP6 MMMs show a reduced
mean bias of less than half the CMIP5 overestimation, with almost no pronounced patterns
and a bias reduction in all areas, with the largest improvements found in the northern high
latitudes. The largest bias is in southeast asia for CMIP6c Ncycle MMMs which can be tracked
to the CMCC-ESM2 and CMCC-CM2-SR5 models, and makes the mean bias of the CMIP6c
Ncycle MMM higher than that of CMIP6c non-Ncycle MMM. Otherwise, the bias pattern
looks similar for CMIP6 Ncycle and non-Ncycle models.

While CMIP6 LAI has improved compared to CMIP5, especially a significantly reduced
mean bias, a general overestimation of LAI remains, along with issues of correctly reproducing
the length of the growing season in the northern hemisphere, and a large model spread in mean
and trend LAI. Neither the introduction of an interactive nitrogen cycle nor the comparison
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Figure 5.4.: Global maps of LAI bias for 1986-2005 with respect to the reference data set mean shown in
Figure 5.3. The panels show the MMMs of the models with (left) and without (right) coupled nitrogen
cycle for the different project-experiment combinations. The hatching represents the areas where the
MMM of the models and reference mean agree within the MMM std. Adapted with permission from
Gier et al. 2024.
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between emission and concentration-driven simulations show large differences in the overall
quality of the CMIP6 simulations for LAI.

5.2.2. Gross Primary Productivity

GPP represents the CO2 uptake on land due to photosynthesis. This was one of the biggest
weaknesses of the CMIP5 ensemble, with most models overestimating photosynthesis as well
as leaf area index (Anav et al. 2013a). The seasonal cycle of GPP (Figure 5.5) shows good
agreement between the GLASS and MTE reference data, while the FLUXCOM data show a
lower GPP in all regions, as well as a shorter growing season in the Northern Hemisphere.
All models reproduce a similar shape of the NH seasonal cycle to the GLASS and MTE data
in both model generations and experiments. As found in Anav et al. 2013a the CMIP5 non-
Ncycle models overestimate GPP in all regions, while the CMIP5 Ncycle models strongly
underestimate the peak of the seasonal cycle in the NH. CMIP6 models perform better than
CMIP5, but while the CMIP6 non-Ncycle models still overestimate the GPP peak in summer
similarly to CMIP5 for the NH, the Ncycle models show a very good agreement for both
CMIP6c and CMIP6e. Nitrogen limitation is stronger in northern latitudes through boreal
forests and tundra (Du et al. 2020), as compared to tropical and subtropical forests, which
are more limited by phosphorus. However, from the CMIP models used in this study, only
ACCESS-ESM1-5 includes an interactive phosphorus cycle. It therefore makes sense that
Ncycle models show a decreased GPP compared to non-Ncycle models in the NH, closer to
reference data. The model spread remains large in CMIP6, albeit smaller for Ncycle models,
which is denoted by horizontal hatching. Following LAI, there is no strong discernible
seasonal cycle in neither the SH nor the Tropics, but the CMIP6 models are closer to the mean
GPP than the CMIP5 models, with lower values for Ncycle models.

The temporal mean and linear trend of the spatial sums for GPP during the time period
1986-2005 is shown in Figure 5.6. MTE and FLUXCOM data are known to have an unrealistic
non-existent trend (0.01 PgC yr−2 globally) due to the assumption of an unchanging average
CO2 level (Anav et al. 2015) in these data sets. As such, the model trend should not be
compared to the trend of these two reference data sets, and we have omitted these data sets
from the calculation of the reference trend. The mean GPP of all regions of these data sets
along with all other numerical values from the plot can be found in Tables B.3 and B.4. The
trend of GLASS (0.45 ± 0.09 PgC yr−2 globally) is closely linked to the high trend of LAI
GLASS, one of the main influences on GPP. The reference data sets agree well in mean
GPP with the largest difference being a lower mean for FLUXCOM in the NH. Globally the
reference values range from 93.0 ± 0.4 PgC yr−1 for FLUXCOM and 102.6 ± 1.2 PgC yr−1 for
MTE to 108.3 ± 3.4 PgC yr−1 for GLASS. The models show a large range from 83.5 ± 2.5 PgC
yr−1 (BNU-ESM CMIP5e) to 152.0 ± 4.6 PgC yr−1 with an even larger mean for MRI-ESM1
CMIP5e as an outlier, which shows a large GPP in all regions. The CMIP5 models are on the
higher side of this range, as seen by the MMMs of 120.6 ± 2.2 PgC yr−1 (non-Ncycle CMIP5c)
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Figure 5.5.: As Figure 5.1 but for gross primary production using GLASS, FLUXCOM and MTE reference
data. Additionally, the regional GPP is calculated as the area weighted sum instead of the mean of the
gridcells used for LAI. Adapted with permission from Gier et al. 2024.

and 132.9 ± 2.1 PgC yr−1 (non-Ncycle CMIP5e) with the Ncycle CMIP5 models much lower
at 106.5 ± 1.6 PgC yr−1 (Ncycle CMIP5c) and 107.3 ± 1.9 PgC yr−1 (Ncycle CMIP5e) due to
their underestimation in the NH as seen in Figure 5.5. The CMIP6 Ncycle MMMs agree very
well with the reference data, while the CMIP6 non-Ncycle MMMs show a larger mean GPP.
The global trend of GLASS (0.45 ± 0.09 PgC yr−2) is positive, which is well matched by the
non-Ncycle CMIP6c MMM with the other MMMs showing a smaller trend. In the NH, more
CMIP5 models overestimate the mean GPP than CMIP6 models. The MMMs span a large
spread, with the Ncycle MMMs showing a lower mean GPP than the non-Ncycle MMMs
which are overestimating GPP compared to the reference data. The models are clustered
around the GLASS trend, with outliers for MRI-ESM2-0 in both its CMIP6c and CMIP6e runs.
The CMIP6 non-Ncycle MMM shows a higher trend than the other MMMs due to the MRI-
ESM2-0 outliers. In the SH mean GPP, the CMIP6 MMMs match the reference data well with
lower values for Ncycle than for non-Ncycle MMMs. The CMIP5 MMMs are slightly above
these, with the non-Ncycle CMIP5e having a much larger value due to the outlier of MRI-ESM1
and FIO-ESM both with values well above 100 PgC yr−1. Compared to the GLASS trend of
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Figure 5.6.: As Figure 5.2 but for gross primary production using GLASS, FLUXCOM and MTE reference
data. Adapted with permission from Gier et al. 2024.

0.27 ± 0.07 PgC yr−2, the MMMs underestimate the trend. The distribution in the tropics is
very similar as the SH. The GLASS trend of 0.19 ± 0.05 PgC yr−2 is underestimated by MMMs.
In summary, the Ncycle MMM shows a better performance than the non-Ncycle MMM in the
NH, while it shows a slight underestimation in the tropics and a similar performance in the
SH. The model spread over the trend in GPP stays similar throughout the model generations,
with the mean trend being largely consistent with the GLASS reference data set in all regions
but underestimated everywhere but in the NH.

As for LAI, the coverage of the GLASS data is larger than for the other reference data
sets, with missing values for FLUXCOM and MTE mainly found over the Sahara and the
Himalayas (Figure 5.7), GLASS shows a larger GPP in the tropical rainforests and boreal
forests, explaining the larger mean GPP seen before. The reference mean data set has hardly
any missing values left and the largest difference in the data sets are at places with the
highest GPP, with discrepancies in the areas bordering the hotspots of the rainforests and
boreal forests. Even though the GPP bias maps (Figure 5.8) for Ncycle CMIP5 MMMs have
a global mean bias almost two magnitudes smaller than the CMIP5 non-Ncycle MMMs, they
show the same pattern of overestimation in wet regions and underestimation in dry regions
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Figure 5.7.: Global maps of GPP averaged over 1986-2005 for all reference data sets (GLASS, FLUXCOM
and MTE), as well as the mean and range between lowest and highest values per grid cell of the
reference data sets. The number in the top right denotes the global GPP flux. Adapted with permission
from Gier et al. 2024.

found for LAI (Figure 5.4), underlining the strong influence of LAI on GPP. The CMIP5
non-Ncycle MMMs also shows similar patterns to the LAI bias maps, but the overestimation
in the areas around the tropical rainforests is strongly reinforced, while the previous strong
overestimation of LAI in the northern high latitudes for the non-Ncycle CMIP5e MMM is
reduced. The CMIP5c non-Ncycle MMM additionally shows a strong underestimation at the
northeastern coast of South America. The global mean bias for CMIP5 non-Ncycle MMMs lies
at 3.6·10−13 PgC m−2 yr−1 for CMIP5e and is reduced by half for CMIP5c. This bias is further
reduced to approximately 1.0·10−13 PgC m−2 yr−1 for CMIP6 non-Ncycle MMMs, which show
similar bias patterns to CMIP5 non-Ncycle MMMs but overall reduction to the bias patterns,
with a larger reduction in the savannah regions of Africa. The global mean bias for the CMIP6
Ncycle MMMs is further reduced to 0.01·10−13 PgC m−2 yr−1 for CMIP6e and a negative bias of
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Figure 5.8.: Global maps of GPP bias for 1986-2005 with respect to the reference data set mean shown in
Figure 5.7. The panels show the MMMs of the models with (left) and without (right) coupled nitrogen
cycle for the different project-experiment combinations. The hatching represents the areas where the
MMM of the models and reference mean agree within the MMM std, while the number in the top right
denotes the global mean bias. Adapted with permission from Gier et al. 2024.
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Figure 5.9.: Area weighted zonal sums of GPP and the reference data sets GLASS, FLUXCOM and MTE.
No common masking is applied, but latitudes were set to missing if more than 15% of the land grid
cells contained missing data. The hatching depicts the MMM standard deviation, with a horizontal
hatching for models with and vertical hatching for models without interactive nitrogen cycle. Adapted
with permission from Gier et al. 2024.

-0.4·10−13 PgC m−2 yr−1 for CMIP6c. Both show a reduction in the northern hemisphere bias
of the open shrublands, turning some into a negative bias, as well as southwest Africa, while
the slight overestimation in North America remains, as well as the underestimation at the
north eastern part of South America. This is summarized in Figure 5.9, which shows the zonal
sums of the reference data and the MMMs. Unlike the seasonal cycle and scatterplots shown
before, a common mask is not applied here, but instead values are masked out if a data set has
more than 15% of a latitudes land points set to missing values. The large overestimation of
non-Ncycle CMIP5e can be seen which is reduced in non-Ncycle CMIP5c, with both showing
a peak slightly north of the equator which is not seen in the reference data and which is due
to the overestimation of the shrublands south of the Sahara. The CMIP6 non-Ncycle MMMs
show a much better approximation across all latitudes, with a slight reduction of the bias in
the NH, but still show a significant overestimation in the tropics. This is remedied in the
CMIP6 Ncycle models, which show a very good agreement with the reference data across all
latitudes, now with slight underestimations at high latitudes.

5.2.3. Land-Atmosphere Flux

The net carbon flux from the atmosphere into the land (net biome productivity, NBP) char-
acterizes the balance between carbon uptake due to photosynthesis and carbon release by
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Figure 5.10.: Global Land-Atmosphere carbon flux time series for CMIP5 (top two panels) and CMIP6
(bottom two panels) concentration (panels 2 & 4) and emission-driven (panels 1 & 3) historical sim-
ulations. Model results are separated into MMMs of models with (orange dashed line) and without
interactive nitrogen cycle (green dashed line), with the MMM of all models shown in blue and the
reference data sets CarboScope (solid), CAMS (dashed), and GCP (dash-dotted) shown in black. The
standard deviation of the MMM is given by the shaded areas. Adapted with permission from Gier
et al. 2024.
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respiration, as well as other processes like fires and de- and afforestation. Positive values of
NBP denote carbon uptake by land. The CMIP6 EC-Earth models (EC-Earth3-CC, EC-Earth-
Veg) are excluded from the MMM for NBP because they show a very strong land source
in December in seemingly random grid cells all over the globe. MIROC-ESM and MIROC-
ESM-CHEM are also removed for a similar reason: they contain grid cells which seemingly
randomly show large sources and sinks popping up in random months. Due to their appear-
ance at random months instead of only in December like in EC-Earth, it does not influence
regional means or climatologies as much, but can be seen in mean map plots very well.

Figure 5.10 shows the global evolution of the land-atmosphere flux for CMIP5e, CMIP5c,
CMIP6e and CMIP6c simulations in order from top to bottom. Each panel shows the MMM of
all models with simulations in the respective project and experiment combinations (blue line),
as well as the two MMMs of models with (dashed orange) and without (dashed green) nitrogen
cycle. The colored shading represents the standard deviation of their respective MMMs. For
comparison with observations, data from CAMS (dashed black), Jena CarboScope (solid black),
and GCP (dash-dotted black) are added to each panel. There is a large year-to-year variability,
which can also be seen in the models. All project-experiment combinations agree with all
reference data sets, with the CMIP6 simulations showing a better agreement in the 1990s,
during which the CMIP5 models generally underestimate the land carbon sink. From 1850 to
1970 the models do not show a significant carbon source or sink, only the CMIP6e MMM shows
a small carbon source in this time period. However, the model variance as indicated by the
shaded areas is large enough to be in agreement with a neutral state. Since the 1980s the land
has been acting as a carbon sink which is increasing over time. This increase has previously
been attributed mainly to the fertilization effect from rising atmospheric CO2 concentrations
(Canadell et al. 2021). In the CMIP5 simulations, Ncycle and non-Ncycle models do not show
any significant differences before 1980, after which the Ncycle models show a slightly lower
carbon flux. Ncycle CMIP6 models show a slightly lower land-atmosphere carbon flux over
the full time period compared to non-Ncycle models.

The global seasonal cycle for NBP (Figure 5.11) is dominated by the northern hemisphere,
with almost no discernible cycle in the southern hemisphere or the tropics. There is generally a
good agreement between the two inversions, but the CAMS inversions shows a larger seasonal
cycle in the SH and tropics of approximately 6 PgC yr−1, where CarboScope shows no clear
seasonal cycle. In the NH, and due to its large contribution to the total also globally, CAMS
has a higher NBP at the start of the year and to a lesser degree at the end of the year, where
CarboScope shows a larger negative NBP and thus carbon sink. The models agree with the
carbon sink of CarboScope in these months, but have a weaker carbon sink (higher NBP) in
NH autumn. The CMIP5 Ncycle MMMs have a smaller seasonal cycle amplitude compared
to any of the other MMMs and the reference data, carried over from GPP. The other MMMs
reproduce the seasonal cycle well, while the non-Ncycle CMIP6e MMM is shifted late by a
month, showing possible issues with the start and end of the growing season. In the SH and
tropics, where CarboScope found no significant cycle and CAMS had a slightly larger one
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Figure 5.11.: As Figure 5.1 but for land-atmosphere carbon flux and the reference data sets CAMS and
CarboScope. Adapted with permission from Gier et al. 2024.

in the tropics, the Ncycle models follow the shape and timing of the CAMS data, while the
non-Ncycle models have a seasonal cycle shifted to two months earlier. There is no significant
difference between CMIP5 and CMIP6 nor between c and e experiments in the MMM.

The temporal mean and trend of spatially summed NBP is shown in Figure 5.12 with num-
bers given in Tables B.5 and B.6. CAMS shows a larger mean NBP compared to CarboScope
in all regions but the tropics, which is consistent with the NBP averages from Seiler et al. 2022
using this data set and who found its NBP to be larger than comparable data sets and model
results. GCP as a global average is only available as reference data set for the global panel.
Globally, the reference data sets have a mean NBP of 0.71 ± 0.94 PgC yr−1 for CarboScope, 1.00
± 0.84 PgC yr−1 for GCP and 1.72 ± 0.94 PgC yr−1 for CAMS. The models show a far larger
range with outliers for the INM-CM CMIP6c models. The Ncycle CMIP5 means show negative
trends, while the other MMMs range between 0.84± 0.34 PgC yr−1 (Ncycle CMIP6c) and 1.56±
0.62 PgC yr−1 (non-Ncycle CMIP6c), with Ncycle MMMs showing significantly smaller mean
NBP similar to the GCP reference, while the non-Ncycle MMMs have a larger NBP but still
smaller than the CAMS data. The relatively good overall agreement of the models’ mean NBP
with the reference data does not hold for the different regions. Most models and all MMMs
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Figure 5.12.: As Figure 5.2 but for land-atmosphere carbon flux and the reference data sets CAMS and
CarboScope. The GCP data are a globally averaged timeseries and thus only appears in the global plot.
Adapted with permission from Gier et al. 2024.

simulate a lower carbon sink in the northern hemisphere when compared to the inversions,
with Ncycle models generally showing a smaller mean NBP, but no large discernible differ-
ences between the different groupings. Conversely, while the inversions estimate both the
southern hemisphere as well as the tropics to be a slight carbon source due to deforestation,
the MMMs with the exception of the CMIP5 Ncycle show a carbon uptake by land in these re-
gions. The large values for the non-Ncycle CMIP6c MMM are again due to the overestimation
of the INM-CM4-8 and INM-CM5-0 models, but as their mean NBP in the NH is not a large
outlier, we did not remove these from the MMM. The underestimation in the NH combined
with the overestimation in the SH and tropics leads to the good global agreement of the total
carbon sink. This is in agreement with the findings from IPCC AR6 (Canadell et al. 2021;
Eyring et al. 2021). The inclusion of a nitrogen cycle and therefore the inclusion of nitrogen
limitations on CO2 fertilization was expected to address this discrepancy of the distribution of
the carbon sinks (Canadell et al. 2021), but the data do not support this, as the Ncycle MMMs
do not show a different performance to the non-Ncycle MMMs in CMIP6. While the models
show a large range of trends, the MMMs agree well with the reference data, and this continues
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Figure 5.13.: Similar to Figure 5.7 but for land-atmosphere carbon flux. Additionally, the forward slash
hatching symbolizes areas where the reference data sets agree on the sign or where the difference is
smaller than the size of one bin of the contour plot. Adapted with permission from Gier et al. 2024.

in the other regions as well. While N-limitation is not expected to be substantial at present
day, it represents a major limitation on future land-carbon uptake (Zaehle et al. 2015), and
thus its inclusion a major advance in being able to robustly simulate future carbon balance of
the terrestrial carbon cycle.

As seen before, the reference data sets show different means, trends and slightly different
seasonal cycles in the different regions. For a more detailed look, Figure 5.13 shows maps of
the reference data. The hatched area is the area where the data sets agree on the sign or within
a margin of half the bin size of the contour plot. While in large parts of the globe the data sets
agree in sign, there are significant differences. In North America CAMS shows a much larger
carbon sink than CarboScope which instead shows some carbon sources along the west coast
and throughout South America. In CAMS South America is split into a much stronger carbon
source in the amazonian rainforests and a carbon sink in the southern part. The data sets also
disagree in Europe, which is a carbon source according to CAMS but a sink in CarboScope.
Literature found Europe to be a carbon sink for the first part of the 21st century (Ciais et al.
2013; Reuter et al. 2014) using different reference data sets. This would support the CarboScope
data set but due to the different time frames considered it is not definitive. CAMS also sees
a carbon sink in tropical Africa where CarboScope has a slight carbon source. In South East
Asia, CarboScope has a large carbon sink, where CAMS shows a neutral carbon flux. The area
of most agreement is in the NH as a large carbon sink where there is no deforestation and a
bit of aforestation. The amazon region was a large carbon sink which is becoming a source

90



5.2. CMIP model performance

40 20 0 20 40 60 80
Latitude [°]

0.10

0.05

0.00

0.05

0.10

0.15

0.20

NB
P 

[P
gC

 y
r-1

]

CMIP5e Ncycle MMM
CMIP5e non-Ncycle MMM
CMIP5c Ncycle MMM
CMIP5c non-Ncycle MMM

CMIP6c Ncycle MMM
CMIP6c non-Ncycle MMM
CMIP6e Ncycle MMM

CMIP6e non-Ncycle MMM
CAMS
Jena_CarboScope

Figure 5.14.: As Figure 5.9 but for land-atmosphere carbon flux with CAMS and CarboScope reference
data. Adapted with permission from Gier et al. 2024.

due to deforestation (Gatti et al. 2021). CAMS sees the amazon as a strong carbon source,
while CarboScope shows a smaller source, with a sink in the northwestern region. Keenan
and Williams 2018 found inverse models to show south America as both a carbon source, as
well as a carbon sink and is thus a hotly debated area. Kou-Giesbrecht et al. 2023 attribute
the weak agreement between CarboScope and CAMS to differences in the inversion models
and atmospheric CO2 measurements used, with larger differences at latitudes with smaller
land areas. Due to the difference between the observational data sets, the bias maps to a
reference mean shown for the other considered variables so far have been omitted. Instead,
the area weighted zonal sums are plotted in Figure 5.14 for comparison of the MMMs with
both reference data sets. The reference data sets disagree for almost all latitudes, thus making
the model comparison to the reference data in these regions not very meaningful. The area
where the reference data are in most agreement is in the northern high latitudes (50–80 ◦N),
where both of them show a strong carbon sink, about double of that shown in both CMIP5
and CMIP6 models. While the issues in CLM4 and thus the CMIP5 Ncycle models are clearly
visible (similarly to LAI and GPP), the other MMMs show similar NBP in all latitudes.

5.2.4. Carbon Stocks

Another large uncertainty in CMIP5 was the amount of carbon stored in soil and vegetation.
This leads to large uncertainties in land-use change emissions which are important for quanti-
fying cumulative emissions as well as climate mitigation strategies (Friedlingstein et al. 2023).
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Figure 5.15.: Scatter plot of global mean vegetation and soil carbon over 1986-2005, with observations
from NDP (vegetation carbon) and HWSD+NCSCD (soil carbon). As in Figure 5.2, filled symbols
denote models with nitrogen cycle. Adapted with permission from Gier et al. 2024.

Varney et al. 2023b investigated the carbon-climate feedbacks of soil and vegetation carbon
and found soil carbon to be the dominant response of the land surface, highlighting the need
to reduce the uncertainty in carbon storage to better quantify future changes of the climate
system. Figure 5.15 shows a scatterplot of the global sums vegetation against the combined
soil and litter carbon. The observational soil (HWSD+NCSCD) and vegetation carbon (NDP)
data sets are derived from in situ measurements taken over a long period of time and are
thus given without a time coordinate, while the models were averaged over 1986-2005. Note
that some models (CanESM5-CanOE CMIP6c, GFDL-ESM4 CMIP6e, INM-CM4-8 CMIP6c,
INM-CM5-0 CMIP6c, FIO-ESM CMIP5e, CanESM2 CMIP5c and inmcm4 CMIP5c) did not
have data on the ESGF nodes for soil or vegetation carbon and are thus missing from the
carbon stocks analysis. BNU-ESM CMIP5c and CMIP5e shows a far larger vegetation carbon
than the other models and is thus removed in the calculation of the mean. Additionally,
CLM5 and thus CESM2, CESM2-WACCM, NorESM2-LM, and NorESM2-MM include a full
vertical soil profile. For these models, the cSoilAbove1m variable is used for better comparison
with the other models, as done in Varney et al. 2022. The large spread in the global carbon
stocks still remains in CMIP6 as shown in Figure 5.15 with values for each data set listed in
Table B.7. In CMIP5 vegetation carbon was spread between 335 PgC (MPI-ESM-LR CMIP5c)
and 802 PgC (GFDL-ESM2M CMIP5e) with the outlier of BNU-ESM even reaching values
above 1200 PgC. The spread has only marginally been reduced in CMIP6 to a range of 333 PgC
(EC-Earth3-Veg CMIP6c) to 724 PgC (CNRM-ESM2-1 CMIP6e). The reference data are at a
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value of 478 PgC, in the lower range of the models, with the MMMs ranging between 465 PgC
(non-Ncycle CMIP6c) and 547 (Ncycle CMIP5e). The spread in soil carbon is even larger with
a CMIP5 range of 513 PgC (CESM1-BGC CMIP5c) up to 3092 PgC (MPI-ESM-MR CMIP5c).
The overestimation by MPI-ESM is due to its decomposition parameterization depending on
soil moisture and showing maxima in continental dry lands. In CMIP6 MPI-ESM1-2 the soil
carbon model was changed to YASSO which simulates more plausible soil carbon content
(Mauritsen et al. 2019). The spread in soil carbon was not significantly reduced in CMIP6 with
a range of 514 PgC (GFDL-ESM4 CMIP6c) to 2913 PgC (CMCC-ESM2 CMIP6c), with the refer-
ence value for HWSD+NCSCD at 1561 PgC. The CMIP5 Ncycle models have a soil carbon on
the lower end of the range, consistent with the CMIP6 models TaiESM1 and SAM0-UNICON
which also use CLM4. The CMIP5 Ncycle MMMs are on the very low end of the range with
532 PgC and 534 PgC for CMIP5 and CMIP5e respectively, while the other MMMs are closer
to the reference data and range between 1197 PgC for non-Ncycle CMIP6c and 2040 PgC for
non-Ncycle CMIP5e. While the CMIP6 Ncycle MMMs are closer to the reference data, no
significant improvement due to the inclusion of the interactive nitrogen cycle can be seen
when considering the whole spread of the models. This is consistent with Wang et al. 2022
who found that changing models from C to CN coupling often result in lowered ecosystem
storage, but due to different parametrizations simulate similar carbon pools. Varney et al.
2022 suggest that much of the uncertainty in carbon stocks is due to the simulation of below-
ground processes - this is backed up by the differences in soil carbon being much greater than
in GPP, and thus implicating differences in simulated residence times (Carvalhais et al. 2014;
Todd-Brown et al. 2014). For a more in-depth discussion on we would like to refer to dedicated
studies, such as Varney et al. 2022 and Wei et al. 2022. Furthermore, Varney et al. 2023a found
that while the CMIP6 future soil carbon projections have a lower model spread compared to
CMIP5, the structure of soil carbon models within CMIP6 ESMs has likely contributed towards
this reduction.

5.2.5. Overall Model Performance

In this Section we assess the overall performance of CMIP5 and CMIP6 models with respect
to carbon cycle variables. Figure 5.16 shows a performance metrics (portrait) plot similar to
Gleckler et al. 2008. It is produced by calculating the normalized relative space-time RMSD of
the climatological seasonal cycle of a model variable with respect to a reference observation.
The normalization is done relative to the ensemble median of both CMIP5 and CMIP6 models,
with positive values (red) denoting a higher RMSD and thus worse performance while negative
values (blue) denote a lower RMSD than the ensemble median and thus a better performance.
As the carbon stocks from the observations do not vary in time, the calculation of the RMSD
as done here is not meaningful and thus only NBP, GPP and LAI are shown in the plot for all
four considered regions (global, northern hemisphere, southern hemisphere, tropics). MMMs
for both Ncycle and non-Ncycle models were added, with the models which were excluded
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Figure 5.16.: Relative space-time root-mean-square deviation (RMSD) performance metrics for CMIP5
(left) and CMIP6 (right) concentration-driven simulations for variables relevant to the carbon cycle
compared to reference data sets. Blue shading indicates a performance better than the median RMSD
of all models in the plot, while the redder the color, the worse the performance. The RMSD is
normalized relative to the median of all models. The considered time periods depend on the start of
the observational data (see Table 5.3) and end in 2005 to accommodate the end of the CMIP5 data.
When using two observational references, a diagonal split is introduced, with the default reference data
set being shown on the lower right, while the alternate data set are used for the top left triangle. The
default and alternate reference data sets are marked in Table 5.3 and are as follows: LAI: LAI4g (main),
GLASS (alt); GPP: FLUXCOM (main), GLASS(alt); NBP: CarboScope (main), CAMS (alt). Adapted
with permission from Gier et al. 2024.

from MMMs due to various issues as stated in the previous sections also removed from the
MMM here. Note that the MMMs were calculated on the climatologies prior to calculation of
the RMSDs, so over- and underestimations can cancel each other out. This is the standard for
the performance metrics plot implemented in ESMValTool and kept for consistency. Variables
with two reference data sets show the main reference in the lower right triangle, while the
alternate reference is shown for the upper left triangle. data sets marked in bold in Table 5.3
are the main references. CMIP5 models are shown on the left and CMIP6 models on the
right, with figures for both concentration-driven (Figure 5.16) and emission-driven models
(Figure 5.17). Models with a nitrogen cycle are marked with blue labels.

Most models have similar scores when compared to the different observations for GPP and
LAI, showing that the inter-model spread is CMIP6 is larger than the observational uncertainty
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Figure 5.17.: As Figure 5.16 but for emission-driven simulations. Adapted with permission from Gier
et al. 2024.

in these variables. For NBP however, models can have different scores to the considered
reference data, which is due to the difference in the reference data found in the previous
sections. Models on average perform much better than CMIP5 models, with models that had
a predecessor in CMIP5 improving on their CMIP5 performance in almost all variables, such
as GFDL and IPSL in all variables and CESM and NorESM in LAI, with the exception of
CanESM which shows a reduced performance for NBP in CMIP6. Large improvements can be
found in all variables going from CMIP5 to CMIP6, especially in LAI with the exception of the
models using the older CLM4 land component (SAM0-UNICON and TaiESM1) in CMIP6 and
GPP, which were previously identified as weaknesses in CMIP5. Only the MRI-ESM2-0 model
shows a bad performance in both these variables. As mentioned before, dynamic vegetation
in models plays a large role in their ability to simulate variables directly related to it, with
models interactively simulating vegetation cover (marked with a D in Table 5.1 and Table 5.2),
showing a below average score for LAI and GPP RMSD.

Models which were remarked upon in the previous sections as having good or bad agree-
ment with the observations in specific areas, such as the NBP problems in December for
EC-Earth3 have RMSDs that reflect these statements, making this metric a well-suited mea-
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sure for overall performance. Most models have similar RMSDs in the different regions, with
the global value reflecting a mean of the different regions. There does not seem to be a quali-
tative difference between Ncycle and non-Ncycle models as a whole, but the MMMs perform
better than any individual model. The better performance of the MMMs is mathematically
expected as long as the assumption that both observations and model simulations draw from
the same distribution holds true (Christiansen 2018). The global NBP, LAI, and GPP are
also found in Figure 42 of chapter 3 of the IPCC AR6 (Eyring et al. 2021), which showed not
only carbon cycle variables but also other land, ocean and atmosphere variables averaged over
1980-1999 for comparison across models from CMIP3 to CMIP6. Their results are compared to
reference data from JMA-TRANSCOM for NBP, LAI3g for LAI, and MTE and FLUXCOM for
GPP. As other than NBP these reference sets are the same as the ones considered in this paper,
the results are also the same. For NBP despite the different data set, the performance of the
models is very similar to the one found for CAMS, our alternative data set. The ILAMB bench-
mark used in chapter 5 of the IPCC AR6 (Canadell et al. 2021) also comes to the conclusion of
model improvement from CMIP5 to CMIP6. No qualitative difference can be found between
models that have both emission-driven and concentration-driven simulations compared to
models with only concentration-driven simulations, and models with both simulations have
similar RMSDs in both. This indicates that carbon exchanges are well simulated in these
models as the freely evolving fluxes are comparable to results with prescribed atmospheric
concentrations.

Centered pattern correlations for these variables and regions are shown in Figure 5.18, with
a score of 1 meaning perfect similarity of a model to the reference data, while a value of
0 signifies no relationship. The longer lines denote the MMM, while the grey circle shows
the similarity of the alternate data set to the main reference data set. For GPP and LAI the
reference data sets show very good similarity of above 0.9, while for NBP the differences of
the references highlighted in Figure 5.13 is highlighted through a small correlation of up to
0.3, with a high anti-correlation in the southern hemisphere. Due to this, the precise value
of the correlation coefficient between models and reference data set is not a good measure,
but it can be seen that the models show a large spread. For GPP, the CMIP6 performance in
the tropics is vastly improved, with even higher correlation values for Ncycle models. Other
than in the NH, the CMIP5 models show a large spread in correlation values, which has
reduced for CMIP6. The correlation distribution for LAI is similar as GPP, with the highest
correlation values found in the tropics and globally, but the difference between Ncycle and
non-Ncycle models is not as prominent. These overall performance plots underline the specific
conclusions from the separate sections above.
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b) emission driven

a) concentration driven

Figure 5.18.: Centered pattern correlations between models and reference data sets for annual mean
climatology for concentration-driven (a) and emission-driven (b) CMIP5 and CMIP6 models, split
into Ncycle and non-Ncycle models. Main and alternate observations are the same as in Figure 5.16.
Adapted with permission from Gier et al. 2024.

5.3. Conclusion

To be able to have confidence in model projections of climate change, Earth System Models
first need to show the ability to simulate observed climatologies and trends of the carbon cycle
in the present day climate. In the Coupled Model Intercomparison Project Phase 5 (CMIP5,
Taylor et al. 2012), several weaknesses of the simulated carbon cycle were found, such as a

general overestimation of photosynthesis and a wide range of values for carbon stocks, which
became one of the main areas of focus for improvement for some model groups (Delire et al.
2020). In this study, we have analysed the land carbon cycle of models participating in the
Coupled Model Intercomparison Project Phase 6 (CMIP6, Eyring et al. 2016c) to investigate
whether these weaknesses were improved in the newer model generation, with a special focus
on differences arising due to inclusion of an interactive terrestrial nitrogen cycle in some of
the CMIP6 models. Concentration and emission-driven simulations from CMIP5 and CMIP6
models were compared to reference data sets, with 2 out of 18 CMIP5 models and 15 out of
23 CMIP6 models including carbon-nitrogen interactions. We assessed means, trends and
seasonal cycles of LAI, GPP, and NBP. We furthermore looked at land carbon stocks to see if
the large range of values simulated in CMIP5 was reduced in CMIP6.
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In general, CMIP6 models show a better performance across all assessed land carbon cycle
variables to differing degrees, and no significant differences between the concentration-driven
and emission-driven simulation were found in the considered variables, that cannot be ex-
plained by the number of different models. While there is a bias towards the CLM land
component in the CMIP6 models, the different versions (4, 4.5, 5) do not perform the same
and thus these versions can be seen as independent components for the multi-model mean.

The leaf area index was a weakness of the CMIP5 simulation, as its seasonal cycle was
not well captured and its absolute value was generally overestimated. While the peak of the
climatological seasonal cycle of LAI is much better reproduced in CMIP6, the amplitude of
the seasonal cycle is weaker in CMIP6 compared to observations due to a weaker drawdown
in winter. Thus LAI should remain an area of focus for future model development. Mean LAI
is much better reproduced in CMIP6, while the range of trends in the observations is large
enough to cover most models for both CMIP5 and CMIP6. It should be noted that due to
correlations between parameters, there are often tradeoffs for better reproducing one variable.
In CLM5 such a tradeoff had to be weighed between biases for GPP and LAI against high
PFT survivability rates (Lawrence et al. 2019). Therefore, looking at one variable separately
instead of the whole model performance can lead to wrong conclusions about the model’s
ability of reproducing the carbon cycle, depending on which choices were made in the tuning.
Similarly, models interactively simulating vegetation cover perform worse in the evaluation of
present-day LAI compared to models using observationally derived landcover maps due to
simulating trees and grasses in the wrong areas. However, only these models with dynamic
vegetation can account for future changes in vegetation and the impact of these changes on
climate and carbon processes in future projections.

One of the largest improvements due to the inclusion of an interactive nitrogen cycle was
seen in GPP, where the CMIP6 nitrogen cycle models were able to capture the seasonal cycle in
the northern hemisphere well, which was previous overestimated. Beside the improvements
in the NH, bias patterns in the tropics showing larger GPP overestimations bordering tropical
rainforests are reduced in CMIP6 models, with some of these biases wholly removed in the
multi-model mean of the CMIP6 models with interactive nitrogen cycle.

The land carbon sink is underestimated in the northern hemisphere regardless of CMIP
phase or inclusion of nitrogen cycle. The models compensate for this by simulating a larger
carbon sink in the tropics and the southern hemisphere for a global average close to the
observed value. An improvement is seen in CMIP6 in capturing the amplitude of the seasonal
cycle, which is controlled by carbon uptake through photosynthesis in the growth season and
carbon release by respiration. This improvement can largely be attributed to the improved
seasonal cycle of GPP.

The large range of soil and vegetation carbon was another large weakness of CMIP5, with
inter-model differences of 900 PgC for vegetation carbon and 2500 PgC for soil carbon. This
range has not significantly decreased in CMIP6, and it remains an area for improvement.
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While we find a significant improvement of the inclusion of the nitrogen cycle for pho-
tosynthesis, the effects are reduced for the leaf area index and the land-atmosphere carbon
flux. Despite similar NBP for models with and without interactive nitrogen cycle, models
without interactive nitrogen overestimate carbon fertilization, leading to large differences of
atmospheric carbon content for future scenario simulations (Kou-Giesbrecht and Arora 2023).
Therefore, the inclusion of further limiting nutrients like phosphorus is important, as they will
likely have substantial impacts on future carbon uptake (Yang et al. 2023). Model performance
overall has improved from CMIP5 to CMIP6 even with the added complexity introducing
more degrees of freedom into the models, as also found in the latest IPCC report (Canadell et
al. 2021; Eyring et al. 2021). This is a positive outlook for the future, as many aspects have to be
considered when increasing model complexity, such as a need to adjust existing parametrisa-
tions after model structural changes from carbon-only to carbon-nitrogen coupling. Without
such adjustments, lowered ecosystem carbon storage simulated by models with N processes
would lead to an underestimation of carbon pools (Wang et al. 2022). The increased overall
model performance confirms results from the individual model groups who found improved
performance in carbon cycle variables compared to previous model configurations, with the
biggest improvements seen in LAI and GPP (Danabasoglu et al. 2020; Ziehn et al. 2017). Many
areas requiring improvement remain, such as simulated carbon stocks which saw no signifi-
cant reduction in the simulated range between CMIP5 and CMIP6, or the inclusion of more
nutrient limitations like an interactive phosphorus cycle. The improvement of the carbon cycle
in the models since CMIP5 is a step in the right direction for a better understanding and a
more accurate simulation of future trends. Based on our analysis, due to the small differ-
ences between historical concentration and emission-driven simulations despite the increased
process-realism, we recommend ESMs in future CMIP phases to be based on emission-driven
simulations to fully account for climate-carbon feedbacks in future projections, supporting
the message from Sanderson et al. 2023. Similarly, due the significant improvements in GPP
with the inclusion of an interactive nitrogen cycle and no detrimental change in the present
day evaluation of any carbon cycle variable, we suggest that the nitrogen cycle should be seen
as a necessary part of carbon cycle models in the future.

99





6. Conclusion

6.1. Overall Summary

The analysis of the terrestrial carbon cycle and its representation in climate models is vital
to improve the models’ ability to correctly simulate future projections and thus assess future
climate change. This thesis evaluated the terrestrial carbon cycle in CMIP6 models compared
to its predecessor phase CMIP5 with satellite observations to assess the performance of the
latest generation of climate models. For the evaluation, ESMValTool, an open-source com-
munity developed diagnostics and performance metrics tool for routine evaluation of CMIP
models, has been expanded with all diagnostics that are presented in this thesis. The author’s
involvement with ESMValTool as a member of the scientific lead development team also led
to co-authorship in several peer reviewed studies (Eyring et al. 2020; Lauer et al. 2020; Weigel
et al. 2021). The code contributed to ESMValTool is publicly available and beneficial to the
entire scientific community, which has become evident by its use in the latest IPCC AR6. The
author has also had several further contributions to the IPCC AR6 as acknowledged graphic
developer in Chapter 3 (Eyring et al. 2021) and contributing author in Chapter 5 (Eyring et al.
2021), contributing to both chapters with figures and data related to the carbon cycle of ESMs.

In this thesis, several key science questions have been addressed. The first question ("How
can recent satellite observations be used to evaluate climate model simulations, and how does
sparse data coverage affect results?") is addressed in Chapter 4 based on Gier et al. 2020.
Satellite observations shine in spatially resolved comparisons and perform well in general
analysis of short- and mid-term features, such as the seasonal cycle amplitude (SCA) of the
carbon cycle. However, for comparable analysis, model simulations should be sampled in
the same way as the corresponding observations. Sparse data coverage can affect results in
different ways. In the case of SCA, peaks or troughs might occur at times of missing data
resulting in a lowered SCA. Furthermore, in the case of this study, the use of a composite
timeseries of different satellites with different spatial coverage can result in artificial trends
over the whole timeseries. This study helped to resolve a previous discrepancy of rising SCA
with CO2 in the midlatitudes found in models while satellite data showed a negative trend
for the SCA with increasing CO2. In reality, this negative trend was artificially induced by the
different data coverage of models and observations. The short timeseries available for satellite
data can also limit the analysis of other phenomena, such as the trend of growing season
temperature and interannual variability (IAV) of CO2 growth rate (GR), which is strongly
affected by ENSO.
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The second key science question ("How do CMIP6 models compare to CMIP5 models in
simulating atmospheric CO2 and terrestrial carbon cycle variables, on the basis of observational
and reanalysis data?") has been present throughout all studies presented in this thesis, starting
from the contributions to the IPCC AR6, as well as the two studies presented in Chapters 4
and 5 based on Gier et al. 2020 and Gier et al. 2024. CMIP6 models perform similar or better
than CMIP5 models for both column-average CO2 mole fraction (XCO2) as well as terrestrial
carbon variables with different degrees of improvement. Previously identified weaknesses of
CMIP5 models were addressed in CMIP6, and due to some of the newly included processes
some of the biases were reduced. However, large intermodel ranges and biases remain in the
simulation of carbon stocks. Models remain unable to correctly model the strength and timing
of the seasonal cycle of leaf area index (LAI), and the distribution of carbon sinks in CMIP6
models still shows an underestimation in the NH which is compensated by an overestimation
of the sinks in the SH and the tropics.

Chapter 5 based on Gier et al. 2024 answers the third key science question of this thesis
("What effect does increased process complexity, through the inclusion of an interactively
coupled nitrogen cycle and the forcing of carbon emissions instead of carbon concentrations,
have on model performance?"). In this study, models with and without nitrogen cycle were
compared. The inclusion of an interactive nitrogen cycle and the corresponding increased
process complexity does not decrease model performance across all variables. Instead, a
large improvement is found in simulating the seasonal cycle in the NH only for models with
interactive nitrogen cycle, while an overestimation of the photosynthesis remains for models
without a nitrogen cycle. Similarly, the comparison of concentration and emission-driven
simulations shows only small differences. As only the emission-driven simulations can fully
account for climate-carbon feedback in future projections, these should become the standard
simulations to perform in CMIP7 and beyond, with the nitrogen cycle as a necessary part of
the carbon cycle in these models.

Overall, the recommendations of this thesis provide important guidance of focus areas for
future model development and for model experiment designs.

6.2. Outlook

Since the publication of Gier et al. 2020 (see Chapter 4), the observational products from that
study have been extended to 2022 and now include two additional satellites: OCO-2 since
2014 and GOSAT-2 since 2019. An analysis of their spatial coverage should be done to see if
similar effects occur in this time frame, like the artificially induced negative trend of the SCA
with CO2 which was found for the combination of the other satellites. This could be compared
with further observational data sets using methods for fusing timeseries of different satellites,
such as that of Wang et al. 2023. Many observational datasets are now obtained with the
help of machine learning methods. The difference between these datasets to more traditional
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datasets should be analysed, as these may open new applications for the analysis of climate
model data. Promoting the exchange of ideas and needs of modeling groups and people
working on observational data will help in the exchange of expertise and streamline future
developments according to the needs of both groups.

The ultimate aim of the development of ESMs is to accurately and realistically simulate
the future climate under different forcing scenarios. To this end, the performance of mod-
els is usually measured by assessing their capability of simulating the present-day climate.
However, Earth system models differ in their complexity in terms of representing important
processes or components. Models that prescribe important drivers such as atmospheric CO2

concentrations instead of prescribing CO2 emissions and interactively simulating important
related Earth system processes, responses and feedbacks might perform better in present-day
comparisons than the more complex models. Therefore, if performance remains similar, it
can already called a success, as including important Earth system feedbacks is relevant under
changing climate conditions, but might not be fully apparent in present-day simulations.

Examples in this thesis include the comparison between models with and without an inter-
active nitrogen cycle. Without enough nitrogen, plant photosynthesis can become nutrient-
limited and the CO2 uptake is reduced despite rising CO2 availability. Including an interactive
nitrogen cycle coupled to the carbon cycle can take into account this nitrogen limitation, which
will become even more relevant with rising CO2 concentration and temperatures. Therefore,
it is crucial to include an interactive nitrogen cycle for accurate simulations of future photo-
synthesis. This is even more underlined by the fact that models with a coupled nitrogen cycle
already show a better estimate of the seasonal cycle of photosynthesis in the present day.

Another example is the comparison between concentration-driven and emission-driven sim-
ulations. Only the emission-driven simulations allow climate-carbon cycle feedbacks to influ-
ence the atmospheric CO2 concentration and thus the warming pathways. In concentration-
driven models this has to be done in the models deriving the CO2 concentrations, which may
model feedbacks differently than the models using these prescribed concentrations. Taking
these feedbacks into account in a fully consistent way is vital for an accurate prediction of
climate warming. Thus, based on the results of this thesis (i.e., models show similar perfor-
mances in emission and concentration-driven simulations), it is recommended to standardize
running the models in emission-driven mode in future CMIP generations, in agreement with
Sanderson et al. 2023.

Running emission-driven simulations and including an interactive nitrogen cycle are not
the only novelties introduced to CMIP models in recent years. The study of this thesis pre-
sented in Chapter 5 found clear weaknesses in models with dynamical vegetation to represent
present-day LAI in the performance metrics plots. Similarly to the considerations about the
nitrogen cycle and the emission-driven simulations, models without dynamic vegetation pre-
scribe vegetation based on observations and require external vegetation projections for future
projections, which may not be consistent with the feedbacks included in the model itself. Thus,
a detailed analysis of dynamical vegetation in models, as well as further processes like land-
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6. Conclusion

use change is vital to further inform model developers on where to focus their improvements.
Studies on the carbon cycle also benefit from a detailed comparison of the physical variables
influencing the carbon cycle, such as temperature and precipitation. However, many of the
relevant processes occur on smaller timescales, calling for the need to analyze simulations
with hourly time steps.

Through adding diagnostics for the carbon cycle to ESMValTool, it becomes easier and more
time efficient to compare the general performance of models in this area, allowing for more
detailed analysis of specific processes, as well as easier to create information for modeling
groups to benchmark their models during development. The evaluation and developed
ESMValTool diagnostics of this thesis can also support the annual Global carbon budget
project (Friedlingstein et al. 2023) that supports the Global Stocktake and Annual Conferences
of the Parties (COP) convened under the United Nations Framework Convention on Climate
Change (UNFCCC).
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Appendix

A. Supplementary Materials for Chapter 4

The supplementary material for Chapter 4 is taken from the appendix of Gier et al. 2020, with
the plots made by the author of this thesis.

(a) Unsampled (b) Sampled

Figure A.1.: Same as Fig. 4.8 but for CMIP5 models. Adapted with permission from Gier et al. 2020.
Adapted with permission from Gier et al. 2020.
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(a) SCIAMACHY mask (b) GOSAT mask

Figure A.2.: Same as Fig. 4.10 but for CMIP5 models. Adapted with permission from Gier et al. 2020.

B. Supplementary Materials for Chapter 5

The supplementary material for Chapter 5 is taken from the appendix of Gier et al. 2024,
which are the tables including the values of each individual model and reference dataset for
the scatterplots. These are automatically generated by the diagnostic script written by the
author.

B.1. Means and Trends

Data values for scatterplots Figures 5.2, 5.6 and 5.12.
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B. Supplementary Materials for Chapter 5

Table B.1.: LAI Mean for 1986-2005 [1]

Model Global NH SH Tropics

BNU-ESM CMIP5e 3.64 ± 0.08 2.13 ± 0.06 5.04 ± 0.1 6.37 ± 0.1
BNU-ESM CMIP5c 3.75 ± 0.06 2.4 ± 0.09 4.98 ± 0.04 6.34 ± 0.06
CESM1-BGC CMIP5e 2.68 ± 0.06 2.03 ± 0.06 3.31 ± 0.09 3.78 ± 0.1
CESM1-BGC CMIP5c 2.64 ± 0.04 1.99 ± 0.05 3.27 ± 0.05 3.72 ± 0.05
CanESM2 CMIP5e 1.71 ± 0.06 1.11 ± 0.02 2.26 ± 0.11 2.65 ± 0.13
CanESM2 CMIP5c 1.72 ± 0.04 1.13 ± 0.02 2.26 ± 0.08 2.65 ± 0.1
FIO-ESM CMIP5e 2.23 ± 0.01 1.69 ± 0.01 2.73 ± 0.0 3.14 ± 0.0
GFDL-ESM2G CMIP5e 3.1 ± 0.06 2.65 ± 0.02 3.48 ± 0.1 4.09 ± 0.1
GFDL-ESM2G CMIP5c 3.02 ± 0.04 2.62 ± 0.05 3.35 ± 0.06 3.96 ± 0.05
GFDL-ESM2M CMIP5e 3.17 ± 0.05 2.88 ± 0.02 3.4 ± 0.1 4.05 ± 0.11
GFDL-ESM2M CMIP5c 3.05 ± 0.07 2.72 ± 0.04 3.31 ± 0.12 3.9 ± 0.12
HadGEM2-CC CMIP5c 2.48 ± 0.02 1.52 ± 0.03 3.38 ± 0.02 4.15 ± 0.02
HadGEM2-ES CMIP5c 2.57 ± 0.03 1.6 ± 0.03 3.48 ± 0.04 4.28 ± 0.04
IPSL-CM5A-LR CMIP5c 2.18 ± 0.03 2.05 ± 0.02 2.28 ± 0.06 2.84 ± 0.07
IPSL-CM5A-MR CMIP5c 2.13 ± 0.03 2.04 ± 0.03 2.2 ± 0.04 2.7 ± 0.05
IPSL-CM5B-LR CMIP5c 2.0 ± 0.02 1.93 ± 0.03 2.04 ± 0.05 2.43 ± 0.07
MIROC-ESM-CHEM CMIP5c 2.66 ± 0.03 2.0 ± 0.02 3.25 ± 0.06 3.56 ± 0.07
MIROC-ESM CMIP5e 2.66 ± 0.05 2.05 ± 0.03 3.2 ± 0.08 3.48 ± 0.09
MIROC-ESM CMIP5c 2.65 ± 0.03 2.06 ± 0.02 3.16 ± 0.05 3.45 ± 0.05
MPI-ESM-LR CMIP5e 2.27 ± 0.02 1.59 ± 0.02 2.92 ± 0.04 3.32 ± 0.04
MPI-ESM-LR CMIP5c 2.26 ± 0.03 1.59 ± 0.01 2.89 ± 0.07 3.29 ± 0.07
MPI-ESM-MR CMIP5c 2.3 ± 0.02 1.64 ± 0.02 2.93 ± 0.04 3.32 ± 0.05
MRI-ESM1 CMIP5e 3.61 ± 0.07 2.16 ± 0.06 4.95 ± 0.1 5.98 ± 0.13
NorESM1-ME CMIP5e 2.8 ± 0.05 2.16 ± 0.07 3.41 ± 0.07 3.85 ± 0.08
NorESM1-ME CMIP5c 2.8 ± 0.05 2.12 ± 0.07 3.43 ± 0.06 3.87 ± 0.06
inmcm4 CMIP5c 1.62 ± 0.02 1.26 ± 0.02 1.95 ± 0.03 2.27 ± 0.03
ACCESS-ESM1-5 CMIP6e 1.64 ± 0.02 1.43 ± 0.03 1.82 ± 0.03 2.09 ± 0.04
ACCESS-ESM1-5 CMIP6c 1.65 ± 0.02 1.46 ± 0.02 1.82 ± 0.05 2.07 ± 0.06
CESM2-WACCM CMIP6c 1.78 ± 0.04 1.49 ± 0.05 2.02 ± 0.03 2.35 ± 0.04
CESM2 CMIP6c 1.79 ± 0.05 1.53 ± 0.06 2.0 ± 0.04 2.33 ± 0.06
CMCC-CM2-SR5 CMIP6c 2.17 ± 0.06 2.33 ± 0.07 1.98 ± 0.08 2.18 ± 0.07
CMCC-ESM2 CMIP6c 2.2 ± 0.05 2.3 ± 0.06 2.06 ± 0.07 2.28 ± 0.06
CNRM-ESM2-1 CMIP6e 1.59 ± 0.03 1.33 ± 0.03 1.82 ± 0.05 2.13 ± 0.04
CNRM-ESM2-1 CMIP6c 1.59 ± 0.03 1.34 ± 0.05 1.81 ± 0.04 2.12 ± 0.03

Continued on next page

107



Appendix

Table B.1.: LAI Mean for 1986-2005 [1]

Model Global NH SH Tropics

CanESM5-CanOE CMIP6e 1.71 ± 0.04 1.14 ± 0.03 2.24 ± 0.06 2.64 ± 0.07
CanESM5-CanOE CMIP6c 1.69 ± 0.04 1.15 ± 0.03 2.2 ± 0.07 2.58 ± 0.08
CanESM5 CMIP6e 1.71 ± 0.04 1.16 ± 0.03 2.22 ± 0.06 2.61 ± 0.06
CanESM5 CMIP6c 1.72 ± 0.02 1.18 ± 0.03 2.22 ± 0.03 2.6 ± 0.03
EC-Earth3-CC CMIP6e 2.59 ± 0.06 1.6 ± 0.06 3.53 ± 0.08 3.93 ± 0.08
EC-Earth3-CC CMIP6c 2.54 ± 0.05 1.58 ± 0.05 3.45 ± 0.09 3.82 ± 0.07
EC-Earth3-Veg CMIP6c 2.55 ± 0.04 1.57 ± 0.06 3.47 ± 0.05 3.87 ± 0.04
GFDL-ESM4 CMIP6e 2.33 ± 0.04 2.0 ± 0.03 2.61 ± 0.06 3.17 ± 0.08
GFDL-ESM4 CMIP6c 2.27 ± 0.04 1.92 ± 0.03 2.58 ± 0.09 3.13 ± 0.09
INM-CM4-8 CMIP6c 1.86 ± 0.02 1.5 ± 0.02 2.18 ± 0.02 2.53 ± 0.02
INM-CM5-0 CMIP6c 1.85 ± 0.02 1.48 ± 0.03 2.18 ± 0.02 2.53 ± 0.01
IPSL-CM6A-LR CMIP6c 1.85 ± 0.04 1.16 ± 0.04 2.49 ± 0.05 2.97 ± 0.06
MIROC-ES2L CMIP6e 1.55 ± 0.01 1.01 ± 0.02 2.05 ± 0.01 2.56 ± 0.01
MIROC-ES2L CMIP6c 1.59 ± 0.02 1.03 ± 0.03 2.11 ± 0.02 2.62 ± 0.02
MPI-ESM-1-2-HAM CMIP6c 2.03 ± 0.04 1.43 ± 0.03 2.59 ± 0.07 2.96 ± 0.08
MPI-ESM1-2-LR CMIP6e 1.94 ± 0.04 1.46 ± 0.02 2.38 ± 0.08 2.82 ± 0.09
MPI-ESM1-2-LR CMIP6c 1.94 ± 0.03 1.46 ± 0.02 2.38 ± 0.05 2.83 ± 0.06
MRI-ESM2-0 CMIP6e 2.97 ± 0.09 2.02 ± 0.1 3.84 ± 0.15 4.81 ± 0.2
MRI-ESM2-0 CMIP6c 2.99 ± 0.07 2.04 ± 0.11 3.85 ± 0.09 4.83 ± 0.12
NorESM2-LM CMIP6e 1.75 ± 0.04 1.48 ± 0.04 1.98 ± 0.04 2.35 ± 0.05
NorESM2-LM CMIP6c 1.7 ± 0.04 1.44 ± 0.05 1.93 ± 0.03 2.28 ± 0.04
NorESM2-MM CMIP6c 1.71 ± 0.04 1.41 ± 0.04 1.98 ± 0.05 2.32 ± 0.06
SAM0-UNICON CMIP6c 2.65 ± 0.06 2.09 ± 0.07 3.19 ± 0.1 3.87 ± 0.12
TaiESM1 CMIP6c 2.55 ± 0.04 2.04 ± 0.04 3.03 ± 0.07 3.44 ± 0.07
UKESM1-0-LL CMIP6e 2.82 ± 0.02 2.19 ± 0.04 3.42 ± 0.03 3.94 ± 0.02
UKESM1-0-LL CMIP6c 2.81 ± 0.02 2.19 ± 0.03 3.39 ± 0.02 3.9 ± 0.02
GIMMS-LAI4g 1.74 ± 0.01 1.22 ± 0.01 2.22 ± 0.02 2.72 ± 0.02
GLASS 1.69 ± 0.06 1.19 ± 0.04 2.14 ± 0.08 2.6 ± 0.1
LAI3g 1.69 ± 0.03 1.11 ± 0.02 2.22 ± 0.04 2.74 ± 0.05
Ncycle MMM CMIP5e 2.74 ± 0.05 2.09 ± 0.05 3.36 ± 0.07 3.81 ± 0.07
non-Ncycle MMM CMIP5e 2.52 ± 0.02 1.99 ± 0.02 3.0 ± 0.04 3.46 ± 0.04
Ncycle MMM CMIP5c 2.72 ± 0.04 2.06 ± 0.05 3.35 ± 0.04 3.8 ± 0.04
non-Ncycle MMM CMIP5c 2.36 ± 0.02 1.86 ± 0.02 2.81 ± 0.02 3.29 ± 0.02
Ncycle MMM CMIP6c 2.12 ± 0.03 1.71 ± 0.04 2.49 ± 0.02 2.87 ± 0.02
non-Ncycle MMM CMIP6c 1.98 ± 0.02 1.46 ± 0.03 2.45 ± 0.02 2.92 ± 0.02
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Table B.1.: LAI Mean for 1986-2005 [1]

Model Global NH SH Tropics

Ncycle MMM CMIP6e 2.05 ± 0.02 1.53 ± 0.03 2.53 ± 0.02 2.95 ± 0.02
non-Ncycle MMM CMIP6e 2.06 ± 0.03 1.53 ± 0.04 2.54 ± 0.04 3.07 ± 0.05

Table B.2.: LAI Trend for 1986-2005 [yr−1]

Model Global NH SH Tropics

BNU-ESM
CMIP5e

0.012 ± 0.0013 0.0072 ± 0.002 0.016 ± 0.0013 0.0158 ± 0.0015

BNU-ESM
CMIP5c

0.0102 ± 0.0008 0.0136 ± 0.0016 0.0057 ± 0.0012 0.0087 ± 0.0012

CESM1-BGC
CMIP5e

0.004 ± 0.0022 0.0067 ± 0.002 0.0011 ± 0.0034 0.0006 ± 0.0039

CESM1-BGC
CMIP5c

0.0035 ± 0.0016 0.0027 ± 0.0017 0.004 ± 0.0017 0.0057 ± 0.0016

CanESM2
CMIP5e

0.0019 ± 0.0022 0.003 ± 0.0005 0.0005 ± 0.0043 0.0012 ± 0.005

CanESM2
CMIP5c

0.0018 ± 0.0017 0.002 ± 0.0006 0.0012 ± 0.0033 0.0028 ± 0.0038

FIO-ESM
CMIP5e

0.0005 ± 0.0002 0.0009 ± 0.0003 -0.0001 ± 0.0001 -0.0001 ± 0.0001

GFDL-ESM2G
CMIP5e

0.0055 ± 0.0019 0.0028 ± 0.0008 0.0077 ± 0.0035 0.008 ± 0.0035

GFDL-ESM2G
CMIP5c

0.0045 ± 0.0012 0.0071 ± 0.001 0.0015 ± 0.0022 0.0011 ± 0.002

GFDL-ESM2M
CMIP5e

0.0034 ± 0.0019 0.0008 ± 0.0008 0.0056 ± 0.0038 0.0087 ± 0.004

GFDL-ESM2M
CMIP5c

0.0024 ± 0.0026 0.0057 ± 0.0006 -0.0013 ± 0.0049 0.0023 ± 0.0049

HadGEM2-CC
CMIP5c

0.0031 ± 0.0005 0.0036 ± 0.0007 0.0022 ± 0.0006 0.002 ± 0.0008

HadGEM2-ES
CMIP5c

0.0046 ± 0.0006 0.0033 ± 0.0008 0.0052 ± 0.001 0.0055 ± 0.0009

IPSL-CM5A-LR
CMIP5c

-0.0022 ± 0.001 0.0024 ± 0.0008 -0.0067 ± 0.0018 -0.0056 ± 0.0022
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Table B.2.: LAI Trend for 1986-2005 [yr−1]

Model Global NH SH Tropics

IPSL-CM5A-MR
CMIP5c

0.0015 ± 0.001 0.0032 ± 0.0011 -0.0003 ± 0.0017 0.0017 ± 0.0021

IPSL-CM5B-LR
CMIP5c

0.0008 ± 0.0009 0.0043 ± 0.0007 -0.0027 ± 0.0019 -0.0029 ± 0.0025

MIROC-ESM-
CHEM CMIP5c

0.0038 ± 0.0011 0.0016 ± 0.0008 0.0054 ± 0.0019 0.008 ± 0.0022

MIROC-ESM
CMIP5e

0.0039 ± 0.0017 0.0044 ± 0.0009 0.003 ± 0.0031 0.0044 ± 0.0033

MIROC-ESM
CMIP5c

0.0015 ± 0.0011 0.0013 ± 0.0008 0.0013 ± 0.002 0.0023 ± 0.002

MPI-ESM-LR
CMIP5e

-0.0003 ± 0.0008 0.0021 ± 0.0004 -0.0029 ± 0.0016 -0.0033 ± 0.0015

MPI-ESM-LR
CMIP5c

0.0014 ± 0.0013 0.0011 ± 0.0004 0.0015 ± 0.0028 0.0004 ± 0.0028

MPI-ESM-MR
CMIP5c

0.0 ± 0.0008 0.0023 ± 0.0005 -0.0025 ± 0.0015 -0.0031 ± 0.0017

MRI-ESM1
CMIP5e

0.0063 ± 0.0023 0.0036 ± 0.0023 0.0084 ± 0.0034 0.0107 ± 0.0047

NorESM1-ME
CMIP5e

0.006 ± 0.0015 0.0075 ± 0.0024 0.0041 ± 0.0024 0.0037 ± 0.0029

NorESM1-ME
CMIP5c

0.005 ± 0.0014 0.0092 ± 0.0019 0.0006 ± 0.0024 0.0019 ± 0.0022

inmcm4 CMIP5c 0.0007 ± 0.0007 0.0014 ± 0.0009 -0.0 ± 0.0012 -0.0009 ± 0.0013
ACCESS-ESM1-5
CMIP6e

0.001 ± 0.0006 0.0051 ± 0.0006 -0.0031 ± 0.0011 -0.0043 ± 0.0014

ACCESS-ESM1-5
CMIP6c

-0.0014 ± 0.0008 0.0029 ± 0.0004 -0.0057 ± 0.0015 -0.0071 ± 0.0018

CESM2-WACCM
CMIP6c

0.0059 ± 0.0005 0.0074 ± 0.0006 0.0043 ± 0.0007 0.0065 ± 0.0007

CESM2 CMIP6c 0.0082 ± 0.0005 0.0096 ± 0.0008 0.0066 ± 0.0008 0.0087 ± 0.0011
CMCC-CM2-SR5
CMIP6c

0.0047 ± 0.0021 0.0049 ± 0.0025 0.0044 ± 0.003 0.0043 ± 0.0026

CMCC-ESM2
CMIP6c

0.0047 ± 0.0016 0.0074 ± 0.0017 0.0021 ± 0.0028 0.0024 ± 0.0023
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Table B.2.: LAI Trend for 1986-2005 [yr−1]

Model Global NH SH Tropics

CNRM-ESM2-1
CMIP6e

-0.0002 ± 0.0011 0.0027 ± 0.001 -0.003 ± 0.0019 -0.0025 ± 0.0016

CNRM-ESM2-1
CMIP6c

0.0037 ± 0.0009 0.006 ± 0.0013 0.0012 ± 0.0015 0.0007 ± 0.0013

CanESM5-
CanOE CMIP6e

0.0048 ± 0.0011 0.0045 ± 0.0007 0.0048 ± 0.0021 0.0056 ± 0.0025

CanESM5-
CanOE CMIP6c

0.0039 ± 0.0013 0.004 ± 0.0006 0.0035 ± 0.0025 0.0046 ± 0.003

CanESM5
CMIP6e

0.005 ± 0.0009 0.0044 ± 0.0006 0.0053 ± 0.0019 0.0042 ± 0.0022

CanESM5
CMIP6c

0.0032 ± 0.0006 0.0043 ± 0.0006 0.0019 ± 0.001 0.0027 ± 0.0011

EC-Earth3-CC
CMIP6e

0.0069 ± 0.0016 0.0089 ± 0.0011 0.0044 ± 0.003 0.0059 ± 0.0029

EC-Earth3-CC
CMIP6c

0.0053 ± 0.0017 0.008 ± 0.001 0.0023 ± 0.0034 0.0029 ± 0.0029

EC-Earth3-Veg
CMIP6c

0.0041 ± 0.0013 0.0085 ± 0.0009 -0.0007 ± 0.0021 0.0009 ± 0.0016

GFDL-ESM4
CMIP6e

0.0044 ± 0.0012 0.0037 ± 0.0008 0.0046 ± 0.0023 0.0047 ± 0.0029

GFDL-ESM4
CMIP6c

-0.0004 ± 0.0017 0.0033 ± 0.0007 -0.0045 ± 0.0032 -0.0069 ± 0.0034

INM-CM4-8
CMIP6c

0.0018 ± 0.0005 0.0018 ± 0.0008 0.0017 ± 0.0006 0.002 ± 0.0008

INM-CM5-0
CMIP6c

0.0023 ± 0.0005 0.0041 ± 0.0007 0.0003 ± 0.0006 0.0005 ± 0.0006

IPSL-CM6A-LR
CMIP6c

0.0052 ± 0.0008 0.0052 ± 0.0007 0.0049 ± 0.0017 0.0064 ± 0.0018

MIROC-ES2L
CMIP6e

0.0022 ± 0.0003 0.0033 ± 0.0005 0.0008 ± 0.0004 0.0016 ± 0.0005

MIROC-ES2L
CMIP6c

0.0033 ± 0.0003 0.0043 ± 0.0005 0.0022 ± 0.0005 0.0032 ± 0.0006

MPI-ESM-1-2-
HAM CMIP6c

0.0041 ± 0.0014 0.0038 ± 0.0005 0.0042 ± 0.0025 0.0049 ± 0.0031
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Table B.2.: LAI Trend for 1986-2005 [yr−1]

Model Global NH SH Tropics

MPI-ESM1-2-LR
CMIP6e

0.0014 ± 0.0015 0.0033 ± 0.0004 -0.0006 ± 0.003 -0.0005 ± 0.0037

MPI-ESM1-2-LR
CMIP6c

0.0026 ± 0.0011 0.0032 ± 0.0004 0.0019 ± 0.0021 0.0023 ± 0.0024

MRI-ESM2-0
CMIP6e

0.0068 ± 0.003 0.0137 ± 0.0022 -0.0006 ± 0.0058 0.0004 ± 0.0079

MRI-ESM2-0
CMIP6c

0.0094 ± 0.0019 0.0156 ± 0.0023 0.0024 ± 0.0034 0.0047 ± 0.0045

NorESM2-LM
CMIP6e

0.0064 ± 0.0007 0.0069 ± 0.0007 0.0059 ± 0.001 0.0076 ± 0.0012

NorESM2-LM
CMIP6c

0.0059 ± 0.0007 0.0076 ± 0.001 0.0042 ± 0.001 0.0042 ± 0.0013

NorESM2-MM
CMIP6c

0.0056 ± 0.0008 0.0067 ± 0.0005 0.0046 ± 0.0015 0.0055 ± 0.0018

SAM0-UNICON
CMIP6c

0.0063 ± 0.0021 0.0075 ± 0.0022 0.005 ± 0.0039 0.0078 ± 0.0046

TaiESM1 CMIP6c 0.0038 ± 0.0012 0.004 ± 0.0013 0.0036 ± 0.0025 0.0049 ± 0.0026
UKESM1-0-LL
CMIP6e

0.0036 ± 0.0005 0.0052 ± 0.0008 0.0018 ± 0.0009 0.0022 ± 0.0006

UKESM1-0-LL
CMIP6c

0.0014 ± 0.0006 0.0031 ± 0.0009 -0.0005 ± 0.0009 -0.0001 ± 0.0006

GIMMS-LAI4g 0.002 ± 0.0003 0.0014 ± 0.0003 0.0021 ± 0.0006 0.0027 ± 0.0006
GLASS 0.0082 ± 0.0015 0.0047 ± 0.0013 0.0112 ± 0.002 0.0128 ± 0.0023
LAI3g 0.0019 ± 0.0011 0.0018 ± 0.0008 0.0017 ± 0.0017 0.0019 ± 0.0021
Ncycle MMM
CMIP5e

0.005 ± 0.0015 0.0071 ± 0.0012 0.0026 ± 0.0026 0.0022 ± 0.0028

non-Ncycle
MMM CMIP5e

0.0025 ± 0.0007 0.0023 ± 0.0003 0.0023 ± 0.0014 0.0031 ± 0.0015

Ncycle MMM
CMIP5c

0.0042 ± 0.0011 0.006 ± 0.0012 0.0023 ± 0.0017 0.0038 ± 0.0015

non-Ncycle
MMM CMIP5c

0.0018 ± 0.0004 0.003 ± 0.0003 0.0004 ± 0.0008 0.001 ± 0.0007

Ncycle MMM
CMIP6c

0.0043 ± 0.0003 0.0061 ± 0.0004 0.0024 ± 0.0005 0.0033 ± 0.0005
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Table B.2.: LAI Trend for 1986-2005 [yr−1]

Model Global NH SH Tropics

non-Ncycle
MMM CMIP6c

0.0037 ± 0.0004 0.0053 ± 0.0004 0.0017 ± 0.0006 0.0022 ± 0.0008

Ncycle MMM
CMIP6e

0.0036 ± 0.0004 0.0054 ± 0.0004 0.0015 ± 0.0007 0.0021 ± 0.0008

non-Ncycle
MMM CMIP6e

0.0041 ± 0.0008 0.0058 ± 0.0005 0.0022 ± 0.0015 0.0025 ± 0.0019

Table B.3.: GPP Mean for 1986-2005 [PgC yr−1]

Model Global NH SH Tropics

BNU-ESM CMIP5e 83.54 ± 2.48 30.35 ± 1.3 53.19 ± 1.54 47.13 ± 1.18
BNU-ESM CMIP5c 86.26 ± 2.0 33.66 ± 1.35 52.6 ± 0.92 46.93 ± 0.92
CESM1-BGC CMIP5e 107.42 ± 2.23 34.94 ± 1.1 72.49 ± 1.3 61.98 ± 1.12
CESM1-BGC CMIP5c 106.12 ± 1.7 34.5 ± 0.78 71.62 ± 1.06 61.24 ± 0.93
CanESM2 CMIP5e 103.74 ± 2.72 32.32 ± 0.86 71.42 ± 2.76 56.61 ± 2.07
CanESM2 CMIP5c 104.37 ± 2.41 32.66 ± 0.74 71.71 ± 2.09 56.66 ± 1.78
FIO-ESM CMIP5e 151.2 ± 2.28 44.86 ± 0.99 106.34 ± 1.69 91.94 ± 1.59
GFDL-ESM2G CMIP5e 139.01 ± 4.89 46.29 ± 1.23 92.72 ± 4.42 75.82 ± 2.78
GFDL-ESM2G CMIP5c 134.03 ± 3.53 44.88 ± 1.67 89.15 ± 2.86 73.24 ± 1.98
GFDL-ESM2M CMIP5e 137.59 ± 5.15 46.76 ± 1.42 90.83 ± 5.5 75.22 ± 3.86
GFDL-ESM2M CMIP5c 132.97 ± 5.94 44.11 ± 1.4 88.86 ± 6.12 72.58 ± 4.27
HadGEM2-CC CMIP5c 111.57 ± 3.19 36.26 ± 1.82 75.31 ± 2.08 64.71 ± 2.07
HadGEM2-ES CMIP5c 116.03 ± 3.77 37.6 ± 1.35 78.44 ± 3.04 67.96 ± 2.77
IPSL-CM5A-LR CMIP5c 133.84 ± 2.22 58.96 ± 1.67 74.87 ± 1.59 67.0 ± 1.47
IPSL-CM5A-MR CMIP5c 131.41 ± 3.23 58.77 ± 1.99 72.64 ± 2.0 64.27 ± 1.9
IPSL-CM5B-LR CMIP5c 115.58 ± 2.65 51.95 ± 1.69 63.63 ± 1.87 54.03 ± 1.64
MIROC-ESM-CHEM CMIP5c 109.79 ± 2.5 41.62 ± 0.96 68.17 ± 1.95 57.0 ± 1.64
MIROC-ESM CMIP5e 110.68 ± 2.51 42.76 ± 1.43 67.93 ± 1.85 56.45 ± 1.52
MIROC-ESM CMIP5c 108.34 ± 2.73 42.38 ± 1.05 65.96 ± 2.05 54.98 ± 1.75
MPI-ESM-LR CMIP5e 145.6 ± 3.12 55.14 ± 1.81 90.46 ± 2.43 72.51 ± 1.3
MPI-ESM-LR CMIP5c 145.66 ± 3.99 55.28 ± 1.19 90.38 ± 3.64 71.76 ± 1.91
MPI-ESM-MR CMIP5c 149.88 ± 3.69 57.58 ± 2.1 92.29 ± 2.32 73.62 ± 1.58
MRI-ESM1 CMIP5e 191.82 ± 3.1 64.52 ± 1.47 127.31 ± 2.0 110.68 ± 1.73
NorESM1-ME CMIP5e 107.22 ± 1.74 35.87 ± 0.89 71.34 ± 1.16 61.16 ± 1.09
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Table B.3.: GPP Mean for 1986-2005 [PgC yr−1]

Model Global NH SH Tropics

NorESM1-ME CMIP5c 106.83 ± 1.66 35.42 ± 1.0 71.4 ± 0.95 61.12 ± 0.82
inmcm4 CMIP5c 109.19 ± 1.97 37.4 ± 0.8 71.78 ± 1.69 62.96 ± 1.45
ACCESS-ESM1-5 CMIP6e 100.33 ± 1.3 33.27 ± 1.15 67.06 ± 0.93 57.17 ± 0.88
ACCESS-ESM1-5 CMIP6c 101.48 ± 1.28 34.39 ± 0.91 67.09 ± 1.45 56.94 ± 1.3
CESM2-WACCM CMIP6c 90.96 ± 1.73 34.31 ± 1.12 56.66 ± 0.88 47.18 ± 0.77
CESM2 CMIP6c 91.09 ± 2.44 35.39 ± 1.39 55.7 ± 1.38 46.66 ± 1.13
CMCC-CM2-SR5 CMIP6c 83.79 ± 2.16 37.64 ± 1.26 46.15 ± 1.4 38.25 ± 0.89
CMCC-ESM2 CMIP6c 84.36 ± 1.65 37.06 ± 1.23 47.3 ± 0.93 39.37 ± 0.63
CNRM-ESM2-1 CMIP6e 84.11 ± 2.15 33.15 ± 1.12 50.96 ± 2.05 41.88 ± 1.15
CNRM-ESM2-1 CMIP6c 84.18 ± 2.36 33.49 ± 1.67 50.7 ± 1.62 41.55 ± 0.93
CanESM5-CanOE CMIP6e 114.7 ± 2.8 40.82 ± 1.31 73.88 ± 1.76 60.75 ± 1.44
CanESM5-CanOE CMIP6c 113.66 ± 3.02 40.84 ± 1.3 72.83 ± 2.08 59.87 ± 1.72
CanESM5 CMIP6e 114.73 ± 2.6 41.34 ± 1.21 73.39 ± 1.74 60.32 ± 1.21
CanESM5 CMIP6c 114.82 ± 2.16 41.68 ± 1.09 73.15 ± 1.25 60.19 ± 1.02
EC-Earth3-CC CMIP6e 121.52 ± 3.19 47.03 ± 2.28 74.49 ± 1.47 56.11 ± 0.96
EC-Earth3-CC CMIP6c 119.45 ± 2.5 46.11 ± 1.75 73.34 ± 1.47 55.17 ± 1.11
EC-Earth3-Veg CMIP6c 117.81 ± 2.27 45.46 ± 1.53 72.36 ± 1.28 54.63 ± 1.0
GFDL-ESM4 CMIP6e 92.19 ± 2.39 34.82 ± 1.26 57.38 ± 1.56 50.38 ± 1.34
GFDL-ESM4 CMIP6c 88.07 ± 1.89 32.36 ± 1.01 55.71 ± 1.61 49.03 ± 1.2
INM-CM4-8 CMIP6c 123.16 ± 4.08 41.22 ± 1.16 81.94 ± 3.0 71.68 ± 2.69
INM-CM5-0 CMIP6c 126.98 ± 2.59 42.43 ± 1.25 84.54 ± 1.51 74.08 ± 1.36
IPSL-CM6A-LR CMIP6c 97.25 ± 2.63 32.08 ± 1.14 65.17 ± 1.86 54.93 ± 1.54
MIROC-ES2L CMIP6e 88.02 ± 1.45 37.68 ± 1.03 50.33 ± 0.59 43.68 ± 0.53
MIROC-ES2L CMIP6c 91.73 ± 1.73 39.27 ± 1.16 52.46 ± 0.84 45.33 ± 0.76
MPI-ESM-1-2-HAM CMIP6c 128.61 ± 5.77 46.29 ± 2.63 82.32 ± 3.65 67.99 ± 2.89
MPI-ESM1-2-LR CMIP6e 123.7 ± 3.79 48.04 ± 1.64 75.66 ± 3.0 64.42 ± 2.21
MPI-ESM1-2-LR CMIP6c 122.46 ± 3.66 47.92 ± 1.83 74.55 ± 2.43 63.63 ± 1.91
MRI-ESM2-0 CMIP6e 151.86 ± 4.17 63.44 ± 3.0 88.42 ± 2.98 79.52 ± 2.71
MRI-ESM2-0 CMIP6c 151.98 ± 4.62 63.74 ± 3.92 88.25 ± 2.09 79.5 ± 1.83
NorESM2-LM CMIP6e 88.78 ± 2.01 33.03 ± 1.0 55.75 ± 1.19 47.44 ± 1.03
NorESM2-LM CMIP6c 86.71 ± 1.82 32.15 ± 1.12 54.56 ± 1.04 46.21 ± 0.91
NorESM2-MM CMIP6c 88.13 ± 1.8 32.6 ± 0.91 55.53 ± 1.36 46.37 ± 1.09
SAM0-UNICON CMIP6c 106.57 ± 2.12 34.85 ± 0.94 71.72 ± 1.77 64.01 ± 1.77
TaiESM1 CMIP6c 106.56 ± 1.48 35.05 ± 1.03 71.51 ± 0.8 60.03 ± 0.65
UKESM1-0-LL CMIP6e 108.72 ± 3.39 38.47 ± 1.76 70.25 ± 2.79 59.24 ± 2.45

Continued on next page

114



B. Supplementary Materials for Chapter 5

Table B.3.: GPP Mean for 1986-2005 [PgC yr−1]

Model Global NH SH Tropics

UKESM1-0-LL CMIP6c 106.73 ± 2.97 38.3 ± 1.47 68.43 ± 2.69 57.66 ± 2.18
GLASS 108.26 ± 3.43 39.19 ± 1.34 69.08 ± 2.28 59.14 ± 1.7
FLUXCOM 93.04 ± 0.41 31.09 ± 0.2 61.95 ± 0.49 55.34 ± 0.31
MTE 102.63 ± 1.17 37.5 ± 0.75 65.13 ± 0.68 56.72 ± 0.5
Ncycle MMM CMIP5e 107.32 ± 1.88 35.4 ± 0.9 71.92 ± 1.12 61.57 ± 0.98
non-Ncycle MMM CMIP5e 132.9 ± 2.07 45.37 ± 0.91 87.52 ± 1.53 73.29 ± 1.18
Ncycle MMM CMIP5c 106.47 ± 1.6 34.96 ± 0.82 71.51 ± 0.87 61.18 ± 0.78
non-Ncycle MMM CMIP5c 120.64 ± 2.23 45.22 ± 1.1 75.41 ± 1.26 63.41 ± 1.1
Ncycle MMM CMIP6c 99.85 ± 1.59 37.89 ± 1.05 61.95 ± 0.64 51.53 ± 0.57
non-Ncycle MMM CMIP6c 114.3 ± 2.6 41.57 ± 1.45 72.73 ± 1.22 62.09 ± 1.04
Ncycle MMM CMIP6e 105.18 ± 2.15 39.59 ± 1.32 65.59 ± 1.09 54.68 ± 0.91
non-Ncycle MMM CMIP6e 111.52 ± 2.12 42.71 ± 1.38 68.81 ± 1.05 58.57 ± 0.87

Table B.4.: GPP Trend for 1986-2005 [PgC yr−2]

Model Global NH SH Tropics

BNU-ESM
CMIP5e

0.3915 ± 0.0353 0.1594 ± 0.0357 0.2321 ± 0.0283 0.1665 ± 0.026

BNU-ESM
CMIP5c

0.3177 ± 0.0272 0.2067 ± 0.023 0.111 ± 0.0258 0.1123 ± 0.0257

CESM1-BGC
CMIP5e

0.2964 ± 0.0552 0.1536 ± 0.0246 0.1428 ± 0.0395 0.1127 ± 0.0359

CESM1-BGC
CMIP5c

0.2269 ± 0.0419 0.0828 ± 0.0242 0.1441 ± 0.0254 0.1322 ± 0.02

CanESM2
CMIP5e

0.1535 ± 0.1023 0.113 ± 0.0215 0.0405 ± 0.1098 0.0422 ± 0.0818

CanESM2
CMIP5c

0.1575 ± 0.0886 0.0826 ± 0.0222 0.075 ± 0.0812 0.0879 ± 0.0681

FIO-ESM
CMIP5e

0.3111 ± 0.0536 0.1364 ± 0.0228 0.1746 ± 0.0536 0.1641 ± 0.0502

GFDL-ESM2G
CMIP5e

0.4753 ± 0.1595 0.161 ± 0.0312 0.3143 ± 0.1598 0.2258 ± 0.0971

GFDL-ESM2G
CMIP5c

0.4292 ± 0.098 0.2338 ± 0.0376 0.1955 ± 0.1043 0.1751 ± 0.0672
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Table B.4.: GPP Trend for 1986-2005 [PgC yr−2]

Model Global NH SH Tropics

GFDL-ESM2M
CMIP5e

0.1855 ± 0.2006 0.0493 ± 0.0553 0.1362 ± 0.2171 0.1544 ± 0.1496

GFDL-ESM2M
CMIP5c

0.2511 ± 0.2294 0.1939 ± 0.0321 0.0571 ± 0.2438 0.1613 ± 0.166

HadGEM2-CC
CMIP5c

0.4561 ± 0.0713 0.2295 ± 0.0498 0.2266 ± 0.0649 0.2017 ± 0.069

HadGEM2-ES
CMIP5c

0.5642 ± 0.0741 0.159 ± 0.0395 0.4051 ± 0.0774 0.3473 ± 0.0763

IPSL-CM5A-LR
CMIP5c

0.2351 ± 0.0689 0.2287 ± 0.0394 0.0064 ± 0.0635 0.0757 ± 0.0559

IPSL-CM5A-MR
CMIP5c

0.4459 ± 0.0747 0.2547 ± 0.0519 0.1913 ± 0.0657 0.2099 ± 0.0574

IPSL-CM5B-LR
CMIP5c

0.3361 ± 0.0697 0.2477 ± 0.0336 0.0884 ± 0.0716 0.0885 ± 0.0619

MIROC-ESM-
CHEM CMIP5c

0.3517 ± 0.0552 0.1065 ± 0.0287 0.2452 ± 0.0517 0.2028 ± 0.0443

MIROC-ESM
CMIP5e

0.3434 ± 0.0589 0.1697 ± 0.0404 0.1738 ± 0.0613 0.1635 ± 0.0469

MIROC-ESM
CMIP5c

0.3824 ± 0.061 0.129 ± 0.0285 0.2534 ± 0.0556 0.2379 ± 0.0416

MPI-ESM-LR
CMIP5e

0.3901 ± 0.0835 0.2193 ± 0.0505 0.1709 ± 0.0881 0.1509 ± 0.0378

MPI-ESM-LR
CMIP5c

0.5023 ± 0.1059 0.1328 ± 0.0358 0.3695 ± 0.1157 0.2491 ± 0.0484

MPI-ESM-MR
CMIP5c

0.5187 ± 0.0816 0.2771 ± 0.0523 0.2415 ± 0.0727 0.2042 ± 0.0405

MRI-ESM1
CMIP5e

0.2532 ± 0.1083 0.0754 ± 0.0558 0.1777 ± 0.0678 0.1459 ± 0.0596

NorESM1-ME
CMIP5e

0.249 ± 0.037 0.12 ± 0.0214 0.129 ± 0.0349 0.1087 ± 0.0349

NorESM1-ME
CMIP5c

0.2346 ± 0.0367 0.1483 ± 0.0192 0.0862 ± 0.0318 0.0794 ± 0.0268

inmcm4 CMIP5c 0.1868 ± 0.0651 0.0665 ± 0.0276 0.1203 ± 0.0611 0.0776 ± 0.0546
ACCESS-ESM1-5
CMIP6e

0.1563 ± 0.0361 0.1833 ± 0.0153 -0.0269 ± 0.0366 -0.0358 ± 0.034
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Table B.4.: GPP Trend for 1986-2005 [PgC yr−2]

Model Global NH SH Tropics

ACCESS-ESM1-5
CMIP6c

0.03 ± 0.0503 0.146 ± 0.011 -0.116 ± 0.0509 -0.0997 ± 0.046

CESM2-WACCM
CMIP6c

0.2483 ± 0.0368 0.1584 ± 0.0245 0.0899 ± 0.028 0.0957 ± 0.0206

CESM2 CMIP6c 0.3699 ± 0.0433 0.2041 ± 0.0273 0.1658 ± 0.0385 0.1402 ± 0.0306
CMCC-CM2-SR5
CMIP6c

0.275 ± 0.0566 0.1526 ± 0.0351 0.1224 ± 0.0477 0.0931 ± 0.0278

CMCC-ESM2
CMIP6c

0.2432 ± 0.032 0.1699 ± 0.0283 0.0732 ± 0.0328 0.0556 ± 0.0212

CNRM-ESM2-1
CMIP6e

0.0254 ± 0.0855 0.1013 ± 0.0376 -0.0759 ± 0.0795 -0.0334 ± 0.045

CNRM-ESM2-1
CMIP6c

0.2927 ± 0.0639 0.2179 ± 0.0424 0.0749 ± 0.062 0.0456 ± 0.0354

CanESM5-
CanOE CMIP6e

0.3806 ± 0.0666 0.1786 ± 0.0312 0.2019 ± 0.0517 0.1724 ± 0.0406

CanESM5-
CanOE CMIP6c

0.4188 ± 0.0691 0.1931 ± 0.0252 0.2256 ± 0.0636 0.1936 ± 0.051

CanESM5
CMIP6e

0.3736 ± 0.0545 0.1698 ± 0.0268 0.2038 ± 0.0499 0.1356 ± 0.0364

CanESM5
CMIP6c

0.3238 ± 0.0402 0.143 ± 0.0272 0.1808 ± 0.026 0.1474 ± 0.0211

EC-Earth3-CC
CMIP6e

0.4508 ± 0.0697 0.335 ± 0.0451 0.1159 ± 0.052 0.1045 ± 0.029

EC-Earth3-CC
CMIP6c

0.2899 ± 0.0724 0.2531 ± 0.0357 0.0369 ± 0.0578 0.0732 ± 0.0407

EC-Earth3-Veg
CMIP6c

0.2826 ± 0.0613 0.2198 ± 0.0319 0.0628 ± 0.0489 0.097 ± 0.0325

GFDL-ESM4
CMIP6e

0.3558 ± 0.0449 0.1912 ± 0.0223 0.1645 ± 0.0485 0.1283 ± 0.0438

GFDL-ESM4
CMIP6c

0.1299 ± 0.069 0.1378 ± 0.0236 -0.0079 ± 0.0643 -0.0335 ± 0.0472

INM-CM4-8
CMIP6c

0.5962 ± 0.0823 0.1647 ± 0.0249 0.4314 ± 0.0631 0.3916 ± 0.0546

INM-CM5-0
CMIP6c

0.3037 ± 0.0746 0.1643 ± 0.0314 0.1394 ± 0.0504 0.1419 ± 0.0427
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Table B.4.: GPP Trend for 1986-2005 [PgC yr−2]

Model Global NH SH Tropics

IPSL-CM6A-LR
CMIP6c

0.4168 ± 0.0369 0.1655 ± 0.0233 0.2512 ± 0.0446 0.2223 ± 0.0316

MIROC-ES2L
CMIP6e

0.2258 ± 0.0223 0.1439 ± 0.0232 0.0819 ± 0.0134 0.078 ± 0.0103

MIROC-ES2L
CMIP6c

0.2643 ± 0.0295 0.1505 ± 0.0295 0.1138 ± 0.0201 0.105 ± 0.0173

MPI-ESM-1-2-
HAM CMIP6c

0.7854 ± 0.136 0.3564 ± 0.0625 0.429 ± 0.1046 0.371 ± 0.075

MPI-ESM1-2-LR
CMIP6e

0.4284 ± 0.1123 0.2526 ± 0.0273 0.1758 ± 0.1121 0.1707 ± 0.0784

MPI-ESM1-2-LR
CMIP6c

0.5008 ± 0.0854 0.2469 ± 0.044 0.2539 ± 0.0763 0.2459 ± 0.0491

MRI-ESM2-0
CMIP6e

0.4292 ± 0.1318 0.4558 ± 0.0525 -0.0266 ± 0.1186 -0.0055 ± 0.108

MRI-ESM2-0
CMIP6c

0.6198 ± 0.1118 0.5943 ± 0.069 0.0254 ± 0.083 0.0384 ± 0.0723

NorESM2-LM
CMIP6e

0.2863 ± 0.0433 0.1435 ± 0.0213 0.1429 ± 0.0332 0.1232 ± 0.029

NorESM2-LM
CMIP6c

0.2658 ± 0.0363 0.1524 ± 0.0266 0.1135 ± 0.0317 0.0902 ± 0.0296

NorESM2-MM
CMIP6c

0.2231 ± 0.0491 0.1395 ± 0.0152 0.0836 ± 0.0505 0.0667 ± 0.0406

SAM0-UNICON
CMIP6c

0.2424 ± 0.0624 0.1189 ± 0.0247 0.1234 ± 0.0642 0.1242 ± 0.064

TaiESM1 CMIP6c 0.2062 ± 0.0334 0.1346 ± 0.0259 0.0716 ± 0.0269 0.0599 ± 0.0216
UKESM1-0-LL
CMIP6e

0.461 ± 0.0834 0.2334 ± 0.0454 0.2277 ± 0.0993 0.2065 ± 0.0864

UKESM1-0-LL
CMIP6c

0.1936 ± 0.1111 0.1672 ± 0.0442 0.0264 ± 0.1086 0.0476 ± 0.0874

GLASS 0.4466 ± 0.0871 0.1759 ± 0.0337 0.2707 ± 0.0646 0.1939 ± 0.0502
FLUXCOM - - - -
MTE - - - -
Ncycle MMM
CMIP5e

0.2727 ± 0.0388 0.1368 ± 0.0158 0.1359 ± 0.031 0.1107 ± 0.0293
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Table B.4.: GPP Trend for 1986-2005 [PgC yr−2]

Model Global NH SH Tropics

non-Ncycle
MMM CMIP5e

0.3127 ± 0.0367 0.1354 ± 0.0176 0.1774 ± 0.0444 0.1516 ± 0.0306

Ncycle MMM
CMIP5c

0.2307 ± 0.0332 0.1156 ± 0.0179 0.1152 ± 0.0217 0.1058 ± 0.0187

non-Ncycle
MMM CMIP5c

0.3657 ± 0.0224 0.1816 ± 0.0092 0.1841 ± 0.0251 0.1731 ± 0.0163

Ncycle MMM
CMIP6c

0.2594 ± 0.0162 0.1722 ± 0.0098 0.0871 ± 0.0148 0.0853 ± 0.0106

non-Ncycle
MMM CMIP6c

0.4317 ± 0.0191 0.2374 ± 0.014 0.1943 ± 0.0164 0.1686 ± 0.012

Ncycle MMM
CMIP6e

0.3336 ± 0.0335 0.2147 ± 0.0146 0.119 ± 0.0334 0.1073 ± 0.0258

non-Ncycle
MMM CMIP6e

0.3128 ± 0.0413 0.2193 ± 0.0187 0.0935 ± 0.0357 0.0794 ± 0.0293

Table B.5.: NBP Mean for 1986-2005 [PgC yr−1]

Model Global NH SH Tropics

BNU-ESM CMIP5e 0.36 ± 0.92 0.39 ± 0.69 -0.03 ± 0.94 0.01 ± 0.96
BNU-ESM CMIP5c 1.32 ± 1.15 0.89 ± 0.59 0.43 ± 1.04 0.39 ± 0.99
CESM1-BGC CMIP5e -0.08 ± 0.97 0.06 ± 0.52 -0.14 ± 0.65 -0.11 ± 0.55
CESM1-BGC CMIP5c -0.14 ± 0.67 0.02 ± 0.36 -0.17 ± 0.6 -0.12 ± 0.41
CanESM2 CMIP5e 0.3 ± 2.47 0.23 ± 0.54 0.08 ± 2.59 0.12 ± 1.94
CanESM2 CMIP5c 0.21 ± 2.07 0.11 ± 0.34 0.1 ± 1.89 0.07 ± 1.4
FIO-ESM CMIP5e 1.84 ± 0.64 0.78 ± 0.17 1.06 ± 0.61 0.91 ± 0.62
GFDL-ESM2G CMIP5e 0.9 ± 2.95 0.39 ± 0.78 0.5 ± 2.83 0.23 ± 2.01
GFDL-ESM2G CMIP5c 0.62 ± 2.16 0.39 ± 0.9 0.23 ± 1.86 0.01 ± 1.3
GFDL-ESM2M CMIP5e 0.31 ± 3.0 0.22 ± 1.09 0.08 ± 3.54 0.02 ± 2.74
GFDL-ESM2M CMIP5c 0.55 ± 3.91 0.29 ± 0.94 0.26 ± 4.04 0.09 ± 3.22
HadGEM2-CC CMIP5c 0.98 ± 1.29 0.82 ± 0.67 0.16 ± 1.06 0.09 ± 1.02
HadGEM2-ES CMIP5c 1.35 ± 1.21 0.76 ± 0.39 0.58 ± 1.17 0.53 ± 1.09
IPSL-CM5A-LR CMIP5c 0.73 ± 1.16 0.45 ± 0.6 0.27 ± 1.07 0.36 ± 0.99
IPSL-CM5A-MR CMIP5c 0.97 ± 1.46 0.44 ± 0.77 0.53 ± 1.26 0.63 ± 1.12
IPSL-CM5B-LR CMIP5c 1.57 ± 1.31 0.84 ± 0.48 0.73 ± 1.33 0.75 ± 1.22
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Table B.5.: NBP Mean for 1986-2005 [PgC yr−1]

Model Global NH SH Tropics

MIROC-ESM-CHEM CMIP5c 1.68 ± 1.41 0.91 ± 0.51 0.77 ± 1.27 0.61 ± 1.1
MIROC-ESM CMIP5e 1.19 ± 1.66 1.28 ± 0.59 -0.1 ± 1.53 -0.16 ± 1.31
MIROC-ESM CMIP5c 0.65 ± 1.52 1.14 ± 0.61 -0.49 ± 1.37 -0.44 ± 1.06
MPI-ESM-LR CMIP5e 1.28 ± 1.16 1.2 ± 0.69 0.08 ± 0.94 -0.02 ± 0.45
MPI-ESM-LR CMIP5c 1.49 ± 1.72 1.08 ± 0.64 0.41 ± 1.39 0.11 ± 0.77
MPI-ESM-MR CMIP5c 1.69 ± 1.25 1.24 ± 0.63 0.45 ± 1.01 0.19 ± 0.64
MRI-ESM1 CMIP5e 2.05 ± 0.98 1.76 ± 0.54 0.29 ± 0.8 0.29 ± 0.74
NorESM1-ME CMIP5e -0.11 ± 0.55 -0.02 ± 0.42 -0.1 ± 0.55 -0.09 ± 0.45
NorESM1-ME CMIP5c -0.08 ± 0.84 -0.04 ± 0.37 -0.04 ± 0.71 -0.05 ± 0.58
inmcm4 CMIP5c 2.18 ± 1.15 0.72 ± 0.5 1.46 ± 1.07 1.27 ± 0.97
ACCESS-ESM1-5 CMIP6e 1.31 ± 0.72 0.84 ± 0.34 0.47 ± 0.75 0.36 ± 0.64
ACCESS-ESM1-5 CMIP6c 0.77 ± 1.13 0.78 ± 0.31 -0.01 ± 0.97 -0.06 ± 0.84
CESM2-WACCM CMIP6c 1.03 ± 0.54 0.51 ± 0.34 0.52 ± 0.35 0.5 ± 0.23
CESM2 CMIP6c 1.08 ± 0.58 0.6 ± 0.32 0.49 ± 0.4 0.46 ± 0.35
CMCC-CM2-SR5 CMIP6c 0.89 ± 1.12 0.19 ± 0.58 0.7 ± 0.89 0.63 ± 0.54
CMCC-ESM2 CMIP6c 0.89 ± 0.63 0.22 ± 0.52 0.67 ± 0.57 0.62 ± 0.35
CNRM-ESM2-1 CMIP6e 1.86 ± 1.02 1.46 ± 0.45 0.4 ± 0.82 0.25 ± 0.52
CNRM-ESM2-1 CMIP6c 1.89 ± 0.69 1.55 ± 0.53 0.34 ± 0.65 0.16 ± 0.44
CanESM5-CanOE CMIP6e 0.51 ± 1.46 0.13 ± 0.51 0.38 ± 1.15 0.41 ± 1.0
CanESM5-CanOE CMIP6c 0.08 ± 1.87 -0.05 ± 0.52 0.13 ± 1.54 0.21 ± 1.36
CanESM5 CMIP6e 0.62 ± 1.29 0.19 ± 0.32 0.43 ± 1.12 0.39 ± 0.95
CanESM5 CMIP6c 0.44 ± 0.69 0.15 ± 0.32 0.29 ± 0.51 0.35 ± 0.47
EC-Earth3-CC CMIP6e 0.62 ± 1.77 0.6 ± 0.86 0.01 ± 1.48 0.28 ± 1.02
EC-Earth3-CC CMIP6c 0.44 ± 1.8 0.51 ± 1.0 -0.07 ± 1.73 0.16 ± 1.36
EC-Earth3-Veg CMIP6c 0.49 ± 1.69 0.41 ± 0.79 0.08 ± 1.36 0.27 ± 1.12
GFDL-ESM4 CMIP6e 0.28 ± 1.28 0.19 ± 0.35 0.09 ± 1.12 0.12 ± 1.04
GFDL-ESM4 CMIP6c -0.13 ± 1.63 -0.08 ± 0.38 -0.05 ± 1.44 0.05 ± 1.15
INM-CM4-8 CMIP6c 4.46 ± 2.21 1.55 ± 0.75 2.91 ± 1.54 2.55 ± 1.23
INM-CM5-0 CMIP6c 3.7 ± 2.05 1.44 ± 0.85 2.25 ± 1.36 1.94 ± 1.19
IPSL-CM6A-LR CMIP6c 1.06 ± 0.72 0.83 ± 0.21 0.22 ± 0.71 0.19 ± 0.57
MIROC-ES2L CMIP6e 1.61 ± 0.64 1.38 ± 0.34 0.23 ± 0.52 0.27 ± 0.42
MIROC-ES2L CMIP6c 1.99 ± 1.24 1.49 ± 0.4 0.5 ± 1.03 0.46 ± 0.95
MPI-ESM-1-2-HAM CMIP6c 1.04 ± 1.31 0.33 ± 0.4 0.71 ± 1.19 0.58 ± 0.91
MPI-ESM1-2-LR CMIP6e 1.09 ± 1.47 0.59 ± 0.42 0.5 ± 1.46 0.45 ± 1.15
MPI-ESM1-2-LR CMIP6c 0.89 ± 1.06 0.44 ± 0.52 0.45 ± 1.03 0.42 ± 0.82
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Table B.5.: NBP Mean for 1986-2005 [PgC yr−1]

Model Global NH SH Tropics

MRI-ESM2-0 CMIP6e 1.33 ± 1.42 1.42 ± 0.65 -0.09 ± 1.3 -0.16 ± 1.25
MRI-ESM2-0 CMIP6c 1.54 ± 1.21 1.56 ± 0.72 -0.02 ± 1.16 -0.05 ± 1.05
NorESM2-LM CMIP6e 1.08 ± 0.66 0.53 ± 0.37 0.55 ± 0.39 0.52 ± 0.36
NorESM2-LM CMIP6c 0.94 ± 0.53 0.44 ± 0.3 0.5 ± 0.39 0.46 ± 0.39
NorESM2-MM CMIP6c 1.07 ± 0.69 0.58 ± 0.25 0.49 ± 0.5 0.44 ± 0.44
SAM0-UNICON CMIP6c 0.06 ± 1.02 -0.01 ± 0.58 0.07 ± 1.14 0.09 ± 0.97
TaiESM1 CMIP6c -0.11 ± 0.8 0.13 ± 0.45 -0.24 ± 0.83 -0.19 ± 0.4
UKESM1-0-LL CMIP6e 1.0 ± 1.06 0.63 ± 0.38 0.38 ± 1.18 0.3 ± 0.96
UKESM1-0-LL CMIP6c 0.63 ± 1.01 0.37 ± 0.29 0.26 ± 1.1 0.22 ± 0.93
CAMS 1.72 ± 0.98 1.86 ± 0.47 -0.14 ± 0.74 -0.47 ± 0.59
Jena_CarboScope 0.71 ± 0.94 1.25 ± 0.36 -0.54 ± 0.72 -0.24 ± 0.62
GCP 1.0 ± 0.84 NaN NaN NaN
Ncycle MMM CMIP5e -0.09 ± 0.59 0.02 ± 0.36 -0.12 ± 0.45 -0.1 ± 0.41
non-Ncycle MMM CMIP5e 1.0 ± 0.68 0.71 ± 0.3 0.29 ± 0.76 0.22 ± 0.59
Ncycle MMM CMIP5c -0.11 ± 0.48 -0.01 ± 0.29 -0.1 ± 0.43 -0.09 ± 0.34
non-Ncycle MMM CMIP5c 1.14 ± 0.66 0.67 ± 0.29 0.47 ± 0.52 0.37 ± 0.43
Ncycle MMM CMIP6c 0.84 ± 0.34 0.48 ± 0.16 0.37 ± 0.28 0.34 ± 0.22
non-Ncycle MMM CMIP6c 1.56 ± 0.62 0.81 ± 0.25 0.76 ± 0.47 0.66 ± 0.39
Ncycle MMM CMIP6e 1.22 ± 0.57 0.79 ± 0.24 0.43 ± 0.54 0.38 ± 0.42
non-Ncycle MMM CMIP6e 0.92 ± 0.48 0.68 ± 0.27 0.24 ± 0.39 0.2 ± 0.36

Table B.6.: NBP Trend for 1986-2005 [PgC yr−2]

Model Global NH SH Tropics

BNU-ESM
CMIP5e

0.0343 ± 0.0358 0.0217 ± 0.0269 0.0127 ± 0.0373 -0.0003 ± 0.0385

BNU-ESM
CMIP5c

-0.0049 ± 0.0457 -0.0067 ± 0.0235 0.0018 ± 0.0415 0.0087 ± 0.0396

CESM1-BGC
CMIP5e

0.0468 ± 0.037 0.0331 ± 0.0192 0.0137 ± 0.0256 0.0117 ± 0.0219

CESM1-BGC
CMIP5c

0.0251 ± 0.0259 0.0255 ± 0.0131 -0.0003 ± 0.024 0.0037 ± 0.0164

CanESM2
CMIP5e

-0.0427 ± 0.0979 0.0048 ± 0.0216 -0.0475 ± 0.1028 -0.0404 ± 0.0767
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Table B.6.: NBP Trend for 1986-2005 [PgC yr−2]

Model Global NH SH Tropics

CanESM2
CMIP5c

-0.0579 ± 0.0815 -0.0105 ± 0.0135 -0.0473 ± 0.0746 -0.0264 ± 0.0555

FIO-ESM
CMIP5e

0.0323 ± 0.0243 0.0128 ± 0.006 0.0195 ± 0.024 0.0218 ± 0.0242

GFDL-ESM2G
CMIP5e

0.0966 ± 0.1154 0.0597 ± 0.0276 0.037 ± 0.1126 0.0378 ± 0.0796

GFDL-ESM2G
CMIP5c

0.0726 ± 0.0845 0.0578 ± 0.0332 0.0148 ± 0.074 0.0319 ± 0.0514

GFDL-ESM2M
CMIP5e

-0.0084 ± 0.1195 0.0012 ± 0.0434 -0.0096 ± 0.1412 -0.0308 ± 0.1091

GFDL-ESM2M
CMIP5c

0.0941 ± 0.1543 0.0595 ± 0.0349 0.0347 ± 0.1607 0.047 ± 0.1277

HadGEM2-CC
CMIP5c

0.1189 ± 0.0439 0.0694 ± 0.0214 0.0495 ± 0.0411 0.034 ± 0.0405

HadGEM2-ES
CMIP5c

0.1342 ± 0.0374 0.0448 ± 0.0118 0.0893 ± 0.0422 0.0667 ± 0.0411

IPSL-CM5A-LR
CMIP5c

0.0674 ± 0.0435 0.0511 ± 0.0209 0.0162 ± 0.0424 0.0205 ± 0.0391

IPSL-CM5A-MR
CMIP5c

0.0369 ± 0.0575 0.0219 ± 0.0302 0.0151 ± 0.0503 0.0138 ± 0.0446

IPSL-CM5B-LR
CMIP5c

0.0204 ± 0.0518 0.0379 ± 0.0169 -0.0175 ± 0.0527 -0.0116 ± 0.0484

MIROC-ESM-
CHEM CMIP5c

0.0672 ± 0.054 0.0082 ± 0.0201 0.0591 ± 0.0484 0.0493 ± 0.0424

MIROC-ESM
CMIP5e

0.1939 ± 0.0477 0.0203 ± 0.0229 0.1736 ± 0.0453 0.1644 ± 0.035

MIROC-ESM
CMIP5c

0.105 ± 0.0553 0.0004 ± 0.0242 0.1046 ± 0.0487 0.0925 ± 0.0364

MPI-ESM-LR
CMIP5e

0.0116 ± 0.046 0.0065 ± 0.0275 0.0051 ± 0.0372 0.0074 ± 0.0179

MPI-ESM-LR
CMIP5c

0.0878 ± 0.0655 0.0575 ± 0.0218 0.0303 ± 0.0551 0.033 ± 0.0296

MPI-ESM-MR
CMIP5c

0.0474 ± 0.0487 0.0335 ± 0.0236 0.0139 ± 0.0402 0.0119 ± 0.0254
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Table B.6.: NBP Trend for 1986-2005 [PgC yr−2]

Model Global NH SH Tropics

MRI-ESM1
CMIP5e

-0.0085 ± 0.0391 -0.0036 ± 0.0215 -0.0049 ± 0.0318 -0.0103 ± 0.0294

NorESM1-ME
CMIP5e

0.0399 ± 0.0198 0.0158 ± 0.0162 0.024 ± 0.0211 0.0238 ± 0.0172

NorESM1-ME
CMIP5c

0.0213 ± 0.033 0.0286 ± 0.0132 -0.0073 ± 0.0282 -0.0087 ± 0.0232

inmcm4 CMIP5c 0.0176 ± 0.0457 0.0135 ± 0.0198 0.0042 ± 0.0427 -0.0169 ± 0.0384
ACCESS-ESM1-5
CMIP6e

-0.0457 ± 0.0266 0.0185 ± 0.0129 -0.0642 ± 0.0257 -0.0521 ± 0.0222

ACCESS-ESM1-5
CMIP6c

-0.11 ± 0.0366 -0.0195 ± 0.0115 -0.0906 ± 0.0323 -0.0735 ± 0.0288

CESM2-WACCM
CMIP6c

0.0307 ± 0.0202 0.0203 ± 0.0127 0.0105 ± 0.0137 0.011 ± 0.0088

CESM2 CMIP6c 0.0631 ± 0.0179 0.0302 ± 0.0104 0.0329 ± 0.0141 0.0292 ± 0.0122
CMCC-CM2-SR5
CMIP6c

0.0156 ± 0.0447 -0.0046 ± 0.0233 0.0202 ± 0.0351 0.0145 ± 0.0213

CMCC-ESM2
CMIP6c

0.0217 ± 0.0246 0.011 ± 0.0206 0.0107 ± 0.0226 0.0091 ± 0.0137

CNRM-ESM2-1
CMIP6e

-0.0198 ± 0.0405 0.0175 ± 0.0174 -0.0373 ± 0.0315 -0.0247 ± 0.0201

CNRM-ESM2-1
CMIP6c

0.0343 ± 0.0263 0.0406 ± 0.0189 -0.0064 ± 0.0259 -0.0063 ± 0.0175

CanESM5-
CanOE CMIP6e

0.0559 ± 0.0568 0.0509 ± 0.0162 0.005 ± 0.046 0.01 ± 0.0399

CanESM5-
CanOE CMIP6c

0.0923 ± 0.0712 0.0572 ± 0.0159 0.0352 ± 0.0608 0.0353 ± 0.0535

CanESM5
CMIP6e

-0.0218 ± 0.0512 0.0109 ± 0.0124 -0.0327 ± 0.0439 -0.0484 ± 0.0362

CanESM5
CMIP6c

-0.0028 ± 0.0273 0.0117 ± 0.0127 -0.0145 ± 0.0198 -0.0122 ± 0.0184

EC-Earth3-CC
CMIP6e

0.0115 ± 0.0703 0.033 ± 0.0332 -0.0216 ± 0.0587 -0.0121 ± 0.0406

EC-Earth3-CC
CMIP6c

0.0138 ± 0.0715 -0.0066 ± 0.0397 0.0205 ± 0.0686 0.0151 ± 0.0539
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Table B.6.: NBP Trend for 1986-2005 [PgC yr−2]

Model Global NH SH Tropics

EC-Earth3-Veg
CMIP6c

-0.0126 ± 0.0672 0.0324 ± 0.0306 -0.045 ± 0.0533 -0.0237 ± 0.0444

GFDL-ESM4
CMIP6e

0.0603 ± 0.0492 0.0292 ± 0.0119 0.0311 ± 0.0442 0.0304 ± 0.0409

GFDL-ESM4
CMIP6c

-0.0066 ± 0.0649 0.0197 ± 0.0143 -0.0263 ± 0.057 -0.0383 ± 0.045

INM-CM4-8
CMIP6c

0.0267 ± 0.088 0.004 ± 0.0298 0.0228 ± 0.0611 0.0229 ± 0.0487

INM-CM5-0
CMIP6c

-0.0705 ± 0.0801 -0.002 ± 0.034 -0.0685 ± 0.0519 -0.0462 ± 0.0462

IPSL-CM6A-LR
CMIP6c

0.0542 ± 0.0255 0.0158 ± 0.0077 0.0384 ± 0.0269 0.0305 ± 0.0217

MIROC-ES2L
CMIP6e

0.0081 ± 0.0253 0.0155 ± 0.0131 -0.0074 ± 0.0208 -0.0078 ± 0.0165

MIROC-ES2L
CMIP6c

-0.0516 ± 0.0477 -0.0141 ± 0.0156 -0.0375 ± 0.0402 -0.0319 ± 0.037

MPI-ESM-1-2-
HAM CMIP6c

0.0718 ± 0.0496 0.021 ± 0.0152 0.0508 ± 0.0459 0.0473 ± 0.0344

MPI-ESM1-2-LR
CMIP6e

0.0644 ± 0.0565 0.0436 ± 0.0134 0.0208 ± 0.0578 0.0212 ± 0.0456

MPI-ESM1-2-LR
CMIP6c

0.0487 ± 0.0407 0.0327 ± 0.0191 0.016 ± 0.041 0.0279 ± 0.0319

MRI-ESM2-0
CMIP6e

0.0356 ± 0.0561 0.0595 ± 0.0215 -0.0239 ± 0.0514 -0.0229 ± 0.0494

MRI-ESM2-0
CMIP6c

0.0425 ± 0.0473 0.0975 ± 0.0169 -0.055 ± 0.0444 -0.0489 ± 0.0404

NorESM2-LM
CMIP6e

0.0472 ± 0.024 0.0205 ± 0.0141 0.0266 ± 0.0141 0.0249 ± 0.0129

NorESM2-LM
CMIP6c

0.0367 ± 0.0191 0.0206 ± 0.0111 0.0161 ± 0.0151 0.0157 ± 0.0152

NorESM2-MM
CMIP6c

0.0179 ± 0.0273 0.0103 ± 0.0098 0.0076 ± 0.0198 0.0052 ± 0.0174

SAM0-UNICON
CMIP6c

0.0417 ± 0.0394 0.0177 ± 0.0226 0.024 ± 0.0452 0.0219 ± 0.0383

TaiESM1 CMIP6c -0.0034 ± 0.032 0.0129 ± 0.0176 -0.0162 ± 0.0327 -0.0092 ± 0.0159
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Table B.6.: NBP Trend for 1986-2005 [PgC yr−2]

Model Global NH SH Tropics

UKESM1-0-LL
CMIP6e

0.0335 ± 0.042 0.0409 ± 0.0122 -0.0074 ± 0.0475 -0.0034 ± 0.039

UKESM1-0-LL
CMIP6c

-0.0341 ± 0.0399 0.0193 ± 0.011 -0.0534 ± 0.0425 -0.0504 ± 0.0356

CAMS 0.0545 ± 0.037 0.0238 ± 0.0178 0.0307 ± 0.0285 0.0186 ± 0.0232
Jena_CarboScope 0.0006 ± 0.0374 0.0085 ± 0.0143 -0.0079 ± 0.0287 -0.0038 ± 0.0246
GCP 0.0255 ± 0.033 NaN NaN NaN
Ncycle MMM
CMIP5e

0.0433 ± 0.0213 0.0245 ± 0.0133 0.0189 ± 0.0175 0.0177 ± 0.0158

non-Ncycle
MMM CMIP5e

0.0164 ± 0.027 0.0147 ± 0.0113 0.0017 ± 0.0304 -0.0021 ± 0.0236

Ncycle MMM
CMIP5c

0.0232 ± 0.0185 0.0271 ± 0.0094 -0.0038 ± 0.0171 -0.0025 ± 0.0136

non-Ncycle
MMM CMIP5c

0.0526 ± 0.0232 0.0357 ± 0.0082 0.0169 ± 0.0204 0.0176 ± 0.0167

Ncycle MMM
CMIP6c

0.0064 ± 0.0133 0.0114 ± 0.0057 -0.0049 ± 0.0109 -0.0025 ± 0.0086

non-Ncycle
MMM CMIP6c

0.0269 ± 0.024 0.0295 ± 0.007 -0.0026 ± 0.0187 -0.0018 ± 0.0155

Ncycle MMM
CMIP6e

0.0214 ± 0.022 0.0277 ± 0.0068 -0.0063 ± 0.0216 -0.0034 ± 0.0168

non-Ncycle
MMM CMIP6e

0.022 ± 0.0184 0.0336 ± 0.0076 -0.0116 ± 0.0153 -0.0111 ± 0.014

B.2. Mean Carbon stocks

Data values for Figure 5.15.

Table B.7.: Carbon Storage Totals [PgC]

cVeg cSoil + cLitter

BNU-ESM CMIP5e 1205 856
BNU-ESM CMIP5c 1259 913
CESM1-BGC CMIP5e 538 515
CESM1-BGC CMIP5c 532 513
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Table B.7.: Carbon Storage Totals [PgC]

cVeg cSoil + cLitter

GFDL-ESM2G CMIP5e 680 1434
GFDL-ESM2G CMIP5c 660 1422
GFDL-ESM2M CMIP5e 802 1292
GFDL-ESM2M CMIP5c 766 1279
HadGEM2-CC CMIP5c 445 1103
HadGEM2-ES CMIP5c 458 1109
IPSL-CM5A-LR CMIP5c 634 1355
IPSL-CM5A-MR CMIP5c 639 1400
IPSL-CM5B-LR CMIP5c 501 1267
MIROC-ESM-CHEM CMIP5c 351 2567
MIROC-ESM CMIP5e 364 2564
MIROC-ESM CMIP5c 357 2572
MPI-ESM-LR CMIP5e 341 3039
MPI-ESM-LR CMIP5c 335 3036
MPI-ESM-MR CMIP5c 345 3092
MRI-ESM1 CMIP5e 562 1419
NorESM1-ME CMIP5e 556 552
NorESM1-ME CMIP5c 554 550
ACCESS-ESM1-5 CMIP6e 653 904
ACCESS-ESM1-5 CMIP6c 661 914
CESM2-WACCM CMIP6c 574 1201
CESM2 CMIP6c 482 1000
CMCC-CM2-SR5 CMIP6c 406 2908
CMCC-ESM2 CMIP6c 416 2913
CNRM-ESM2-1 CMIP6e 724 2279
CNRM-ESM2-1 CMIP6c 719 2281
CanESM5-CanOE CMIP6e 508 1475
CanESM5 CMIP6e 507 1470
CanESM5 CMIP6c 513 1486
EC-Earth3-CC CMIP6e 395 1546
EC-Earth3-CC CMIP6c 382 1535
EC-Earth3-Veg CMIP6c 333 1367
GFDL-ESM4 CMIP6c 342 514
IPSL-CM6A-LR CMIP6c 352 649
MIROC-ES2L CMIP6e 512 1417
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Table B.7.: Carbon Storage Totals [PgC]

cVeg cSoil + cLitter

MIROC-ES2L CMIP6c 531 1481
MPI-ESM-1-2-HAM CMIP6c 382 1030
MPI-ESM1-2-LR CMIP6e 370 977
MPI-ESM1-2-LR CMIP6c 367 980
MRI-ESM2-0 CMIP6e 478 1062
MRI-ESM2-0 CMIP6c 485 1224
NorESM2-LM CMIP6e 484 1014
NorESM2-LM CMIP6c 466 950
NorESM2-MM CMIP6c 471 898
SAM0-UNICON CMIP6c 590 577
TaiESM1 CMIP6c 498 525
UKESM1-0-LL CMIP6e 711 2100
UKESM1-0-LL CMIP6c 705 2118
OBS OBS historical 478 1561
Ncycle_mmm CMIP5e 547 534
non-Ncycle_mmm CMIP5e 521 2040
Ncycle_mmm CMIP5c 543 532
non-Ncycle_mmm CMIP5c 488 1920
Ncycle_mmm CMIP6c 485 1380
non-Ncycle_mmm CMIP6c 465 1197
Ncycle_mmm CMIP6e 510 1281
non-Ncycle_mmm CMIP6e 561 1618
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