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Abstract

Machine Learning (ML) has demonstrated its potential as a powerful technique to improve
the performance of an Earth System Model (ESM), yet many challenges remain. ESMs are
essential tools to project and understand climate change. While they have been improved over
the last decades, longstanding systematic errors compared to observations and uncertainties
in climate projections remain. Convective processes are in general unresolved as their typical
length scale is smaller than the grid size of ESMs. The effect of such subgrid processes is
traditionally taken into account with parameterizations. These parameterizations, such as
mass-flux schemes that represent the effect of convective processes on e.g., large-scale dy-
namic and thermodynamic fields, are often attributed to be the main sources of model errors
and translate into uncertainties in climate projections. A way to reduce these limitations of
ESMs is to take advantage of novel ML or deep learning (DL) algorithms that learn actively
on output from convection permitting high-resolution simulations. These high-resolution
simulations can resolve a large fraction of the relevant processes explicitly. The resulting
data-driven parameterizations are then coupled with an ESM and replace existing traditional
subgrid parameterizations in hybrid (physics + ML) ESMs. This thesis presents novel ap-
proaches to transform DL algorithms from data science concepts towards an operational use
in ESM simulations. First, a DL algorithm is developed that enables to better understand sub-
grid convective processes and interactions with the large-scale environment. Second, a novel
DL algorithm ensemble approach is developed, that provides an improved representation of
convective processes. Third, it is demonstrated that the more realistic uncertainty quantifica-
tion of the ensembles capturing the chaotic nature of subgrid processes reduces longstanding
biases in a hybrid model run of an ESM.

Specifically, a Variational Encoder Decoder (VED) is used to deep-learn and to interpret
subgrid convective processes in a superparameterized climate model with an aquaplanet
setup. The developed VED combines a realistic reproduction of convective processes and
disentangles large-scale drivers of convective processes and convective regimes in its latent
space, a lower dimensional manifold between the encoding and decoding part of the DL
model. In the latent space the information is compressed into only five latent nodes, which is a
substantial dimensionality reduction compared to artificial neural nets developed in previous
work. Interpreting the latent space allows a detailed investigation of drivers of convective
processes and convective regimes along distinct latent dimensions. The latent space of the
VED reveals that the temperature differences between the poles and the tropics in combination
with the characteristics of subtropical and subpolar air masses along the mid-latitude storm
tracks are key drivers of convective processes. Moreover, the VED separates key characteristics
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of shallow convective, cumulus, cirrus-like and deep convection regimes. This demonstrates
the improved understanding of convective processes gained with the latent space of a VED.

Apart from the improved understanding of convective processes with interpretable DL al-
gorithms, these algorithms can be combined to form ensembles. I constructed and coupled a
number of these DL ensembles to an ESM with realistic topography. This makes it possible
to account for uncertainties due to the chaotic nature of subgrid processes. Some of these
novel ensembles improve the representation of subgrid processes compared to individual DL
models. Moreover, the DL ensembles realistically capture the variability of subgrid processes
with their uncertainty quantification. This realistic uncertainty quantification is a crucial step
to enhance the trustworthiness of DL models for their application in hybrid ESMs. The two
best performing DL ensembles are then coupled to an ESM replacing the prediction of a
superparameterization except for cloud water tendencies. The resulting hybrid ESMs with
the two DL ensemble parameterizations run stably over more than five months. Compared
to a traditional convection scheme the novel DL schemes, despite some induced biases in
large-scale fields, improve the reproduction of precipitation extremes and the diurnal cycle of
continental precipitation similar to a superparameterization. This demonstrates the applica-
bility and advantages of DL ensemble parameterizations when coupled to an ESM, especially
over individual deterministic DL models that fail within the first days.

My thesis thus advances the modelling of convective processes with DL in Earth system
sciences via enhanced representation and understanding of convective processes in ESMs. It
provides ways to reduce limitations of state-of-the-art ML models and paves a way forward
to the operational use of DL and ML in the next generation of ESMs.
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1. Introduction

1.1. Motivation

In the last decades, our understanding of anthropogenic climate change has broadened due
to numerous studies that have been synthesized in the Intergovernmental Panel on Climate
Change (IPCC) assessment reports. These assessment reports are based on different phases
of the Coupled Model Intercomparison Project (CMIP) (Eyring et al. 2016), which consists
of orchestrated Earth System Model (ESM) simulations following a consistent experimental
protocol. An overarching aim of these ESMs is to skilfully represent the current and past
climate state of the Earth system (Eyring et al. 2016), which enables long-term climate projec-
tions throughout the 21𝑠𝑡 century. The climate itself is defined as the statistics of accumulated
weather phenomena in all components of the Earth system over a reference period (30 years
based on protocols of the World Meteorological Organisation (WMO), Gettelman and Rood
2016). The purpose of the ESMs is to represent these crucial statistics, internal variability,
effects of the anthropogenic forcing and other factors influencing the Earth system via the
primitive equations of resolved large-scale fields e.g., temperature or specific humidity in the
atmosphere in the past, present and future. However, this task of an ESM involves a crucial
scale separation between slower, large-scale processes that are directly simulated with the
numerical core of the ESM and faster, small-scale phenomena. Due to the typical coarse
horizontal resolution of ESMs e.g., 50 - 100 km, there are important processes for the climate
system acting on typical length scales below the ESM horizontal grid size, such as convection
i.e., the processes in a moist atmospheric environment that drive cloud formation, impact
radiation, the general circulation and many other large-scale processes that are resolved in
ESMs. Thus their effects have to be approximated via parameterizations in ESMs. Throughout
the thesis, I will refer to those small-scale processes that need to be parameterized as “subgrid
processes”. These subgrid processes are not explicitly represented in ESMs.

In the last decades, ESMs have substantially improved for example reducing the biases
in specific humidity fields compared to observations (Eyring et al. 2021). This progress in
Earth system modelling has led to the attribution of the recent climate change with virtual
certainty to anthropogenic causes (Eyring et al. 2021). Similarly key effects of climate change
like surface air temperatures warming, sea level rise, sea ice reduction in polar latitudes and
many other effects got more and more certain (IPCC 2021). Despite this significant progress
in Earth system modelling, long-standing systematic errors remain in ESMs compared to
observations and result in pronounced uncertainties in their future projections. One example
is the “double Inter-Tropical Convergence Zone bias” over the tropical southwestern Pacific
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1. Introduction

Ocean southeast of Papua New Guinea, where ESMs simulate too much precipitation in
comparison to observations (i.e., Bock et al. 2020). Another important example of uncertainties
in future projections is the persistent range of Equilibrium Climate Sensitivity (ECS). The
ECS is defined as the temperature difference before a doubling of the atmospheric carbon
dioxide (CO2) concentration and after reaching a steady state after the CO2 doubling (i.e., Bock
et al. 2020). In fact, current ESMs participating in the last CMIP phase (CMIP6) yield an
increased ECS range compared to previous phases (CMIP3 and CMIP5), with values between
1.8 𝐾

CO2 𝑑𝑜𝑢𝑏𝑙𝑖𝑛𝑔
to 5.6 𝐾

CO2 𝑑𝑜𝑢𝑏𝑙𝑖𝑛𝑔
(Schlund et al. 2020). In other words, the uncertainty

in ECS has grown despite substantial improvements in ESMs, partly associated with the
representation of clouds (Bock et al. 2020; Lauer et al. 2023). To a large extent, systematic
biases in ESMs and uncertainties in their future projections are associated with deficiencies of
traditional convection schemes (i.e., Bock et al. 2020; Bony et al. 2015; Gentine et al. 2021; Rasp
et al. 2018), see further details in chapter 2 of the thesis.

Storm Resolving Models (SRMs) with a horizontal resolution below 5 km overcome this
“convective deadlock” and the reliance on convection parameterizations to represent deep
convection (Gentine et al. 2018; Randall et al. 2003; Randall 2013). Deep convective processes
can be explicitly resolved with these high resolutions. Thus SRMs simulate the Inter-tropical
Convergence Zone, precipitation extremes or the diurnal cycle of precipitation with clearly
improved skill compared to ESMs (Satoh et al. 2019; Stevens et al. 2020). Despite these
encouraging results, SRM simulations remain computationally demanding. Therefore state-
of-the-art SRM runs are often restricted to periods from seasonal to annual time scales.

Deep Learning, where machine learning, an optimizable algorithm like a neural network,
performs a multi-dimensional nonlinear regression task with up to a millions degrees of
freedom, has already demonstrated great potential in learning subgrid processes in ESMs
(Gentine et al. 2021). Moreover, deep learning makes it possible to translate a large portion of
the advantages of SRM simulations into ESM simulations while decreasing the computational
costs compared to SRM simulations (Rasp et al. 2018). In such trailblazing “hybrid model
experiments”, deep neural networks and random forests based parameterizations, coupled
with the large-scale dynamics of the host general circulation model, have shown substantial
improvements in the performance of the ESM due to a better representation of the influence
of subgrid processes (Rasp et al. 2018; Yuval and O’Gorman 2020). Nevertheless, the com-
plexity of deep learning models with up to a million degrees of freedom severely limits their
interpretability and the overall understanding of the reproduced convective processes. In this
thesis, therefore, I develop novel deep learning network architectures that are by construction
highly interpretable. While the application of these interpretable deep learning techniques
has been restricted to idealized models and focused on single variables in climate science in the
past, I utilize here these techniques in a realistic setting based on multivariate climate model
data to broaden our understanding of convective processes and the large-scale environment
in which they occur. The application in a multivariate setting that is presented in this thesis
is a fundamental step from theoretical experiments towards more routine use of deep learn-
ing based postprocessing to help climate scientists to better understand complex simulated
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processes in ESMs. Furthermore, initial deep learning hybrid ESMs showed a weaker repro-
duction skill at pressure levels on which convective processes exhibit a more stochastic and
turbulent behaviour (e.g., Rasp et al. 2018), such as in the planetary boundary layer. Thus, it
is intuitive to ask whether we may obtain an improved reproduction skill using deep learning
ensemble approaches that account for variations in subgrid processes related to stochasticity
(Han et al. 2023). Moreover, the interpretability, and as a result the trustworthiness, of single
deterministic neural networks is in general hampered by the lack of uncertainty quantifica-
tion, i.e., placing the prediction within a realistic variance. Likewise the stability of the hybrid
models, using the ESM in combination with a novel data-driven parameterization, may well
be dependent on the deficiencies of the DL algorithm (Han et al. 2023; Lin et al. 2023; Rasp
et al. 2018). It is hypothesized that DL ensembles can be helpful in this context as the ensemble
may provide a compensation of individual deficiencies of DL models and boost the stability
of the hybrid model (Brenowitz et al. 2020; Han et al. 2023).

1.2. Key Science Questions

Based on the introductory remarks in the previous section and the goal of my thesis to better
understand and model convection with Machine Learning, I pose three overarching scientific
questions that set the scope of this thesis.

1. Can deep learning enhance the understanding of convection and large-scale drivers of
convection?

2. Can stochastic and deterministic ensemble deep learning parameterizations that take
into account the stochasticity improve the representation of subgrid convective processes
“offline” based on ESM data?

3. Do stochastic and deterministic ensemble parameterizations with calibrated uncertainty
quantification of subgrid processes have an effect on the stability and improve the quality
of hybrid ESM simulations?

1.3. Structure of the Thesis

This thesis consists of parts that are published or in review to peer-reviewed journals (two
lead author papers and one co-author study). A list of my studies (published or in review)
that are used in this thesis is displayed on page vi. If parts from these studies are presented in
this thesis, “we” is utilized to facilitate readability and clarity by omitting the passive voice.
Moreover I use “we” to acknowledge all involved co-authors. However I declare, unless stated
otherwise, that all content from these publications (text, figures, and tables) displayed in this
thesis originates from me as the author of this thesis. Contributions to these studies are listed
at the beginning of the corresponding chapters.
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1. Introduction

This thesis is structured as follows. Chapter 1 provides an introduction to the topic, the key
scientific questions addressed in my thesis, and the overall structure of the thesis. Chapter 2
reflects the scientific background of this thesis. Section 2.1 gives an introduction into clouds,
convective processes and the general atmospheric circulation. The subject of section 2.2 is
the theory behind convective processes. It is followed by section 2.3, which explains how
convective processes are represented in Earth system models with convection schemes, with
a superparameterization and Storm Resolving Models. Finally, section 2.4 illustrates how
machine learning or deep learning approaches enable the development of novel data-driven
parameterizations of convective processes.

Chapters 3 to 5 describe the results of this thesis. Chapter 3 presents the results of the
first study of this thesis which has been published by the Journal of Advances in Modeling
Earth Systems in Behrens et al. 2022. This chapter focuses on the first key scientific question
and shows how a latent space of a VED in combination with generative modelling can be
utilized to broaden our understanding of convective processes and large-scale drivers of
convection in a climate model. Chapter 4 is based on my work in Behrens et al. 2024.
The related paper (Behrens et al. 2024) is in review to Journal of Advances in Modeling Earth
Systems. This chapter targets the second research question and focuses on an evaluation of
the general reproduction of convective processes with stochastic and deterministic ensemble
parameterizations compared to individual deep learning models based on test data from a
realistic global Earth system model simulation. Chapter 5 builds on the previous chapter and
forms the second part of my work in Behrens et al. 2024. The related paper (Behrens et al.
2024) is in review to Journal of Advances in Modeling Earth Systems. This chapter covers the third
key research question in detail. Herein, I shed light on the quality of the resulting uncertainty
estimates of the different stochastic and deterministic ensemble parameterizations. I then
evaluate the performance of the most skillful ensemble parameterizations when coupled back
into an Earth System Model compared to individual neural networks and existing convection
schemes. Chapter 6 summarizes the key findings of this thesis and puts them into the broader
context for climate science and their impact for the Earth system modelling community.
Appendices A and B present supporting information of Behrens et al. 2022 and Behrens et al.
2024 together with a glossary for all used abbreviations, figures and tables of this thesis. The
last part of the thesis consists of the references used in this thesis and acknowledgements for
particular persons and funds that were essential for the progress of this thesis.
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2. Scientific Background

In this chapter, the scientific background of convective processes and how these are represented
in Earth system models is provided. Section 2.1 focuses on the background of clouds, con-
vective processes and the atmospheric general circulation. The theory of convective processes
is discussed in section 2.2. Section 2.3 illustrates how convective processes are represented in
Earth system models and sheds light on known deficiencies of these models with respect to
convective processes. Section 2.4 highlights the potential of machine learning algorithms to
provide an improved representation of convective processes in Earth system models.

2.1. Clouds, Convective Processes and the Atmospheric General
Circulation

2.1.1. Clouds: In the retrospective

Clouds are a visual result of convective processes in the troposphere. The research related to
clouds and convective processes is one of the oldest meteorological research topics. Dating
back to the early 1800s when Luke Howard (Howard 1894, the third volume of his original
manuscript from 1803) started to classify clouds in the sky based on their appearance and
texture. Such cloud atlases were one of the first ways to understand clouds, convective
processes and different cloud types (convection regimes) in the troposphere. As an example,
today every weather observation station has to report the cloud type of low, middle and
high clouds or the cloud cover in their regular observations to fulfil World Meteorological
Organisation (WMO) standards.

From an observational perspective a further major advance in meteorology related to clouds,
was the increase of observation stations around the globe during the late 19𝑡ℎ and early 20𝑡ℎ

century. This enabled more robust weather forecasts and a basic understanding of the weather
situation and in particular cloud fields associated with extra-tropical cyclones over Europe
and North America. Likewise the invention of radiosondes in the 1920s / 1930s and their
integration into the weather observation over the next decades was a step forward in better
understanding convective processes. In detail radiosondes enabled for the first time the
measurements of vertical temperature and humidity profiles throughout the troposphere
that are crucial characteristics to understand convective processes. Based on this, estimates
about the cloud base or the cloud top height could be drawn only by comparing the ambient
temperature and theoretical adiabatic and pseudo-adiabatic lapse rates.
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Since the 1970s Earth observing satellites are playing a crucial role in meteorology. With
them we could observe important quantities like cloud cover not only based on the weather
station network, but get a quasi global map based on geostationary satellites like Meteosat
(Holmlund et al. 2021). Furthermore satellites provide measurements of the cloud top heights
via the outgoing longwave radiation and retrieved brightness temperatures (Lohmann et al.
2016). Satellite products, e.g., European Space Agency’s Climate Change Initiative Cloud
(ESACCI-CLOUD), and related reanalysis products like, e.g., European Centre for Medium-
Range Weather Forecasts fifth-generation reanalysis (ERA5), give us key information about
key properties of clouds, allowing us to obtain the cloud ice water and cloud liquid water path
or the precipitation of a cloudy column respective grid cell (e.g., Lauer et al. 2023).

Today cloud observations in combination with gained physical understanding about their
driving processes play an essential role for climate science.

In the following subsection I will briefly explain how convective processes and the atmo-
spheric general circulation are connected in the Earth system.

2.1.2. Convective Processes and Atmospheric General Circulation

Figure 2.1.: Schematic of the atmospheric general circulation: The left subplot shows a simplified
version of the general circulation from the North Pole to the South Pole. The blue arrows indicate the
atmospheric general circulation in vertical or meridional direction. The clouds inside the schematic
depict the regions with dominant convective processes that play an important role for the atmospheric
general circulation. Additionally the left subplot shows the meridional cell structure of the atmospheric
general circulation. The right subplot shows the global temporal average precipitation field of Global
Precipitation Climatology Project - Satellite-Gauge (GPCP-SG) for the period 1979 to 2022 as a proxy for
the spatial structure of convective processes. The spatial median of the temporal average precipitation
field of GPCP-SG is shown top right above the right subplot.
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2.1. Clouds, Convective Processes and the Atmospheric General Circulation

The advances in observing convective processes with satellites and associated reanalysis
products over the last decades enabled us to explore how convective processes are connected
with the atmospheric general circulation (Bony et al. 2015). Figure 2.1a shows a simplified
version of the observed atmospheric general circulation on a meridional-vertical plane from
the North to the South Pole. Figure 2.1b displays the global map of annual mean precipitation
averaged over the period from 1979 to 2022 based on the monthly data set of the satellite-
gauged product Global Precipitation Climatology Project - Satellite-Gauge (GPCP-SG)(see
Huffman et al. 2023 for its latest version). The observed atmospheric general circulation
consists of three cells per hemisphere in meridional direction. The Coriolis force plays a
crucial role in shaping the general circulation of the Earth’s atmosphere and the formation
of circulation cells, such as the Hadley, Ferrel, and Polar cells. The Coriolis force influences
the large-scale wind patterns, including the formation of the trade winds, westerlies, and
polar easterlies, by deflecting atmospheric flows towards the right of the flow direction on the
Northern hemisphere and towards the left of the flow direction on the Southern hemisphere.
In the following I will explain the connection of these cells with precipitation patterns seen in
Figure 2.1b. For a detailed description of the distinct cells I point the reader to Liljequist and
Cehak 2013 and to Bony et al. 2015.

In Figure 2.1b the pattern of the Inter-Tropical Convergence Zone (ITCZ), a zone of increased
precipitation in the tropics near the Equator, is visible over the equatorial Pacific Ocean, the
equatorial Atlantic Ocean and the eastern equatorial Indian Ocean with elevated precipitation.
In these regions deep convection is predominating with cloud tops near the tropopause (∼
16 to 20 km). This deep convection and the resulting strong diabatic heating due to the very
moist and warm cloud air in the ITCZ drives the ascending branch of the Hadley Cell on both
hemispheres (Figure 2.1a).

In contrast to the elevated precipitation in the ITCZ region near the Equator, we see in general
no or negligible precipitation in the subtropics around 30◦ N or S. An explanation for this is
the general subsidence of air masses in the subtropics, that forms the descending branch of
the Hadley and Walker cells (Figure 2.1a). Due to that subsidence the air masses are generally
dry in the subtropics related to a pronounced adiabatic heating. The subsidence and the low
humidity of air masses typically forms an inversion layer above the planetary boundary layer.
This inversion limits the vertical extent and the strength of convective processes. Therefore no
or only shallow convection, that is limited to the planetary boundary layer and the lower free
troposphere, is predominating in the subtropics and over the upwelling regions in the tropical
eastern Pacific and Atlantic Ocean. Thus, barely precipitation is formed in these regions.

A second pattern with elevated precipitation is present along the mid latitude storm tracks
between 45◦ and 60 ◦ N or S (Figure 2.1b), that forms the ascending branch of the Ferrell and
Polar Cell (Figure 2.1a). Low pressure systems associated with the meandering jet stream
characterize the mid latitude storm tracks on both hemisphere. Often weaker precipitation
occurs near the warm front of the extratropical cyclones that is dominated by stratiform
clouds. Deep convection characterizes the cold front of extra-tropical cyclones and forms a
second major source of diabatic heating for the atmospheric general circulation.
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Over the Arctic Ocean and Antarctica the precipitation rates are similarly negligible like in
the subtropics (Figure 2.1b). High latitudes are also characterized by subsidence of air masses
in general, which forms the descending branch of the Polar Cell (Figure 2.1a). Moreover
the temperatures on polar latitudes are on average well below 273 K due to the high surface
albedos, low average solar insolation and pronounced radiative cooling of the atmosphere,
which results in extremely low specific humidities. These two factors result in typically only
weak convective processes that we see in polar latitudes.

These results indicate how deep convection along the ITCZ and the mid latitude storm tracks
drives the atmospheric general circulation. In contrast, subsidence related to the general
circulation limits the strength of convective processes in the subtropics and only little or
shallow convection is predominating on these latitudes. This demonstrates the necessity to
investigate convective processes together with the large-scale environment in which they are
forming to better understand the complex interaction between them (Bony et al. 2015). I
will investigate this interplay in detail in chapter 3 with novel interpretable DL methods in a
climate model.

The next section explains the theory of convective processes and how we can obtain some
properties of clouds based on observations.

2.2. Theory of Convective Processes

2.2.1. The vertical extent of clouds and convective processes in the troposphere

Satellite observations and radiosonde measurements provide concepts to help to better un-
derstand convective processes in the atmosphere, especially in the context of investigating the
vertical extent of convective processes (e.g., estimate the cloud top height).

One way to investigate the vertical extent of convective processes is to use the measured
temperature profiles of a radiosonde in combination with adiabatic and pseudo-adiabatic
lapse rates. They can be plotted in a “tephigram” that allows to estimate the cloud base, cloud
top and the vertical extent of the acting convective processes. Figure 2.2 illustrate a tephigram.
The y-axis of the tephigram is given by pressure coordinates P. As the isobars depend also
on variations in temperature and specific humidity they are slightly curved and not straight
lines. The x-axis is defined by the isolines of saturation specific humidities qs, which are not
orthogonal to the y-axis in this case.

In Figure 2.2 the measured vertical temperature profile T𝑒𝑛𝑣 is denoted by the solid black
line. One approach to determine the cloud base is to assume that the lifted air parcel has a
prescribed higher temperature at the surface than the environment. This enables the uplift
of the air parcel due to its positive buoyancy. From the surface the air parcel follows a dry
adiabatic lapse rate along an isoline of potential temperature. In the following the theoretical
uplift profile is denoted as T𝑙𝑎𝑝𝑠𝑒 . The first intersection between T𝑒𝑛𝑣 and T𝑙𝑎𝑝𝑠𝑒 defines the
Lifting Condensation Level (LCL). The LCL defines the level where condensation starts due to
lifting. The respective level when the condensation starts (cloud base) is known as Convective
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Figure 2.2.: Schematic of a tephigram: The tephigram shows the vertical profile of the temperature
of environmental air (𝑇𝑒𝑛𝑣 , bold black line) and the theoretical uplift curve (𝑇𝑙𝑎𝑝𝑠𝑒 , dotted bold black
line). The schematic further illustrates the Lifting Condensation Level (LCL), Convective Condensation
Level (CCL) and the approximate cloud top height. In the background the solid black lines indicate
isolines of constant potential temperature � (which are identical to the lines based on the dry adiabatic
lapse rateΓ𝑑𝑟𝑦) and the dashed black lines are distinct isotherms𝑇. The green curves indicate theoretical
pseudo-adiabatic uplift curves. Additionally the isolines of saturation specific humidity (qs, orange
lines) and isobars (blue curves) are shown.

Condensation Level (CCL) and agrees for cumulus convection well with LCL, as it is shown in
Figure 2.2 (Liljequist and Cehak 2013; Lohmann et al. 2016). From the CCL the air parcel that is
saturated with respect to liquid water follows a pseudo-adiabatic lapse rate. Due to the release
of latent heat of condensation Convective Available Potential Energy (CAPE) is built up. CAPE
can be explained as an estimate of the added kinetic energy for the uplift of a parcel due to
the release of latent heat (Lohmann et al. 2016). CAPE is produced until T𝑙𝑎𝑝𝑠𝑒 intersects with
T𝑒𝑛𝑣 for a second time. This second intersection approximates the cloud top height in theory,
because the air parcel is not anymore buoyant with respect to its surroundings. However the
cloud top height in reality is usually situated on higher levels as it is indicated in Figure 2.2,
when all the CAPE is transformed into Convective Inhibition (CIN) (Lohmann et al. 2016).
CIN is an estimate of the mechanical work that is applied on the air parcel that is needed for
the uplift or to sustain the uplift, respectively (Lohmann et al. 2016). So the vertical integral
over CIN and CAPE is zero for the entire column (Lohmann et al. 2016).

Apart from radiosonde soundings, the cloud top height can be also estimated with passive
satellite measurements of outgoing longwave radiation. The cloud top heights can be inferred
with brightness temperatures retrieved from the measured outgoing longwave radiation under
the assumptions that clouds are almost perfect black bodies for these wavelengths. Another
and more accurate way to determine the cloud top height is active remote sensing (Hagihara et
al. 2014). Active remote sensing helped to understand convective processes on finer resolutions
than with passive sensors (Hagihara et al. 2014). Examples for active remote sensing are the
cloud profiling radar of CloudSat or the cloud aerosol lidar Cloud-Aerosol Lidar and Infrared
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Pathfinder Satellite Observation (CALIPSO). The cloud aerosol lidar also allows to retrieve
the cloud base height and the vertical extent of convective processes (Hagihara et al. 2014).

The combination of passive and active satellite observations over the last decades and
meteorological measurements over the last centuries shaped and widened our understanding
of convective processes in the troposphere. Furthermore these active observational products
increased their quality dramatically in comparison to passive satellite observations, which
allowed the scientific community to investigate longstanding questions of the connection
between convective processes and the atmospheric general circulation. The next subsection
briefly illustrates the theoretical background of the occurrence of convective processes in the
atmosphere, which will be essential to understand and simulate convective processes in ESMs.

2.2.2. Theoretical background of convective processes and condensation

Convective processes play a crucial role for a moist air parcel to reach saturation with respect
to liquid water or ice water. Saturation means that a phase transition of water vapour via
condensation or deposition takes place based on principle thermodynamic laws in moist air.
The critical saturation water vapour pressure 𝑒𝑠,𝑤(𝑇) for condensation in thermodynamic
equilibrium for a given temperature 𝑇 (equation 2.2) can be approximated using the Clausius-
Clapeyron relationship (equation 2.1, Lohmann et al. 2016)

𝑑𝑒𝑠,𝑤

𝑑𝑇
=
𝑠𝑣 − 𝑠𝑤
𝛼𝑣 − 𝛼𝑤

=
𝐿𝑣

𝑇 × (𝛼𝑣 − 𝛼𝑤)
≃ 𝐿𝑣

𝑇 × 𝛼𝑣
=
𝐿𝑣 × 𝑒𝑠,𝑤
𝑅𝑣 × 𝑇2 (2.1)

→ 𝑒𝑠,𝑤(𝑇)|𝐿𝑣=𝑐𝑜𝑛𝑠𝑡 = 𝑒𝑠,𝑤(𝑇𝑡𝑟𝑖𝑝) × exp
(︃
𝐿𝑣

𝑅𝑣
( 1
𝑇𝑡𝑟𝑖𝑝

− 1
𝑇
)
)︃

(2.2)

In equation 2.1 𝑠𝑣/𝑤 are the specific entropies of water vapour and liquid water, respectively,
𝑎𝑣/𝑤 are the specific volumes of water vapour and liquid water and 𝐿𝑣 is the latent heat
release due to condensation. The specific volume of water vapour is magnitudes larger
than the respective specific volume of liquid water. This leads to the approximated form of
the Clausius-Clapeyron relationship. This allows the computation of the saturation vapour
pressure of liquid water 𝑒𝑠,𝑤(𝑇)|𝐿𝑣=𝑐𝑜𝑛𝑠𝑡 as a function of temperature of the moist air parcel
and assuming a constant latent heat release. 𝑅𝑣 is the specific gas constant of water vapour.
𝑒𝑠,𝑤(𝑇𝑡𝑟𝑖𝑝) = 611.2 ℎ𝑃𝑎 and 𝑇𝑡𝑟𝑖𝑝 = 273.15 𝐾 are the reference saturation water vapour pressure
and temperature at the triple point.

Condensation of pure water vapour occurs only in a thermodynamically supersaturated
environment as a result of the strong surface tension forces 𝜎𝑠𝑢𝑟 𝑓 (Lohmann et al. 2016). This
supersaturation that is necessary to onset a phase transition with homogeneous nucleation
can be explained with the curvature effect (Lohmann et al. 2016). This means that the sat-
uration vapour pressure on the curved surface of an initial cloud droplet 𝑒𝑠,𝑤(𝑟) of radius 𝑟
is exponentially higher than over a plane water surface 𝑒𝑠,𝑤(∞) (equation 2.3). Moreover the
needed supersaturation decreases with the radius of the initial cloud droplet, which means
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that condensation of pure water vapour occurs only in extreme supersaturated conditions
(Lohmann et al. 2016).

𝑒𝑠,𝑤(𝑟) = 𝑒𝑠,𝑤(∞) × exp
(︃ 2 × 𝜎𝑠𝑢𝑟 𝑓
𝑟 × 𝑅𝑣 × 𝜌𝑤 × 𝑇

)︃
(2.3)

Aerosols in the atmosphere act as cloud condensation nuclei and reduce the necessary
saturation water vapour pressure for condensation to values of about the theoretical one
given by the Clausius-Clapeyron relationship. The so-called “solute effect” further reduces
the supersaturation required for the condensation if the cloud condensation nuclei contains
water soluble components. Heterogeneous nucleation acts as a predominant source of cloud
droplets in the atmosphere. Common cloud condensation nuclei over the ocean are sea salt
and mineral dust, sulfate particles or soot over the continents.

In the following, I will explain processes in the atmosphere that can lead to condensation.
The uplift of air parcels and the related adiabatic cooling is a way to reach the LCL or CCL,
as I already showed in the tephigram (Figure 2.2). This convective uplift due to positive
buoyancy is often accompanied by fine-scale turbulence. This fine-scale turbulence i.e., by
entraining dry ambient air masses into moist air, influences when the moist air is saturated
with respect to water. These two processes often result in cumuliform convective regimes
(Lohmann et al. 2016). Apart from convective processes, the horizontal advection of specific
humidity, temperature or moist static energy, may lead to conditions that enable condensation.
It is hypothesized that advection and related convergence may play a role for convective self
aggregation (Wing et al. 2018). Moreover radiative cooling and the related temperature
decrease is another way that can lead to condensation in near-surface layers resulting in the
formation of fog or shallow convection especially during night time (Lohmann et al. 2016).
Radiative cooling results often in stratiform clouds (Lohmann et al. 2016). Likewise surface
diabatic fluxes especially over the ocean play a role for shallow convection and the formation
of clouds near the surface within the planetary boundary layer (Wing et al. 2018). Apart
from these thermodynamic factors, changes in aerosols and thus the cloud condensation
nuclei can influence the formation of clouds. In particular anthropogenic sources of cloud
condensation nuclei play a role to form “artificial” clouds as can be seen for e.g., ship tracks
or contrails. Moreover natural sources of aerosols may influence the formation of clouds
i.e., mineral dust that is lifted up from the deserts into the troposphere (Lohmann et al. 2016).
The processes discussed above are only a fraction of all processes that influence convection.
Drivers of convective processes are often superposed on each other which limits the general
understanding what drives the respective processes. I will demonstrate a novel deep learning
technique in this thesis in chapter 3, that provides a new data-driven point of view of the
interplay between convective processes and the large-scale thermodynamic state related to
the atmospheric circulation.

Convective processes and cloud formation occur predominantly on spatial scales that are
far smaller than the horizontal grid size of an Earth system model. Therefore their effect on
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the Earth system together with other subgrid factors have to be parameterized in Earth system
model, while some of them could be directly resolved with “storm resolving models” with a
km-scale horizontal resolution. The next section explains how convective processes are treated
in Earth system models, explicitly simulated with storm resolving models and approximated
with a superparameterization.

2.3. Convective Processes in Earth System Models and Storm
Resolving Models

This section covers the topic how convective processes are represented in Earth system models
and storm resolving models. The first part of this section highlights the way and the caveats
how subgrid convection schemes represent convective processes in Earth system models with
multiple examples of convection schemes. The second part will explain the concept of the
superparameterizataion and its benefits compared to traditional convection schemes that I will
use for the investigation in this thesis. The third and last part of this section shows solutions to
overcome known limitations of traditional convection schemes with storm resolving models
and novel numerical techniques based on atmospheric simulations with increased resolution.

Beforehand I will briefly explain ESMs and a few limitations with respect to convective
processes. An ESM is a key tool to investigate the historical evolution and future changes of
the Earth system (Gettelman and Rood 2016). ESMs represent typically a large portion of the
climate-relevant processes in the atmosphere, ocean, land or cryosphere of the Earth system
from a bio-geo-chemical stand point. This may include the chemical cycles of carbon and
nitrogen and to some extent interactive chemistry in all components of the model (Gettelman
and Rood 2016). The setup of an ESM or hereafter also simply climate model depends on
the particular research questions. This means that not all components of the Earth system
have to be necessarily included and instead prescribed boundary conditions can be used to
account for the excluded component. Also computationally heavy calculations like interactive
chemistry, the simulation of closed bio-geo-chemical cycles or coupling between components
can be adjusted to the needs of the particular research (Gettelman and Rood 2016). Large-
scale atmospheric dynamics are solved in ESMs via the primitive equations of state based on
general fluid dynamics (Gettelman and Rood 2016). Non-resolved processes however need to
be parameterized. This includes for example convection.

ESMs taking part in the model intercomparison projects CMIP3 to CMIP6 show persistent
biases in convection related fields when compared to observations (Bock et al. 2020). One
example for such long-standing biases is the “double ITCZ bias” with many ESMs overesti-
mating the mean precipitation over the tropical southwestern Pacific Ocean in a region south
of the Equator from Papua New Guinea towards the Date Line compared to observations (Bock
et al. 2020; Lauer et al. 2023). Another example is the underestimation of shallow convection
over the upwelling regions in the tropical and subtropical Atlantic, Indian and Pacific Ocean
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(Bock et al. 2020). The reduced cloud cover related to too weak shallow convection e.g., to
the west of the Peruvian coast results in a large underestimation of shortwave cloud radiative
effect (swcre) of more than 30 𝑊

𝑚2 (Bock et al. 2020; Lauer et al. 2023).
These two biases are often attributed to the uncertainties arising from the use of conventional

convection parameterizations (i.e., Behrens et al. 2022; Bock et al. 2020; Bony et al. 2015;
Gentine et al. 2021) The ESMs participating in CMIP6 utilize a “small zoo” of in complexity
varying subgrid parameterizations for processes like cloud microphysics (essential for the
simulation of realistic precipitation rates), cumulus convection itself (representing the uplift,
entrainment, detrainment of air masses due to clouds), cloud cover (key factor for a realistic
radiation budget at the top of atmosphere), radiation (e.g., to simulate the effect of cloud water
and ice on shortwave and longwave radiation) and also small-scale turbulence, gravity waves
and boundary layer physics (which affect the simulated evaporation and other boundary
conditions for convective processes). All these factors have an influence on the representation
of convective processes in an ESMs and are potential sources for the large regional biases with
respect to observations of various convection related variables (Lauer et al. 2023). Furthermore
this variety of different parameterizations hampers our overall understanding of convective
processes in ESMs, because it is challenging to distinguish between a e.g., realistic precipitation
pattern or an artifact from a subgrid parameterization or even the interplay of various of them
and the dynamical core of the ESM.

All these different parameterizations consist of one or multiple equations that calculate an
estimate for a given variable of interest (e.g., cloud cover, radiative or mass fluxes, ...) based
on selected large-scale state variables. Often these equations contain tuning parameters that
are not constrained by physics and that allow to adjust the simulated processes towards an
improved agreement with observations. Additional uncertainty exists inside the parameter-
ization related to processes like i.e., fine-scale turbulence that are of stochastic nature. This
stochasticity cannot be entirely captured with an deterministic parameterization in an ESM.

The following part of the thesis describes selected subgrid convection schemes and shows
why it is challenging to adjust tuning parameters in an existing scheme.

2.3.1. Subgrid Convection Schemes in Earth System Models

The general aim of subgrid convection schemes is to mimic the average effects of convective
processes that are far smaller than the typical horizontal length scale of the climate model’s grid
cells. In the following, three examples of subgrid convection schemes of ESMs are given that
are useful for the general understanding of this thesis. The presented schemes depend on the
same theoretical background with respect to thermodynamics. In detail, the Zhang-McFarlane
scheme, that is used in this thesis, can be seen as a simplification of the Arakawa-Schubert
scheme. Moreover all presented convective schemes show general concepts that are applied
in the superparameterization (see section 2.3.2), which is the main benchmark scheme for the
developed deep learning algorithms in this thesis.
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Arakawa-Schubert Scheme

One way to parameterize the effect of convective processes in a climate model is via mass-flux
schemes. These mass-fluxes schemes can be used to update the large-scale thermodynamic
and dynamic variables in the primitive equations, that are also called general equations, of the
numerical core of the ESM. Convection mass-flux schemes typically distinguish between four
crucial processes. Additionally these schemes distinguish between a cloud free area fraction
A𝑛𝑜 𝑐𝑙𝑜𝑢𝑑 and a cloudy area fraction A𝑐𝑙𝑜𝑢𝑑 within a grid cell (Arakawa and Schubert 1974).
The first process is the entrainment of ambient air from the cloud-free area into the cloudy
area. This process is especially important at the lateral boundary of the cloudy area and at
the cloud base (Arakawa and Schubert 1974). Entrainment E into the cloudy area from a
mass-flux point of view is a convergence of mass at a given level. This convergence causes
an upward mass-flux M𝑐𝑙𝑜𝑢𝑑 as a result of the mass conservation described by the continuity
equation and the buoyancy inside the cloudy area, which is the second key process. In the
cloudy area the cloud air rises up to a certain level, where all buoyancy of the cloud air with
respect to its environment reaches zero. This is similar to the production and dissipation of
CAPE as shown in the tephigram in Figure 2.2. At this level the cloud air is detrained into
the cloud free area. Detrainment D is the third crucial process in a mass-flux convection
parameterization. Because of the conservation of mass, the cloud free area is characterized
by a net subsidence, which is the fourth key process in a convection scheme. The total net
mass flux of the combined cloud and cloud free areas can be computed as the product of the
air density 𝜌 and the average vertical velocity of the entire grid cell 𝜔. Using the net mass
flux term and M𝑐𝑙𝑜𝑢𝑑 yields equation 2.4 for the downward mass flux in the cloud free area
M𝑛𝑜 𝑐𝑙𝑜𝑢𝑑.

M𝑛𝑜 𝑐𝑙𝑜𝑢𝑑 = 𝜌 × 𝜔 − M𝑐𝑙𝑜𝑢𝑑 (2.4)

The downward mass flux in the cloud free area closes the equations in this mass flux scheme.
The Arakawa-Schubert scheme for one grid column is illustrated in Figure 2.3. One modi-

fication in this scheme is that instead of one single confined cloud area, we have an ensemble
of clouds varying in time and space (Arakawa and Schubert 1974). The individual clouds
of the ensemble can have different cloud bases and top heights. This means that the total
entrainment E and detrainment D of the cloud ensemble depends on the detrainment Di and
entrainment terms Ei of individual members at various vertical levels of the climate model
(Figure 2.3). The same applies for the total mass flux in the cloudy area M𝑐𝑙𝑜𝑢𝑑 and the total
cloudy area A𝑐𝑙𝑜𝑢𝑑.

For coupling the Arakawa-Schubert scheme to the dynamical core of the climate model the
total mass flux of the cloudy area M𝑐𝑙𝑜𝑢𝑑, the total detrainment D and the mixing ratio of cloud
liquid water on the level of quasi-neutral buoyancy of the individual detraining cloud mem-
bers is needed (Arakawa and Schubert 1974). Crucial parameters of the Arakawa-Schubert
scheme are the treatment of the mass fluxes from sub-cloud layers and especially the planetary
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Figure 2.3.: Schematic of the Arakawa-Schubert Scheme (Arakawa and Schubert 1974): The schematic
shows an ensemble of N clouds inside a grid column of a climate model. The cloudy area A𝑐𝑙𝑜𝑢𝑑 can
be computed by summing over all N partial area fractions of the individual clouds 𝐴𝑐𝑙 i at each vertical
level. The same applies for the total mass flux of the cloud area M𝑐𝑙𝑜𝑢𝑑, the total entrainment E and the
detrainment D based on the contributions from individual clouds.

boundary layer (Arakawa and Schubert 1974). Also, initial values of entrainment and detrain-
ment have to be prescribed for the cloud area of the individual clouds Arakawa and Schubert
1974. Moreover the Arakawa-Schubert scheme depends on thermodynamic assumptions,
i.e., a necessary instability at a the respective level of cloud bases. (Arakawa and Schubert
1974). The Arakawa-Schubert scheme has certain advantages as it allows to approximate mass
fluxes due an ensemble of clouds with varying entrainment and detrainment levels. However,
known limitations include the treatment of the subcloud layer and of the cloud microphysics
and the need for a critical mixing ratio as a tuning parameter to distinguish between cloud
free from cloud air.

Yanai Scheme

Another way to represent the thermodynamic effect of clouds in a climate model is to calculate
the heating and moistening due to clouds directly and use these terms in the general equations
for temperature and humidity in the climate model. Such an approach is based on the
convection scheme of Yanai et al. 1973. First they defined a combined term for the effect of
subgrid convection, turbulence and radiation on the general equation for dry static energy
s = cp × T + g × z, called Q1 (equation 2.5).

𝑄1 = 𝐿𝑣 × (𝑐 − 𝑒) − 𝑑

𝑑𝑝
𝜔′𝑠′ +𝑄𝑟𝑎𝑑 (2.5)

The first part of the sum in Q1 gives the latent heating of the ambient air with respect to
the difference in the condensation rate c (increase in the mass mixing ratio of cloud water per
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time step, Yanai et al. 1973) and the evaporation rate e (reduction of the mass mixing ratio
of cloud water and time step, Yanai et al. 1973). The second term in equation 2.5 represents
the vertical eddy static energy flux due to turbulence that may be influenced by convective
processes (Yanai et al. 1973). The third term Q𝑟𝑎𝑑 denotes the influence of shortwave and
longwave radiative fluxes on the change in dry static energy or heating (Yanai et al. 1973). The
general equation of dry static energy can be rewritten so that Q1 can be used as a source term
to update the large-scale temperature T. In the superparameterization that I use in this thesis,
usually dT/dt with respect to subgrid convection and other processes is computed instead of
Q1, but both terms are closely related to each other.

The second term Q2 (Yanai et al. 1973) parameterizes the combined effects of convection
and turbulence on the general equation of the specific humidity.

𝑄2 = 𝐿𝑣 × (𝑐 − 𝑒) + 𝐿𝑣 ×
𝑑

𝑑𝑝
𝜔′𝑞′ (2.6)

In Q2 (equation 2.6) the first term represents again the latent heating due to condensation
and evaporation, while the second term is the vertical eddy specific humidity flux due to
turbulence (Yanai et al. 1973). In the superparameterization Q2 divided by 𝐿𝑣 is identical to
the change in specific humidity dq/dt to update the large-scale state of q.

Bulk parameterizations based on the general concepts of Yanai et al. 1973 have the advantage
that they include the combined effect of subgrid effects of convective processes related turbu-
lence and radiation on the large-scale thermodynamic state variables in one scheme. One clear
disadvantage is that Q1 and Q2 reflect a combined effect, which requires expert knowledge to
understand whether a heating or moistening is associated with subgrid convective processes
or related processes. Similar to the Arakawa-Schubert scheme, the Yanai scheme relies on
microphysical assumptions such as when condensation or evaporation starts.

Zhang-McFarlane Scheme

Due to the complexity of the Arakawa Schubert scheme and computational limitations in the
last two decades of the 20𝑡ℎ century, a class of simplified Arakawa-Schubert schemes were
developed for an application in climate models. This class includes the Zhang-McFarlane
scheme (Zhang and McFarlane 1995), that is the standard cumulus convection scheme in the
Community Atmosphere Model (CAM) (Collins et al. 2006) and the Community Earth System
Model (CESM) (Danabasoglu et al. 2020) with a few small adjustments. The analysis in this
thesis is based on CAM version 3 (Collins et al. 2006) and CESM version 2 (Danabasoglu et al.
2020). Thus it is intuitive to focus on the Zhang-McFarlane scheme in detail.

One modification of the Zhang-McFarlane scheme with respect to the Arakawa-Schubert
scheme is penetrating cumulus convection. Therefore the updraft ensemble (mass fluxes of
cloud air) consists of updrafts that could penetrate a conditionally unstable layer in the lower
troposphere (Zhang and McFarlane 1995). This prevents some of the “shallow convection”
that is simulated with the Arakawa-Schubert scheme. The upward mass flux at the base of all
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updraft members is set to a constant value (Zhang and McFarlane 1995). Moreover, the CAPE
related to the updrafts decays exponentially with time based on the adjustment time scale.
The adjustment time scale is a typical non-physical parameter (“tuning parameter”) that has
to be defined for subgrid convective schemes. These modifications simplify the computation
of the approximated subgrid convective processes.

With these assumptions the heating due to convective fluxes in the convective area can be
computed as:

𝑐𝑝 ×
(︃
𝑑𝑇

𝑑𝑡

)︃
𝑐𝑜𝑛𝑣

= − 1
𝜌
× 𝑑

𝑑𝑧
(𝑀𝑢 × 𝑠𝑢 +𝑀𝑑 × 𝑠𝑑 −𝑀𝑐𝑜𝑛𝑣 × 𝑠) + 𝐿𝑣 × (𝑐 − 𝑒) (2.7)

, where 𝑀𝑑, 𝑀𝑢 , 𝑀𝑐𝑜𝑛𝑣 are the downward, upward and averaged mass fluxes in the con-
vective area. 𝑠, 𝑠𝑢 , 𝑠𝑑 are the respective dry static energies (Zhang and McFarlane 1995). The
second term in equation 2.7 includes the adjustment due to latent heating or cooling from
condensation and evaporation, respectively, similar to the Yanai scheme.

The corresponding change in specific humidity 𝑑𝑞

𝑑𝑡
in the convective area can be written as:

(︃
𝑑𝑞

𝑑𝑡

)︃
𝑐𝑜𝑛𝑣

= − 1
𝜌
× 𝑑

𝑑𝑧
(𝑀𝑢 × 𝑞𝑢 +𝑀𝑑 × 𝑞𝑑 −𝑀𝑐𝑜𝑛𝑣 × 𝑞) + 𝑐 − 𝑒 (2.8)

based on the respective components in the upward, downward branch and averaged over the
convective area.

I will use the Zhang-McFarlane scheme in this thesis to benchmark my data-driven param-
eterization in chapter 5.

Similar to the Arakawa-Schubert scheme, the Zhang-McFarlane scheme uses a critical
threshold when convection starts in a conditionally unstable layer and enough CAPE to pen-
etrate this layer. The prescribed decay of CAPE and the treatment of the sub-cloud layer are
limitations of the Zhang-McFarlane scheme.

The following part of the thesis will describe the superparameterization that I use to optimize
my novel data-driven parameterizations.

2.3.2. Superparameterization

The Superparameterization (SP) in comparison to the conventional convection schemes dis-
cussed above is similar to a set of nested high-resolution atmospheric circulation models that
each consist of only one vertical grid column. Such an approach has the advantage that these
nested grid columns permit to resolve convective processes and their effects directly without
an additional convection parameterization. The type of SP that is used in this thesis was first
developed and described in Grabowski 2001 and Khairoutdinov and Randall 2001. The ESM
and the atmosphere model of the SP simulations of this thesis are CESM version 2 (Danaba-
soglu et al. 2020) and its atmospheric component CAM in different versions. In chapter 3 CAM
version 3 (Collins et al. 2006) is used in an aquaplanet setup (a simulation where the globe is
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covered with an ocean and topography is omitted), whereas in chapter 4 and 5 CAM version
6 is utilized as atmospheric component of CESM version 2 (Danabasoglu et al. 2020). For
brevity the superparemeterized CAM is called Super Parameterized Community Atmosphere
Model (SPCAM) henceforth and the superparameterized CESM version 2 is denoted Super
Parameterized Earth System Model (SPCESM).

Figure 2.4.: Schematic of the Super Parameterized Community Atmosphere Model (SPCAM) con-
figuration based on Pritchard and Bretherton 2014. Within each coarse Community Atmosphere
Model (CAM) cell (blue frame) are in this example 8 nested high resolution grid Superparameteriza-
tion (SP) (red small squares) cells situated. SP directly simulates subgrid effects of radiation, turbulence
and convective processes (Gentine et al. 2018), which is then given back to the numerical core of CAM.

Figure 2.4 is a schematic of the SP setup that was used in SPCAM or SPCESM. The large blue
cell represents a grid cell of CAM or CESM 2. In this setup, CAM and CESM 2 have a horizontal
grid size in the order of 160 km at the Equator. The set of red cells in Figure 2.4 represents the
SP. The number of nested grid columns is a critical tuning parameter of the SP (Pritchard et al.
2014) and strongly affects the necessary computational power. A larger number of nested high-
resolution grid columns in combination with the necessary subcyling of the numerical core
of each grid column requires considerably larger computational resources than, for example,
traditional convection parameterizations. Decreasing the number of nested SP columns from
32 grid columns to 8 grid columns, Pritchard et al. 2014 showed that the CPU time scales by the
same factor of 4. In addition they found that the reduction in high-resolution grid columns has
no obvious impact on the simulated Madden Julian Oscillation (MJO), an important eastward
propagating oscillation of a deep convective system over the tropical Indo-Pacific (Zhang 2005).
However, the choice of the number of nested high-resolution grid columns has an impact on
cloud liquid water and precipitation due to changes in the vertical mixing (Pritchard et al. 2014).
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In detail, a smaller number of nested high-resolution grid columns increases the strength of
convective processes in regions that are predominated by deep convection. In section 3 a SP
with 8 nested high-resolution grid columns is used in an aquaplanet setup of CAM version 3.
In sections 4 and 5 a SP setup with 32 nested high-resolution grid columns is utilized in CESM
2 with a realistic topography and coupled to ocean and land surface model. In both cases
the high-resolution grid columns are oriented in meridional direction with an equal spacing
between the columns (Figure 2.4). Each of these high resolution grid columns has a horizontal
extent of 4 km, which enables the explicit simulation of a large fraction of cumulus convection.
However, the SP has its own parameterization for subgrid turbulence and cloud microphysics
as these processes cannot be directly resolved in the high-resolution grid cell (Rasp et al. 2018).
The nested grid columns have their own numerical core and thermodynamic general equations
based on the numerical core of System for Atmospheric Modeling (SAM) (Khairoutdinov and
Randall 2003). The vertical axis of SP is coarse with only 30 or 26 levels on a hybrid-sigma grid
as the levels are identical to the vertical levels of the host climate model. Such a small number
of vertical levels may influence the realism of the representation of subgrid turbulence in the
planetary boundary layer or the vertical mixing related to convective processes compared to
a storm resolving model with a finer vertical resolution. One advantage of using the same
vertical axis in SP and the host climate model is that the information from the large-scale
climate model to the SP, and vice versa, can be directly exchanged and used as source terms in
the respective general equations without further interpolation. Here, the input data from the
climate model to the SP consists of thermodynamic fields only, but also large-scale horizontal
velocity fields could be added (Pritchard and Bretherton 2014; Rasp et al. 2018).

In the SP setup that I am using in thesis the vertical profiles of specific humidity q(p),
temperature T(p) and the meridional wind component v(p) are used as input for the SP.
Moreover the SP uses the surface pressure P𝑠𝑢𝑟 𝑓 , solar insolation Q𝑠𝑜𝑙 , the surface latent heat
flux Q𝑙𝑎𝑡 and the surface sensible heat flux Q𝑠𝑒𝑛𝑠 as scalar input variables. Additionally, in
the chapter 4 and 5 the input variable list of SP includes the vertical profiles of cloud liquid
q𝑐𝑙 and cloud ice water q𝑐𝑖 . Based on these inputs of SP, the numerical core of each nested
high-resolution grid column computes the response of its vertical profile of temperature T(p)𝑖
and specific humidity q(p)𝑖 , where 𝑖 symbolizes the number of the respective high-resolution
grid column. In chapter 4 and 5 the vertical profiles of cloud liquid water q(p)𝑐𝑙,𝑖 and cloud
ice water q(p)𝑐𝑖,𝑖 are added to the output variable list of SP.

The nested high-resolution grid columns have a finer time stepping than the coupled climate
model (Khairoutdinov and Randall 2001). This “subcycling” enables the evolution of the
resolved processes in the SP columns. At the coarser time step of the climate model an
average over all nested high resolution grid columns of the simulated variables is computed
(Grabowski 2001; Khairoutdinov and Randall 2001). During the subcycling of SP a radiative
transfer model and a microphysics parameterization is called to compute the radiative and
surface fluxes (e.g., the precipitation rates) conditioned on the resolved subgrid processes in
SP (Khairoutdinov and Randall 2001; Rasp et al. 2018). The precipitation rates and distinct
radiative fluxes are also added to the output variables list of averages. These averages are
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used to calculate the respective subgrid tendency terms of the thermodynamic state variables
in the host climate model and can be used as source terms representing the subgrid processes
instead of e.g., a conventional convection parameterization (Khairoutdinov and Randall 2001;
Rasp et al. 2018). The same applies for the additionally computed surface and radiation terms
that can be used to update the large-scale state in each grid cell of the climate model (Rasp
et al. 2018).

One clear advantage of SP compared to conventional convection schemes is that a large
fraction of the effects of subgrid convective processes can be explicitly simulated with the
nested high-resolution grid columns. Also, the nested high-resolution grid columns do not
have to be newly initialized at each climate model time step, but use the information from
the previous time steps as initial conditions (Khairoutdinov and Randall 2001). This allows to
store information about the convective states inside the high-resolution grid columns from one
time step of the climate model to the next. It can be seen as a way to incorporate memory effects
of convective processes in a climate model, which is not the case for most other conventional
convection parameterizations (Khairoutdinov and Randall 2001).

As a result the SP reduces the uncertainty of the represented convective processes in a
climate model compared to conventional convection schemes (Khairoutdinov et al. 2005; Rasp
et al. 2018). This leads to an enhanced realism with SP of the represented convective processes
(Jones et al. 2019b; Khairoutdinov et al. 2005; Rasp et al. 2018) and of the related spatio-
temporal variability (Khairoutdinov et al. 2005; Rasp et al. 2018).

However, the SP setup that I utilize in this thesis, has a few known limitations. One is that
the horizontal advection of variables in the SP columns is only possible through the numerical
core of the host climate model, e.g., from the nested high-resolution grid columns in one
climate model grid cell to the ones in a neighbouring climate model grid cell. This may lead to
a general damping of subgrid convection related variables (e.g., subgrid anomalies in specific
humidity that vanish due to the averaging and the advection via the coarse grid of the host
climate model) and an imperfect transport of cloud liquid and ice water concentrations from
one nested to the adjacent nested SP (Jansson et al. 2022). More advanced SP setups enable
the transport of tracers from one high-resolution SP to the next in the neighbouring climate
model grid cell without relying on the numerical core of the host climate model (Jansson et al.
2022). A second limitation of the SP setup used in this thesis is that it simulates the effect of
subgrid turbulence on thermodynamic variables, but there is no direct subgrid momentum
transport from the high-resolution grid columns into the host climate model (Rasp et al. 2018).
A third limitation is a double ITCZ bias when coupled to CESM with realistic topography and
surface coupling (Woelfle et al. 2018).

Despite these known limitations, the SP that I use to optimize my machine learning algo-
rithms in chapters 3 to 5 shows clear improvements to conventional convection schemes in
terms of biases of convective processes in climate models when compared to storm resolving
models. Examples here are an improved agreement of precipitation extremes (Rasp et al.
2018), an improved diurnal cycle of precipitation (chapter 5) and an improved reproduction
of a MJO-like oscillation (chapter 3, Khairoutdinov et al. 2005). The increased realism of the
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represented convective processes with a SP is a significant step to enhance our understanding
about convection in a climate model (chapter 3) compared to using a conventional convection
scheme.

The next part of the section introduces storm resolving models used for atmospheric mod-
elling with horizontal resolutions between 1 km to 5 km that permit the explicit simulation of
cumulus convection.

2.3.3. Storm Resolving Models

A Storm Resolving Model (SRM) is an atmospheric general circulation model with a horizontal
resolution that allows to explicitly simulate convective storms (deep convective cells). This
type of general circulation model typically has a horizontal resolution between 1 km to 5 km,
which allows to model a large fraction of the effects of cumulus convection without the use of
the parameterizations (Stevens et al. 2019). SRMs with their high-resolution bear the potential
to break the “convective deadlock” (Gentine et al. 2018; Randall et al. 2003; Randall 2013), the
reliance on imperfect subgrid convection parameterizations and related closure assumptions.
However, there may still have to be shallow convection schemes applied in SRMs. Due to
the high-resolution nature of SRMs, they were initially used to model convective processes
(Grabowski et al. 1996) or the interaction of convection and radiation (Tompkins and Craig
1998) on regional scales in the order of hundred kilometers and less. Especially the modelling
and the comparison against existing observational products from e.g., regional measurement
campaigns was one of their first main applications (Grabowski et al. 1996; Xu and Randall 1996).
One of the first global simulations with a SRM configuration was presented in Tomita and
Satoh 2004, which evolved into the Nonhydrostatic Icosahedral Atmospheric Model (NICAM)
(Satoh et al. 2008). NICAM does not include a hydrostatic assumption to simulate vertical
velocities in its numerical core. Moreover the grid tiles have a triangular surface in horizontal
direction, which alleviates biases due to the discretization in polar latitudes that a regular
rectangular grid has. Similar to NICAM the quasi-global System for Atmospheric Model-
ing (SAM) presented in Khairoutdinov and Randall 2003 provided an improved simulation of
convective processes and widened the understanding about convection and its interplay with
the general atmospheric circulation. Especially for a realistic simulation of tropical convection
and convection related variability SRMs proved to be valuable tools (Bony et al. 2015; Satoh
et al. 2019). However comparing different SRMs participating in the Dynamics of the At-
mospheric General Circulation Modeled On Non-Hydrostatic Domains (DYAMOND) project
(Stevens et al. 2019) showed that there is a large degree of variability in model results related
to convective processes, especially on short time and small horizontal scales. This can be seen
for example in the cloud condensate fields associated with extratropical frontal systems. The
same applies for mesoscale convective clusters in the tropics and maritime shallow convection
over upwelling regions, where a large spread among the SRMS exists in DYAMOND (Stevens
et al. 2019). An explanation for this may be that different SRMs have different implementations
of microphysics, fine-scale turbulence schemes and how convective processes in the planetary
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boundary layer are treated (Stevens et al. 2019). There are also indications that the vertical
velocities, characteristics of updrafts and downdrafts related to convective processes may vary
from SRM to SRM (Mooers et al. 2023).

Despite these uncertainties, SRMs provide a considerable improvement in the representation
of precipitation patterns on the basis of daily averages and a more realistic energy cascade
between large-scale and small-scale processes of atmospheric processes compared to climate
models (Stevens et al. 2020). Furthermore, subseasonal variability that is related to convection
like the MJO or structural features of tropical cyclones are realistically reproduced with SRMs
(Satoh et al. 2019), which remains largely challenging with convectional climate models or
ESMs.

Despite these advantages over coarse-resolution climate models, SRMs remain computa-
tionally expensive even on the latest high performance computers. DYAMOND (Stevens et al.
2019) was limited to 40 days, its successor Next Generation Earth System Models (nextGEMS)
aimed at runs over 2 years. In both cases the high-resolution output of the SRMs were limited
to a set of essential variables related to processes of interest e.g., convection. Even these limited
high-resolution fields had to be postprocessed on the fly to reduce the original resolution to an
amount of data that can be stored on disks. The postprocessed data with decreased resolution
enabled a further evaluation due to lower memory requirements (Hohenegger et al. 2023).

Despite significant advances in the last two years in constructing an ESM-like multi-
component SRM that allows coupled high-resolution simulations of ocean and atmosphere
(Hohenegger et al. 2023), long-term simulations on current state-of-the-art high performance
computers remains almost impossible. It is argued that SRM-like configurations without the
use of a conventional convection scheme on coarser resolutions of 40 to 80 km enable longer
simulations and might alleviate known biases of ESMs (Hohenegger et al. 2020). Thus such
coarse SRM-like configurations showed a pronounced increase of biases in global averaged
radiative fluxes compared to a reference SRM run (Hohenegger et al. 2020). As a result of
that coarse SRM-like configurations that were run over 40 days may well introduce biases
in longterm simulations similar to ESMs. A different option to enlarge the duration of SRM
simulations may be a chain-like approach (Hoefler et al. 2023). In this case the SRM is run over
a certain affordable period. Then a novel machine learning algorithm is used as a “gap-filler”
towards another SRM simulation with different climate conditions. In the end, the resulting
simulation may consist of several SRM runs that are connected together by predictions of a
machine learning algorithm. Theoretically, such an approach may allow a hybrid-SRM sim-
ulation over decades and may enable projections of the future climate of the Earth system.
Despite the attractiveness from a data science point of view, there remain certain challenges
of such a chain-like approach. The large memory requirements of SRMs are only to some
extent alleviated with the machine learning predictions. Moreover, the integration of machine
learning may interfere with the SRM simulations leading to biases in reproduced processes,
unintentional model drifts and in the worst case to complete model crashes. Therefore, a
chain-like SRM approach requires both large computational efforts and expert knowledge in
climate modelling to handle these challenges.
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The computational costs can be strongly reduced with machine learning algorithms that
train actively on SRM data and emulate certain processes in an SRM. In the recent years we saw
a new phase of evolution of machine learning and associated hardware that resulted in neural
networks that are well suited for both large data sets and complex non-linear relationships
(Gentine et al. 2021; Reichstein et al. 2019). The following section of the thesis briefly illustrates
the concept of machine learning and a few neural network structures that I am using in this
thesis and in Behrens et al. 2022; Behrens et al. 2024. Additionally developments in machine
learning for the parameterization of convective processes are discussed and put in the context
of understanding convective processes and modelling with machine learning.

2.4. Machine Learning for the Parameterization of Convective
Processes

This section begins by introducing three neural network architectures, that will form the
foundations for the investigations in this thesis. Subsection 2.4.1 explains the class of ar-
tificial neural networks (ANNs). It is followed in subsection 2.4.2 by an explanation of an
AutoEncoder Decoder (AED) and a Variational Auto Encoder (VAE) with a lower dimensional
space, called “latent space” between the encoding and decoding parts of the network. After
these subsections focused on model architectures, I will discuss in subsection 2.4.3 recent
advances in machine learning for the parameterizations of convective processes. Afterwards
I will introduce the field of stochastic machine learning in climate science in section 2.4.4.

2.4.1. Artificial Neural Networks (ANNs)

An Artificial Neural Network (ANN) is a class of neural networks, that has been originally used
to learn and represent subgrid physical processes in ESMs (e.g., Gentine et al. 2018; Rasp et al.
2018). An ANN consists of an input layer, a set of fully connected layers behind the input layer
and finally an output layer (Figure 2.5). First, a set of input variables, after some normalization,
is fed into the input layer (i.e., its dimension correspond to the number of input variables).
Normalizing the input variables in a multi-variate setup ensures that all have approximately
similar importance during the ANN optimization (Rasp et al. 2018). The input layer is followed
by a number of hidden layers where the computation takes place (Figure 2.5). Each hidden
layer consists of nodes which are connected to all nodes (or neurons) of the previous and
succeeding layer as it is shown in Figure 2.5. Therefore such a layer is called “fully-connected”
in data science. The name “hidden layer” comes from the fact that these layers are situated
within the ANN, between the input and output layers, and the computation taking place
during training or prediction are not part of the final output of the ANN (Goodfellow et
al. 2016). These hidden layers and their nodes allow the network to learn complex non-
linear dynamical systems or processes, and are optimized during training (Goodfellow et al.
2016). Shallower ANNs with fewer hidden layers are in general favourable with respect to
interpreting their predictions based on some inputs. However previous studies showed that
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Figure 2.5.: Schematic of an Artificial Neural Network: The schematic shows a typical Artificial Neural
Network (ANN). The network uses a set of input variables X[�] that is fed into the input layer I[�]
with � nodes. The input layer is fully connected to the first hidden layer H[𝑗 , 1] with j nodes. The
information then propagates through in total h hidden layers. The final output layer O contains �
nodes corresponding to an array of output variables Y[�]. This schematic is inspired by a similar one
presented in Beucler et al. 2019.

deeper ANNs with a larger number of hidden layers have advantages in reproducing complex
non-linear processes such as convection compared to shallower architectures (e.g., Gentine
et al. 2018; Mooers et al. 2021; Rasp et al. 2018). Finally, the output layer transforms the
processed information from the hidden layers into the ANN’s output (Figure 2.5). Its purpose
is to map the incoming information into the shape of the desired output variables (Figure 2.5)
that the network is optimizing (Goodfellow et al. 2016).

So far, we have described the architecture (layers) of an ANN. Next, I describe how the
individual layers are propagating information throughout the ANN, which is determined by
the “activation” functions (Goodfellow et al. 2016).

The input layer of an ANN has typically a linear activation function, while the other layers
usually include non-linear functions (Figure 2.5, Goodfellow et al. 2016). Equation 2.9 illus-
trates the purpose of these activation functions for one distinct node of a hidden or output
layer. X denotes the value of one particular input variable. A linear regression is performed on
the incoming signal X by adding a weight 𝑊𝑧 and a bias 𝑏𝑧 . The result of this linear function
is then used as input for the activation function G() of the node. A linear activation function
G() of the node Z would be simply the identity of 𝑊𝑧 × 𝑋 + 𝑏𝑍. For a non-linear activation,
the result of the linear regression is transformed with a non-linear function G(). This allows
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the ANN to adapt to non-linear relationships and breaks the linearity between X and Z. Due
to the non-linear activation functions an ANN acts as a non-linear regression with a large
number of internal degrees of freedom.

𝑍 = 𝐺(𝑊𝑍 × 𝑋 + 𝑏𝑍) (2.9)

With the definition of the response of each node Z to the incoming signals X in equation 2.9,
the basis to optimize the weights and biases (parameters) of the ANN is set. During training,
the aim is, therefore, to optimize the ANN’s parameters applying a so called “loss function”
or “cost function” ℒ (Goodfellow et al. 2016). At the beginning of the training, all weights and
biases are assigned usually to randomly drawn initial values. Then, the data set is passed to
the ANN in batches (i.e., a number of training samples utilized in one iteration, Goodfellow
et al. 2016). The “batch size” is a hyperparameter that can have a substantial impact on
the ANN performace. Specifically, there exist general differences between a training with
smaller and larger batch sizes. Small batch sizes may enable a faster convergence towards a
maximum of optimization and a better generalization of the ANN, but introduce noise during
the optimization (Goodfellow et al. 2016). Larger batch sizes may reduce the fluctuations in
skill between different batches during training. However the training with large batch sizes
needs larger computational resources due to the larger data amount that is fed into the ANN
(Goodfellow et al. 2016). The ANN’s predictions for each sample Y𝑝𝑟𝑒𝑑 are used to compute the
loss function ℒ. This is also called “forward propagation” in data science (Goodfellow et al.
2016). A common metric used in ℒ is the mean square error between Y𝑝𝑟𝑒𝑑 and the true data
Y (i.e., equation 4.4, Goodfellow et al. 2016). In detail, in my thesis all constructed ANNs will
utilize a Mean Squared Error (MSE) as loss function for multi-variate data sets. The gradient of
the chosen loss function is then computed with respect to all weights and biases of the ANN, a
process called “back propagation” in data science (Goodfellow et al. 2016). Back propagation
ensures that the weights and biases of the ANN are optimized during training, accounting for
each parameter’s individual impact on the loss function via matrix multiplication. A second
essential hyperparameter for the optimization of an ANN is the “learning rate”. It defines
the downward gradient step on the surface of the chosen loss function. A smaller learning
rate may slow down the convergence towards a minimum of the loss function. However at
the end of the optimization the distance towards a minimum may be smaller and the skill
of the ANN may be improved compared to a training with larger learning rates (Goodfellow
et al. 2016). In contrast, larger learning rates may accelerate the optimization and reduce the
risk that the ANN get stuck into a local minimum. Despite this, larger learning rates may
influence negatively on the optimization due to e.g., an oscillation of the algorithm between
multiple minima of the loss function (Goodfellow et al. 2016). To summarize an optimization
step, the ANN computes for each batch of data a new value of the loss function conditioned
on the weights and biases. Afterwards a down-gradient step of the loss function (the learning
rate) is applied, which is then backpropagated through the network and weights and biases
are adjusted to it (Goodfellow et al. 2016).
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An epoch consists of multiple optimization steps and is a complete pass through the entire
training data set. To evaluate the robustness and especially an overfitting of the predictions of
the ANN, the network is tested after each epoch to the validation data set. For the validation
data set the loss function and performance metrics are computed, but the weights and biases
are not adjusted. Overfitting occurs, if the training skill of the ANN is larger than the
validations skill measured with the respective losses (Goodfellow et al. 2016). Reducing the
overfitting may enhance the generalization of an ANN, which means that the ANN adaption
to out-of-sample data (i.e., coming from unseen and different environmental conditions) is
improved (Goodfellow et al. 2016). Over the course of the training, which may include a
number of epochs, ideally the loss function is slowly decreasing. The training is ending after a
predefined epoch or if an “early-stopping” is applied. The latter means that the training ends
when i.e., the difference between training and validation skill of an ANN exceeds a predefined
threshold (Goodfellow et al. 2016).

To increase the efficiency of training an ANN, there are a number of additional strategies.
First, an extensive hyperparameter search, finding suitable initial learning rates and batch
sizes, would help further optimize the ANN. Second, state-of-the-art optimizers, algorithms
that perform a stochastic gradient descent via incorporating noise, can help overcome local
minima of the loss function during training (Goodfellow et al. 2016). Third, shuffling the
training data, so a permutation in every epoch that results in batches with varying loss
statistics, introduces noise and helps to reduce overfitting. Finally, a learning rate schedule,
which reduces the initial learning rate after a certain epoch, aids to achieve a more efficient
training. In the first epochs a large learning rate ensures that the optimization is not getting
stuck in the nearest local minimum. In latter epochs a smaller learning rate reduces the distance
towards a specific minimum of the loss function and secures skillful predictions of the ANN.
As an example a learning rate schedule was helpful to achieve a realistic reproduction of a
multi-variate data set related to convective processes (Rasp et al. 2018).

To achieve a realistic reproduction of non-linear processes like convection, the respective
ANNs tend to consists of multiple hidden layers and large total node sizes (i.e., the networks of
Gentine et al. 2018; Rasp et al. 2018 or Mooers et al. 2021). As an example the ANN used in Rasp
et al. 2018 had in the order of 500k trainable parameters or degrees of freedom with in total 9
hidden layers. Thus a quantification of the influence of an input variable on a specific output
variable is cumbersome due to the complexity of the ANNs. Especially for the application
of ANNs in Earth science, this lack of interpretability is unsatisfying (Mamalakis et al. 2022),
where the focus may lie on improving the understanding of non-linear processes conditioned
on a large-scale thermodynamic and dynamic background states. One suitable step forward
to interpret the behaviour of an ANN is to use explainable artificial intelligence, determining
the importance of the input variables on which the ANN makes its predictions (Saranya and
Subhashini 2023). These explainable artificial intelligence algorithms have one general caveat,
namely their computational cost. High qualitative explainable artificial intelligence, such as
SHAP values (Lundberg and Lee 2017), allow a detailed interpretability of complex processes
captured by a neural network. However, their applicability on climate data sets of a few hun-
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dred gigabytes with multiple input and output variables remained challenging (Mamalakis
et al. 2022). Nevertheless, SHAP values can be helpful to validate the interpretability of the
underlying processes driving the dynamical system at hand (e.g., convective processes). An
example to test the applicability of SHAP for multi-variate climate data, was the correct identi-
fication of spurious correlations in an ANN, i.e., convective processes in the lower troposphere
that were driven by specific humidity in the stratosphere (Iglesias-Suarez et al. 2024).

2.4.2. Autoencoder Decoders (AEDs) and Variational Autoencoder Decoders
(VAEs)

Therefore it is intuitive to ask the question whether models with a latent space, a lower-
order manifold between the encoding and decoding part of the network, have the potential
to obtain interpretability without relying on computational expensive explainable artificial
intelligence. Such lower-order models will build the base for the general aim of the thesis
to better understand subgrid convective processes in an ESM. In detail this thesis will eval-
uate the applicability of VAE and Encoder Decoder (ED) structures to obtain an improved
understanding about convective processes in this context.

More generally, Variational Auto Encoder (VAE), but also AutoEncoder Decoder (AED)
structures, can help investigate a lower dimensional representation of an input image (or
input array) in the “latent space” (e.g., Kingma and Welling 2019). VAEs have even generative
modelling capabilities, meaning that one could construct a new image by drawing a sample
from the latent space and feeds it into the decoding part of the network (Kingma and Welling
2019). In mathematical notation, the key task of VAEs and AEDs are the mapping from input
variables X to the reconstructed variables X𝑝𝑟𝑒𝑑. The respective function can be defined in
pseudocode as X𝑝𝑟𝑒𝑑 = Decoder (Encoder(X)), where the lower-dimensional representation,
also know as latent variables z, within the latent space can be obtained via z = Encoder(X).
While “latent dimension” indicates the space defined by one specific latent variable, “latent
node” refers to the structural element inside the network of one particular latent variable, and
“latent space width” is the overall dimensionality of the latent variables.

Figure 2.6 shows the overall structure of a VAE (upper) and an AED (lower panel). Both
networks have a set of predefined input variables X that are fed into the Encoder. The Encoder
decreases progressively the dimensionality of the incoming signal from layer to layer in both
cases towards the latent space. The latent space is formed by a number of latent nodes 𝑁𝑙𝑎𝑡𝑒𝑛𝑡 .
For an AED the latent variables z are directly determined by the Encoder. Whereas for a
VAE the mean � and the logarithmic variance ln 𝜎2 are computed for every latent node in
the setup that I am using (Kingma and Welling 2014). � and ln 𝜎2 are utilized in a so called
“reparameterization” (Kingma and Welling 2014). This reparameterization maps the encoded
distribution � and ln 𝜎2 on an isotropic Gaussian. The latent variable z is then drawn from
the resulting reparameterized distribution (Kingma and Welling 2014). As a result of this
difference in the latent space, an AED can be classified as a deterministic deep learning model,
while a VAE has also a non-deterministic stochastic component. The latent variables z are
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Figure 2.6.: Schematic of a Variational Auto Encoder (VAE) and AutoEncoder Decoder (AED). The
VAE and AED uses a set of input variables X that is fed into the respective Encoder. The Encoder maps
the information into a latent space that includes a mean �, logarithmic variance ln 𝜎2 and the latent
variable z in the case of the VAE. For the AED the latent space only consists of z. For both networks z is
fed into the Decoder that increases the dimensionality to the output layer, returning the reconstructed
variables X𝑝𝑟𝑒𝑑.

the only input to the Decoder. The Decoder progressively increases the dimensionality of the
propagated signals from layer to layer towards the output layer, that is formed by the set of
reconstructed variables X𝑝𝑟𝑒𝑑.

Equation 2.10 shows a standard VAE loss (based on the equation shown in Mooers et al.
2023). The first term indicates the reconstruction error between the input variables 𝒙 and the
generated samples 𝑝𝜼(𝒙 |𝑧) of the Decoder 𝑝𝜼, based on 𝒙 and the latent variables z (Kingma
and Welling 2014). The generative model’s parameters is indicated by 𝜼, and the subscript 𝑞𝜸
symbolises the sampling from the latent space or variational distribution determined by the
Encoder (Kingma and Welling 2014). Sampling from the latent space is based on the latent
variables z conditioned on 𝒙, where 𝜸 indicates the variational parameters. The second term of
Equation 2.10 is the Kullback-Leibler (KL) loss term. It depends on the KL divergence between
the distribution represented by � and ln 𝜎2 and an isotropic Gaussian distribution. 𝑁batch is
the respective batch size and 𝑁latent is the number of latent dimensions. � is an positively
defined annealing factor (Alemi et al. 2018). � increases through the course of the training
and gives the KL term increasing relative importance from epoch to epoch compared to the
reconstruction error. Alternatively, � can be set to a constant that regularizes the KL term to
increase the reproduction capabilities of the VAE to the expanse of disentanglement inside its
latent space. In a deterministic setup (deterministic loss function), the expected reconstruction
error can be calculated by a squared error between 𝑿 and the reconstructed input variables
𝑿 𝒑𝒓𝒆𝒅. For the AEDs, the respective loss function is determined by the reconstruction errors
without the additional KL term.

28



2.4. Machine Learning for the Parameterization of Convective Processes
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(2.10)
Building machine learning convective parameterizations, however, requires predicting the

effects of subgrid convective processes on the large-scale state of the system. Variational
Encoder Decoder (VED) networks enable a X → Y𝑝𝑟𝑒𝑑 mapping, with varying input X and
output variables Y (see chapter 3). For example, thermodynamic state variables, such as
temperature profiles T(p) and specific humidity profiles q(p), may be part of the input fields
X. While Y includes the temporal derivatives of the respective state variables that reflect the
effects of subgrid processes. This key difference translates also into a modified loss function
(equation 2.11) compared to the traditional ones used for VAE networks (equation 2.10).
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(2.11)
Equation 2.11 shows a VED loss case (see chapter 3), that uses the MSE between the true

output variables 𝒀 as reconstruction term in contrast to traditional VAEs.
For the general aim of the thesis to understand convective processes simulated and repro-

duced in 𝒀 or 𝒀 𝒑𝒓𝒆𝒅 it is intuitive to construct a direct mapping 𝑿 → 𝒀 𝒑𝒓𝒆𝒅 with our VED
and EDs, and not the traditional mapping 𝑿 → 𝑿 𝒑𝒓𝒆𝒅. In chapter 3, I will even show that
a combined mapping 𝑿 → 𝒀 𝒑𝒓𝒆𝒅 + 𝑿 𝒑𝒓𝒆𝒅 has clear advantages over the 𝑿 → 𝒀 𝒑𝒓𝒆𝒅 for the
general interpretability of convective processes in the latent space of a VED. To evaluate the
uncertainties quantification related to stochasticity of convective processes, I will restrict the
mapping to 𝑿 → 𝒀 𝒑𝒓𝒆𝒅 of VEDs in the two succeeding chapters 4 and 5.

2.4.3. Recent Advances in Parameterizing Convective Processses with Machine
Learning

As the previous section 2.3 suggests, convective processes in ESMs bear large uncertainties due
to their reliance on subgrid convection schemes. A superparameterization or SRMs are high-
resolution alternatives but remain computationally expensive. Therefore, machine learning
algorithms that skillfully learn from such high-resolution convective processes are a valuable
alternative (Gentine et al. 2018; Gentine et al. 2021). These machine learning algorithm could
shape our understanding about convective processes in ESMs (Gentine et al. 2021). Likewise
machine learning algorithms may provide realistic uncertainty quantification of convective
processes that are a further key information to improve our understanding about convective
processes quantitatively (see chapter 5). When these machine learning algorithms are coupled
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into the numerical core of a climate model they have a fraction of the computational costs of
the original superparameterization (Rasp et al. 2018) or the SRM (Krasnopolsky et al. 2013).

In recent years machine learning subgrid processes based on high resolution training data
has flourished (Gentine et al. 2021). One of the first studies that replaced an existing radiation
scheme with a ML based version was presented in Krasnopolsky et al. 2010. Furthermore
it was shown that neural networks are able to learn subgrid convective processes based
on SRM simulations (Krasnopolsky et al. 2013). Thus they were applied as a data-driven
parameterization in a climate model in pioneering experiments (Krasnopolsky et al. 2013).
This data-driven scheme had a compatible skill as traditional convection schemes in a decade-
long simulation over the tropical Pacific Ocean (Krasnopolsky et al. 2013).

A few years later in a second phase of machine learning for climate modelling it was
proved that these subgrid convective processes from a superparameterization can be deep
learned with an ANN on global scales (Gentine et al. 2018). The ANN reproduced global
temperature tendency fields dT/dt (similar to Q1 in equation 2.5 of the Yanai scheme in
section 2.3), specific humidity tendencies dq/dt (similar to Q2 in equation 2.6), the longwave
heating and shortwave heating rates skilfully (Gentine et al. 2018). In the analysis the ANN
predictions were compared against data of the superparameterized Community Atmosphere
Model (CAM) in an aquaplanet setup. This is a simulation where topography is excluded
and the entire model domain is covered by an ocean as lower boundary of the atmospheric
model. In a follow-up study it was proved that an ANN can be used instead of a traditional
subgrid convection parameterization in a global aquaplanet simulation with CAM (Rasp
et al. 2018). The used ANN reproduced a large portion of the spatio-temporal variability
related to convective processes that a superparameterization would have but a convection
scheme could not represent (Rasp et al. 2018). The initial hybrid model with machine learned
subgrid parameterizations was followed by examples based on a random forest (Yuval and
O’Gorman 2020) or an ANN (Brenowitz and Bretherton 2019) with the System for Atmospheric
Modeling (SAM) in an aquaplanet setup. Apart from aquaplanets, ANN or residual neural
networks were able to reproduce subgrid processes in a real geography setup in prognostic
tests (Han et al. 2020; Mooers et al. 2021). This was a further step towards the use of deep
learning parameterization for convective processes in an ESM. Wang et al. 2022b and Han et al.
2023 also showed that their architectures allowed to run stable hybrid model simulates in CAM
and CESM2 over the course of a few years. Despite these advances Wang et al. 2022b used
an atmosphere only setup, while Han et al. 2023 side-stepped deep learning surface radiative
fluxes that are essential for coupling to the other model components of an ESM. This thesis
will build on these limitation and shows ways forward in this respect. Recently it was showed
that causal discovery can be used to improve the representation of subgrid processes with
an ANN in hybrid simulations via the identifications of spurious correlations between inputs
and outputs of the ANN (Iglesias-Suarez et al. 2024). Moreover causal discovery enabled an
improved understanding of convective processes in this respect (Iglesias-Suarez et al. 2024).

Apart from causal discovery and explainable artificial intelligence, VAEs and VEDs may
have the potential to improve the understanding about convective processes, that will be
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investigated in this thesis. Initially VAEs were used to gain an understanding about the
stochasticity and chaotic processes of the Lorenz 96 model (Lorenz 1996; Tibau Alberdi et
al. 2018) or to cluster different phases of the boreal polar vortex based on reanalysis data
(Krinitskiy et al. 2019). A VAE was also used to investigate characteristics of simulated tropical
convection with its latent space (Mooers et al. 2020). During the preparation of this thesis
and the related paper (Behrens et al. 2022), that I will show in chapter 3, two more studies
complemented the advances in improving the general understanding of convective processes
with interpretable deep learning models. The latent representation of an AED helped an
ANN to improve the prediction of extreme precipitation (Shamekh et al. 2023). This study
showed that the latent space stored key information about the convective aggregation and
enhanced both the interpretability and reproduction of convective processes (Shamekh et al.
2023). The interpretability of the latent space of a VAE allowed also a model intercomparison
of SRMs (Mooers et al. 2023). This study indicated via a latent space analysis that considerable
differences of vertical velocities exists related to convective processes between the different
SRMs (Mooers et al. 2023).

2.4.4. Stochastic Machine Learning in climate science

Despite these recent advances in modelling and understanding convective processes with
machine learning discussed above, known limitations of these architectures remained. One
limitation is the weak reproduction skill of ANNs for convective processes in the planetary
boundary layer. It has been hypothesized (i.e., Gentine et al. 2018; Mooers et al. 2021), that
the weak reproduction with single deterministic ANNs might be related to stochasticity. In-
dividual models may have deficiencies in representing to some extent stochastic processes
(Han et al. 2023). This limitation of deterministic algorithms appeared also in Earth system
modelling in the past. It led to the development of ensembles, to obtain an improved estimate
of the average subgrid convective processes in a climate model (Jones et al. 2019a, 2019b). Such
deterministic ensembles may have limitations in reproducing the variability of convective pro-
cesses (Jones et al. 2019b). To improve the representations of subgrid variability in climate
models stochastic schemes were developed (Berner et al. 2017). Some of these traditional
approaches to generate stochasticity were translated from numerical weather prediction to
climate modelling. One example in this context is the Stochastic Perturbed Parameter Ten-
dencies scheme (SPPT)(Buizza et al. 1999; Christensen et al. 2015), a scheme where subgrid
tendency terms are perturbed with multiplicative random noise. Building upon SPPT, further
work improved the representation of subgrid turbulence and air-sea interactions (Bessac et al.
2021) and showed the possibility to upgrade the scheme with information from SRM simula-
tions (Christensen 2020). Despite these advances in traditional stochastic parameterizations,
stochastic deep learning is still in its infancy in climate science as of today. Various studies
(i.e., Bhouri and Gentine 2022; Gagne II et al. 2020; Parthipan et al. 2022) showed that stochastic
machine learning improve estimating uncertainties of the conceptual Lorenz 96 model (Lorenz
1996). A stochastic entrainment and detrainment scheme for shallow convection based on a
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Monte Carlo dropout, where a certain percentage of the links inside a network are randomly
clipped during the repetitive predictions, outperformed an existing traditional scheme (Shin
and Baik 2022). A Conditional Generative Adversarial Network (CGAN) enabled a realistic
estimation of uncertainties of moistening and heating profiles related to tropical maritime
convective processes (Nadiga et al. 2022). The representation of shallow convection was im-
proved with a stochastic multi-plume scheme related to dry and shallow convective processes
(Chinita et al. 2023). Moreover characteristics of cloudiness in SRM simulations over Germany
were corrected with an stochastic sampling of mass fluxes at the cloud bases (Sakradzĳa and
Klocke 2018). Apart from atmospheric convective and turbulent processes, in oceanography
stochastic neural network proved to be valuable tools to realistically reproduce the effects of
subgrid eddies on the oceanic general circulation (Guillaumin and Zanna 2021; Perezhogin
et al. 2023).

Despite these great opportunities of deterministic deep learning ensembles and stochas-
tic deep learning discussed above, there exist two limitations of the latter. State-of-the-art
stochastic deep learning schemes focused on quantifying uncertainties for individual vari-
ables or processes. However calibrated uncertainty quantification for a multi-variate data set
of subgrid processes i.e., like with a superparameterization are not investigated yet. Therefore,
chapter 5 will show a detailed analysis in this context. Furthermore for such multi-variate
input and output data sets individual stochastic deep learning networks have in general a
weaker reproduction skill compared to individual deterministic counterparts (Yu et al. 2023).
In this work, I trained an ED based on the network architecture, that will be introduced in
chapter 3, with a strongly reduced dimensionality in its latent space of only five nodes. It was
shown that this ED had an improved reproduction of subgrid variables compared to the par-
ticipating hyperparameter-tuned stochastic models (Yu et al. 2023). So it is intuitive to wonder
whether there is a potential to combine both, accurate reproduction skills of deterministic
models with realistic uncertainty estimates for stochastic convective processes. This topic will
be covered in chapter 4.
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3. Understanding Convective Processes in a
Climate Model using Non-Linear
Dimensionality Reduction of a Variational
Encoder Decoder

The following chapter is reproduced from Behrens et al. 2022. In this chapter I will present
ways to investigate convective regimes and large-scale drivers of convective processes based
on the latent space of one Variational Encoder Decoder using generative modelling. This
chapter is structures as follows. Section 3.1.1 explains the climate model that is used in
this chapter. Section 3.1.2 illustrates the Variational Encoder Decoder that is designed to
understand convective processes and large-scale drivers together with other benchmarking
machine learning algorithms. It is followed by section 3.2 that evaluates the reproduction and
encoding capabilities with respect to the interpretability of the latent space of the Variational
Encoder Decoder. Section 3.3 contains the latent space investigation of the Variational Encoder
Decoder to understand the encoded large-scale drivers of convection and distinct convective
regimes. Section 3.4 summarizes the key results of Behrens et al. 2022. For Behrens et
al. 2022 I, as the author of the thesis, contributed all figures, tables and large parts of the
code to produce them. In the Figure 3.11 of Behrens et al. 2022 summarizing this chapter
one published schematic from Schneider et al. 2017 was added together with the reference
pointing to the original publication. Furthermore I let the writing and the analysis of the
published paper.

3.1. Data and Methods

This section reproduces the section Data and Methods of Behrens et al. 2022 with negligible
modifications.

3.1.1. Data: Superparameterized Aquaplanet Simulation

We use a 2-year aquaplanet simulation of the superparameterized Community Atmosphere
Model v3.0 (SPCAM) (Collins et al. 2006; Khairoutdinov et al. 2005) under the configuration
of Pritchard and Bretherton 2014 in which Sea Surface Temperatures (SST) were imposed
following a realistic zonally symmetric distribution (Andersen and Kuang 2012). The SST
maximum in the tropics is slightly displaced to 5◦ N and decreases meridionally towards
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the poles to reduce exact equatorial symmetry. The solar forcing is fixed to Austral Summer
conditions (no seasonal variability), but includes diurnal variability. The model has a coarse
horizontal resolution corresponding to a typical grid size of 300 km near the equator. The
vertical axis extends from the surface to ∼ 40 km (3.5 hPa) following a hybrid coordinate
with 30 levels (22 levels below 100 hPa). The GCM uses a 30-minute time step. Following
Pritchard et al. 2014, the superparameterized (SP) component consists of 8 nested 2D columns
oriented meridionally on the same vertical axis and with a subgrid size of 4 km (Grabowski
2001; Khairoutdinov and Randall 2001). Deep convection is explicitly resolved every 20
seconds and a Smagorinsky 1.5-order turbulence closure, and a one-moment microphysics
parameterization (Khairoutdinov and Randall 2003) are used. SPCAM in this configuration
yields a realistic reproduction of the ITCZ and tropical wave-spectra with a pronounced
Madden-Julian-Oscillation (MJO)-like signal, as well as improved precipitation distributions
compared to the host GCM (CAM, Pritchard et al. 2014). However, this SPCAM setup neglects
momentum transport, and for our approach, we sidestep the SP of cloud ice and water sources
and sinks and instead emulate their radiative consequences through the total diabatic heating,
as in Rasp et al. 2018.

3.1.2. Model: Variational Encoder Decoder

We develop a variational encoder decoder (see schematic in Figure 3.1) to holistically learn
subgrid-scale processes in SPCAM. VAEs traditionally reproduce their inputs, e.g., learning
a mapping from large-scale variables to themselves. Here, our goal is to map large-scale to
subgrid-scale variables. Therefore, we adopt a variational encoder decoder (VED) architecture
to include the emulation of subgrid-scale variables. We include convection, turbulence, and
radiation by simultaneously predicting the total diabatic heating and moistening tendencies
alongside a decoded reconstruction of the relevant input data that summarize local large-scale
state information prior to radiative-convective adjustment. Compared to deep feed-forward
neural nets, the variational encoder decoder enhances the interpretability of convective pro-
cesses and how they are connected to the driving large-scale climate via its latent space of
reduced dimensionality. Regarding the input fields (X), we closely mirror the established
precedent of Rasp et al. 2018 by using profiles of specific humidity q(p) in 𝑘𝑔

𝑘𝑔
and temperature

T(p) in K on 30 vertical levels each, as extracted from the end of the host model dynamics or the
beginning of the physics package. X additionally includes the scalar values of solar insolation
Q𝑠𝑜𝑙 in 𝑊

𝑚2 , surface latent heat flux Q𝑙𝑎𝑡 in 𝑊
𝑚2 and surface sensible heat flux Q𝑠𝑒𝑛𝑠 in 𝑊

𝑚2 , and
surface pressure P𝑠𝑢𝑟 𝑓 in Pa. That is, X is a concatenation of these two vectors and four scalars,
[q(p), T(p), Q𝑠𝑜𝑙 , Q𝑙𝑎𝑡 , Q𝑠𝑒𝑛𝑠 , P𝑠𝑢𝑟 𝑓 ], into a 64-element input vector. The variational encoder
decoder is trained to predict O, which combines the reconstruction of the same large-scale
input data (as described above) with the subgrid-scale process rate output fields targeted by
Rasp et al. 2018 Y (i.e., a parameterization): vertical profiles of total diabatic specific humidity
tendency dq(p)/dt in 𝑘𝑔

𝑘𝑔×𝑠 and total diabatic temperature tendency dT(p)/dt in 𝐾
𝑠 defined on

30 pressure levels, as well as scalar values for shortwave and longwave radiative heat fluxes
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at the model top (Q𝑠𝑤 𝑡𝑜𝑝 and Q𝑙𝑤 𝑡𝑜𝑝) and at the surface (Q𝑠𝑤 𝑠𝑢𝑟 𝑓 and Q𝑙𝑤 𝑠𝑢𝑟 𝑓 ) in 𝑊
𝑚2 , and

precipitation rate precip in 𝑚
𝑠 .

The full predicted vector O = [dq(p)/dt, dT(p)/dt, Q𝑠𝑤 𝑡𝑜𝑝 , Q𝑠𝑤 𝑠𝑢𝑟 𝑓 , Q𝑙𝑤 𝑡𝑜𝑝 , Q𝑙𝑤 𝑠𝑢𝑟 𝑓 , precip,
q(p), T(p), Q𝑠𝑜𝑙 , Q𝑙𝑎𝑡 , Q𝑠𝑒𝑛𝑠 , P𝑠𝑢𝑟 𝑓 ] has a dimension of 129.

As it will be the main ML model used in this study, we henceforth abbreviate the variational
encoder decoder structure simultaneously predicting subgrid-scale convective processes and
large-scale climate conditions to “VED” for simplicity. A prior experiment with a VED𝑋→𝑌

that was trained on X to predict Y, similar to the established precedent of Rasp et al. 2018,
does not encode the large-scale climate variables X as much in its latent space compared to
VED. This limited our ability to gain insight into convective predictability with VED𝑋→𝑌 (see
Appendix A with supporting material section A.4.1 and Figure A.16 for details). In contrast
the combined reproduction of subgrid-scale processes and large-scale climate variables with
VED together with our generative modeling method allows us to explore convective regimes
and corresponding large-scale climate conditions.

The encoding part of the VED (Encoder) consists of 6 hidden layers, which progressively
reduce the dimensionality from 463 nodes in the first hidden layer down to 5 nodes (the latent
variables) in the latent space. These values were chosen following a formal hyperparameter
search (see the Appendix A and section A.2). We will test the sensitivity of emulations of the
VED with respect to the number of latent nodes in section 3 in detail. In the following we
will refer to one distinct latent variable in the context of the network architecture as “latent
node”. While we will use the notation “latent space” for the manifold spanned by all latent
variables. Within this latent space, the mean � and logarithmic variance ln 𝜎2 are computed
for each node, where 𝜎 is the standard deviation of the posterior (Kingma and Welling 2014).
Then a so-called ‘reparameterization trick’ (Kingma and Welling 2014) is utilized to map the
original distribution based on � and ln 𝜎2 onto an isotropic gaussian distribution. We used the
ln 𝜎2 instead of 𝜎2 for the construction of the network to simplify the reparameterization and
the computation of the VED loss. The resulting latent variables z (5 dimensions) are used to
investigate convective processes and drivers of convective predictability. Henceforth we will
use the notation “latent dimension” to describe the subspace spanned by one particular latent
variable. We will show in section 3.3 that characteristic convective regimes and large-scale
climate states are encoded in z. The latent variables z are the only input fed to the decoding
part of the VED (Decoder), which reconstructs both large-scale and subgrid-scale fields. In the
decoder, the dimensionality is progressively increased to 463 in the last hidden layer before
the 129-node output layer. We use the rectified linear unit (relu) as activation function of
all hidden layers of the Encoder and Decoder except for the Decoder output layer, where we
use an exponential linear unit (elu) based on prior hyperparameter testing (see S.1). In the
latent space, � and ln 𝜎2 are linearly activated, whereas for the latent variables z we call the
reparameterization function. In summary, the Encoder and Decoder of the VED consist of
388,440 and 418,469 total trainable parameters, respectively.

We train the VED over 40 epochs (number of iterations through training data), during which
the weights and biases are updated to minimize the VED loss function (see Equation 3.1).
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VED loss = reconstruction loss + � KL loss (3.1)

The loss function is the sum of a reconstruction and a Kullback-Leibler (KL, Equation 3)
loss term. The first term measures the mean-square error (MSE, Equation 3.2) between the
predicted (O𝑒𝑚𝑢𝑙) and the ground truth data (O).

reconstruction loss =
1
𝑀

× 1
𝑁

(𝑀=129)∑︂
𝑖=1

(𝑁=batch size)∑︂
𝑗=1

(𝑂𝑖 𝑗 − 𝑂𝑒𝑚𝑢𝑙
𝑖𝑗 )2 (3.2)

The KL loss term can be interpreted as a regularizer of the resulting latent distributions
(Kingma and Welling 2014), which penalizes the complexity in the latent space based on the
KL divergence.

KL loss =
1
2 × 1

𝑁

(𝑁=batch size)∑︂
𝑗=1

(𝐾=latent space width)∑︂
𝑘=1

[︂
−1 − ln 𝜎2

𝑗𝑘
+ �2

𝑗𝑘
+ 𝜎2

𝑗𝑘

]︂
(3.3)

� 𝜖 R+ (3.4)

We apply a KL annealing approach that multiplies the KL loss term by an annealing factor �
(equation 3.4) with initial value 0. The annealing factor then grows after a certain epoch during
the training process (Alemi et al. 2018). This generally improves the reproduction capabilities
of VAEs due to lowering the impact of the regularizing KL term (Mooers et al. 2020), avoiding
a posterior collapse (Alemi et al. 2018), which negatively affects training. During a training
step a 2D batch (dimensions 714 × 64) of 714 samples, the batch size, is fed into the VED
to optimize the weights and biases. We use Adam as the VED’s optimizer (Kingma and Ba
2014). The purpose of an optimizer is to improve the networks performance (minimization
of the networks loss function in our case) during the training process based on stochastic
gradient descent. We choose this particular optimizer to follow the same strategy like in the
preceding study of Rasp et al. 2018. The learning rate (the applied down-gradient step to
optimize the loss) has an initial value of 0.00074594 based on a formal hyperparameter tuning
and is divided by factor 5 after every 7𝑡ℎ epoch over the course of the training. The batch size
and the initial learning rate were chosen based on a formal hyperparameter search. Further
optimized hyperparameters and a description of the hyperparameter search can be found in
Appendix A Table A.1 and section A.2. The chosen hyperparameters represent a suitable local
minimum for the optimization of the VED architecture but should not be considered as the
optimal hyperparameter setting.

3.1.3. Benchmarking

To benchmark the performance of our VED, we construct three reference networks with
different architectures. The first reference network is an Encoder Decoder (ED). The ED
closely mirrors the architecture of the VED except that there is no KL regularization, meaning
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Figure 3.1.: Schematic of the constructed VED which uses large scale CAM variables to investigate
simulated subgrid-scale convective processes of SP. The latent space consists of mean �, a logarithmic
variance ln 𝜎2 layer and the latent variables z. The output data O of the decoder includes a reconstruc-
tion of the input data X to the encoder to encourage a latent space that can additionally compress the
large- scale climate variables, in addition to their mapping to the target subgrid-scale fields Y. This
Figure was directly reproduced from Behrens et al. 2022.

that the calculation of ln 𝜎2 and � is omitted. Furthermore, the ED’s loss function only relies
on the reconstruction loss. The second reference network, LR, is a further simplification of
the ED, for which linear activations are used, which can be viewed as an equivalent to a
principal component regression except that the latent space is not orthogonal. That is, the
LR network can be interpreted as the combination of linear dimensionality reduction and
regression modules. We use a reference deep artificial neural net (reference ANN) with its
original output normalization based on Rasp et al. 2018, which was proven to be a skilful
emulator of SPCAM. Note that to reproduce Rasp et al. 2018, meridional wind profiles were
used as input fields to construct and train the reference ANN network. As an additional
baseline model, we implement a linear version of our reference ANN. Similar to the reference
ANN, this “Reference Linear Model” uses 256 nodes and 9 hidden layers but replaces all of
the ANN’s activation functions with the identity function (i.e. passing the values unchanged).
Finally, we constructed one further VED structure and a conditional VAE in the run-up of this
study, which are presented in the supporting material (see Appendix A section A.4) together
with their strengths and limitations. Our goal is to strike a balance between the successful
emulation of the target subgrid-scale output data Y with compression, and the usefulness of
scientific interpretation for convective processes and large-scale climate states. The VED we
have chosen (see Figure 3.1) is optimal on these fronts.

We split the SPCAM simulation into space-time shuffled training, unshuffled validation
and unshuffled test data sets spanning 3 months (∼ 4400 time steps) each. The input data
X is normalised by subtracting the mean of each variable at each vertical level and dividing
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by the range between minimum and maximum of the resulting anomalies. Furthermore, we
normalize the output of the VED, ED and LR as described in the Appendix A (see section
A.2). The output normalization, i.e., scaling to the same order of magnitude, allows us to
achieve comparable reproduction skills across all fields. We show the impact of the existing
differences of the VED output normalization and the reference ANN output normalization
(Rasp et al. 2018) on the evaluation of mean reproduction skills of the networks in section A.3
in the Appendix A.

In the next section we will evaluate the performance of the VED with respect to common
reproduction metrics, and discuss the interpretability of the information encapsulated in the
latent space.

3.2. Evaluation of the VED

This section is directly reproduced from Behrens et al. 2022 with negligible modifications.
In this section, we assess the predictive skill of the VED, and compare its mean regimes /

statistics and tropical variability against reference networks. Furthermore, we evaluate the
interpretability of the VED’s latent space with respect to climate and convective variables.
With this analysis, we are investigating the overall decoding (reproduction) and encoding
(dimensionality reduction, interpretability) abilities of the VED to learn convective processes.

3.2.1. Mean Regimes and Statistics

We start by evaluating the accuracy of the VED predictions to assess the impact of its di-
mensionality reduction on the overall performance. We use the mean squared error (MSE) to
assess the performance of the VED predictions across subgrid scale fields Y for the training,
validation, and test sets based on our VED output normalization. Overall, the VED shows
good reproduction skills (see Appendix A Table A.4). The VED (test MSE = 0.165) clearly out-
performs the linear model LR (test MSE = 0.243) in all data sets. The difference in predictive
skills between VED and ED (test MSE = 0.165) is negligible. However, both networks express
increased but comparable MSE with respect to reference ANN (test MSE= 0.135), in spite of
the reference ANN having a substantially larger dimensionality (no latent manifold with a
dramatic dimensionality reduction down to 5 nodes). These results are robust to the choice of
output normalization (VED’s versus reference ANN’s, Rasp et al. 2018), as demonstrated in
the Appendix A.3 section A.3.

In the following, we explore whether a latent space of 5 nodes is a good compromise
between accuracy to reproduce convective processes and physical interpretability in the latent
space. Figure 3.2 shows the VED performance (MSE) on test, validation, and training data as a
function of the latent space width. We find a substantial sensitivity of the VED’s performance
to the latent space width - smaller width results in reduced accuracy associated with increased
dimensionality reduction. Even for a latent space of two nodes, the VED has a higher predictive
skill than the reference linear model, confirming the necessity of using nonlinear models to
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Figure 3.2.: Mean Squared Error (MSE) as a function of Latent Space Width of the VED for test (solid
cyan), validation (dashed-dotted cyan) and training data set (dashed cyan curve) using our VED output
normalization. The horizontal solid blue / black line represents the MSE scores of the reference ANN
of Rasp et al. 2018 / a linear version of this network (Reference Linear Model) on test data with fixed
layer width of 256 nodes in the 9 hidden layers. This Figure was directly reproduced from Behrens
et al. 2022

faithfully represent subgrid-scale processes. Moreover, the VED’s performance is converging
towards the reference ANN for larger latent space widths (8 nodes). A latent space of 5 nodes
results in a small reduction of predictive skills compared to the ‘wider’ latent space (Figure
3.2), indicated by a MSE decrease of only ≈ 0.012 between a latent space of 5 nodes and 8
nodes. Additionally, we will show later (in section 3.3) that such a latent space width enables
the characterisation of realistic convective regimes and drivers of convective processes on
specific nodes. This suggests that the overlap between different nodes is small. Despite this
small overlap, we will show in section 3.3 that the resulting five latent nodes govern both SP
convective processes and CAM climate states in most cases. For larger latent space widths of 6
nodes and more, the interpretability of resulting convective regimes gets more challenging due
to the decaying impact of one latent node, or increasingly concurring influences between the
nodes on SP convective processes or CAM climate variables. To summarize, regardless of how
the output data are normalized (see Appendix A Figure A.1), the VED performs better than
the reference linear model and approaches the performance of the fully-connected reference
ANN as the latent space width increases.

As a complementary metric to evaluate the performance of the VED, we use the Coefficient
of Determination (R2) (Equation 3.5).

R2 = 1 − MSE
Var

(3.5)

MSE =
1
P

P∑︂
𝑡=1

(Yt − Yemul
t )2 (3.6)
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Figure 3.3.: Coefficient of Determination (R2) of lower tropospheric temperature tendencies (a) and
lower tropospheric specific humidity tendencies (b) at 700 hPa for the VED (left) and reference ANN
(right column). The global mean R2 of each field is indicated in the upper right above every subplot.
This plot was directly reproduced from Behrens et al. 2022

Var = 1
P

P∑︂
𝑡=1

(Yt −
1
P

P∑︂
𝑡=1

Yt)2 (3.7)

It is defined as the difference of 1 and the ratio between the MSE (equation 3.6) and the true
variance (equation 3.7) of the data, where P is the length of the time series, t is the respective
time step and Y / Y𝑒𝑚𝑢𝑙 are the true value of the test data / VED prediction. We constructed at
first the time series of all output variables O from the test data set or predictions and computed
the respective coefficients of determination in each grid cell (64 points in latitude × 128 points
in longitude = 8192) of all layers. We selected the global subgrid heating and moistening fields
at 700 hPa for the evaluation of the VED’s R2 (Figure 3.3).

We choose dq/dt and dT/dt fields at this pressure level because of the limited skill in fit-
ting lower tropospheric convective processes with neural nets that has been reported across
multiple investigations, and which has been speculated to be associated with an underrepre-
sentation of stochastic variability linked to shallow and deep convection (Gentine et al. 2018;
Mooers et al. 2021; Rasp et al. 2018; Wang et al. 2022b). Both networks, VED and reference
ANN, exhibit similar emulation skill patterns for heating and moistening tendencies, including
the skill deficits for low-level moistening tendencies in the tropics, as seen in previous studies.
Overall, we see a decreased reproduced variability with the VED (R2

global mean = 0.57 / 0.42 for
dT/dt / dq/dt; 35% and 22% of horizontal grid cells for temperature and specific humidity
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tendencies with R2 > 0.7, respectively) compared to the reference ANN (R2
global mean = 0.66,

0.53 for dT/dt, dq/dt; 51% and 35% of horizontal grid cells with R2 > 0.7 for temperature and
specific humidity tendencies, respectively). The VED shows regions of high reproduction skill
for both, temperature and specific humidity tendencies along the mid-latitude storm tracks
(∼ 45◦ N / S, R2 ∼ 0.7) and in the ITCZ region near the equator (ascending branch of Hadley
Cell associated with deep convection, R2 ∼ 0.6). Both networks exhibit weaker prediction skill
of specific humidity and temperature tendencies near the descending branches of the Hadley
Cell (subtropical highs ∼ 20◦ N / S) associated with an underestimation of (shallow) convec-
tive variability. Mooers et al. 2021 also found comparably weaker reproduction skill of their
neural net in this region. Recently Wang et al. 2022a showed that the reproduction of moist-
ening tendencies in the subtropics can be improved by using non-local features from adjacent
grid cells as additional inputs of the neural net. Nevertheless, the VED shows good repro-
duction skill associated with convective processes in the lower troposphere compared to the
reference ANN, despite its strongly reduced dimensionality in the latent space. This suggests
that the information from large-scale climate variables X that is relevant for the prediction of
subgrid-scale convective processes Y is closer to 5 (our latent space’s dimensionality) than 64
(the input vector length). In other words, this means that the number of large-scale variables
needed to skillfully emulate subgrid-scale processes is far smaller than the number of original
input variables of the superparameterization. This is consistent with assumptions made by
reduced-complexity models, such as the lower-dimensional multi-cloud model (Frenkel et al.
2012) or the quasi-equilibrium tropical circulation model (Neelin and Zeng 2000).

3.2.2. Tropical Variability

Current ESMs exhibit large biases in tropical precipitation and associated patterns (Bock et al.
2020). These regional uncertainties can be attributed to the fact that many ESMs struggle
to reproduce tropical intra-seasonal variability like the Madden Julian Oscillation (MJO), an
eastward propagating pattern of clustered deep convection in the Indo-Pacific Region (Zhang
2005). SPCAM yields a more realistic reproduction of the MJO compared to the traditional
convective parametrization of CAM (Khairoutdinov et al. 2005). Furthermore, the governing
tropical variability is largely reproducible with deep learning approaches (Rasp et al. 2018).
Here, we investigate the ability of the VED to not distort the high-frequency tropical variability
(15◦ N to 15◦ S) as simulated by SPCAM compared to the reference ANN. For this analysis,
we use the entire second year of the SPCAM simulation to identify driving tropical variability
with frequency lower than 1

30 days−1. This second SP year includes the 3-month sequence of
the validation data set but has no overlap with the training data set.

Figure 3.4 shows the Wheeler-Kiladis diagrams, diagnosing the equatorial symmetric com-
ponent (zonal wave numbers k) of outgoing longwave radiation (Q𝑙𝑤 𝑡𝑜𝑝) with respect to its
frequency 𝜔 for both SPCAM (Figure 3.4a) and VED (Figure 3.4b). I added arrows to assist
the readers to navigate through Figure 3.4, which were not included in the original version
presented in Behrens et al. 2022. Eastward propagating, non-dispersive Kelvin waves (𝜔−1
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Figure 3.4.: Wheeler Kiladis diagram based on tropical outgoing longwave radiation [15◦ N-15◦ S] of SP
(a), of VED predictions (b) and the absolute difference of spatio-temporal wave spectra VED - SP (c) for
1 year of SP simulations. The Figure is reproduced from Behrens et al. 2022 with small modifications
(added arrows) to aid the reader with the interpretation.

∼ 8 - 20 days, k ∼ 2-5) and the MJO (𝜔−1 ∼ 30 days, k=1) are not distorted by the VED. The
resulting differences in the reproduced spatio-temporal variability with respect to SPCAM
are generally confined within -0.2 to 0.2 (unit-less values) (Figure 3.4c), which amounts to a
relative error of roughly 20%, and are not associated with a damping or absence of general
features in 𝜔-k space.

Although the reference ANN shows slightly better reproduction skill (see Figure A.3 in
Appendix A), the VED and also ED (see Figure A.2 in Appendix A) can realistically reproduce
not only mean regimes and characteristics of convective processes but also the associated
variability even with its strongly reduced dimensionality on only 5 latent nodes.

Next, we evaluate our main interest – the physical interpretability of the VED with respect
to convective processes – by exploring the information encapsulated in its latent space. We
will show in the following sections that the representation of general convective processes is
actually much lower dimensional than potentially envisioned.

3.2.3. Interpretability via Latent Space Exploration

In this section, we investigate convective processes and large-scale climate states captured
in the latent space of the VED. This will give us a first impression of general drivers of
convective predictability encapsulated in the latent manifold and will show the potential to
study convective processes with only five latent nodes. Latent spaces of VAEs behave to some
extent as a non-linear equivalent of a Principal Component Analysis (PCA), e.g., Rolinek
et al. 2019, due to a skilful lower-dimensional encoding of information fed into the network.
Therefore, we test whether the latent space of the VED retains a meaningful lower dimensional
representation of convective processes like we would expect from a traditional PCA.

Human visualization of the full five latent dimensions (5 nodes, 5D) in a 2D schematic
requires some additional dimensionality reduction. For visualization purposes, we therefore
use a PCA to first compress the 5D manifold into a 2D lower-dimensional embedded space,
which allows a visual inspection of the encapsulated information. The resulting 2D PCA
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representation contains 82% of the total variance of the VED’s latent space. Figure 3.5 shows
the first (x-axis) and second leading Principal Component (PC) (y-axis) of the compressed
latent space for 1 million randomly sampled points. The manifold, which is spanned by
the two leading PCs, is then divided into a regular grid of size 50 (PC 1) × 50 (PC 2) cells.
Tracking each selected sample allows us to characterize the embedded information for both
convection and large-scale climate states. This permits us to compute conditional averages of
these convection related variables in each grid cell of the 2D PCA compressed manifold.

Figure 3.5.: The 2D Principal Component Analysis (PCA)-compressed latent space of the VED and
associated conditional averages of solar insolation (upper left), precipitation (upper right), outgoing
longwave radiation (lower left) and surface air temperature (lower right panel) of projected SP test data
(see color scheme in each subplot). The x-axis / y-axis in all subplots indicates the 1𝑠𝑡 / 2𝑛𝑑 leading
Principal Component (PC) of the 5D latent space, which have a combined “explained variance” of
around 0.82. The arrows in the lower right subplot indicate the position of characteristic samples from
different geographic regions inside the 2D PCA-compressed latent space of the VED mentioned in the
text. The Figure is directly reproduced from Behrens et al. 2022.

Figure 3.5 depicts the conditional averages of solar insolation (Q𝑠𝑜𝑙), precipitation (precip),
outgoing longwave radiation (Q𝑙𝑤 𝑡𝑜𝑝), and surface air temperature (T𝑠𝑢𝑟 𝑓 ) in the 2D PCA
compressed latent space of the VED. Together the results show that distinct convective regimes
are clearly separated in the latent space. More information on how the complex global
superposition of distinct geographic convective regimes and large-scale processes in the latent
space is contributed by separate latitudinal bands of the aquaplanet (tropics, boreal and
austral mid latitudes) is provided in the Appendix A. Therein Figure A.4 shows the fixed Sea
Surface Temperature (SST) field of the simulation and Figure A.6 the regional decomposition
of patterns in the VED’s latent space. These two figures can aid as a reference guide for
the following latent space exploration. We start the analysis by investigating the impact
of the insolation Q𝑠𝑜𝑙 on the latent space position, including whether the expected diurnal
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cycle of convective processes in SPCAM (Khairoutdinov et al. 2005; Pritchard and Somerville
2009) is manifested in the latent space of the VED. Indeed, solar insolation Q𝑠𝑜𝑙 reveals 2
distinct maxima with day-time conditions and 2 minima with night-time conditions, which
are separated by diurnal transition zones, as expected from diurnally varying input and output
data of SP. Cross-evaluating the conditional averages of solar insolation with T𝑠𝑢𝑟 𝑓 , one can
diagnose that the 2D PCA compressed latent space of VED stores information that can be used
to infer the geographic location of a sample. As an example, we can focus on the ‘fin-shaped’
region (PC1 ∼ -8, PC2 ∼ 15) protruding from the top of the 2D PCA compressed latent space.
Here the samples are characterized by anomalously cold (273 K < T𝑠𝑢𝑟 𝑓 < 278 K) climate
conditions without solar insolation. Based on the fixed SST forcing (see Figure A.4 in the
Appendix A), the low surface air temperatures and the constant perpetual Austral Summer
solar forcing, we can conclude that these samples originate from polar and subpolar latitudes
in the Northern Hemisphere. Furthermore, we find a zone with day-time solar insolation
(Q𝑠𝑜𝑙 > 700 W

m2 ) and cold surface air temperature (273 K < T𝑠𝑢𝑟 𝑓 < 280 K) in the upper-right
part of the latent space (PC1 ∼ 10, PC2 ∼ 5), which represents large-scale climate conditions
that can be only found in the austral polar and subpolar latitudes in SPCAM test data.

We also explore the fingerprinting of precipitation on the latent space as a proxy for the
strength of convective processes, since it is closely connected to convective moistening and
convective heating (Emanuel 1994; Lohmann et al. 2016). The 2D PCA compressed latent
space of the VED reveals a good separation of samples with no or negligible precipitation,
shallow convection with the formation of weak precipitation, and deep convective samples
with intense precipitation (precip > 10 𝑚𝑚

ℎ
in the tropics, see Figure A.6 in the Appendix A).

We expect to see a clear separation between tropical deep convective samples and samples with
no or negligible precipitation from the colder higher latitudes or the region of the subtropical
highs in the 2D PCA compressed latent space due to the strong variation in the magnitude
of convective processes with latitude as it is visible in Figure 3.5. If we now focus on the
conditionally-averaged plot of precipitation, two maxima are evident. The first precipitation
maximum (PC1 ∼ -15, PC2 ∼ 5) is associated with day-time solar forcing, a minimum of
outgoing long-wave radiation (Q𝑙𝑤 𝑡𝑜𝑝 < 150 𝑊

𝑚2 , which suggests high cloud tops in the upper
half of the troposphere) and tropical surface air temperatures (T𝑠𝑢𝑟 𝑓 > 295 K). Therefore,
this maximum originates from tropical day-time deep-convective samples in SPCAM. The
second maximum (PC1 ∼ 5, PC2 ∼ 5) exhibits slightly colder surface air temperatures, night-
time conditions, decreased outgoing longwave radiation (Q𝑙𝑤 𝑡𝑜𝑝 ∼ 100 𝑊

𝑚2 ) and precipitation
formation of more than 3 𝑚𝑚

ℎ
. It can be shown that this maximum originates from night-time

deep convection from the tropics in its center and predominantly strong precipitating samples
from the Northern and Southern extratropics along the left and right boundary, respectively.

Outgoing longwave radiation (Q𝑙𝑤 𝑡𝑜𝑝) is a good estimator for both the height of cloud tops
based on the inferred brightness temperatures for convective samples or surface temperatures
for non - or negligibly - convective samples. Based on the combination of high Q𝑙𝑤 𝑡𝑜𝑝 (no or
negligible convection), no precipitation formation and anomalous warm surface temperatures
(T𝑠𝑢𝑟 𝑓 ∼ 300 K), one can conclude that samples from subtropical highs (the descending branch
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of the Hadley cell, with limited deep-convective processes with large vertical extent in the free
troposphere) are concentrated in the lower left part of the PCA compressed latent space (PC1
∼ -10, PC2 ∼ -10) of the VED.

These results demonstrate how large-scale climate conditions and convective processes are
connected and physically interpretable in the latent space (e.g., equivalence of precip maxima
and Q𝑙𝑤 𝑡𝑜𝑝 minima), which illustrates the encoding power of the VED. Furthermore, the
evaluated mean statistics support that the VED realistically reproduces convective processes
and the associated variability despite a strong dimensionality reduction down to only five
nodes in the latent space, which shows the decoding power of the network.

Similar reproduction abilities can be investigated for ED, but the physical interpretability of
the resulting latent space is reduced compared to VED. The KL divergence used for the VED
ensures an improved separation of latent modes. The effect can be seen in a larger number of
centers of action in the ED’s latent space and weaker gradients in the conditional average plots
with respect to subgrid-scale and climate variables, as can be seen in the Appendix A Figure
A.5 (ED vs VED latent spaces) and Figure A.6 for the VED conditional average plot or Figure
A.7 for ED conditional average plot. Additionally, we tested the interpretability of the 2D PCA
compressed latent space of a VED trained on X to emulate Y, in other words mirroring the input
data and output data of SP (see subsection A.4.1 in the Appendix A). In this case the latent space
strongly focuses on the magnitude of heating or moistening tendencies, resembling a weak
gradient from negligible convective processes towards strongly precipitating deep convective
samples (see Figure A.16 in Appendix A). For large-scale climate variables like surface air
temperature, the 2D PCA compressed latent space of a VED𝑋→𝑌 mostly distinguishes between
warm conditions and cold conditions sorting samples from both poles close together in one
minimum (see Figure A.17 in Appendix A), which makes the visual separation of austral and
boreal polar latitudes nearly impossible. In contrast, VED shows a pronounced separation
of austral and boreal polar samples and reveals distinct regimes of convective processes in
its 2D PCA compressed latent space as seen in Figure 3.5, which is a clear advantage in
interpretability of this network compared to VED𝑋→𝑌 .

We further compared the interpretability of the 2D PCA compressed latent space of the
VED against a traditional PCA on the large-scale input features X, as an unsupervised linear
reference method. The first two leading PC’s with respect to X show overall weak gradients in
its lower-dimensional space for the conditional averages of solar insolation, outgoing longwave
radiation and surface air temperature (Figure A.8 in Appendix A). The ‘centers of action’ are
less pronounced for the PCA on X compared to its equivalent on the latent space of VED seen
in Figure 3.5. Especially the identification of deep convective samples is hardly possible inside
the submanifold spanned by the two leading PC’s of the large-scale variables as can be seen in
Figure A.8 in Appendix A. In latitude - longitude plots (Figure A.9 in Appendix A) these two
leading PC’s resemble large-scale patterns with meridional gradients that show similarities
with temperature or radiation fields but barely with subgrid-scale variables. In contrast, the
latent space of VED focuses on both large-scale and subgrid-scale patterns. The first two
latent variables are characterised by large-scale patterns connected to geographic variability
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and solar insolation (see Figure A.10 in Appendix A). The remaining three latent variables
describe mostly subgrid-scale convective processes, as can be seen in Figure A.10 in Appendix
A.
The concept of the computing conditional averages can be repeated also on 2D projections
spanned by the original latent variables of the VED without a PCA as postprocessing step.
An example of this more detailed latent space inspection can be found in the Appendix A in
section A.3 (Figure A.12 for precipitation, A.13 for solar insolation and A.14 for surface air
temperature).

As a next step, we will combine the reproduction skill and the encapsulated information in
the latent space of the VED to investigate convective processes by identifying distinct large-
scale drivers, associated convective regimes and geographic variability in detail.

3.3. Unveiling Drivers of Convective Processes in SPCAM Using
Generative Modeling

This section is directly reproduced from Behrens et al. 2022 and based on the generative
modeling section of this paper.

In this section, we discuss the dominant drivers of convective processes encapsulated in the
latent space of the VED using a generative modeling approach. We compute the marginal
distributions of all 5 latent variables z. We focus on the 10𝑡ℎ , 25𝑡ℎ , 50𝑡ℎ , 75𝑡ℎ and 90𝑡ℎ percentiles
of the marginal distributions of the latent variables. Since most of these distributions are bi-
modal (see Figures 3.6 – 3.10a), we select their median values as estimators for the intersect
(origin) of the 5-dimensional z, instead of the mean. For all latent variables, the median is
close to the mode value (peak value) of the marginal distributions. To generate the ‘median’
climate conditions and associated convective processes from the ‘median’ values of the latent
variables, we construct a reference state z𝑚𝑒𝑑𝑖𝑎𝑛 (Equation 3.8). z𝑚𝑒𝑑𝑖𝑎𝑛 contains the median
values for all five latent variables. This reference state is fed into the decoder of the VED
to generate vertical heating, moistening, specific humidity, and temperature profiles. These
vertical profiles represent the ‘median’ state of convective processes and associated climate
conditions.

zmedian = [median (z1) ,median (z2) ,median (z3) ,median (z4) ,median (z5)] (3.8)

To investigate encapsulated convective regimes and large-scale climate states in the latent
space of VED via generative modeling, we replace the median value with the different per-
centiles (perc (z1) in Equation 3.9) along one specific marginal distribution. This analysis
identifies how each latent node drives a variation of convective processes and large-scale cli-
mate states generated by the decoder and manifests in well-known convective regimes. The
modified z𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛 (Equation 3.9) can be seen as a latent forcing on the decoder, acting as a
knob which amplifies or damps the associated convective features. Furthermore, z𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛
influences the geographic variability of generated samples, allowing an interpolation from a
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tropical to a polar ‘background’ climate state like a knob for the general volume of generated
large-scale profiles. A clear separation between geographic versus convective modulation
with a distinct z𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛 is challenging and not the primary goal of our VED’s decoder setup.
The evaluation whether a distinct latent node drives more geographic than convective mod-
ulation necessarily involves an analysis of all generated variables - an interesting analysis
trade-off revealed by this latent space exploration. z𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛 can be geometrically interpreted
as a translation along one distinct latent dimension in the 5-dimensional latent space. For in-
stance, z𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛 is applied as an example to latent node 1 perturbing the ‘median’ conditions
along this latent dimension, while keeping the median values for the 4 other dimensions:

ztranslation node 1 =
[︁
perc (z1) ,median (z2) ,median (z3) ,median (z4) ,median (z5)

]︁
(3.9)

Applying a translation along one latent dimension while keeping the other latent variables
fixed to their median values implicitly assumes that latent variables do not overly depend on
each other. To test this independence, we calculate the Pearson correlation between all five
latent variables using the entire test data set. The mean correlation coefficients between the
latent dimensions are confined within ±0.35, except for a mean correlation of -0.74 between
latent variables 2 and 5. The relatively large linear connection between latent variables 2
and 5 can be further explored by density plots using the 2D projection spanned by these
latent variables, see Figure A.11 in Appendix A. While Latent Node 2 separates moist and
warm from cold and dry tropospheric conditions, Latent Node 5 represents deep convection
samples, which rely on anomalous wet and warm conditions in the troposphere. Therefore it
is not surprising to see a pronounced anti-correlation between these nodes. This is a further
evidence of the interpretability and meaningfulness of the VED’s latent space, i.e., learning
physical processes in the lower-order manifold.

In the following we will use z𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛 along all five latent dimensions to identify large-scale
drivers of convective processes and different convective regimes in SPCAM. We use the nota-
tion ‘high z𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛’ to describe the cases when z𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛 > z𝑚𝑒𝑑𝑖𝑎𝑛 and ‘low z𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛’ if
z𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛 < z𝑚𝑒𝑑𝑖𝑎𝑛 . Figures 3.6 – 3.10 illustrate the marginal distribution along the respective
latent dimensions (Panels a, where the dashed black line indicates the median value of each
dimension, Equation 3.8). The other subplots of these figures show the generated vertical
moistening, heating, specific humidity and temperature profiles (Panels b-e) of the decoder
with respect to z𝑚𝑒𝑑𝑖𝑎𝑛 (Equation 3.8) or z𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛 (Equation 3.9 along a distinct latent di-
mension). Additionally, two subgrid-scale and climate variables (Panels f), which are strongly
affected by the applied latent forcing, are displayed as a function of z𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛 for illustrative
purposes. The marker-edge-color in the respective Panels f reveal the chosen percentiles. All
other generated subgrid-scale and large-scale climate variables are shown in Tables A.7-A.11
in the Appendix A. We investigate in the following that latent node 1 and latent node 2 focus
on the large-scale climate (geographic) variability in X rather than on subgrid-scale convective
processes in Y. In contrast, latent nodes 3, 4 and 5 exhibit main characteristics of dominant
convective regimes captured in Y.
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3.3.1. Large-Scale Climate Variability Nodes

In this first part we demonstrate that latent nodes 1 and 2 capture mostly large-scale climate
variability in X.

Latent Node 1: Global Temperature Variations

Global temperatures in the troposphere are dominated by the large meridional gradients from
equatorial to polar latitudes mainly related to solar insolation differences between the tropics
and extratropics.

Figure 3.6.: Marginal distribution of latent node 1 (a) and the resulting generated vertical profiles of
specific humidity tendencies dq/dt (b), temperature tendencies dT/dt (c), specific humidity q (d) and
temperatures T (e). The dashed lines in the marginal distribution plot represent the chosen percentiles
(see legend in subplot d) and the resulting effect of the respective translation z𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛 on the profiles
is shown in the subplots. Furthermore, the longwave heat flux at the model top (Q𝑙𝑤 𝑡𝑜𝑝) and the
surface air temperature (T𝑠𝑢𝑟 𝑓 / T 985.0) (f) are illustrated as function of the translation z𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛
along the latent dimension 1. The marker-edge-color in panel f symbolise the respective percentiles
of z𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛 . The black lines in subplots b-e indicate the generated reference state with z𝑚𝑒𝑑𝑖𝑎𝑛 . This
Figure is directly reproduced from Behrens et al. 2022.

The first latent node (Node 1) captures these global meridional temperature variations (Fig-
ure 3.6e), as suggested by the large spread of the surface temperature response to z𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛 ,
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encompassing the tropics (T𝑠𝑢𝑟 𝑓 ∼ 298 K, high z𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛) and polar regions (T𝑠𝑢𝑟 𝑓 ∼ 273 K,
low z𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛). Tropical regions are characterized by very moist conditions in the boundary
layer (q > 10 𝑔

𝑘𝑔
), while being extremely dry at the poles (q ∼ 1.5 – 3.5 𝑔

𝑘𝑔
), see Figure 3.6d. The

strong connection between tropospheric temperatures or specific humidity and Node 1 can
be shown with a linear correlation of globally concatenated temperature space-time series (of
horizontal grid cells and time, featuring the large meridional gradients) and respective node
space-time series. The resulting “linear explained variance” of temperature space-time series
on Node 1 exceeds 0.5 (Figure A.18 in Appendix A), while the “linear explained variance”
vanishes if the analysis is repeated on the time series for each horizontal grid cell (Figure A.19
in Appendix A, without the large meridional gradients). A detailed description how these
two correlations metrics were computed can be found in the Appendix A in section A.5.

A physical interpretation of this response on the z𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛 can be given based on the
Clausius-Clapeyron relationship. A warmer atmosphere results in a near-exponentially higher
saturation water vapor pressure, which in turn allows higher specific humidity content. There-
fore, we see strongly coupled variations of temperature and specific humidity between the
equator and the poles. In short, the first latent node represents these overarching large-scale
meridional variations in tropospheric temperatures, influencing specific humidity, but is not
necessarily linked to convective processes Y, but rather to large-scale conditions X, which are
also part of the VED reconstruction.

Latent Node 2: Large-Scale Variability along the Mid-Latitude Storm Tracks

Latent node 2 characterizes more the large-scale climate (and thus geographic) variability in X
than focuses on a distinct convective regime. Latent dimension 2 (Node 2, Figure 3.7) clearly
captures temperature and specific humidity variations in the troposphere, as can be seen in
Figure 3.7d and 3.7e. Warmer and moister tropospheric conditions are associated with high
z𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛 .

Low z𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛 characterizes cold and stable conditions during day-time (Q𝑠𝑤 𝑡𝑜𝑝 ∼ 1000
𝑊
𝑚2 ). These anomalous cold and dry conditions in the upper troposphere are associated with
negligible convective processes, as diagnosed with a large outgoing longwave heat flux at the
model top (Q𝑙𝑤 𝑡𝑜𝑝 ∼ 240 𝑊

𝑚2 ) and the formation of no precipitation (Table A.8 in Appendix
A). Due to the large shortwave heat flux at the model top, the perpetual austral summer solar
forcing and the low surface air temperatures (T𝑠𝑢𝑟 𝑓 ∼ 281 K), low z𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛 can be traced
back to the austral mid-latitudes. Whereas high z𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛 is linked to night-time conditions
(Q𝑠𝑤 𝑡𝑜𝑝 < 200 𝑊

𝑚2 ) with a warm, moist troposphere (T𝑠𝑢𝑟 𝑓 ∼ 291 K). High z𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛 is further
characterized by mid-level convection (Q𝑙𝑤 𝑡𝑜𝑝 ∼ 180 - 200 𝑊

𝑚2 ) with intermediate precipitation
formation (precip ∼ 0.12 to 0.15 𝑚𝑚

ℎ
, Table A.8 in Appendix A) associated with a warmer and

moister upper troposphere and can be found in the subtropics on both hemispheres.
Our approach allows us to identify the main patterns of the large-scale climate state in X,

which are main drivers of the general circulation and convection, besides convective processes
in Y in the latent space. These convective processes are heavily modulated by X. Node 2

49



3. Understanding Convective Processes in a Climate Model using Non-Linear Dimensionality
Reduction of a Variational Encoder Decoder

Figure 3.7.: Marginal distribution of latent node 2 (a) and the resulting generated vertical profiles of
specific humidity tendencies dq/dt (b), temperature tendencies dT/dt (c), specific humidity q (d) and
temperatures T (e). The dashed lines in the marginal distribution plot represent the chosen percentiles
(see legend in subplot d) and the resulting effect of the respective translation z𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛 on the profiles
is shown in the subplots. Furthermore, the shortwave heat flux at the model top (Q𝑠𝑤 𝑡𝑜𝑝) and the
outgoing longwave heat flux (Q𝑙𝑤 𝑡𝑜𝑝) (f) are illustrated as function of the translation z𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛 along
the latent dimension 2. The marker-edge-color in panel f symbolise the respective percentiles of
z𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛 . The black lines in subplots b-e indicate the generated reference state with z𝑚𝑒𝑑𝑖𝑎𝑛 . This
Figure is directly reproduced from Behrens et al. 2022.

captures characterising features of the large-scale meridional variability of specific humidity
and temperatures between the mid latitudes and the subtropics (e.g., an essential driver of
mid-latitude storm track dynamics; Bony et al. 2015). Latent dimension 2 is further influenced
by the solar forcing. The clear separation between austral mid latitude temperature profiles on
one side and samples from subtropical regions on the other side of the z𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛 are further
evidence that latent node 2 encapsulates a part of the geographic variability inside the latent
space seen in Figure 3.5.

3.3.2. Convective Regime Nodes

Next, we will show that latent node 3, 4, 5 usefully characterize mostly distinct convective
regimes in the subgrid-scale process rate variables Y.
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Latent Node 3: Shallow Convection

Shallow convective processes are one of the dominant cloud regimes investigated in obser-
vational studies (e.g., Huaman and Schumacher 2018). Latent node 3 characterizes some of
the main characteristics of shallow convective processes as revealed by its vertical profiles of
specific humidity and temperature tendencies influenced by large-scale specific humidity and
surface diabatic fluxes.

Figure 3.8.: Marginal distribution of latent node 3 (a) and the resulting generated vertical profiles of
specific humidity tendencies dq/dt (b), temperature tendencies dT/dt (c), specific humidity q (d) and
temperatures T (e). The dashed lines in the marginal distribution plot represent the chosen percentiles
(see legend in subplot d) and the resulting effect of the respective translation z𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛 on the profiles
is shown in the subplots. Furthermore, the shortwave heat flux at the model top (Q𝑠𝑤 𝑡𝑜𝑝) and the
surface sensible heat flux (Q𝑠𝑒𝑛𝑠) (f) are illustrated as function of the translation z𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛 along the
latent dimension 3. The marker-edge-color in panel f symbolise the respective percentiles of z𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛 .
The black lines in subplots b-e indicate the generated reference state with z𝑚𝑒𝑑𝑖𝑎𝑛 . This Figure was
directly reproduced from Behrens et al. 2022.

Figure 3.8 shows the marginal distribution of latent node 3 (Node 3), the generated vertical
specific humidity and temperature tendencies, and the large-scale specific humidity and tem-
perature profiles of the Decoder for z𝑚𝑒𝑑𝑖𝑎𝑛 , as well as the applied z𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛 . Furthermore, the
generated shortwave heat flux (Q𝑠𝑤 𝑡𝑜𝑝) and surface sensible heat flux (Q𝑠𝑒𝑛𝑠) are displayed as a
function of z𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛 . Along latent dimension 3, the specific humidity (q) decreases through-
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out the entire troposphere for increasing z𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛 , while surface diabatic fluxes (sensible heat
flux Q𝑠𝑒𝑛𝑠 and latent heat flux Q𝑙𝑎𝑡 , Table A.9 in Appendix A) increase. Likewise, the outgoing
longwave radiation Q𝑙𝑤 𝑡𝑜𝑝 increases with increasing z𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛 suggesting higher cloud tops
and stronger convective processes for low z𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛 (Table A.9 in Appendix A). In contrast, the
intensity of shallow convection and outgoing longwave radiation decreases when z𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛
increases (high z𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛). Specific humidity tendencies (dq/dt) in the lower troposphere (p
> 600 hPa) react to z𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛 in a bimodal way. They moisten, in combination with a strong
positive surface diabatic forcing, the relatively dry ambient air in the lower troposphere above
the reference conditions (high z𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛), whereas the opposite is true for low z𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛 . In
this case, negative dq/dt in combination with negative diabatic forcing lead to a drying of
moist conditions in the lower troposphere. Precipitation is insensitive to z𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛 due to
the small vertical extent of convective moistening, confined below 600 hPa; this latent node
evidently avoids deep convective regimes. The generated temperature profiles of z𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛
along latent dimension 3 are characteristic of the subtropics and mid-latitudes in the SP sim-
ulation. The dT/dt profiles show slight variations near the surface due to z𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛 , while
being insensitive in the middle troposphere. The fixed SST field (Figure A.4 in Appendix A)
or the conditional averages of surface air temperatures (Figure A.6 in Appendix A) in certain
regions can be used to gain a first visual orientation of the geographic origin of a generated
sample. This first impression is complemented with a detailed search for such conditions in
the SP test data. Furthermore, night-time conditions with small shortwave radiative heat flux
at the model top Q𝑠𝑤 𝑡𝑜𝑝 and day-time conditions with high values of Q𝑠𝑤 𝑡𝑜𝑝 (Q𝑠𝑤 𝑡𝑜𝑝 ∼ 1000
𝑊
𝑚2 ) can be distinguished for low z𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛 and high z𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛 , respectively.

Interestingly, the generated profiles and variables suggest that latent node 3 is mostly
sorting information about subgrid-scale processes Y within one sub-regime of X, rather than
focusing on sorting the large-scale geographic variability in X. The strong response of dq/dt in
the planetary boundary layer and adjacent layers, negligible precipitation formation and the
characteristic temperature range between the subtropics and mid-latitudes, are key evidence
that the latent node 3 encapsulates shallow convective processes. Shallow convection is
influenced by the diurnal cycle, leading to a strengthening of shallow convective processes
during the day and a weakening of these processes accompanied with a drying of the planetary
boundary layer during the night, as it is supported by Figure 3.8.

Latent Node 4: Mid Latitude Frontal Systems

Mid-latitude frontal systems are characterized by a large variety of convective regimes asso-
ciated with the warm or cold front of these systems (Bony et al. 2015). On latent node 4 we
discover certain characteristic features in subgrid-scale profiles X and associated large-scale
fields Y. These features allow us to draw links to distinctive convective regimes of mid-latitude
cyclones based on their fingerprint in X and Y. Unlike the previous latent nodes, the response
of the latent node 4 (Node 4, Figure 3.9) to the translation z𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛 results in nearly constant
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solar insolation (Q𝑠𝑤 𝑡𝑜𝑝 ∼ 440 - 450 𝑊
𝑚2 , see Table A.10 in Appendix A) and a narrow meridional

band.

Figure 3.9.: Marginal distribution of latent node 4 (a) and the resulting generated vertical profiles of
specific humidity tendencies dq/dt (b), temperature tendencies dT/dt (c), specific humidity q (d) and
temperatures T (e). The dashed lines in the marginal distribution plot represent the chosen percentiles
(see legend in subplot d) and the resulting effect of the respective translation z𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛 on the profiles
is shown in the subplots. Furthermore, the longwave heat flux at the model top (Q𝑙𝑤 𝑡𝑜𝑝) and the
precipitation rate (precip) (f) are illustrated as function of the translation z𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛 along the latent
dimension 4. The marker-edge-color in panel f symbolise the respective percentiles of z𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛 . The
black lines in subplots b-e indicate the generated reference state with z𝑚𝑒𝑑𝑖𝑎𝑛 . This Figure is directly
reproduced from Behrens et al. 2022

The generated surface temperature ranges from 286 K to 290 K with varying z𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛 .
This temperature range is common to mid-latitudes or the subtropics (e.g., see Figure A.6 in
Appendix A) and can be found in the SPCAM simulations between 45◦ N / S and 25◦ N /
S. Low z𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛 corresponds to warmer and drier conditions in the free mid-troposphere
between 800 hPa and 400 hPa, while moister conditions are found above and below. The
anomalous moist conditions in the upper free troposphere are connected to a heating peak at
300 hPa (dT/dt ∼ 0.1 𝐾

ℎ
, Figure 3.9c). Likewise, the difference between the shortwave heat flux

at the model top and the surface is relatively small (Q𝑠𝑤 𝑡𝑜𝑝 – Q𝑠𝑤 𝑠𝑢𝑟 𝑓 ∼ 120 – 130 𝑊
𝑚2 , Table

A.10 in Appendix A), which suggests optically thin clouds. Additionally, the outgoing long
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wave radiation is small (Q𝑙𝑤 𝑡𝑜𝑝 < 200 𝑊
𝑚2 ) and no precipitation is formed. These conditions

are characteristic of high cirrus-like convection.
On the other side, high z𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛 shows relatively strong heating tendencies in the free

troposphere (dT/dt > 0.2 𝐾
ℎ
, see Figure 3.9c) and drying conditions below 600 hPa down to the

surface (dq/dt ∼ -0.1 𝑔

𝑘𝑔×ℎ , Figure 3.9b). These conditions, along with moderate precipitation
(precip ∼ 0.15 - 0.25 𝑚𝑚

ℎ
), higher outgoing longwave heat flux (Q𝑙𝑤 𝑡𝑜𝑝 > 200 𝑊

𝑚2 ) and lower
shortwave transmissivity (Q𝑠𝑤 𝑡𝑜𝑝 – Q𝑠𝑤 𝑠𝑢𝑟 𝑓 ∼ 170 𝑊

𝑚2 , Table A.10 in Appendix A) characterize
mid-level cumulus convection.

Based on this evidence, we were able to show that latent node 4 focuses on subgrid-scale
convective processes in Y. The generated large-scale conditions exhibited by Node 4 are well-
suited for these cirrus-like or cumulus convection regimes. In detail, latent node 4 shows
a clear transition from a cirrus type convective regime (low z𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛) to a cumulus type
precipitating convective regime ( high z𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛) in mid-latitudes. This response is associated
with frontal systems, which consist of high cirrus clouds in the surroundings of the warm
front and cumulus convection along the cold front (Bony et al. 2015).

Latent Node 5: Deep Convection

Deep convection is the cloud regime with the largest vertical extent. It is characterized by
especially strong convective heating and drying throughout almost the entire troposphere, as
can be seen in Frenkel et al. 2015 and accompanied by anomalous intense precipitation (see
Figure 3.5). The first mode of latent node 5 reveals general characteristics of a deep convective
regime captured in generated subgrid-scale variables Y. The response of latent dimension 5
(Node 5) to z𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛 shows either strong deep convection (first mode in Figure 3.10a) or stable
conditions (second mode in Figure 3.10a) in the troposphere. A surface temperature of 293
K for low z𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛 indicates subtropical regions (e.g., the surface temperature in the tropics
is at least 3 K warmer in this SPCAM simulation). The warmer and moister troposphere for
low z𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛 is accompanied with strong heating and drying tendencies peaking at around
500 hPa of 0.5 to 0.7 𝐾

ℎ
and -0.15 to -0.2 𝑔

𝑘𝑔×ℎ respectively. In this case, we observe intense
precipitation formation up to 0.6 𝑚𝑚

ℎ
and low outgoing longwave radiation (Q𝑙𝑤 𝑡𝑜𝑝 < 201 𝑊

𝑚2 ).
All these conditions are characteristics of subtropical deep convective events.

In contrast, high z𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛 is associated with a mid latitude surface air temperature (T𝑠𝑢𝑟 𝑓 ∼
5 K colder than in the subtropics). A night-time (Table A.11 in Appendix A), dryer troposphere
with very small or negligible heating and moistening tendencies (manifestation of stable
conditions) throughout the troposphere is accompanied with relatively large outgoing long
wave radiation (Q𝑙𝑤 𝑡𝑜𝑝 > 250 𝑊

𝑚2 ) and no precipitation. Similar to latent node 3 and 4, latent
node 5 comprises dominantly information about subgrid-scale convective processes rather
than large-scale geographic variability. Latent node 5 represents both deep convective events
originating from the subtropics and mid-latitude stable conditions as can be already seen in
the strong bimodality along the marginal distribution in Figure 3.10a.
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Figure 3.10.: Marginal distribution of latent node 5 (a) and the resulting generated vertical profiles of
specific humidity tendencies dq/dt (b), temperature tendencies dT/dt (c), specific humidity q (d) and
temperatures T (e). The dashed lines in the marginal distribution plot represent the chosen percentiles
(see legend in subplot d) and the resulting effect of the respective translation z𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛 on the profiles
is shown in the subplots. Furthermore, the longwave heat flux at the model top (Q𝑙𝑤 𝑡𝑜𝑝) and the
precipitation rate (precip) (f) are illustrated as function of the translation z𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛 along the latent
dimension 5. The marker-edge-color in panel f symbolise the respective percentiles of z𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛 . The
black lines in subplots b-e indicate the generated reference state with z𝑚𝑒𝑑𝑖𝑎𝑛 . This Figure is directly
reproduced from Behrens et al. 2022

3.4. A VED to Unveil and Understand Convective Processes,
Convective Drivers and Convective Regimes in a Climate Model

This section condenses the main findings of my paper Behrens et al. 2022 and is directly based
on the related Summary and Conclusion section.

This study has shown how a Variational Encoder Decoder (VED) can successfully machine
learn a convective parameterization with considerable input compression while simultane-
ously enhancing the interpretability of deep learning methods, and enable better under-
standing of convective processes in climate models. We first showed that the VED is able
to realistically reconstruct convective processes simulated by a superparameterized climate
model, similar to previous studies based on a regular Artificial Neural Network (ANN) ar-
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chitecture (Gentine et al. 2018; Rasp et al. 2018), but using automatically compressed input
data. Furthermore, we demonstrated that the VED also enhances the interpretability of the
relationship between large-scale climate fields and sub-grid-scale convective variables via its
latent manifold, which is unfeasible via ANNs without attribution methods due to ANNs’
large dimensionality (large number of hidden layers and nodes per layer). Our analysis is
based on 9 months (equally split into training, validation and test data) of an aquaplanet
simulation of the Super Parameterized Community Atmosphere Model (SPCAM). As shown
in Figure 3.11a, the input variables of the VED resembled the large-scale climate fields (tem-
perature, specific humidity and other thermodynamic drivers) from the general circulation
model (CAM) passed onto the embedded cloud resolving model (SP). The latent space (lower
dimensional manifold inside the network) of the VED had a dimensionality of five nodes,
which is a small fraction of the dimensionality of the original input nodes information. To
create an interpretable latent space, our optimal network reconstructed a combination of sub-
grid-scale convective variables related to the SP component and large-scale climate variables
associated with CAM. In comparison, as we have shown in the supplemental material, VEDs
that attempt the traditional mapping from X to Y alone turn out to be less amenable to latent
space exploration.

As a first step, we evaluated the reproduction performance of convective processes of the
VED against a reference ANN (Rasp et al. 2018). The VED was capable of reconstructing
the mean statistics of sub-grid-scale convective variables with an overall comparable, though
slightly decreased, skill than the reference ANN despite the strong dimensionality reduction
down to five latent nodes. This speaks to the dimensionality of information content required
for a convective parameterization, and associated trade-offs. We found that compressing the
input information did not overly distort the tropical wave spectrum. We showed that the
choice of the latent space width is a critical hyperparameter for reproduction skills. Larger
latent space widths (∼ 8 nodes) yielded a reproduction performance of convective processes
with almost the skill of the reference ANN, while smaller latent space widths (∼ 2 nodes)
still enabled an improved reproduction compared to a multi-dimensional linear regression
baseline. We chose a latent space of five nodes as a sensible compromise between reproduction
abilities of convective regimes and sensitivities separable in the latent manifold.

We began the analysis towards our main interest - latent space exploration with respect
to physical interpretability – using traditional methods visualizing physical properties in a
2D projection of its leading PCs. This revealed that the VED distinguished day- and night-
time conditions and varying strength of convective processes using the precipitation rate and
outgoing longwave radiation as a proxy in its latent space (which was 2D compressed with a
PCA for the purpose of visualization). The VED separated different global climate conditions
and associated convective regimes from the poles to the equator in its latent space. The realistic
reproduction of convective processes and climate conditions, along with the encapsulated
information on geographic variability in an interpretable latent manifold, allowed a detailed
analysis of governing drivers of convection and convective regimes with a VED.
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Figure 3.11.: Schematic of the VED setup (a) the investigated convective regimes and drivers of convec-
tive processes in the latent space of VED for each node (b). The translation along each latent dimension
is shown in this example for Latent Node 5. The schematic of the large-scale atmospheric grid in (a)
was adapted from Schneider et al. 2017. This summary schematic is directly reproduced from Behrens
et al. 2022

Our latent exploration was then deepened by investigating convective processes and re-
lated drivers via a generative modeling approach, i.e., forcing the decoder with the variability
encapsulated along each latent dimension. The resulting temperature, specific humidity,
heating, and moistening profiles successfully separated well-known large-scale driving cli-
mate conditions and convective regimes. Figure 3.11b summarizes the main results of this
generative modeling approach. Overall, convective processes are controlled by large merid-
ional gradients in temperature and specific humidity, from the equator to the poles, which
were captured by the VED’s Node 1 (Figure 3.11b). We identified the large-scale climate
variability in specific humidity and temperatures along the mid-latitude storm tracks (Node
2, Figure 3.11b) as the other major driver of convective processes. Daytime stable, cold and
dry tropospheric conditions suppress convective processes in the entire troposphere, whereas
night-time unstable, warm and moist conditions in the troposphere drive precipitating mid-
level convection. Apart from these large-scale nodes, the VED further reveals characteristics
of distinct convective regimes on the remaining 3 latent nodes. The VED confined shallow
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convective processes below 600 hPa within its Node 3 (Figure 3.11b); these processes are gen-
erally driven by surface diabatic fluxes and are predominantly originating from mid-latitudes
and the subtropics. In anomalous dry conditions, positive surface diabatic heat fluxes during
day-time enhance shallow convective processes associated with a convective moistening of the
lower troposphere. The opposite is true in anomalous wet conditions during night-time. The
mid-latitude storm tracks show large variability with respect to convective regimes associated
with the eastward migrating frontal systems, features that were captured in the VED’s latent
space (Node 4, Figure 3.11b). In the surroundings of the warm front high, optically thin,
non-precipitating cirrus-like convection is found. In contrast lower, optically thick cumulus-
like convection with intermediate precipitation formation is predominant near the cold front.
Furthermore, deep convective regimes in the subtropics were clearly captured by the VED
(Node 5, Figure 3.11b). In this case, convective processes extend in the entire troposphere
with a pronounced convective heating and drying near 500 hPa and are associated with in-
tense precipitation. Opposing this extreme convective case, we found night-time, stable, cold
and dry conditions in the free troposphere, which suppress convective processes on the other
side of Node 5. Finally, while the interpretation of these convective regimes always required
domain knowledge, the generative modeling approach simplified the analysis in comparison
to other statistical analysis tools (e.g., correlations, clustering, attribution methods).

Repeating this analysis with an Encoder Decoder (ED) yielded almost identical reproduc-
tion capabilities compared to the VED, but the ED’s latent space was significantly harder to
interpret, with less pronounced center of actions for a given variable (see Figure A.5 and A.7
in Appendix A). This hindered the identification of convective regimes or large-scale drivers
of convective predictability within the latent space of ED. For example, although the ED cap-
tured a cirrus-like regime, no cumulus or deep convective regimes could be found with the
generative modeling method. Likewise, the connection between large-scale climate variables
was often less pronounced for the ED, which resulted in larger uncertainties of the geographic
origin of a specific sample compared to the VED.

We discovered convective regimes with the VED that are in general agreement with existing
work focused on tropical convection (Frenkel et al. 2012, 2013; Frenkel et al. 2015; Huaman
and Schumacher 2018). The specific humidity profile of the shallow convective regime of the
VED was largely similar to the observed shallow convective latent heating profile in Huaman
and Schumacher 2018 with a heating peak around 800 hPa. Furthermore, the heating profile
of the mid-latitude cirrus-like regime of the VED compared well with that of the tropical
stratiform regime shown in Frenkel et al. 2015 despite strong differences in the ambient
conditions that led to their formation. Also the heating profiles of the mid-latitude cumulus
regime of the VED and their tropical congestus expressed similarities in the lower troposphere
with a pronounced convective heating peak above the boundary layer. Likewise, the VED’s
subtropical and tropical deep convection regime of Frenkel et al. 2015 were characterized by
similar heating profiles. In our case, we identified these regimes solely based on SPCAM
data in the latent space of the VED, where we did not prescribe the characteristics of each
convective regime like it was done in the multi-cloud approach presented in Frenkel et al.
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2012 and adapted from Khouider and Majda 2006. Furthermore, our approach was not based
on inferred heating profiles via subclassing precipitation regimes (Stratiform, Convective,
Shallow) as it was done for observational satellite products in Huaman and Schumacher 2018.

This work presented how convective processes, convective regimes, and large-scale drivers
of convection in climate models can be investigated by leveraging generative machine learning
(ML) approaches. Our approach enhanced the understanding of acting convective processes
and the corresponding large-scale environment in which they form. As a next step, one could
study cirrus-like or cumulus convection in detail by, for example, separating specific humidity
and moistening tendencies related to the ice phase, linking how microphysical processes in-
fluence convection and are, in turn, affected by climate conditions (i.e., formation of ice phase,
mixed phase or liquid phase clouds). Likewise, the development of regime-oriented ML-
based convection parameterizations appears to be achievable with generative deep learning
methods. Finally, VEDs could play an essential role in constructing new stochastic convec-
tion parameterizations, which could improve the representation of clouds and convection in
Earth System Models. Our results suggest that VED representations of climate processes can
effectively combine statistical prediction with data-driven analysis, paving the way towards
machine learning-based Earth System Models that remain interpretable, albeit through the
yet mostly unfamiliar eccentricities of latent space exploration.

In the next Chapter, I will build up on this analysis and will investigate how deep learning
ensembles could improve the reproduction of convective processes in a realistic global Earth
System Model using ideas from Behrens et al. 2022.
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The following chapter is reproduced from Behrens et al. 2024 with small modifications of the
nomenclature of the different deep learning models to facilitate reading and to homogenize
this thesis. In this chapter I will present ways to investigate convective regimes and large-scale
drivers of convective processes based on the latent space of one Variational Encoder Decoder
using generative modeling. This chapter of the thesis is based on my paper that is currently
in review (Behrens et al. 2024). It will assess the reproduction capabilities of stochastic
and deterministic ensemble deep learning in comparison to individual deep learning models
based on realistic global Earth System Model data. It is structured as follows: Section 4.1
gives an overview on the Earth System Model that is used. Section 4.2 briefly explains
the neural network architectures that are used to construct the stochastic and deterministic
ensembles. It is followed by section 4.3 that illustrates suitable ways how stochastic deep
learning ensembles and deterministic counterparts can be built. The reproduction skill of
subgrid convective processes of the stochastic and deterministic ensembles is evaluated in
section 4.4. This chapter is concluded with a summary of the first part of the summary section
focusing on reproduction skill presented in Behrens et al. 2024.

For the version of Behrens et al. 2024, that is currently in review, I, as the author of the thesis,
contributed all figures, tables and large parts of the code to produce them. Furthermore I let
the writing and the analysis of the paper.

4.1. Climate Modeling Setup

This section is directly based on the section with the identical name in my publication that is
currently in review (Behrens et al. 2024).

In this study we use the Super Parameterized Earth System Model (SPCESM) Version 2.1.3
(SPCESM2, Danabasoglu et al. 2020) for the construction of our stochastic and deterministic
parameterizations. The atmospheric component of the Community Earth System Model
(CESM) version 2 (CESM2) is the Community Atmosphere Model (CAM) version 6 (CAM6).
In our configuration CAM6 is run without interactive chemistry, and thus radiatively-active
aerosols and gases are prescribed. CAM6 has a horizontal grid size of approximately 2◦ ×
2◦ (144 × 96 grid cells). The vertical axis consists of 26 levels on a hybrid-sigma grid with
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14 tropospheric levels (p > 200 hPa). CAM6 has a timestep of 1800 s. To represent subgrid
processes (convection, subgrid radiative effects, and fine-scale eddies) in each grid cell of
CAM6, we use a Superparameterization (SP) (Grabowski 2001; Khairoutdinov and Randall
2001). SP, also known as multiscale modeling framework (MMF) (i.e., Yu et al. 2023), consists
of 32 nested two-dimensional grid columns with a finer horizontal resolution of 4 km, which
partially resolves deep convection and associated gravity waves. These grid columns are
meridionally oriented (north to south) as described in Pritchard et al. 2014. SP and CAM6 share
the same vertical discretization after an initial interpolation at the beginning of each SP time
step (20 s), from the 24 levels of SP to the CAM6 vertical axis. Furthermore the configuration
of SP we employ uses a Smagorinsky 1.5-order turbulence scheme to parameterize fine-scale
turbulence and a one-moment microphysics scheme (Grabowski 2001; Khairoutdinov and
Randall 2001). The microphysics scheme allows the separation into cloud ice and liquid water
phase and respective phase tendencies. Horizontal advection of high resolution convection
related fields (momentum, cloud condensates) from the nested SP to the neighbouring CAM6
cells’ nested SP is neglected. Instead the advection of these convection-related fields is handled
via the dynamical core of the coarse CAM6 model with known limitations (Jansson et al. 2022).

The atmosphere is coupled to the land component, Community Land Model version
5 (CLM5), which includes realistic topographic boundary conditions. We use prescribed sea
surface temperatures and sea ice fields Merged Hadley - National Oceanic and Atmospheric
Administration / Optimum Interpolation Sea Surface Temperature and Sea Ice Concentration
data set (MH-NOAA/OI-SST-SIC) (Hurrell et al. 2008). Our simulations are driven by ob-
served solar spectral irradiance and concentrations of aerosols and atmospheric trace gases
(e.g., ozone). For a more detailed description of CESM2, we point the interested reader to Dan-
abasoglu et al. 2020, and for SP to Khairoutdinov and Randall 2001. The SPCESM2 version used
here can be found on GitHub (https://github.com/SciPritchardLab/CESM2-ML-coupler).

The next section explains the deep learning approaches we developed to build a stochastic
or ensemble, data-driven emulator of SP.

4.2. Deep Learning Parameterizations

This section is directly based on the section with the identical name in my publication that is
currently in review (Behrens et al. 2024).

In this section, we first describe the general approach the training of the deep learning
subgrid processes in SPCESM2 (section 4.2.1). We then describe the deep learning (DL) algo-
rithms (section 4.2.2), before constructing stochastic and deterministic DL parameterizations
in the next section (section 4.3). Table 4.1 gives an overview of our developed stochastic and
deterministic parameterizations. Moreover it helps the reader to understand the acronyms of
the different models that we will use in the following.
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4.2.1. General Approach

DL parameterizations aim to represent the aggregate effect of subgrid processes, as simulated
by the SP component of SPCESM. To achieve this, DL algorithms predict a grid-averaged
subset of SP’s subgrid variables based on the large-scale atmospheric conditions modeled
by CAM6, hereafter referred to as “CAM variables”. During the neural network-coupled
climate model simulations, these predicted subgrid variables (i.e., vertical profiles of subgrid
specific humidity and temperature) are used to couple the atmospheric model with the other
components at the surface (e.g., CLM5 land model and boundary conditions from the ocean
model). The application of DL for reproducing SP variables speeds up the emulation of the
fine-scale convection resolution in the corresponding climate simulations while maintaining
the high-quality representation of subgrid processes provided by the superparameterization
(Rasp et al. 2018).

The input data closely follows the CAM variables except for one additional variable (Prec𝑡−𝑑𝑡)
that was helpful for the performance of the DL algorithms. The input𝑿 (Figure 4.1) is a stacked
vector of size 109 and is given by:

𝑿 =

[︂
𝒒 (𝒑) 𝑻 (𝒑) 𝒒𝒄𝒍 (𝒑) 𝒒𝒄𝒊 (𝒑) 𝑝surf 𝑄sol 𝑄sens 𝑄lat Prec𝑡−𝑑𝑡

]︂𝑇
, (4.1)

where 𝑿 includes the 4 vertical profiles (with 26 vertical levels) of specific humidity 𝒒 (𝒑)
[g/kg], temperature 𝑻 (𝒑) [K], cloud liquid water content 𝒒𝒄𝒍 (𝒑) [g/kg], and cloud ice water
content 𝒒𝒄𝒊 (𝒑) [g/kg]. Additionally, 𝑿 comprises the scalar values of surface pressure 𝑝surf

[hPa], solar insolation Q𝑠𝑜𝑙 [W/m2], surface sensible 𝑄sens [W/m2] and latent heat flux 𝑄sens

[W/m2] from the current timestep. Additionally we use the previous timestep’s precipitation
Prec𝑡−𝑑𝑡 [mm/h] as input to complement the other CAM variables. Including Prec𝑡−𝑑𝑡 strongly
improves the prediction of near-surface heating and moistening tendencies that are of great
importance for the coupling to the CLM5 land model, which is aligned with the findings of
previous studies (Han et al. 2020; Han et al. 2023).

The output vector (𝒀 , predictants or target) of our data-driven parameterization has a length
of 112 (Fig. 4.1) and is given by:

𝒀 =

[︂
�̇� (𝒑) �̇� (𝒑) �̇�𝒄𝒍 (𝒑) �̇�𝒄𝒊 (𝒑) SnowCRM PrecCRM 𝒀rad

]︂𝑇
, (4.2)

where𝒀 includes the 4 vertical profiles of specific humidity tendency �̇� (𝒑) [ 𝑔

𝑘𝑔×ℎ ], temperature
tendency �̇� (𝒑) [K/h], cloud liquid water tendency �̇�𝒄𝒍 (𝒑) [ 𝑔

𝑘𝑔×ℎ ], and cloud ice water tendency
�̇�𝒄𝒊 (𝒑) [ 𝑔

𝑘𝑔×ℎ ]. Here, we use “tendency” and the notation �̇� as a shorthand for the difference
between the values of state variables before and after the SP call, normalized by the CAM6
timestep (𝑑𝑡 = 1800 s, see e.g., Appendix B Equation B.1). Note that this call precedes and
does not include the calculations for surface coupling. 𝒀 further includes the cloud-resolving
precipitation (PrecCRM) and snow rates (SnowCRM), both simulated by SP and expressed in
units mm/h. To facilitate reading, we grouped all radiative outputs required for coupling to
the surface in 𝒀rad:

𝒀rad =

[︂
𝑄lw surf 𝑄sw surf 𝑄sol lw 𝑄sol lw, diff 𝑄sol sw 𝑄sol sw, diff

]︂𝑇
, (4.3)
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Figure 4.1.: We compare three stochastic parameterization strategies for reproducing the superparame-
terization (SP), which simulates SP subgrid variables (𝒀 ) based on large-scale Community Atmosphere
Model (CAM) variables (𝑿 ): 1) Applying Monte-Carlo dropout to a single artificial neural network
(ANN) to generate a prediction based on the mean of N𝑒𝑛𝑠 draws. 2) Employing a subset of n neural
networks randomly drawn from a set of N𝑒𝑛𝑠 deterministic neural networks to generate n predictions
that can be averaged for the final prediction. 3) Perturbing the latent space of a Variational Encoder-
Decoder network N𝑒𝑛𝑠 times to produce N𝑒𝑛𝑠 predictions that are subsequently averaged. In addition,
Table 4.1 gives an overview of our developed deep learning ensemble parameterizations. This Figure
is reproduced with minor modifications from Behrens et al. 2024

where 𝒀rad includes the downward surface longwave heat flux 𝑄lw surf, the downward surface
shortwave heat flux 𝑄sw surf, the near-infrared part of the downward solar radiation at the
surface, decomposed into its direct (𝑄sol lw) and diffuse (𝑄sol lw, diff) components, and the direct
(𝑄sol sw) and diffuse (𝑄sol sw, diff) components of the solar radiation’s visible wavelengths; all
are in units of W/m2. In the following, we couple the predictions of the surface radiative fluxes
𝒀rad to CESM2 to investigate also the stability of CESM2 with such deep learned radiative fluxes.
This contrasts our work to Han et al. 2023 that sidestepped the coupling of these crucial terms.
Apart from these radiative fluxes, momentum and mass fluxes are also used to couple CAM6
to the surface.

For DL algorithms that involve multiple input and output variables with different physical
units, a suitable normalization is important for both inputs (𝑿 ) and outputs (𝒀 ), as normaliza-
tion choices affect their relative importance during training. We normalize each of the inputs
by subtracting its mean and dividing the resulting difference by the corresponding range,
resulting in normalized inputs between -1 and 1. We normalize each output variable using a
reference standard deviation as in Behrens et al. 2022 (see Appendix B B.2 for details).

To avoid spatiotemporal correlations, we extract 84 days per year, specifically 7 consecutive
days from each month, for training (Year 2013), validation (2014), and testing (2015). These
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data originate from a historical SPCESM2 run spanning 2003 to 2015, ensuring the exclusion
of any model spin-up effects. Each dataset contains 55,572,480 samples, and is balanced with
respect to the diurnal and seasonal cycles.

4.2.2. Machine Learning Algorithms

To map X to Y, we implement two different model types (Table 4.1): Artificial Neural Networks
(ANNs) and Variational Encoder Decoder (VED, Kingma and Welling 2014) structures, which
use a lower-dimensional manifold between the encoding and decoding part of the network,
also known as “latent space” in data science. In the following we will briefly describe these two
network types and the associated hyperparameter searches we conducted. We will use these
two neural network types to build stochastic and deterministic ensemble DL parameterizations
(see section 4.3).

Artificial Neural Networks

ANNs consist of a set of fully connected layers that contain nodes. These nodes perform a non-
linear regression task, and their weights and biases are optimized to reduce a loss function.
The linear sum of the previous layer is then passed through a non-linear function, referred to
as an “activation function”. Our ANNs have an input layer of 109 nodes (X’s length) and an
output layer of N𝑜𝑢𝑡𝑝𝑢𝑡𝑠 = 112 nodes (Y’s length). To optimize the ANNs’ weights and biases,
we use the mean-squared error (MSE) between the predictions (Y𝑝𝑟𝑒𝑑) and the original data
(Y) as our loss function (Equation 4.4).

MSE
(︂
𝒀 ,𝒀pred

)︂
=

1
𝑁outputs × 𝑁batches

𝑁batch∑︂
𝑘=1

𝑁outputs∑︂
𝑗=1

(︂
𝑌𝑗 ,𝑘 − 𝑌pred

𝑗 ,𝑘

)︂2
, (4.4)

where N𝑏𝑎𝑡𝑐ℎ is the batch size (i.e., the number of samples fed to the network per backprop-
agation step), 𝑌pred

𝑗 ,𝑘
is the network’s prediction of the j-th output for the k-th sample in the

batch, and 𝑌𝑗 ,𝑘 the corresponding target value we aim to predict.
To optimize the overall setup of the ANNs we conducted an extensive hyperparameter

search, including the batch size, the learning rate (i.e., the down-gradient step with respect
to the loss function for the network optimization during training), the number of nodes per
layer (integral parts of the network, which determines the number of weights and biases to be
optimized during training), the number of hidden layers (network layers between the input
and output layer), and the activation function (see Appendix B section B.2.1). We find that
the performance of ANNs is most sensitive to changes in learning rate and batch size. Other
predefined settings of our ANNs are the use of Adam (Kingma and Ba 2014) as optimizer
(an algorithm that improves the network performance during training) and a predefined
learning rate schedule (which decreases the initial learning rate after a certain epoch, see
Appendix B section B.2.1 for details). The hyperparameters of the 7 best-performing ANNs
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are summarized in Table B.3. We will use these ANNs as building blocks of our deterministic
and stochastic parameterizations and compare them to VEDs, which we describe next.

Variational Encoder Decoders

Similar to ANNs, the VEDs comprise input and output layers and dense fully connected
hidden layers. The main difference between the VEDs and ANNs is the dimensionality
reduction within the network into a small latent space and the addition of stochasticity in
the latent space. The encoding part (Encoder) compresses the information down to the latent
space through hidden layers with successively smaller node numbers from layer to layer (see
Figure 4.1). This latent space is a lower-order representation of the original information with
a latent space width of size N𝑙𝑎𝑡𝑒𝑛𝑡 , which is the number of nodes in the latent space. Within
the latent space, the mean � and logarithmic variance log 𝜎2 of the latent distributions are
optimized. � and log 𝜎2 are then used in a reparameterization to generate the stochastic latent
variables z (Behrens et al. 2022; Kingma and Welling 2014). Different techniques can be used
to interpret the encoded information with respect to the input and output data (see Behrens
et al. 2022; Mooers et al. 2023; Shamekh et al. 2023). The latent variables z are then the input
to the decoding part of the network (Decoder), which maps the information back to generate
predictions. The VED’s loss function ℒVED is the sum of the MSE loss function given by
equation 4.4 and a Kullback-Leibler (KL) loss term, which can be interpreted as a regularizer
of the latent distribution towards a normal decorrelated distribution for disentanglement
(Kingma and Welling 2014):

ℒVED

(︂
𝒀 ,𝒀pred

)︂
= MSE

(︂
𝒀 ,𝒀pred

)︂
+ � × 1

2𝑁batch

𝑁batch∑︂
𝑘=1

𝑁latent∑︂
𝑧=1

(︂
�2
𝑧,𝑘

+ 𝜎2
𝑧,𝑘

− ln 𝜎2
𝑧,𝑘

− 1
)︂

⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏞
KL Loss

, (4.5)

where the regularization factor (�) regulates the weight given to the MSE and KL losses
during training. We push this balance towards an enhanced reconstruction (smaller MSE)
to the expense of the KL loss term (� < 1). In this study we use a static regularization
factor, so a constant � that can be used as an additional hyperparameter. Our approach
to construct the VED deviates from the standard data science approach of a probabilistic
Variational AutoEncoder (VAE) Decoder in two ways. First, we use the MSE (Equation 4.4)
between Y𝑝𝑟𝑒𝑑 and Y to measure the reconstruction error, instead of the squared error between
the prediction of X𝑝𝑟𝑒𝑑 and respective input variables X that is often used in the loss function
of VAEs (see e.g., Mooers et al. 2023 for more details). This allows us to directly quantify how
well the original convective processes in Y are reproduced. Secondly, the main focus of the
training of our VED lies on an accurate reproduction and not on a perfect disentanglement
inside the latent space of the VED, thus using a strong regularization of the KL loss. Such an
enhanced determinism of the VEDs is beneficial to increase the general performance on the
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Acronym
climate model

Acronym
parameteri-
zation

No.
Net-
works

Method Stochastic
parameter

de
te

rm
in

is
tic ANN-CESM ANN 7 deterministic

ensemble
mean predic-
tion

-

- VED 6 deterministic
ensemble
mean predic-
tion

-

st
oc

ha
st

ic - ANN-
dropouta

1 dropout dr=0.01

ANN-ens-
CESM

ANN-
ensembleb

7 ensemble randomly draw 5
out of 7 members
for averaging

- VED-drawsc 1 latent space
reparameteri-
zation

7 draws

- VED-staticd 1 latent space
perturbation

7 draws with scalar
𝛼 = 0.5

- VED-
varyinge

1 latent space
perturbation

7 draws with 𝛼-
array

adropout including 7 samples per prediction of ANN 1 (Supporting Information Table S4)
bbased on all ANNs (Table S4), the 5 out 7 members are randomly drawn for each timestep
cbased on 7 predictions of VED 1 (Table S5)
dbased on 7 predictions of VED 1 (Table S5) with scalar 𝛼 = 0.5
ebased on 7 predictions of VED 1 (Table S5) with 𝛼-array

Table 4.1.: Summary of the stochastic and deterministic parameterizations we developed. The 2𝑛𝑑
and 3𝑟𝑑 column indicate the acronyms of the respective parameterizations in the Community Earth
System Model version 2 (CESM2; section 5.4) and in our offline evaluation (sections 4.4, 5.2, 5.3). The
other columns show for each parameterization the number of DL networks used, the method used to
generate the predictions, and key stochastic parameters for the stochastic parameterizations. This table
is reproduced with minor modifications from Behrens et al. 2024.
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complex multi-input, multi-output data set of the superparamaterization compared to a fully
probabilistic setup (Yu et al. 2023).

The list of evaluated hyperparameters for the VEDs includes batch size, learning rate,
number of nodes in the first or last hidden layer of the Encoder or Decoder, the number of
hidden layers of the Encoder or Decoder, the latent space width and the regularization factor
�. We find that the VED’s performance is most sensitive to the batch size, learning rate, latent
space width and the regularization factor. Details about the conducted hyperparameter search
and VED architecture can be found in the Appendix B (section B.2.1 and Table B.4).

The next subsection explains suitable ways, that I developed in Behrens et al. 2024, to con-
struct stochastic and also deterministic ensemble deep learning ensemble parameterizations.

4.3. Stochastic and Deterministic Ensemble Deep Learning
Parameterizations

This section is directly based on the subsection with the identical name in my publication that
is currently in review (Behrens et al. 2024).

Here, we present three suitable approaches to develop a stochastic parameterization based
on the machine learning algorithms introduced in the previous subsection (Figure 4.1):
dropout inside an ANN as a source of stochasticity, ensemble prediction of a number of
neural networks, and a latent space perturbation of a single VED, inspired by the enhanced
interpretability gained with latent space perturbations shown in Behrens et al. 2022.

4.3.1. Dropout

Dropout, also known as Monte Carlo Dropout (MCD), is widely applied to reduce overfitting,
which is characterized by an elevated training performance compared to validation or test
performance (Hinton et al. 2012). In addition, MCD can be used to quantify the uncertainty
of predictions, and therefore to estimate stochasticity. It has been shown that the resulting
uncertainty quantification and stochastic predictions of MCD have substantial limitations in
particular an underestimation of systematic spread and the inflation of deterministic errors
compared to more complex methods to construct stochastic predictions (Haynes et al. 2023).

With these caveats in mind, we use MCD as a simple baseline for our stochastic param-
eterizations. We apply MCD to one of the best-performing ANNs (ANN-dropout in Table
4.1 and hereafter) by adding a dropout layer after the last hidden layer of the network di-
rectly in front of the output layer. We choose a dropout rate dr of 0.01, meaning that 1% of
the input linkages to the dropout layer are randomly discarded for each sample. While this
small dropout rate underestimates the spread, higher values of the dropout rate (e.g., 0.05)
significantly deteriorate reconstruction quality.

To construct an ensemble with MCD (Figure 4.1) we repeat the sample-level prediction N𝑒𝑛𝑠

times (see equation 4.6), where N𝑒𝑛𝑠 is the ensemble size and 𝑖 symbolizes the i-th sampling of
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the deterministic ANN with active dropout dr. Due to the active dropout the resulting ensem-
ble {Y𝑝𝑟𝑒𝑑

𝑖,𝑡 ,𝑥
} is of stochastic nature and provides uncertainty quantification for each timestep 𝑡

and grid cell 𝑥. We use the ensemble mean of the MCD ensemble and individual members
to compare against other approaches to construct a stochastic and ensemble parameterization
for CESM2.

𝒀pred =
1

𝑁ens

𝑁ens∑︂
𝑖=1

𝒀
pred
𝑖

, 𝒀
pred
𝑖

= (Best ANNdr)𝑖 (𝑿 ) (4.6)

4.3.2. Ensemble Method

Ensemble predictions are one common way to provide uncertainty quantification of weather
forecasts (Gneiting and Raftery 2005) and climate projections (Eyring et al. 2016), as climate
and weather are governed by internal variability and stochasticity; some of them due to con-
vective and turbulent processes (Berner et al. 2017). Inspired by these traditional climate
modeling approaches, we develop ensemble based stochastic and deterministic parameter-
izations using ANNs and VEDs (stochastic: ANN-ensemble; deterministic: ANN, VED in
Table 4.1). These parameterizations will prove to have considerable advantages relative to a
single deterministic prediction of an individual neural network. In the following we use the
terminology “deterministic ensemble” for ensembles built without additional subsampling
(n = N𝑒𝑛𝑠 in equation 4.7, where N𝑒𝑛𝑠 is the maximum number of ensemble members and
n is the used ensemble size). To account for limitations when it comes to the computational
overhead and the applicability of the ensemble method, we restrict the ensemble size n to 7
members. Here, we chose a similar number of ensemble members as Han et al. 2023, who used
an ensemble size of 8. We acknowledge that this number of ensemble members is a critical
hyperparameter for ensemble predictions and larger (more diverse) ensembles yield often
better performance over smaller ones with decreased spread between the ensemble members.
Yet, larger ensemble require higher cost and memory so that they might not be practical.

We generate either a deterministic (n = N𝑒𝑛𝑠) or a stochastic ensemble (see equation 4.7) for
each timestep 𝑡 and grid cell 𝑥. In the stochastic case (n < N𝑒𝑛𝑠) we randomly draw for each
time step and grid cell a subset of members of size n < N𝑒𝑛𝑠 out of the deterministic ensemble.
Equation 4.7 shows the computation of the ensemble mean that we use for our online coupling
experiments (Figure 4.1),

𝒀pred =
1
𝑛

𝑛∑︂
𝑖=1

𝒀
pred
𝑖

, 𝒀
pred
𝑖

= NN𝑖 (𝑿 ) (4.7)

where n elements are randomly drawn out of the entire ensemble N𝑒𝑛𝑠 in the stochastic case,
decreasing n towards 1 yields a larger degree of stochasticity. We tested the number of samples
that are randomly drawn and found that 5 out 7 members is a good compromise between added
stochasticity and the overall reproduction skill of convective processes. For ensemble sizes
smaller than 5 the general reproduction skill is deteriorating. In the following we show the
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results of an ANN based stochastic ensemble with 5 out of 7 members (ANN-ensemble, Table
4.1), which illustrates the applicability of such an approach to generate stochasticity (Figure
4.1). The added value of stochasticity for the offline performance is negligible based on the
analysed offline metrics, but we see an improved reproduction of precipitation extremes with
the ANN-ensemble in comparison to the deterministic ANN parameterization when coupled
to CESM2 later on.

4.3.3. Latent Space Manipulation

This method is inspired by the interpretability and the potential of perturbing the latent space
of the VED (Behrens et al. 2022).

We develop a two-step approach to build a stochastic parameterization via latent space
perturbation. First, we train one of the best-performing VEDs (Table B.4) to achieve a realistic
reproduction of convection related SP variables 𝒀 . This particular VED is the base for the
VED-static and VED-varying stochastic parameterizations (Table 4.1) that use latent space
perturbation. We perturb the latent variables z𝑖 via Gaussian Noise 𝒩(0, 𝛼𝑖) with a mean 0
and standard deviation 𝛼 along all dimensions z of the VED’s latent space with width N𝑙𝑎𝑡𝑒𝑛𝑡

(see equation 4.8). 𝛼𝑖 is a hyperparameter that controls the magnitude of the Gaussian Noise
added to each latent dimension. The resulting perturbed samples for each timestep 𝑡 and grid
cell 𝑥 are fed into the decoder of the VED to generate a stochastic ensemble parameterization
(equation 4.8).

𝒀pred =
1

𝑁ens

𝑁ens∑︂
𝑖=1

𝒀
pred
𝑖

, 𝒀
pred
𝑖

= VED𝒛𝑖+𝒩(0,𝜶𝑖) (𝑿 ) . (4.8)

In equation 4.8, we create a stochastic ensemble by perturbing a single VED’s latent space in
two different ways: Either by adding isotropic Gaussian noise to the latent variables (“VED-
static”, Table 4.1) with 𝛼𝑖 = 0.5 to all latent variables z𝑖 , or by adding anisotropic Gaussian
noise whose standard deviation depends on the latent dimension (“VED-varying”, Table 4.1).
We evaluate the performance of these two stochastic parametrizations against a stochastic
paramaterization of the identical VED without latent space perturbation (“VED-draws”, Table
4.1). VED-draws uses the repetitive draw from the latent space distribution based on the
reparameterization. We investigate that VED-draws has limitations in the reproduction of
convective processes and the representation of robust uncertainty quantification of them
(Figure B.6). In detail, the spread of VED-draws is considerably smaller compared to the
two stochastic parameterizations with latent space perturbation. Therefore we do not show
VED-draws in the following to simplify the visualization of our results.

Latent space perturbation has similarities to existing stochastic ensemble approaches in
numerical weather forecasts or seasonal predictions, like the Stochastic Perturbed Parameter
Tendencies scheme (SPPT) (Buizza et al. 1999; Christensen et al. 2015) where the subgrid
source terms in the general equation of T, q and the horizontal velocities are perturbed
with multiplicative random noise. One difference is that our approach is acting on a lower
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dimensional latent space and not directly on specific output variables or tendencies like SPPT.
This ensures that the added noise is well conditioned on the large scale CAM variables X and
the resulting perturbations represent realistic variations in large-scale climate variables.

We develop a thorough strategy for suitable 𝛼𝑖 latent space perturbation. Its objective is to
find a balance between the reproduction skill and the ensemble spread of output predictions
Y𝑝𝑟𝑒𝑑 by adjusting 𝛼𝑖 (see Appendix B section B.5 for details). In the following we show the
applicability of the latent space perturbation approach tuned for one of the best-performing
VEDs (VED 1, Table B.4) and compare it against the ensemble parameterizations.

In the next section I will evaluate the reproduction skill of subgrid convective processes
of my developed ensemble deep learning parameterizations (Table 4.1) against individual
deep learning architectures based on realistic global Earth System Model test data data from
SPCESM.

4.4. Results: The added value of ensembles and stochasticity for the
reproduction of subgrid convective processes

This section is based on the first part of the “offline” results section presented in Behrens et al.
2024. Herein I illustrate the reproduction capabilities of my developed parameterizations for
subgrid convective processes with two standard machine learning metrics the Coefficient of
Determination (R2), see equation 3.5, and the Mean Absolute Error (MAE).

We start our offline benchmark analysis by evaluating the reproduction performance of the
different stochastic parameterizations compared to the deterministic ensembles and individual
networks with respect to SP test data (Table 4.1). Figure 4.2 shows the median coefficient of
determination R2 across all horizontal grid cells for the vertical profiles of �̇� (Figure 4.2a), �̇�
(4.2b). The respective vertical profiles of median R2 for �̇�𝑐𝑙 and �̇�𝑐𝑖 are displayed in Figure
B.1. We compute R2 for the entire hold-out test data set along the time dimension (= 4020
timesteps) in each of the grid cells and for all output variables Y.

All DL models in Figure 4.2 show an elevated reproduction skill for �̇� compared to �̇�. The
majority of models have a median R2 > 0.5 for these two tendency fields. Corresponding plots
of median R2 for �̇�𝑐𝑙 and �̇�𝑐𝑖 can be found in Figure B.1. These condensate tendencies are more
challenging to fit skillfully (Figure B.1), likely due to their small absolute magnitude as well
as overall noisy and stochastic nature. For these vertical tendency profiles we see a median
R2 below 0.3 for all models. In Section 5.4 we will discuss this weaker offline performance
associated with unstable CESM2 simulations, when condensate tendencies are included in the
coupling. In general, DL models show a reproduction minimum in the lower troposphere and
planetary boundary layer (> 800 hPa), due to the turbulent and chaotic nature of convective
processes on these levels. The coefficient of determination indicates low reproduction skill
above 200 hPa for the DL models for all variables except for �̇� (Figure 4.2, B.1). However
we see that the related mean absolute errors (MAEs) for �̇�, �̇�𝑐𝑙 , �̇�𝑐𝑖 above 200 hPa are almost
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zero (Figure B.5). This underlines that R2 is not an optimal metric for the upper levels of the
atmosphere with negligible specific humidity in the test data set (Yu et al. 2023).

The advantages of the ensemble methods are immediately clear. In general, the average of
the deterministic ANN ensemble (ANN, Table 4.1) and the average of the stochastic ANN en-
semble (ANN-ensemble, Table 4.1) show in general an increased reproduction skill compared
to single deterministic neural network predictions (grey lines in the background of Figure
4.2). ANN and ANN-ensemble show virtually an equivalent but improved performance, with
their R2 difference (ANN - ANNs) around 0.02. In general the performance difference for
�̇� between the ANN and ANN-ensemble and single ANN predictions is negligible. In the
lower troposphere one ANN has a slightly improved reproduction for �̇� compared to ANN
and ANN-ensemble. The “quasi-deterministic” VED ensemble (VED) and the dropout-based
ANN ensemble (ANN-dropout) result in enhanced reproduction skill compared to single
VEDs, but these approaches are within the performance range of single ANNs. A single VED
with latent space perturbation (VED-static, VED-varying; Figure 4.2) shows reproduction ca-
pabilities in the range of other individual VEDs or VED-draws (not shown). However, we find
that the median R2 decays with increasing magnitude of the perturbation 𝜶𝒊 in initial experi-
ments (Figure B.14). This points to the fact that the magnitude of the latent space perturbation
has to be well chosen to reach a good balance between reproduction skill and the diversity
(ensemble spread) of the ensemble. We will see in the following that the perturbation of the
latent space strongly improves the ensemble spread and can be well conditioned for a variety
of output variables 𝒀 .

Ensemble methods based on multiple ANNs improve the skill within the planetary bound-
ary layer, which is a known challenge of DL subgrid parameterizations (Behrens et al. 2022;
Gentine et al. 2018; Mooers et al. 2021). This is shown in Figure 4.2a, in which the minimal
median R2 for subgrid moistening �̇� in the boundary layer increases by about 0.05 between
individual ANNs and the deterministic ensemble ANN or the stochastic ensemble ANN-
ensemble. To deepen the analysis, we focus on the pressure level of 956 hPa, where the
differences between ANN, ANN-ensemble and individual ANNs are largest. Therefore we
compare the global maps of R2 of �̇� on 956 hPa of the two ANN ensemble parameterizations
with ANN-dropout and ANN 1, as an example of a skillful individual member of ANN and
ANN-ensemble. We see that the increase in reproduction skill is attributable to an improved
representation of convective processes in the planetary boundary layer over Antarctica, the ad-
jacent Southern Ocean and also over the Arctic Ocean (Figure B.2). In contrast, ANN-dropout
shows a poorer performance over these regions compared to ANN 1, which suggests that
even a minimal dropout rate leads to generally weaker reproduction of shallow convective
processes compared to individual ANNs.

There is no substantial added value of the ensemble approaches evident for precipitation
rates and radiative fluxes. We see high reproduction capabilities (median R2 > 0.8, see Figure
B.3), comparable to reproduced 2D fields of single ANNs. This suggests that these variables
can already be learned with high skill with single deterministic networks.
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Figure 4.2.: Vertical profiles of median coefficient of determination R2 for specific humidity tendency
(a), �̇�), temperature tendency (b) �̇� ) of ANN-dropout (solid navy blue); ANN and ANN-ensemble
(solid and dashed black), VED (solid red); VED-static (dashed cyan) and VED-varying (dotted cyan
line) and different individual ANNs and VEDs and (grey solid and dashed lines). The vertical profiles
of median R2 cloud liquid water tendency �̇�𝒄𝒍 and cloud ice water tendency �̇�𝒄𝒊 can be found in Figure
B.1. This Figure is reproduced with minor modifications from Behrens et al. 2024.

Similar to our evaluation with R2, we find an enhanced reproduction skill, as indicated by
the mean absolute error (MAE), in both �̇�𝒄𝒊 and �̇�𝒄𝒍 with ANN and ANN-ensemble compared
to a single ANNs (Figure B.4). For �̇� and �̇�, the median MAEs of ANN and ANN-ensemble
are either slightly higher or of similar magnitude like those of single ANNs in the troposphere
(Figure B.4). A likely explanation is the overall skillful reproduction of �̇� with individual
ANNs (Figure 4.2 and B.4). Furthermore, one member of ANN and ANN-ensemble struggles
to reproduce �̇� and �̇� with good skills, which decreases their performance. In contrast, we
find an enhanced reproduction, based on MAEs, for �̇�𝒄𝒊 above 400 hPa with ANN and ANN-
ensemble in comparison to single ANNs (Figure B.4). For �̇�𝒄𝒍 we see the same effect in the upper
part of the planetary boundary layer (between 800 and 900 hPa, Figure B.4) for ANN and ANN-
ensemble. In both cases, the enhanced performance of the ensemble methods are likely due to
the larger contribution of stochasticity associated with turbulence in the planetary boundary
layer and deep convection in the upper troposphere. Interestingly, however, VED and VED-
draws have one of the best performance for �̇�𝒄𝒍 and �̇�𝒄𝒊 in the lower part of the planetary
boundary layer compared to all other parameterizations (Figure B.4), despite their poorer
reproduction skill for other vertical profiles. This suggests that the general characteristics
of shallow convective processes can be well captured with the “quasi-deterministic” VED in
comparison to ANNs. One possible explanation for this is the fact that VEDs are able to connect
multiple convection related variables into a robust and more interpretable driver of convective
predictability within their latent spaces (Behrens et al. 2022), e.g. forming a shallow convective
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mode. As a consequence, we find a more realistic reproduction of �̇�𝒄𝒍 (Figure B.4) and also
surface radiative properties (Figures B.3 and B.5) with VED and VED-draws compared to
ANNs that do not provide a lower dimensional representation of convective processes. ANN-
dropout shows overall a good reproduction of convective processes with high R2 and low
MAE, but we will later show that this method strongly underestimates the uncertainty of
convective processes. The opposite is true for VED-static and VED-varying, where we find the
poorest performance in terms of R2 and MAE. However we will see in the following that the
uncertainty quantification via latent space perturbation reflects a well calibrated magnitude
with respect to SPCESM2.

As a results of these conclusions I will evaluate in chapter 5 in detail the performance of the
developed stochastic and deterministic deep learning parameterizations with respect to the
quality of the respective uncertainty quantification. I will further use one metric that combines
the reproduction skill with a term related to the spread of the ensembles. At a later stage I will
couple the two best performing parameterizations based on this metric to CESM2 to investigate
their stability in “hybrid” ESM simulations. But before that I will quickly summarize the main
findings with respect to the reproduction skill of stochastic and deterministic deep learning
parameterizations with respect to subgrid convective processes.

4.5. Summary Part I

This section is based on the first part of the concluding section in Behrens et al. 2024 and
summarizes the key points from the general setup that I used to develop the stochastic and
deterministic parameterizations and the evaluation of their reproduction capabilities of sub-
grid convective processes.

State-of-the-art deterministic deep learning algorithms based on one single model skilfully
represent subgrid deep convective processes in climate models (Mooers et al. 2021; Rasp et
al. 2018). However, reproducing the full complexity of convective processes, especially in the
planetary boundary layer, remains challenging (Behrens et al. 2022; Gentine et al. 2018; Mooers
et al. 2021). It has been speculated that this lower reproduction skill in the lower troposphere
is largely related to the determinism of the used deep learning algorithms, neglecting the
stochastic nature of convective processes (Behrens et al. 2022; Mooers et al. 2021). In this
context, data-driven ensemble approaches that are scalable and can robustly overcome these
issues would help improve ESMs.

This study presents and evaluates novel deep learning approaches to account for subgrid
variability, due to stochasticity, to improve ESMs and projections. We demonstrate that the
uncertainty and variability of such processes, as represented by the Superparameterized
Community Earth System Model 2 (SPCESM2), can be correctly captured via an ensemble
of predictions using Artificial Neural Networks (ANNs) or Variational Encoder Decoders
(VEDs). This variability in unresolved convective processes is particularly relevant in the
lower troposphere associated with turbulence and shallow convection, as well as in the upper
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troposphere and lower stratosphere due to deep convection. There is, however, a trade-off
between capturing the uncertainty of subgrid processes and their mean effect on the system,
affecting the overall performance of the deep learned parameterization.

Randomly drawing an ensemble of predictions from different ANNs, ANN-ensemble (Table
4.1), enables skillful predictions as good as using the full deterministic ensemble of ANNs,
ANN (Table 4.1). These two ensembles have an improved reproduction skill of convective
processes compared to individual ANNs. We see the largest improvements for specific hu-
midity and cloud liquid water tendencies within the planetary boundary layer. A similar
improvement can be found for cloud ice water tendencies in the upper troposphere. An ANN
with active dropout is not as accurate as the two ANN ensembles explored here. Perturbing
the latent space of VEDs provides a good uncertainty range (see chapter 5) in their predictions,
though accuracy in their predictions is substantially affected.

These findings show that ensemble deep learning parameterizations based on a number
of networks with varying hyperparameters improve the presentation of subgrid convective
processes on levels where these processes exhibit an elevated stochasticity related to subgrid
turbulence like the planetary boundary layer or the upper troposphere due to deep convective
activity compared to individual deterministic neural networks. In chapter 5 I will evaluate
how robust the uncertainty quantification of the different stochastic and deterministic param-
eterizations is and how the two best of my developed parameterizations are performing in
“hybrid model” simulations with CESM2.
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learning parameterizations and hybrid
simulations in an Earth System Model

This chapter is based on the second part of my paper that is currently in review (Behrens
et al. 2024) with small modifications in the naming of distinct deep learning models and
parameterizations. It is dedicated to a detailed evaluation of the uncertainty quantification of
the different ensemble parameterizations and the results of hybrid simulations with them in
an Earth System Model. It is structured as follows: Section 5.1 gives a quick overview over the
used ensemble metrics and the technicalities in the background of the “hybrid” simulations, as
both topics may potentially be unfamiliar to the reader and enhance the overall understanding
of the thesis. Section 5.2 focuses on the uncertainty quantification of subgrid convective
processes given by my developed parameterizations. Section 5.3 evaluates the deterministic
and stochastic parameterizations with respect to the continuous rank probability score. Section
5.4 shows results of hybrid simulations with the best performing stochastic and deterministic
ensemble coupled to Community Earth System Model (CESM). Section 5.5 summarizes the
key findings of this chapter.

For this version of Behrens et al. 2024, that is currently in review, I, as the author of the
thesis, contributed all figures, tables and large parts of the code to produce them. Furthermore
I let the writing and the analysis of the published paper.

5.1. Ensemble Metrics and Online Coupling techniques

This section is directly reproduced from Behrens et al. 2024. It contains material presented in
the methods section of my paper that is currently in review.

5.1.1. Ensemble Metrics

We evaluate the quality of the spread given by the different stochastic and deterministic
approaches via uncertainty quantification with respect to the test data using three metrics.
Specifically, we quantify the aleatoric uncertainty associated with the randomness aspect of
the data-generation process, including the chaotic nature of convective processes in the atmo-
sphere (Haynes et al. 2023). Firstly, we use the Continuous Rank Probability Score (CRPS),
which is the difference between the MAE (first term) and the spread inside the ensemble
(second term) in equation 5.1 (Haynes et al. 2023):
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CRPS is both sensitive to the deterministic quality of individual predictions𝒀 𝑝𝑟𝑒𝑑

𝑖
condensed

in the MAE term and to the spread of the predictions inside the ensemble. This makes CRPS
a suitable stochastic loss function for deep learning (Haynes et al. 2023). Moreover CRPS is a
proper score (Gneiting and Raftery 2007) of negative orientation with a fixed lower bound of
0 (perfect skill) and upper bound 1 (no skill) in its probabilistic integral form.

Secondly, we use spread-skill diagrams to evaluate whether the skill of the stochastic and
deterministic ensemble predictions (measured with the root mean square error (RMSE)) is
correlated with the ensemble spread (Haynes et al. 2023). An ideal ensemble would have a
pronounced correlation between spread and RMSE with a spread-skill ratio of one (Berner
et al. 2017; Haynes et al. 2023). To sort the magnitude of the spread of the parameterizations
for given 𝑿 and selected output variables of interest 𝑌𝑝𝑟𝑒𝑑

𝑖, 𝑗
, we bin the spread into a number

of classes Nbins and compute the bin average for each class (equation 5.2). Then we calculate
the conditionally averaged RMSE (equation 5.3) for each class 𝑏 ∈ ⟦1,Nbins⟧:
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RMSE𝑗 ,𝑏 =
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where Nbins is the number of classes (bins) and Ncounts,𝑏 represents the number of elements
within a class 𝑏 ∈ ⟦1,Nbins⟧.

Finally, we calculate the probability integral transform (PIT). This metric is similar to rank
histograms, where the true value 𝑌𝑗 is ranked within the ensemble {𝑌𝑝𝑟𝑒𝑑

𝑗
} (i.e., the test data

sample is situated between the (r-1)𝑡ℎ and r𝑡ℎ ensemble member and gets the rank r, where r is
the rank ID). The PIT diagram is then obtained by computing the probability density function
of all observed ranks 𝑟 ∈ ⟦1, 𝑁𝑒𝑛𝑠 + 1⟧ of 𝑌𝑗 (a probability value of each rank r; the y-axis)
binned by the PIT values of each rank r (defined by the CDF of all ranks 𝑁𝑒𝑛𝑠 + 1, x-axis). We
use the PIT to evaluate whether the ensemble is overdispersive (which means that 𝑌𝑗 lies too
frequently within the central percentiles of the ensemble) or underdispersive (𝑌𝑗 is usually an
outlier outside of the ensemble or lies in the lowest or highest percentiles of the ensemble).
Ideally, the PIT curve is a horizontal line with an associated probability of 1

N𝑒𝑛𝑠+1 , which can
be used to compute the PIT distance metric between the actual and ideal PIT case similar to
the one shown in Haynes et al. 2023.

5.1.2. Online Coupling of the Ensemble Parameterizations

To couple our ensemble and stochastic parameterizations into CESM2 (replacing the SP com-
ponent) we use the Fortran-Keras-Bridge (FKB) (Ott et al. 2020). To enforce the positivity of
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precipitation and radiative fluxes as predictants, we add a “positivity layer” as a constraint
layer (Beucler et al. 2021) to all DL models of the parameterizations. The “positivity layer”
maps these variables with a ReLU activation to positive values.

We restrict our online coupling efforts to the deterministic and stochastic ensemble ANN
parameterizations, which show superior offline performance compared to other developed
parameterizations in section 4.4. First we transform the native weights and biases files into text
files, which makes the files accessible for FKB and related Fortran compilers (Ott et al. 2020).
Then we create a standalone repository that allows to couple individual ANNs, ANN and
ANN-ensemble into CESM2. For ANN-ensemble we implement a random average function
on grid cell level. In initial coupled experiments we find in some cases unrealistic simulated
solar and shortwave radiative fluxes of more than 50 𝑊

𝑚2 during night-time conditions on
lower latitudes. To enhance the robustness of the online runs and the interpretability of
simulated processes we enforce realistic radiative conditions for the coupling to the land and
ocean surface by setting all solar fluxes and shortwave fluxes to zero 𝑊

𝑚2 , if the cosine of the
zenith angle of the incoming solar radiation in CESM2 at the current timestep and grid cell
is zero (night-time conditions). Additionally, we implement a partial coupling scheme of
our parameterization for certain variables, while other variables are simulated with the SP
running aside. Our best performing setup that we present in section 5.4 relies on coupling
all predicted variables from our parameterizations into CESM2 except for cloud ice water �̇�𝒄𝒊

and cloud liquid water tendency �̇�𝒄𝒍 , which remain simulated by SP. Especially the partial
coupling stabilizes online simulations, e.g., increasing the time until CESM2 crashes with our
parameterization from the order of days or hours to more than five months (see section 5.4).
For the online runs we use the predefined time stepping of SPCESM, with a native CESM2
timestep of 1800 s and an SP time step of 20 s. The subgrid source terms coming from SP and
our parameterization are updated at every CESM2 time step. We perform CESM2 simulations
based on initialisation files of January 2013 that included one month of SP spin-up, which
is necessary for a realistic representation of global precipitation patterns. Our simulations
start at the beginning of February. This coincides with the conditions that individual ANNs
are optimized for during the training, as the respective data set contains the first seven days
of each month of the year 2013. Nevertheless we test also three additional initialisation
dates: the beginning of May, the beginning of August and the beginning of November, and
investigate that the stability of our developed parameterizations is sensitive to the choice of
the initialisation date.

As the next step, I will evaluate the quality of the uncertainty quantification of my developed
stochastic and deterministic parameterizations with the in this section explained ensemble
metrics.
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5.2. Evaluating of Uncertainty Quantification

This section is directly based on the section with the identical name in my publication that is
currently in review (Behrens et al. 2024).

Next, we evaluate the uncertainty quantification captured by the methods dealing with
multiple predictions, meaning that prediction ranges from individual ensemble members will
be assessed rather than their averages We focus on four vertical subregions with larger than
average MAEs (Figure B.4): �̇�(p𝑠𝑢𝑟 𝑓 ); �̇� (p𝑠𝑢𝑟 𝑓 ); �̇�𝒄𝒍(800-900 hPa); and �̇�𝒄𝒊(200-400 hPa).

Figure 5.1 shows the spread-skill diagrams for these variables on specific pressure levels.
An ideal spread-skill ratio of 1 is indicated by the grey dashed line (Berner et al. 2017). We
randomly draw 500 timesteps from the test data set (∼ 6.9 × 106 samples), and calculate the
spread. Then we bin the spread arrays into 41 bins, based on the spread percentiles of VED-
static, with bin width of 2.5𝑡ℎ percentiles. We finally calculate the conditional average of spread
and RMSE for each bin (equation 5.3). The y-axis and x-axis represent the bin-averaged RMSE
and spread, respectively. To put the magnitude of the shown maximum spread and RMSE
values into perspective, their values are typically 102 to 103 larger than the MAEs (Figure B.4).

We find the best performance with respect to the spread-skill diagrams for VED-static
followed by the ANN-ensemble and ANN. As it is shown in Figure 5.1, for a spread smaller
than 0.35 𝑔

𝑘𝑔×ℎ or 𝐾
ℎ

for surface �̇� or �̇� , these three parameterizations provide a considerably
skillful uncertainty quantification. For larger spreads of surface �̇� and �̇� VED-static, DNN-
ensemble and ANN illustrate an overdispersion. This means that the associated spread is
larger than the RMSE and the respective spread-skill curves are situated below the ideal 1:1
ratio line. While for �̇�𝒄𝒍 in the planetary boundary layer and �̇�𝒄𝒊 in the upper troposphere,
the underdispersion, when the spread is smaller than the RMSE, reduces with ANN, ANN-
ensemble and VED-static compared to all other developed parameterizations. This suggests
an improved uncertainty calibration for these methods, which is also found in the respective
PIT curves (Figure 5.2).

ANN-dropout and VED-draws (not shown) overall yield less well calibrated predictions,
with larger deviations from the ideal 1:1 ratio, for the evaluated variables compared to all
other developed parameterizations (Figure 5.1). Especially for �̇� at the surface, �̇�𝒄𝒍 in the
upper part of the planetary boundary layer and �̇�𝒄𝒊 in the upper troposphere, we find a strong
underdispersion with ANN-dropout and VED-draws. The pronounced underdispersion of
ANN-dropout and VED-draws is also present in the associated probability integral transform
(PIT) diagrams for �̇�𝒄𝒍 in the planetary boundary layer (Figure 5.2). The ideal PIT curve
is shown as the thick dashed grey line. For ANN-dropout, and VED-draws, almost all
test data samples are situated in the tails of the distribution of the PIT curve. The same
behaviour with too many outliers, situated in the tails of the distribution, is further visible
for the PIT histograms of �̇� at the surface, �̇�𝒄𝒊 in the upper troposphere or �̇� at the surface
(Figures B.10 to B.12). In combination with the overall poor skill in the spread-skill diagrams
(Figure 5.1), except for �̇� for ANN-dropout, this suggests that ANN-dropout and VED-draws
yield uncertainty quantification that underestimates the variability in the test data for the
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Figure 5.1.: Spread-Skill diagram between bin-averaged spread (x-axis) and Root Mean Square Error
(RMSE, y-axis) based on the test data and predictions over 500 randomly drawn timesteps. Shown is
the spread-skill diagram of surface specific humidity tendency �̇� in a), surface temperature tendency
�̇� in b), cloud water tendency �̇�𝒄𝒍 in the upper planetary boundary layer on 831 hPa in c) and cloud
ice tendency �̇�𝒄𝒊 in the upper troposphere on 288 hPa in d). The color-coding of the ensemble and
stochastic parameterizations is identical to Fig. 2. Additionally we include the spread-skill ratio of 1:1
(dashed grey line) that symbolises the optimal calibration of the spread vs. skill based on literature
(Berner et al. 2017; Haynes et al. 2023). This Figure is reproduced with minor modifications from
Behrens et al. 2024.

evaluated variables on pressure levels where a large portion of convective processes is driven
by turbulence. In the following, we will show how this translates into an elevated CRPS and
poor skill for ANN-dropout and VED-draws.

Similarly, VED tends to be underdispersive for all evaluated variables (Figure 5.1), but
with an improved spread-skill compared to ANN-dropout and VED-draws. Also we find
that VED is competitive against all other parameterizations for smaller spread values (Figure
5.1). For �̇�𝒄𝒍 in the planetary boundary layer, the probability that the SPCESM2 sample is
situated within the ensemble slightly increases (Figure 5.2). However, it should be noted that
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Figure 5.2.: Probability Integral Transform (PIT) histogram of �̇�𝒄𝒍 in the planetary boundary layer
between 831 and 900 hPa. The x-axis represents the Cumulative Distribution Function (CDF) of the
ranks of the test sample from Super Parameterized Earth System Model (SPCESM) version 2 with
respect to the number of ensemble members of the stochastic or ensemble parameterizations. The
y-axis depicts the probability associated with each rank. The PIT histogram is based on 400 randomly
drawn timesteps from the test data set. The thick dashed gray line in the subplot in horizontal direction
symbolises the ideal shape of the PIT curve. The color coding is identical to Figure 4.2. Note that we
exclude the curve of the stochastic ANN-ensemble due to the fact that it shares the majority of ensemble
members with ANN and results in a similar PIT curve with fewer ranks. This Figure is reproduced
with minor modifications from Behrens et al. 2024.

VED has one fewer member than the other parameterizations. The same is true for the PIT
curves of VED with respect to �̇� , �̇� at the surface or �̇�𝒄𝒊 in the upper troposphere, suggesting
that VED provides better calibrated uncertainty quantification compared to VED-draws or
ANN-dropout. In the following the CRPS evaluation will further support this reasoning.

The spread-skill analysis reveals substantial differences in the quality of the uncertainty
quantification between a latent space perturbation with isotropic Gaussian noise (VED-static)
and anisotropic Gaussian noise (VED-varying). While VED-static is one of the best perform-
ing ensemble methods, we find a pronounced underdispersion for VED-varying for �̇� and
�̇� at the surface (Figure 5.1), more so than for the ANN-dropout. This result of the spread-
skill analysis is particularly interesting as it suggests that a latent space perturbation with an
anisotropic Gaussian noise term (VED-varying) yields a decreased calibration of the uncer-
tainty quantification of the surface moistening and heating compared to an isotropic Gaussian
noise term (VED-static). However for �̇�𝒄𝒍 in the planetary boundary layer and �̇�𝒄𝒊 in the
upper troposphere both VED-varying and VED-static show an improved calibration of the
ensemble spread compared to all other developed ensemble and stochastic parameterizations
for a bin averaged spread larger than 0.005 𝑔

𝑘𝑔×ℎ . VED-varying shows a weaker prediction skill
compared to VED-static for �̇�𝒄𝒍 and �̇�𝒄𝒊 for a spread smaller than 3 ×10−4 𝑔

𝑘𝑔×ℎ (Figure 5.1).

82



5.3. Proper Scoring

This results in an increased underdispersion of VED-varying compared to ANN-dropout for
a spread smaller than 2 ×10−4 𝑔

𝑘𝑔×ℎ . We could then cross-link the results from the spread-skill
diagrams of VED-static and VED-varying with the respective PIT histograms (Figure 5.2 and
Figures B.10 to B.12). Figure 5.2 shows that VED-static and VED-varying have strongly re-
duced outliers in their respective PIT histograms for �̇�𝒄𝒍 in the planetary boundary layer. The
calibration of the uncertainties for VED-varying is slightly improved compared to the one of
VED-static. The probability that the true SPCESM2 sample is ranked at the outer edge of the
PIT curves decreases for VED-varying, while the probabilities for the inner ranks for VED-
varying is converging towards the ideal case for �̇�𝒄𝒍 in the planetary boundary layer (Figure
5.2). The same improved quality of uncertainty quantification is also present for �̇�, �̇� at the
surface and �̇�𝒄𝒊 in the upper troposphere with VED-varying compared to VED-static (Figures
B.10 to B.12). However, we recall it came at the cost of worse predictive skill of convective
processes (Figures 4.2, 5.1)

Overall we find that VED-static has the best uncertainty quantification based on the PIT
curves and the spread-skill diagrams, followed by ANN and ANN-ensemble with a good cal-
ibration of the ensemble spread. These networks often indicate only a slight underdispersion
or overdispersion compared to the ideal PIT curve. VED-varying provides calibrated uncer-
tainty quantification in the PIT analysis but to the expense of a lower reproduction skill as can
be seen in its relatively large RMSE for �̇�, �̇� at the surface and condensate tendencies (Figure
5.1). Also VED represents the uncertainty of convective processes well. The uncertainty quan-
tification of ANN-dropout and VED-draws is in general not well calibrated. Additionally, the
PIT curves of ANN-dropout and VED-draws show the strongest underdispersion with most
of the true SPCESM2 samples being sorted in the lowest or highest rank as outliers. This
means that these two parameterizations strongly underestimate the simulated spread of key
variables in SPCESM2, and could not represent variations in convective processes like all other
parameterizations.

5.3. Proper Scoring

This section is directly based on the section with the identical name in the my publication that
is currently in review (Behrens et al. 2024).

Here we provide a holistic evaluation of both the calibration of the ensemble spread and
the quality of the reproduction error metrics (see Section 5.1.1). ANN and ANN-ensemble
are the best-performing deterministic and stochastic parameterization based on CRPS (Figure
5.3). We start our CRPS analysis by focusing first on general statistics of CRPS calculated
over all output variables 𝒀 . Figure B.6 shows the mean, median, the 75𝑡ℎ and 90𝑡ℎ percentile
of CRPS computed over all SP variables 𝒀 . We find the lowest mean and median CRPS for
ANN and ANN-ensemble over all subgrid SP variables 𝒀 . This indicates that these two pa-
rameterizations are the best compromise between predictive skill on one side and uncertainty
quantification on the other side. While VED and ANN-dropout perform considerably well,
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VED-draws shows intermediate performance based on the mean and higher percentiles of
CRPS calculated over 𝒀 . Both VED-static and VED-varying have remarkably increased 75𝑡ℎ

and 90𝑡ℎ percentiles compared to all other parameterizations (Figure B.6). However, we note
that the respective median CRPS values decrease compared to VED-draws, which underscores
that the latent space perturbation has the potential to improve the uncertainty quantification
of convective processes.

Figure 5.3.: Mean Continuous Rank Probability Score (CRPS) of the �̇� (a), �̇� (b), �̇�𝒄𝒍 (c), �̇�𝒄𝒊 (d) for
the different ensembles based on 500 randomly drawn time step from the test data. The blue line
indicates ANN-dropout. The solid and dashed black lines represent the deterministic ANN and
stochastic ANN-ensemble parameterization alongside VED (red line). The dashed and dotted cyan
lines represent VED-static and VED-varying. This Figure is reproduced with minor modifications from
Behrens et al. 2024.

84



5.3. Proper Scoring

We extend our CRPS analysis to evaluate from which SP variables the differences between
the parameterizations are arising. Figure 5.3 shows the vertical profiles of mean CRPS values
for �̇� (𝒑), �̇� (𝒑), �̇�𝒄𝒍 (𝒑) and �̇�𝒄𝒊 (𝒑).

The similar performance of ANN and ANN-ensemble suggests that the latter does not ex-
hibit a decline in reproduction skill of convective processes, as found with all other developed
stochastic parameterizations, particularly in the upper planetary boundary layer and the up-
per troposphere. VED-static and VED-varying have a compatible performance to ANN and
ANN-ensemble in the upper part of the planetary boundary layer for �̇�𝒄𝒍 and in general a
good skill for all vertical profiles (Figure 5.3). However VED-static and VED-varying have an
elevated CRPS for surface �̇� and �̇� compared to other deterministic or stochastic ensemble pa-
rameterizations. These results suggest that the latent space perturbation yields well calibrated
uncertainty quantification for convective processes in the troposphere like we saw already with
the analysed uncertainty metrics. The shortcomings of VED-static and VED-varying on the
surface levels mainly arise from the reduced reproduction skill with latent space perturbation
while the calibration of the uncertainty quantification depicts high skill (Figures B.11 and
B.12). VED shows in general a compatible performance in CRPS with intermediate scores,
while ANN-dropout depicts the highest CRPS of all evaluated parameterizations for the verti-
cal profiles of �̇�, �̇� , �̇�𝒄𝒍 , �̇�𝒄𝒊 due to the shortcomings in the calibration of the ensemble spreads
(Figures 5.1 and 5.3). The same shortcomings are visible for VED-draws.

Figure 5.4 shows the global map of the mean CRPS values of �̇�𝒄𝒊 on 288 hPa for ANN based
on 500 randomly drawn timesteps from the test data set. Moreover it depicts the differences
of mean CRPS of all other developed parameterizations with respect to ANN, excluding
VED-draws due its overall weak performance in CRPS. In the supporting information similar
maps for �̇�𝒄𝒍 , surface �̇� and �̇� (Figures B.7 to B.9) can be found. The CRPS structure shows
the imprint of the atmospheric general circulation centers of action. In general, we find the
largest mean CRPS, a decline in performance, associated with deep convective systems over
the Maritime Continent, the tropical East Pacific offshore of Panama, the Congo basin, and the
Amazonian and Parana regions. Especially over these regions ANN and ANN-ensemble have
the best performance with respect to CRPS compared to the other parameterizations (Figure
5.4). ANN and ANN-ensemble have also the lowest global mean value of CRPS of �̇�𝒄𝒊 on
288 hPa with 2.8×10−3 𝑔

𝑘𝑔×ℎ , while the other parameterizations have a mean value larger than
3×10−3 𝑔

𝑘𝑔×ℎ except of VED-static. ANN-dropout has in general elevated CRPS over the deep
convective regions for �̇�𝒄𝒊 compared to the other developed parameterizations. As we already
investigated, ANN-dropout is strongly underdispersive (Figure B.10) and does not provide
robust uncertainty quantification for �̇�𝒄𝒊 in the upper troposphere. In contrast, the VED-static
and VED-varying parameterization yield the best calibration of the ensemble spread for the
upper tropospheric �̇�𝒄𝒊 (Figure B.10), which explains also the clear improvement of the mean
CRPS visible compared to ANN-dropout.

For surface �̇� and �̇� or �̇�𝒄𝒍 in the upper planetary boundary layer ANN and ANN-ensemble
have the best performance compared to other parameterizations based on CRPS (Figures B.7
to B.12). The largest improvements with ANN and ANN-ensemble compared to the other
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Figure 5.4.: Mean Continuous Rank Probability Score (CRPS) of �̇�𝒄𝒊 on 288 hPa based on 500 randomly
drawn timesteps from the test data set for (a) the deterministic ANN ensemble, the CRPS differ-
ences of (b) the stochastic ANN-ensemble, (c) the deterministic VED, (d) ANN-dropout; VED-draws
(e),VED-static (f), VED-varying (g) parameterizations to ANN. This Figure is reproduced with minor
modifications from Behrens et al. 2024

parameterizations are in the tropics in the regions with the highest CRPS for all evaluated
variables. In contrast, the extra-tropical and especially regions with negligible deep convective
activity, i.e., the upwelling regions offshore of the west coast of the Americas or Africa, are
characterized by similar small CRPS across all parameterizations, as expected. In agreement
with previous results, ANN-dropout often has elevated CRPS. For VED-static and VED-
varying we find an improvement in CPRS compared to ANN and ANN-ensemble for �̇�𝒄𝒍 on
831 hPa, but the largest CRPS for surface �̇� and surface �̇� as already expected from Figure 5.3.

In general, the latent space perturbation leads to an improvement in the calibration of the
ensemble spread compared, for example, to ANN-dropout. Nevertheless, our CRPS and the
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PIT analysis reveal that there is a trade-off between robust uncertainty quantification on one
hand and reproduction skill on the other hand. Therefore we designed a hyperparameter
tuning method to balance these two important factors for the development of a stochastic
convection parameterization with latent space perturbation (see in Appendix B section B.5).

ANN-ensemble and ANN do not need such additional tuning steps and show a similarly
good calibration of the uncertainty quantification of convective processes in combination
with enhanced reproduction skill of convective processes compared to all other developed
parameterizations.

In the next section, we will therefore focus on ANN and ANN-ensemble parameterizations
coupled to CESM2, demonstrating the advantages of such parameterizations compared to
single ANN parameterizations.

5.4. Online Results: Improved Stability and Precipitation
Distributions

This section is directly based on the respective section in Behrens et al. 2024.
In this section, we first describe the challenges of coupling our parameterizations to CESM2.

Second, we evaluate our prognostic runs against the high-resolution SPCESM2 model, the
coarse CESM2 model with a traditional convection scheme, as well as a deep learning bench-
mark (Han et al. 2023).

5.4.1. Online Coupling Challenges

We couple ANN and ANN-ensemble, the two best-performing deterministic and stochastic
parameterizations, into CESM2 using the Fortran-Keras-Bridge (Ott et al. 2020), resulting in
ANN-CESM and ANN-ens-CESM hybrid models. We follow the configuration detailed in
Section 5.1.2 for our new hybrid model runs. Coupling the complete set of 𝒀 𝒑𝒓𝒆𝒅 to CESM2
led to unstable prognostic runs after few days. Note that running the hybrid model with
individual ANN led to instabilities in only few time steps. This shows the stabilizing effect of
ensembles consistent with Brenowitz et al. 2020. We identified one particular ANN with low
performance of the parameterizations and retrained it. This allowed us to achieve few weeks
long prognostic runs. While the stability of the prognostic runs depends to some extent on
the initial conditions, the primary cause of the hybrid model instabilities were ice growth in
the lower tropical stratosphere and subsequent radiative feedback. These anomalous signals
manifested in rapidly increasing 𝒒𝒄𝒊 in the stratosphere, which led to unrealistic values of
𝒀 𝒑𝒓𝒆𝒅
𝒓𝒂𝒅 that are crucial for the coupling with the surface model components (e.g. land model),

ultimately causing blow-ups of CESM2 with our ensemble and stochastic parameterizations.
Achieving a stable hybrid multi scale model is indeed a non trivial task (Yu et al. 2023). The

deep learned representation of condensate tendencies is particularly challenging. To over-
come this challenge, we performed a “perfect condensate” experiment, in which �̇�𝒄𝒊 and �̇�𝒄𝒍

87



5. Uncertainty quantification of ensemble deep learning parameterizations and hybrid simulations in
an Earth System Model

variables are simulated by the SP component and the rest by our deep learned parameteriza-
tions. This partially-coupled setup, however, requires running the SP component alongside
the predictions from the neural networks, with a clear drawback in terms of computational
efficiency. Nevertheless, this configuration allowed us to achieve six months long stable hy-
brid runs for both, ANN-CESM and ANN-ens-CESM. Specifically, ANN-CESM ran stably
from the beginning of February 2013 to the last third of July, and ANN-ens-CESM stopped
at the beginning of July. Running the hybrid model with the “perfect condensate” setup but
for individual ANNs, crashed in 6 out of 7 cases within the first five days of the simulation
(see Figure B.16 and B.17). The ANN with the largest RMSE due to imperfect predictions
representing average conditions (e.g. predicting constant drizzle conditions in all horizontal
grid cells) survived until mid October. This suggests that model stability and the robustness or
realism of the predicted convective and radiative fluxes are not associated with each other (Lin
et al. 2023). Omitting the spurious ANN as an ensemble member destabilized ANN-CESM
and ANN-ens-CESM in test runs. Furthermore, we found that using fewer ensemble members
(number of neural networks and larger stochasticity) for ANN-ens-CESM strongly affected its
stability. This suggests that deep-learned ensemble parameterizations may require a trade-off
between computational efficiency and the number of members.

5.4.2. Online Performance

We evaluate ANN-CESM and ANN-ens-CESM prognostic runs over the period from February
to June 2013 (before blow-up in mid-July), covering a total of 7200 timesteps. These simula-
tions are evaluated against the original high-resolution SPCESM2 (abbreviated as SP-CESM),
and against the coarse CESM2 (abbreviated as ZM-CESM) with the traditional convection
parameterization (Zhang and McFarlane 1995), over the same period. We note that all coarse
model runs, ANN-CESM, ANN-ens-CESM and ZM-CESM, are based on one-month spin-up,
while SP-CESM is based on a decade-long model run. Figure 5.5 shows zonal averages of
the median precipitation (Figure 5.5a), as well as zonal averages of higher percentiles (Figure
5.5b,c). To investigate the influence of the internal variability on the zonal structures of the
respective curves, we add uncertainty ranges based on 50 bootstrapped subsamples of 2000
random time steps (∼ 41 days). Additionally, we show the precipitation probability distribu-
tion accumulated across all grid cells and timesteps and binned as a function of the baseline
precipitation distribution simulated with SP-CESM (Fig. 5.5d).

ANN-CESM and ANN-ens-CESM clearly outperform ZM-CESM reproducing not only me-
dian precipitation (Figure 5.5a), but also extreme rainfall (Figure 5.5d). Furthermore, they
alleviate known overestimations of intermediate precipitation (0.08 𝑚𝑚

ℎ
< Prec < 0.3 𝑚𝑚

ℎ
) in

coarse ESMs, such as ZM-CESM, compared to SP-CESM. These findings are in agreement with
previous results with an idealized setup (Rasp et al. 2018). ANN-ens-CESM shows in general
weaker reproduction of precipitation extremes compared to ANN-CESM (Figure 5.5b,c), how-
ever this is not seen in the accumulated precipitation probability distribution (Figure 5.5d),
which may be due to compensating errors in the large-scale thermodynamic fields (Figure
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Figure 5.5.: Simulated zonal averages of median (a), 90𝑡ℎ (b) and 95𝑡ℎ percentiles (c) of total precipitation
in the period February to June of CESM2 with a superparameterization (SP-CESM, blue), CESM2
coupled to the deterministic ANN parameterization (ANN-CESM, orange), CESM2 coupled to the
stochastic ANN-ensemble parameterization (ANN-ens-CESM, green) and CESM2 with the traditional
Zhang-McFarlane scheme (ZM-CESM, red line). The uncertainty ranges indicate the span between
minimum and maximum of the given metrics based on bootstrapping with 50 subsamples. Subplot
d) shows the precipitation distribution of the different parameterizations (y-axis) as a function of the
precipitation distribution simulated with the superparameterization (x-axis). The vertical lines in
subplot d) represent distinct percentiles of the precipitation distribution in SPCESM. For subplot d) the
entire simulated precipitation rates in all grid cells and all timesteps of the period February 2013 to the
end of June 2013 are used. This plot is reproduced with minor modifications from Behrens et al. 2024.

B.18, B.19). ANN-CESM and ANN-ens-CESM show a positive offset for small precipitation
rates compared to SP-CESM (Figure 5.5d). Although we find positive precipitation biases in all
models compared to SP-CESM in the tropics, near the ITCZ and along the midlatitude storm
tracks (∼ 40◦ to 60◦ N and S), these are alleviated to a good extent in the hybrid models. For
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example, ZM-CESM strongly overestimates median precipitation over the tropical equatorial
Pacific compared to SP-CESM (Figure B.21). Contrary, hybrid models show general median
precipitation patterns that are more in agreement with SP-CESM in the tropics (Figure B.21).
Nevertheless, ANN-CESM and ANN-ens-CESM are not capturing the exact location of the
ITCZ as simulated by SP-CESM at around 5◦ N (Figure 5.5a-c). The weaker representation
of the first precipitation maximum at 5◦ N by the hybrid models compared to SP-CESM may
be associated with a less developed ITCZ over the northern equatorial Pacific Ocean due to
biases in the large-scale thermodynamic conditions (Figure B.19). We find that ANN-CESM
represents very well precipitation extremes at the second tropical precipitation maximum
(10◦ S) compared to SP-CESM (Figure 5.5 b,c). This is, however, in general underestimated by
ANN-ens-CESM and ZM-CESM (Figure B.20). Both ANN-CESM and ANN-ens-CESM over-
estimate median precipitation at high-latitudes compared to SP-CESM (Figure 5.5a), partly
due to one ANN with low performance (not shown).

To gain further insights about the biases highlighted above, we assess the mean state of large-
scale thermodynamic fields. We find a pronounced warm bias in the stratosphere of up to
20 K in ANN-CESM and ANN-ens-CESM compared to SP-CESM (Figure B.18). Furthermore,
we find more than 10 K warmer conditions in near surface levels over Antarctica. These
biases in ZM-CESM are considerably smaller in these two regions. With regard to 𝒒 (𝒑), both
hybrid models show drier conditions over the ITCZ region (Figure B.19), which partly explains
the weaker precipitation patterns around 5◦ N compared to SP-CESM (Figures 5.5 and B.21).
Moreover, the hybrid models show a moist bias in the subtropics above 800 hPa (Figure B.19).
The corresponding biases of the specific humidity field in ZM-CESM are slightly weaker,
however, but indicate comparable deficiencies in the simulation of the specific humidity field
in the tropics.

Figure 5.6 shows global maps of diurnal precipitation peaks in Local Solar Time (LST).
ANN-CESM and ANN-ens-CESM yield an improved diurnal precipitation cycle compared to
ZM-CESM, that is more in agreement with SP-CESM. Interestingly, both hybrid models capture
the afternoon peak of precipitation over the Amazonian region (Figure B.23a), the Congo
basin (Figure B.23b), and Europe (Figure B.23c), as represented in SP-CESM. In contrast, ZM-
CESM simulates a peak precipitation around noon over these distinct regions. Furthermore,
ANN-CESM and ANN-ens-CESM show a too strong diurnal cycle over North Africa and the
Arabian peninsula (Figure 5.6), which is related to a wet bias on the order of 0.015 𝑚𝑚

ℎ
with

respect to SP-CESM. We find the opposite case, a less pronounced diurnal cycle over maritime
stratocumuli regions offshore of California, Peru and Angola in ANN-CESM and ANN-ens-
CESM compared to SP-CESM. Our results are in agreement with previous offline findings
(Mooers et al. 2021), demonstrating the improvement of reproducing the diurnal precipitation
cycle with deep learning schemes compared to conventional convection parameterizations.

Finally, we place our findings in context by comparing them against Han et al. 2023. The
authors used deep convolutional residual neural networks to represent heating and moistening
tendencies, as well as cloud liquid and ice water in the Community Atmosphere Model version
5 (CAM5) with real geography (Han et al. 2023). Moreover they successfully coupled one
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Figure 5.6.: Global Maps of the Hour of the Daily Maximum Precipitation in the CESM2 runs with the
deterministic ANN-CESM parameterization (panel a), the stochastic DNN-ens-CESM parameterization
(b), the superparametrization SP-CESM (c) and the traditional Zhang-McFarlane scheme (d) analysed
for the period from February to June 2013. The color-coding reveals the diurnal peak in precipitation
in local solar time (LST) in areas with a pronounced diurnal cycle of precipitation with a magnitude
over a certain threshold, similar to the one used in Mooers et al. 2021. This plot is reproduced with
minor modifications from Behrens et al. 2024.

ensemble member to CAM5 and conducted a stable 5 year run with it. ANN-CESM and
ANN-ens-CESM show a considerably weaker ITCZ compared to Han et al. 2023. This might
be related to larger biases in the large-scale specific humidity fields in this work, especially
in the tropics (Figure B.19), compared to Han et al. 2023. However, our hybrid models tend
to have a reduced temperature bias in the troposphere (Figure B.18) compared to Han et al.
2023, though this may be associated with their longer prognostic runs of 5 years. We also
note that Han et al. 2023 sidestepped deep learning surface radiative fluxes (not coupled to
the land component), whereas in our study, it is explicitly implemented and may well affect
the stability of the hybrid models presented here.

In summary, ANN and ANN-ensemble have an enhanced stability compared to individual
ANNs. Furthermore both ensemble parameterizations capture precipitation extremes and the
underlying diurnal cycle better than existing convection schemes – despite the fact that there
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are important distortions of the mean state rainfall compared to the original superparameter-
ization related to biases in the large-scale thermodynamic fields.

The next section will summarize the main findings from our extensive offline evaluation
with ensemble metrics and from our online test of the ensemble parameterizations coupled to
CESM2.

5.5. Summary Part II

This section is directly based on the second part of the conclusion of Behrens et al. 2024.
As it was shown in Section 4.5 there are differences in the reproduction skill of the developed

deterministic and stochastic ensemble deep learning parameterizations.
There is, however, a trade-off between capturing the uncertainty of subgrid processes and

their mean effect on the system, affecting the overall performance of the deep learned param-
eterization. An ANN with active dropout neither fully captures the variability of unresolved
processes nor is it as accurate as other deep learning algorithms explored here. Perturbing the
latent space of VEDs provides a good uncertainty range in their predictions, though accuracy
in their predictions is substantially affected. Randomly drawing an ensemble of predictions
from different ANNs, ANN-ensemble (Table 4.1), enables us to achieve both a well-calibrated
uncertainty compared to the superparameterized ESM and skillful predictions as good as
using the full deterministic ensemble of ANNs, ANN (Table 4.1).

We, therefore, couple the best performing stochastic deep learned parameterization, ANN-
ens-CESM, as well as its deterministic counterpart, ANN-CESM, to the coarse ESM host
model. The coupling of the entire set of output variables 𝒀 𝒑𝒓𝒆𝒅 remains challenging. The
related hybrid runs with the deep learned ensemble parameterizations are stable over a few
days. Therefore we designed “perfect condensate” experiments, where we partially coupled
our developed parameterizations including key surface radiative fluxes for surface coupling.
In this setup, condensate tendencies are simulated with the superparameterisation running
alongside. With this pragmatic approach we conduct stable hybrid model runs for a duration
on the order of six months with ANN-ens-CESM and ANN-CESM. Our ensembles are stabi-
lizing hybrid runs with CESM2, while simulations with individual ANNs fail within the first 5
days in most cases. ANN-ens-CESM and ANN-CESM capture precipitation extremes and in-
termediate precipitation, clearly outperforming the traditional Zhang-McFarlane scheme with
respect to a superparameterization. However, our ensemble parameterizations introduce bi-
ases in the large-scale thermodynamic structures that lead to a weakening of the ITCZ and a
displacement of its position compared to the superparameterization. Despite these limitations,
our developed parameterizations simulate in general the diurnal peaks of precipitation with
higher accuracy than the traditional Zhang-McFarlane scheme (Zhang and McFarlane 1995),
e.g., shifting the too early peaks of continental precipitation in the tropics of the traditional
scheme around noon towards the afternoon like seen with a superparameterization.
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Despite these encouraging results, there remain several open questions. First of all, in an
ideal case an operational hybrid model, with deterministic or stochastic deep learning param-
eterizations, would run stably without blowups or climate drifts (systematic and increasing
long-term errors). Han et al. 2023 and Wang et al. 2022a proved that this is possible with
realistic boundary conditions in coupled simulations over several years. However, while
Wang et al. 2022a used an atmosphere only configuration, Han et al. 2023 neglected radiative
fluxes important for atmosphere-land coupling. Future work will aim to further develop
deep learning parameterizations, including the stochastic approaches proposed here, to en-
able accurate long-term hybrid model simulations. Another open question is how to increase
the reproduction skill of cloud water and cloud ice water tendencies with deep learning
models. Potential approaches may include: substituting deterministic metrics in the loss
function for proper scoring metrics such as the Continuous Rank Probability Score, using
loss functions that maximize likelihood (Haynes et al. 2023), or applying novel probabilistic
data-driven models. A community benchmark dataset has recently been released that should
facilitate intercomparisons between future advances in machine learning parameterizations
for ESMs with state-of-the-art algorithms (Yu et al. 2023). Likewise, the use of a more flexible
Fortran-Python coupler might enable us to explore the potential of latent space perturbation
with VEDs to obtain well calibrated uncertainty quantification of convective processes also in
coupled simulations.

This work demonstrates that online runs of deterministic ensemble and of stochastic deep
leaning ensemble parameterizations with a complete coupling of subgrid radiative fluxes to a
comprehensive land model are stable over a period of more than five months, provided issues
of emulating condensate tendencies are sidestepped. We show that deep learning ensemble
parameterizations improve the representation of convective processes, especially within the
planetary boundary layer, compared to individual neural networks. We further demonstrate
that this translates also into a strongly enhanced online stability of ensemble deep learning pa-
rameterizations compared to individual networks. Such ensemble parameterizations further
have the potential to add to each prediction and variable a related uncertainty quantification.
These are key steps forward to increase the quality of simulated complex processes like con-
vection and the trustworthiness of deep learning parameterizations in general that will be
developed for the next generation of Earth System Models.
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This chapter contains summarizing remarks of my thesis under the scope of “Understanding
and Modelling Convection with Machine Learning”. It further highlights the implications
of the thesis for the climate modelling community and for the general understanding of
non-linear processes like convection gained with deep learning. Section 6.1 summarizes the
main findings of this thesis based on my published paper (Behrens et al. 2022) and the one
currently in review (Behrens et al. 2024). Section 6.2 contextualizes these main results within
the broader framework of Earth system modelling and understanding complex processes in
the Earth system.

6.1. Summary

Modelling convective processes in an Earth System Model (ESM) remains challenging due to
the representation of subgrid processes resulting in persistent systematic errors compared to
observations (i.e., Behrens et al. 2022; Douville et al. 2021; Gentine et al. 2018; Mooers et al.
2021; Rasp et al. 2018). Traditional convection schemes are a key source of biases in ESMs com-
pared to observations (Douville et al. 2021). For example, biases in cloud radiative effects are
closely associated with deficiencies of convective processes in ESMs, leading to the simulation
of a double Inter-Tropical Convergence Zone (ITCZ) or biases over the maritime statocumuli
regions (Bock et al. 2020; Lauer et al. 2023). In turn, these deficiencies in ESMs result in large
uncertainies in climate projections (Douville et al. 2021; Lee et al. 2021), as shown by key
climate metrics like Equilibrium Climate Sensitivity (ECS) (Bock et al. 2020; Eyring et al. 2021).
Storm Resolving Model (SRM) simulations, which permit the direct representation of a large
fraction of convective processes (Hohenegger et al. 2020), remain a challenge from a compu-
tational standpoint with current high-performance infrastructures (Satoh et al. 2019; Stevens
et al. 2019; Stevens et al. 2020). Thus, it is intuitive to deep learn the resolved high-resolution
convective processes and use the resulting data-driven subgrid convective scheme in an ESM
(Gentine et al. 2021). A simulation with a machine learning parameterization coupled to a
host climate model is also called “hybrid model” or a “hybrid simulation”. Trailblazing work
with a hybrid model showed remarkable reproduction capabilities of convective processes
(Rasp et al. 2018), albeit with a substantial lack of understanding of the fields driving such
processes, largely due to the deep and complex nature of the Artificial Neural Network (ANN).
Nevertheless, the deep learned convective processes had almost the quality of a superparam-
eterization (Rasp et al. 2018), a set of nested high-resolution columns within each grid column
of an ESM. A superparameterization is also used in this thesis as a high-resolution benchmark
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scheme to evaluate the reproduction skill of the developed deep learning algorithms. Despite
the reproduction capabilities shown in Rasp et al. 2018, the interpretability and evaluation of
the simulated convection is difficult due to the complexities of the ANN (degrees of freedom).

Having this lack of interpretability and understanding of deep learned convective processes
in mind, a novel (by construction) interpretable model architecture is developed in this thesis.
To do so, I use a Variational Encoder Decoder (VED), building on theoretical proof-of-concept
experiments (e.g., Krinitskiy et al. 2019; Tibau Alberdi et al. 2018) based on Variational Auto
Encoder (VAE) architectures. Further, I develop a postprocessing tool to obtain better un-
derstanding of deep learned convective processes. This novel approach leverages a setup in
which the ambient large-scale thermodynamic conditions (inputs) are encoded within the five
nodes of the latent space (i.e., a lower dimensional space between encoder and decoder of the
VED). The latent space is decoded and used to reproduce the associated subgrid convective
processes together with the large-scale thermodynamic conditions. Despite the strong di-
mensionality reduction (compressing and retaining only the essential information), the VED
accurately learns and reproduces subgrid convective processes. The reproduction skill of the
VED is comparable to the original ANN developed in Rasp et al. 2018. On the one hand, this
indicates that the VED is skillfully predicting convective processes using only a fraction of the
information (Behrens et al. 2022). On the other hand, the resulting latent space of the VED re-
veals a close relationship between the large-scale and subgrid variables, enabling an enhanced
understanding and interpretability of the deep learned convective processes and related large-
scale drivers (Behrens et al. 2022). Combining these two capabilities of the VED, encoding
and decoding, I apply a novel generative modelling approach based on the distribution of
the latent nodes to better understand large-scale drivers of convection and convective regimes
represented by the high-resolution model (Behrens et al. 2022). Specifically, two latent nodes
represent well-known drivers of convection, namely: the meridional temperature gradient
from the poles to the equator; and large-scale thermodynamic fields, such as temperature and
specific humidity, along the mid-latitude storm tracks that separate moist and warm subtropic
air masses from cold and dry subpolar air masses (Behrens et al. 2022). The three remaining
latent nodes characterize distinct convective regimes (Behrens et al. 2022): shallow convection
in which convective processes are limited to the planetary boundary layer and adjacent layers
of the lower troposhere; a cumulus regime with lower tropospheric optically thick cumulus
clouds; a cirrus-like optical thin regime near the tropopause; and a deep convection regime
with cloud tops near the tropopause and related heating and moistening throughout the tro-
posphere above the planetary boundary layer. These deep learned convective regimes are in
good agreement with observations (Huaman and Schumacher 2018), as well as the prescribed
regimes in idealized multi-convection regime model simulations (Frenkel et al. 2012, 2013;
Frenkel et al. 2015; Khouider and Majda 2006). My newly developed generative modelling ap-
proach has some key advantages, as it is fully data-driven. There is no need to specify heating
or moistening profiles related to distinct convective regimes for the analysis (e.g., Frenkel et al.
2012). Moreover, one does not need to infer convective regimes based on binning precipitation
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(e.g., Huaman and Schumacher 2018), which is sensitive to predefined thresholds like the bin
widths.

Let us come back to the first scientific question of this thesis: “Can deep learning enhance
the understanding of convection and large-scale drivers of convection?” Overall, VEDs are
powerful data-driven algorithms to disentangle complex convective processes via encoding-
decoding essential information. They allow us to boost our understanding of convective
processes by linking convective regimes with their respective large-scale drivers (Behrens
et al. 2022). Therefore the first key scientific question of this thesis can be answered with “Yes,
deep learning enhances our understanding about convective processes and related large-scale
drivers”.

Key limitations of individual deterministic deep learning models, however, are their over-
confident predictions and low skills representing convective processes in the planetary bound-
ary layer (i.e., Behrens et al. 2022; Mooers et al. 2021; Rasp et al. 2018). It is hypothesized that
this may be related to the chaotic nature of convective processes in the planetary boundary
layer that is difficult to reproduce with single deterministic deep learning algorithms (Behrens
et al. 2022; Mooers et al. 2021). Likewise, multi-output deterministic models have well-known
deficiencies in reproducing certain convection-related subgrid variables such as specific hu-
midity tendencies in the planetary boundary layer, due to optimization challenges (e.g., Han
et al. 2023). Therefore, I address these challenges by developing deep learning ensembles
that take into account the stochastic nature of convective processes. Both deterministic and
stochastic ensembles of deep learned models are used to investigate and improve reproduction
skills with respect to “stochasticity”, taking into account the variability related to the chaotic
nature of convective processes. Furthermore, this work focuses on a realistic, thus more chal-
lenging, modelling framework without an aquaplanet setup by using an ESM with realistic
topography and radiative forcing. In contrast to previous work (Han et al. 2023), the setup
used in this thesis includes deep learning essential surface subgrid radiative fluxes enabling
land-atmosphere interactions (Behrens et al. 2024). Based on large-scale atmospheric ther-
modynamic fields, the resulting deep learning parameterizations represent surface subgrid
radiative fluxes for surface coupling. In addition, precipitation rates from the previous time
step are included as additional input variable, which allows to investigate the effect of convec-
tive memory (e.g., Han et al. 2023). Including convective memory turns out to be especially
beneficial for the reproduction of near surface heating and moistening rates in the atmosphere
(Behrens et al. 2024). In this work, two different model architectures are applied, ANNs and
VEDs, to create ensembles of predictions accounting for aleatoric uncertainty (i.e., the part of
the uncertainty related to the randomness of the underlying data, Behrens et al. 2024). To
construct an ensemble of predictions, I use three different approaches: 1) an ANN with a
Monte Carlo Dropout Layer, in which active dropout is used to generate a stochastic ensemble
(Behrens et al. 2024); 2) a stochastic and deterministic multi-neural network ensemble of pre-
dictions (Behrens et al. 2024); and 3) a stochastic ensemble based on a single VED either with
or without latent space perturbation with Gaussian noise (Behrens et al. 2024). The ensemble
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size, or the number of ensemble members, is a crucial hyperparameter, which trades-off the
uncertainty spread against the computational overhead (Behrens et al. 2024).

The aforementioned deep learning stochastic approaches are evaluated offline based on
their capabilities to reproduce subgrid convection. An enhanced reproduction skill of specific
humidity tendencies and cloud liquid water tendencies is found for both, the stochastic and
deterministic ANN ensemble over individual ANNs within the planetary boundary layer
(Behrens et al. 2024). Similar improvements are present for the upper tropospheric cloud ice
water tendencies (Behrens et al. 2024). Regarding specific humidity tendencies within the
planetary boundary layer, the increase of prediction skill mainly originates from an enhanced
representation of convective processes over the Southern Ocean, as well as in subpolar and
polar latitudes in both hemispheres (Behrens et al. 2024). However, the stochastic ensemble
based on the ANN with Monte Carlo Dropout lacks reproduction improvements of convective
processes compared to individual ANNs (Behrens et al. 2024). The same is true for the multi-
VED ensemble approach (Behrens et al. 2024). The weakest reproduction skill of convective
processes using stochastic ensembles is found for the latent space perturbation of a single VED.
Nevertheless, this is compensated to some extend by the realistic uncertainty quantification of
these processes (see below; Behrens et al. 2024). Overall, the stochastic and deterministic ANN
ensemble improves the representation of convective processes, especially within the planetary
boundary layer and the upper troposphere, compared to individual models. Moreover, the
advantages of these ensembles are found to be especially important for variables that are
associated with a greater influence of subgrid turbulence, such as specific humidity tendency,
cloud liquid water tendency, and cloud ice water tendency (Behrens et al. 2024). These
variables are typically poorly represented by individual ANNs.

Let us come back to the second scientific question of this thesis: “Can stochastic and de-
terministic ensemble deep learning parameterizations that take into account the stochasticity
improve the representation of subgrid convective processes “offline” based on ESM data?”
The results presented in this thesis show that multi-network ensembles improve deep learned
representations and more effectively capture the stochastic, turbulent nature of convective
processes compared to individual models with overconfident predictions. This finding aligns
with the deterministic findings of Han et al. 2023. As a result, the second key scientific question
can be answered with: “Yes, stochastic and deterministic deep learning ensembles improve the
representations of convective processes and reduce deficiencies of individual neural networks
with respect to the reproduction of ESM data.”

Building on the evaluation of the offline reproduction capabilities of the different stochastic
and deterministic ensembles, I next focused on the uncertainty quantification of the ensembles
given by the predictions of individual ensemble members. This detailed uncertainty analysis
for a multi-variate prediction of subgrid convective processes is also a novel aspect in the field of
deep learning for climate science. Quantifying the uncertainties captured by the ensembles is
essential to assess them against the true variability represented by the high-resolution ESM. In
other words, uncertainty quantification enables an evaluation of the physical plausibility of the
captured stochasticty of the parameterizations. The ensemble based on the ANN with Monte
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6.1. Summary

Carlo dropout results in a poorly captured uncertainty range, largely underestimating the
spread represented by the high resolution model (i.e., an underdispersion of the Monte Carlo
dropout based ensemble) (Behrens et al. 2024). This is in agreement with previously published
literature (Haynes et al. 2023). In contrast, the stochastic VED via latent space perturbation
shows the best calibrated aleatoric uncertainty for all evaluated variables (Behrens et al. 2024).
The Continuous Rank Probability Score (CRPS) is used as a metric to assess the quality of
the reproduction and the uncertainty quantification together. While the stochastic VED via
latent space perturbation approach outperforms the ANN with Monte Carlo dropout method,
the stochastic and deterministic ANN ensemble yields the best combined performance based
on CRPS for all subgrid convective processes (Behrens et al. 2024). Therefore, these two
multi-ANN based ensemble approaches are implemented into the ESM. All subgrid variables
learned by the ANNs, except for cloud ice and cloud liquid water, are coupled to the dynamical
core of the ESM, and partially replace the high-resolution superparameterization scheme
(Behrens et al. 2024). The “online” implementation of the deep learned parameterizations
is especially challenging due to the importance of surface subgrid radiative fluxes for the
atmosphere-land interactions, and the stability of the hybrid model (Behrens et al. 2024).
Hybrid model simulations with both, the stochastic and the deterministic ANN ensemble
parameterizations, are stable over more than 5 months (Behrens et al. 2024). In contrast,
hybrid model realizations with individual ANNs become unstable after a few simulated days
(Behrens et al. 2024). This demonstrates the beneficial stabilizing effect of stochastic and
deterministic ensemble parameterizations compared to standard deep learning approaches
(Behrens et al. 2024; Han et al. 2023). Moreover, the resulting hybrid model simulations with
stochastic and deterministic ANN parameterizations enhance the reproduction of extreme
precipitation and the diurnal precipitation cycle compared to the simulations using the current
Zhang-McFarlane scheme (Zhang and McFarlane 1995). Remarkably, these hybrid model
simulations substantially alleviate also the drizzle precipitation bias compared to those with
the traditional scheme, and are in good agreement with the original high-resolution ESM
(Behrens et al. 2024).

Let us come back to the third scientific question of this thesis: “Do stochastic and deter-
ministic ensemble parameterizations with calibrated uncertainty quantification of subgrid
processes have an effect on the stability and improve the quality of hybrid ESM simulations?”
The work presented in this thesis shows that stochastic and deterministic ensemble parameter-
izations with calibrated aleatoric uncertainty enhance the stability of hybrid models compared
to realizations with individual ANNs and result in an improved reproduction of precipitation,
both reducing apparent biases and its diurnal cycle (Behrens et al. 2024). Thus the third key
scientific question can be answered with: “Yes, the constructed ensembles are capable to pro-
vide calibrated uncertainty quantifications for a multi-variate data set of an ESM. Moreover,
the calibrated uncertainties of the ensembles enable a stabilization and improved quality of
hybrid model simulations in an ESM.”
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6. Conclusion

In the next section I will illustrate the general implications of my thesis and my published
work (Behrens et al. 2022; Behrens et al. 2024; Yu et al. 2023) and will give an outlook of my
research in the context of enhancing climate modelling with machine learning.

6.2. Concluding Remarks and Outlook

Machine learning and deep learning has flourished for climate science applications in the last
decade (Gentine et al. 2021). There has been significant advances in machine learning over this
period that allow an improved simulation of convective processes with data-driven schemes
in ESMs, previously parameterized via in quality limited convection schemes (Gentine et al.
2021). However, state-of-the-art machine learning solutions still exhibit limitations and chal-
lenges. Particularly, the low interpretability of their predictions, the lack of predictions taking
into account the stochasticity of reproduced processes and the related aleatoric uncertainty,
and common instability issues in hybrid simulations related to deficiencies of individual neu-
ral networks. This thesis illustrates ways forward to overcome or alleviate these limitations
with broader implications in Earth system sciences and other fields. First, this thesis shows
the applicability of VEDs to further enhance our understanding about convective processes
and the large-scale environment in which they are forming. Second, capturing the aleatoric
uncertainty via ensembles improves the general reproduction of convective processes on atmo-
spheric levels with pronounced stochasticity e.g., in the planetary boundary layer. Moreover,
calibrated aleatoric uncertainty enhances the evaluation of the physical plausibility of the re-
sults of machine learning schemes (Haynes et al. 2023). Calibrating aleatoric uncertainties for
multi-variate ESM data is a novelty in climate science, like it is shown in this thesis. Third, this
thesis complements the results of existing hybrid simulations in an ESM-like configuration
with clear advantages over existing convection schemes (Han et al. 2023; Wang et al. 2022b).
Using ensembles alleviates hybrid model instabilities of machine learning schemes coupled
to ESM. This was previously hypothesized (Brenowitz et al. 2020) or could not be shown in
hybrid simulations due to the required computational resources of the designed ensembles
(Han et al. 2023) and is shown in this thesis in hybrid simulations with an ESM.

Apart from the work presented in this thesis, increasing the interpretability of machine
learning algorithms e.g., with VEDs and other models with a latent space, has great poten-
tial to further enhance the understanding of complex non-linear processes in the atmosphere
(Mooers et al. 2023; Shamekh et al. 2023). Models with a latent space may also enhance
the identification of circulation regimes in the ocean similar to previous work based on tra-
ditional clustering algorithms (Sonnewald et al. 2019). Novel methods learning functional
relationships directly from high resolution simulations via equation discovery may enable an
improved understanding of complex non-linear processes in the Earth system and enhance
their interpretability (Grundner et al. 2024). Regarding convective processes one suitable ex-
ample may be finding an equation for the effect of a stratocumuli regime, that may be detected
via the latent space of a VED in high-resolution simulations, on temperature or radiative
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fluxes to alleviate longstanding biases of ESMs. Moreover causal discovery can be applied to
help understand the key differences between the causal relationships and correlations, that
result from common machine learning, in the Earth system (Iglesias-Suarez et al. 2024). In
this context, a causal evaluation of the latent space and the generated convective processes
of a VED may further broaden our understanding about convection and its connection to the
large-scale thermodynamic fields. Likewise concepts from climate science, namely an inter-
comparison between different machine learning architectures based on protocols, show large
potential to alleviate lacks of interpretability (Yu et al. 2023). Moreover, such intercomparisons
are a starting point to investigate the effect of stochasticity on the reproduction of machine
learning algorithms in an ESM (Yu et al. 2023). To improve the low reproduction of cloud wa-
ter tendencies a complete stochastic framework with stochastic losses like CRPS or stochastic
machine learning algorithms may help (Behrens et al. 2024; Haynes et al. 2023). There is large
potential to enhance reconstructions of non-linear processes in the Earth system via stochastic
machine learning with skillful uncertainty quantification in the future (Haynes et al. 2023), as
traditional methods and initial machine learning experiments have proven (i.e., Berner et al.
2017; Sakradzĳa and Klocke 2018; Yu et al. 2023). The limitations of the parameterizations pro-
posed in this thesis that lead to instabilities of hybrid simulations may be overcome with entire
stochastic frameworks (Haynes et al. 2023) or constraints from the theoretical climate science
that limit the necessary extrapolation of the machine learning ensembles (Beucler et al. 2021).
In this context causal discovery can be used to identify non-physical correlations of machine
algorithms that cause instabilities of hybrid simulations coupled to ESMs (Iglesias-Suarez
et al. 2024).

This thesis shows steps forward alleviating existing limitations in machine learning algo-
rithms, with the ultimate goal of improving Earth System Models and reducing uncertainties
in their future climate projections. This thesis complements the advances in climate science
over the recent years with a novel interpretable and robust data-driven approach that can help
the scientific community to develop the next generation of Earth System Models and make
them more explainable despite growing complexity of the simulated processes.
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A. Supporting materials for Chapter 3:
Understanding convective processes in a
climate model with a Variational Encoder
Decoder

Appendix A directly reproduces the supporting material of my published paper (Behrens
et al. 2022). All Figures and Tables were produced from me as author of the thesis. Moreover
I led the writing of the text for the supporting material that is shown in this appendix.

A.1. Introduction

The supporting information are structured as follows and each section can be read individu-
ally:

In section A.2 we show the hyperparameters of VED and explain how we conducted the
search for a suitable set of hyperparameters of VED. Furthermore we discuss the used VED
output normalization dictionary. In section A.3 we show additional figures for the general
evaluation of VED and other reference networks. This section further describes differences
in reproduction skill if either the VED or the output normalization of Rasp et al. 2018 is
used. Furthermore we describe differences in the interpretability between the VED’s latent
space and a principal component analysis on the large-scale variables in this section. Also
we show that the latent space exploration with conditional averages can be conducted on
the five original latent dimension. Section A.4 shows one alternative VED and a conditional
VAE structure and discusses their strengths and limitations. We describe in subsection A.4.1
the VED𝑋→𝑌 and in subsection A.4.2 a conditional Variational AutoEncoder Decoder (cVAE).
Section A.5 comprises the tables of all generated 2D SP or CAM variables with our generative
modeling approach. Additionally the squared Pearson correlation coefficients R2 between the
latent nodes and vertical heating, moistening, specific humidity and temperature profiles in
space-time and time are shown in this section respectively.
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Hyperparameter of
VED

Values

Learning Rate 0.00074594
Training / learning
rate decrease

40 epochs, learning decrease every 7𝑡ℎ epoch by
factor 5

Batch size 714
Latent Space Width 5 nodes
Node Size of Encoder [64,463,463,232,116,58,29,5]
Node Size of Decoder [5,29,58,116,232,463,463,129]
Activation Encoder [Input, ReLU, ReLU, ReLU, ReLU, ReLU, ReLU,

Lambda]
Activation Decoder [Input, ReLU, ReLU, ReLU, ReLU, ReLU, ReLU,

ELU]
KL Annealing Linear annealing from 2𝑛𝑑 to 7𝑡ℎ epoch

Table A.1.: Hyperparameters and architecture of the final VED which uses large-scale CAM variables
X to investigate simulated convective processes of SP Y together with driving climate conditions. This
Table is directly reproduced from Behrens et al. 2022.

Hyperparameter range of VAE𝑋→𝑋 Values
Initial learning rate 10−5 to 5 × 10−4

Batch size 200 to 8192
Latent Space Width 2 to 5 nodes
Node Size of first or last hidden layer of Encoder
or Decoder

300 to 500

Depth of Encoder or Decoder in hidden layers 5 to 7 hidden layers

Table A.2.: Hyperparameter range of search for initial VAE, which reproduces large-scale climate
variables X with X as input data set. The hyperparameter search was conducted over 120 trials and
30 epochs with a learning rate decrease after every 5𝑡ℎ epoch by a factor 5. This Table is directly
reproduced from Behrens et al. 2022.

Hyperparameter range of
VED

Values

Initial learning rate 5 × 10−5 to 5 × 10−3

Batch size 200 to 8000

Table A.3.: Hyperparameter range of search for VED, the main model in this study. The hyperparameter
search was conducted over 80 trials and 20 epochs with one learning rate decrease after the 10𝑡ℎ epoch.
This Table is directly reproduced from Behrens et al. 2022.
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A.2. VED Hyperparameters based on a Hyperparameter Search and Normalisation

Network Training MSE Validation MSE Test MSE
VED 0.162 0.165 0.165
ED 0.162 0.165 0.165
LR 0.242 0.244 0.243

ANN 0.133 0.135 0.135

Table A.4.: Mean Squared Error (MSE) of predicted subgrid-scale SP variables Y of the VED, ED, LR,
reference ANN on the training, validation and test data sets (3 month of SP data) using the VED output
normalization. This Table is directly reproduced from Behrens et al. 2022.

A.2. VED Hyperparameters based on a Hyperparameter Search and
Normalisation

In earlier experiments we found that the output normalisation used in Rasp et al. 2018 was not
well-suited for the optimization of a VED during training. With their output normalisation
dictionary, the VED focused solely on the reproduction of radiative fluxes in Y and lacked
skill with respect to heating and moistening profiles. Therefore we had to re-scale the output
normalisation dictionary for Y and implement a suitable scaling for the extended variable list
O. The vertical profiles of temperature, specific humidity and specific humidity tendency are
normalised by long-term (3 month) standard deviations of the near surface model level. In
the case of temperature tendencies, the standard deviation on the 845 hPa level is used due
to the dominant variability of convection related temporal temperature changes on this level
near the upper limit of the planetary boundary layer in SP data. The remaining 2D variables
of radiative properties, precipitation rates and surface pressure are standardised.

We initially performed a hyperparameter search (random search) with 120 trials for a
VAE𝑋→𝑋 ,which was trained on large-scale climate variables X to reproduce X. Table A.2
shows the hyperparameter range for a hyperparameter search over a sequence of 1 month of
SP data.

The best-performing encoder and decoder hyperparameter settings; 6 hidden layers, 463
nodes in the first and last hidden layer and a latent space width of 5 nodes; were fixed for the
development of the VED presented in the paper. To account for shifts in suitable learning rates
and batch size due to the additional subgrid-scale output variables Y, we conducted a second
hyperparameter search (random search) for our main VED specifically over a sequence of 1
month of SP data, see Table A.3.

After that, we fixed the initial learning rate and batch size and conducted further sensitivity
tests with respect to the latent space width (which are documented in Chapter 3) of VED.
The choice of activation functions in the hidden layers is based on small initial experiments
with VED, which showed enhanced emulation skill if the last hidden layer was elu-activated
(exponential linear unit).

105



A. Supporting materials for Chapter 3: Understanding convective processes in a climate model with a
Variational Encoder Decoder

Figure A.1.: Similar to Figure 3.2, mean squared error (MSE) as a function of Latent Space Width of the
VED for the test (solid cyan), validation (dashed-dotted cyan) and training data set (dashed cyan curve)
using the output normalization of the reference ANN (Rasp et al. 2018) as y-axis. The horizontal solid
blue / black line represents the MSE scores of the reference ANN Rasp et al. 2018 / a linear version of
this network (Reference Linear Model) on test data with fixed layer width of 256 nodes in the 9 hidden
layers. This Figure is directly reproduced from Behrens et al. 2022.

A.3. Evaluation of VED and the Reference Networks

If we use the output normalization of reference ANN to investigate the sensitivity of the VED
performance as a function of latent space width, then we observe similar asymptotic behaviour
as in Figure 2, see Figure A.1. The VED shows an improved emulation skill compared to the
reference linear model with fixed layer widths of 256 nodes. The difference in performance
between the VED and reference ANN increases if the output normalization of Rasp et al. 2018
is used, which points to the fact that the VED output scaling weights SP variables Y differently.
The VED has a decreased performance compared to reference ANN, but is converging to a
similar level of emulation with increasing latent space width.

The latent space of VED can be explored with the computation of conditional averages in
a 2D PCA compressed submanifold as it is shown in Figure 5. However this analysis can
be complemented with an inspection of the 5 latent dimensions itself. To visualize the five
dimensional latent space, we projected two latent variables onto each other. This results in 20
spanned submanifolds of different latent variables and five projections of one latent variable
onto itself oriented along the main diagonal in Figure A.11 to A.14. These 2D submanifolds
of two different latent variables are often characterised by two or three centers of action
with a strong concentration of samples (Figure A.11). In most cases there is a weak linear
connection between the latent variables, except for latent variable 2 (Large-scale variations
along mid latitude storm tracks) and latent variable 5 (Deep Convection), as can be seen in
Figure A.11. The projection of these two latent variables is also characterised by a pronounced
separation of samples with negligible convective processes (no precipitation, Figure A.12)
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Figure A.2.: Wheeler Kiladis diagram based on tropical outgoing longwave radiation [15◦ N - 15◦ S] of
SP (a), of ED predictions (b) and the absolute difference of spatio-temporal wave spectra ED - SP (c) for
1 year of SP data. This Figure is directly reproduced from Behrens et al. 2022.

Figure A.3.: Wheeler Kiladis diagram based on tropical outgoing longwave radiation [15◦ N - 15◦ S] of
SP (a), of reference ANN predictions (b) and the absolute difference of spatio-temporal wave spectra
reference ANN - SP (c) for 1 year of SP data. This Figure is directly reproduced from Behrens et al.
2022.

Figure A.4.: Fixed Sea Surface Temperature (SST) forcing of the Super Parameterized Community
Atmosphere Model (SPCAM) simulation following (Andersen and Kuang 2012). The blue / red zonal
lines indicate the region of Northern / Southern mid latitudes between 60◦ N/S and 35◦ N/S. The
green lines indicate the deep tropics with the ITCZ between 10◦ S and 10◦ N. This Figure is directly
reproduced from Behrens et al. 2022.
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Figure A.5.: Scatter plot with isolines and histograms of the Joint and Conditional distributions of the
PCA compressed latent space of VED (left) and ED (right). The plot is based on 100000 randomly
picked samples from CAM test data. The 1𝑠𝑡 / 2𝑛𝑑 PC of the resulting compressed latent space is the
x-axis / y-axis in the respective subplot. This Figure is directly reproduced from Behrens et al. 2022.

and deep convective samples. This shows that the convective strength of the samples can be
gauged with these two latent variables of VED and is not relying on a PCA as postprocessing
step. Moreover the latent variables itself can be utilised to investigate large-scale geographic
variability. One particular example for that, is the projection of latent variable 1 (Global
temperature variations) and 2 (Large-scale variability along mid latitude storm tracks). In
this submanifold we see two separated maxima of solar insolation (Figure A.13) and two
areas with no solar insolation (night-time conditions). If we compare this distribution to the
conditional averages of the surface air temperature (Figure A.14), we observe that one solar
insolation maximum is associated with a minimum in surface air temperatures below 275
K, which can be only observed in polar latitudes. The combination of solar insolation with
anomalous cold temperatures is a clear evidence that the respective samples are originating
from austral polar or subpolar latitudes due to the austral summer solar forcing of the SPCAM
simulations. In contrast the other minimum in surface air temperatures in this projection
of latent variable 1 and 2 is associated with no solar insolation. This suggests that the
corresponding samples are coming from the boreal high latitudes (due to constant polar night
conditions). These two examples illustrate that the interpretation of convective processes and
large-scale drivers of convective predictability is possible on the latent variables of VED itself
and not relying on the PCA postprocessing step. Furthermore the latent space of VED can be
used to investigate longstanding hypotheses of atmospheric science. As an example we can
focus on the projection of latent variable 5 (Deep Convection) onto latent variable 1 (Global
temperature variations). The strongest precipitating samples in Figure A.12 are situated in
the middle of the conditional distribution of latent variable 1 (Figure A.11 and not in the right
tail of the marginal distribution, which suggests that strong precipitation is not occurring in
the regions with the highest surface air temperatures. This hypothesis can be evaluated with
Figure A.14, where the region with the strongest precipitation is associated with conditional
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Figure A.6.: Latent Space clustering of VED for precipitation (left), outgoing longwave radiation
(Q𝑙𝑤 𝑡𝑜𝑝) (left middle), shortwave heat flux at the model top (Q𝑠𝑤 𝑡𝑜𝑝) (right middle) and Surface
Air Temperature (T𝑠𝑢𝑟 𝑓 ) (right column). The first row illustrates the clustering in the PCA compressed
latent space with respect to the SP / CAM variables on global scales (as seen in Figure 3.5). The lower
rows depict the Latent Space clustering in the evaluated regions Northern Mid Latitudes (2𝑛𝑑 row),
Tropics (3𝑟𝑑 row) and Southern Mid Latitudes (4𝑡ℎ row). The x-axis / y-axis represents the 1𝑠𝑡 / 2𝑛𝑑
leading PC of the global / regional latent space. This Figure is directly reproduced from Behrens et al.
2022.
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Figure A.7.: Latent Space clustering of ED for precipitation (left), outgoing longwave radiation (Q𝑙𝑤 𝑡𝑜𝑝)
(left middle), shortwave heat flux at the model top (Q𝑠𝑤 𝑡𝑜𝑝) (right middle) and Surface Air Temperature
(T𝑠𝑢𝑟 𝑓 ) (right column). The first row illustrates the clustering in the PCA compressed latent space with
respect to the SP / CAM variables on global scales (as seen in Figure 3.5). The lower rows depict the
Latent Space clustering in the evaluated regions Northern Mid Latitudes (2𝑛𝑑 row), Tropics (3𝑟𝑑 row)
and Southern Mid Latitudes (4𝑡ℎ row). The x-axis / y-axis represents the 1𝑠𝑡/ 2𝑛𝑑 leading PC of the
global / regional latent space. This Figure is directly reproduced from Behrens et al. 2022.
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Figure A.8.: Conditional averages of solar insolation (upper left), precipitation (upper right), outgoing
longwave radiation (lower left) and surface air temperature (lower right panel) in the submanifold
spanned by the first two leading principle component’s of the large-scale variables X. Similar to Figure
3.5 the conditional averages are computed based on 1000000 randomly selected samples from the test
data set. This Figure is directly reproduced from Behrens et al. 2022.
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Figure A.9.: Latitude-Longitude plot of the first (upper left, PC1) and second (upper right, PC2) leading
principal component of a PCA on the large-scale variables X and respective large-scale and subgrid-
scale variables of the test data set for a particular time step. This Figure is directly reproduced from
Behrens et al. 2022.
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Figure A.10.: Latitude-Longitude plot of the latent variables of the VED (Latent Node 1 to 5) and
respective large-scale and subgrid-scale variables of the test data set for the same time step as in Figure
A.9. This Figure is directly reproduced from Behrens et al. 2022.
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Figure A.11.: 2D Density (blue contours) and scatter (light green) plots of the projection of two latent
variables of the five dimensional latent space of VED in combination with the marginal distributions
of the two latent variables. The first row represents the projection of Node 1 (Global temperature
variations) onto all other four latent variables and itself. The second row shows the plots for Node 2
(Large-Scale variations along mid latitude storm tracks). The third row represents Node 3 (Shallow
Convection). The forth and fifth row shows the plots for Node 4 (Mid latitude storm track) and Node
5 (Deep Convection). All plots are based on 50000 randomly selected samples from the test data. This
Figure is directly reproduced from Behrens et al. 2022.
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averages of surface air temperatures of around 295K in this projection. These temperatures
are around 5K colder than the maximum of the conditional averages seen for this particular
projection, which is in agreement with the original hypothesis. Overall these results indicate
the power of the VED with respect to the interpretability and meaningfulness of the latent
space and stored physical concepts in the lower-order manifold.

A.4. Alternative VED and cVAE Structure

A.4.1. VED𝑋→𝑌

VED𝑋→𝑌 closely mirrors the original SP with similar output variables to those of the reference
ANN. It uses a set of convection related CAM climate variables X as input to the network,
except for meridional wind profiles which were additionally used in Rasp et al. 2018. For this
variational network, we couple the encoder to a regular feed forward neural net with 3 hidden
layers. The resulting variational network VED𝑋→𝑌 (Figure 3.1) reproduces the convection-
related SP output variables Y used in Rasp et al. 2018. The concatenated output vector Y has
a length of 65 (65 output nodes). It contains the vertical profiles of temperature dT(p)/dt and
specific humidity tendencies dq(p)/dt, the shortwave / longwave fluxes at the model top /
surface Q𝑠𝑤/𝑙𝑤 𝑡𝑜𝑝/𝑠𝑢𝑟 𝑓 and the precipitation rate precip. The coupled decoding feed forward
neural net has three hidden layers with 353 nodes in each layer. The associated loss function
is given in Equation A.1.

VED lossX→Y = reconstruction lossX→Y + � KL loss (A.1)

The reconstruction loss (Equation A.2) of VED𝑋→𝑌 is defined as the MSE between the
emulated Y𝑒𝑚𝑢𝑙 and Y.

reconstruction lossX→Y =
1
𝑀

× 1
𝑁

𝑀=65∑︂
𝑖=1

𝑁=batch size∑︂
𝑗=1
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]︂
(A.3)

� 𝜖 R+ (A.4)

The hyperparameters used for VED𝑋→𝑌 are displayed in Table A.5, and the model architec-
ture is illustrated in Figure A.15.

VED𝑋→𝑌 (test MSE = 0.157) reproduces the mean statistics with increased skill compared to
VED (test MSE = 0.165) using the VED output normalization. The emulation skill of the spatio-
temporal tropical variability is of the order of that of VED and slightly reduced with respect to
reference ANN. However we see a decreased interpretability of the latent space of VED𝑋→𝑌 in
comparison to VED, which is a major disadvantage of the VED𝑋→𝑌 network architecture. The
2D PCA compressed latent space of VED𝑋→𝑌 generally shows a weak minimum to maximum
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Figure A.12.: Similar to Figure A.11 a projection of one latent variable on all other latent variables and
itself. The color coding reveals the conditional average of precipitation based on 1000000 randomly
selected samples from the test data set. The first row shows the 2D projection of the first latent variable
(Node 1, Global Temperature Variations) and all other latent variables. The second / third / fourth and
fifth row depicts the projections of Node 2 (Large-Scale Variations along the mid latitude storm tracks)
/ Node 3 (Shallow Convection) / Node 4 (Mid latitude storm tracks) and Node 5 (Deep Convection).
This Figure is directly reproduced from Behrens et al. 2022.
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Figure A.13.: Similar to Figure A.12, but for the conditional averages of solar insolation in the projections.
This Figure is directly reproduced from Behrens et al. 2022.
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Figure A.14.: Similar to Figure A.12, but for the conditional averages of the surface air temperature in
the projections. This Figure is directly reproduced from Behrens et al. 2022.
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Hyperparameter
VED𝑋→𝑌

Values

Learning Rate 0.00018238
Training / learning rate
decrease

40 epochs, learning decrease every 7𝑡ℎ epoch by
factor 5

Batch size 714
Latent Space Width 5 nodes
Node Size of Encoder [64,463,463,232,116,58,29,5]
Node Size of Decoder
[ANN]

[5,353,353,353,65]

Activation Encoder [Input, ReLU, ReLU, ReLU, ReLU, ReLU, ReLU,
Lambda]

Activation Decoder
[ANN]

[Input, ReLU, ReLU, ReLU, ELU]

KL Annealing Linear annealing from 2𝑛𝑑 to 7𝑡ℎ epoch

Table A.5.: Hyperparameters and architecture of the constructed VED𝑋→𝑌 which uses large-scale CAM
variables X to simulate SP variables Y. This Table is directly reproduced from Behrens et al. 2022.

distribution mostly focusing on the magnitude of convective processes (see Figure A.16) and
faintly on geographic variability with respect to multiple subgrid-scale and large-scale climate
variables (see Figure A.17, as an example for surface air temperatures). Samples from the two
poles with anomalously cold surface air temperatures are not well separated in the 2D PCA
compressed latent space of VED𝑋→𝑌 , in contrast to that seen for VED (see Figure A.17). We
observe one surface air temperature minimum in the 2D PCA compressed latent space of
VED𝑋→𝑌 . The minimum comprises samples from the austral high latitudes to the right and
from boreal latitudes to the left. These low surface air temperatures are compressed within
a very small fraction of the 2D PCA compressed latent space of VED𝑋→𝑌 surrounded by
mid-latitude temperatures in close distance. For VED we see a clearly improved adaption to
these large-scale meridional temperature variations with well separated zones of austral and
boreal polar samples. Likewise we see for VED that samples with increased precipitation are
concentrated into two centers of action and the 2D PCA compressed latent space illustrates
strong gradients with respect to conditional averages of precipitation, which is not the case for
VED𝑋→𝑌 (Figure A.16). This lack of interpretability of the latent space is a general limitation
of VED𝑋→𝑌 compared to VED or even ED for the identification of driving large-scale climate
conditions and related convective processes globally.

A.4.2. cVAE

In general, a conditional Variational AutoEncoder Decoder (cVAE) predicts the distribution of
a set of output variables conditioned on the input variables. The general model configuration
of cVAE’s enables the propagation of information about the state of output variables and also
input variables through the latent space to the conditional decoder (Sohn et al. 2015). For the
task to realistically reproduce Y and gain insights on the interpretability of the latent space,
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Figure A.15.: Combined schematic of the architecture of VED (green), VED𝑋→𝑌 (light blue) and cVAE
(purple arrows and network parts). The network structures in light blue are used for all variational
networks with varying hyperparameters. This Figure is directly reproduced from Behrens et al. 2022.

Figure A.16.: The 2D PCA compressed latent space of the VED (left) and VED𝑋→𝑌 (right panel) and
associated conditional average of precipitation of projected SP test data (similar to Figure 3.5). The
x-axis / y-axis in all subplots indicates the 1𝑠𝑡/ 2𝑛𝑑 leading PC of the 5D latent space in the respective
panels. This Figure is directly reproduced from Behrens et al. 2022.
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A.4. Alternative VED and cVAE Structure

Figure A.17.: The 2D PCA compressed latent space of the VED (left) and VED𝑋→𝑌 (right panel) and
associated conditional average of surface air temperature of projected SP test data (similar to Figure
3.5). The x-axis / y-axis in all subplots indicates the 1𝑠𝑡/ 2𝑛𝑑 leading PC of the 5D latent space in the
respective panels. This Figure is directly reproduced from Behrens et al. 2022.

we construct one possible cVAE. The subgrid-scale variable vector Y is fed into the encoder
together with large-scale CAM variables X, as can be seen in Figure A.15. X is an additional
input to the decoding part of the network. As a result of that the latent space should illustrate
a pronounced dependence on the subgrid-scale input features Y rather than on large-scale
CAM variables X. The cVAE’s loss function is defined as:

cVAE loss = reconstruction losscVAE + � KL loss (A.5)

The associated reconstruction loss is defined as the MSE between Y𝑒𝑚𝑢𝑙 and Y, as can be
seen in Equation 6.

reconstruction losscVAE =
1
𝑀

× 1
𝑁

𝑀=65∑︂
𝑖=1

𝑁=batch size∑︂
𝑗=1

(𝑌𝑖 𝑗 − 𝑌𝑒𝑚𝑢𝑙𝑖𝑗 )2 (A.6)

KL loss =
1
2 × 1

𝑁

𝑁=batch size∑︂
𝑗=1

𝐾=latent space width∑︂
𝑘=1

[−1 − ln 𝜎2
𝑗𝑘
+ �2

𝑗𝑘
+ 𝜎2

𝑗𝑘
] (A.7)

� 𝜖 R+ (A.8)

The used hyperparameters are displayed in Table A.6 and the model architecture can be
seen in Figure 3.1.

Due to its deviating model architecture in comparison to the constructed VEDs (VED and
VED𝑋→𝑌), which are not trained with SP subgrid-scale variables Y as input data, the cVAE has
an advantage against all evaluated models in training mode (during the model optimization).
This advantage in training mode reflects in a strongly improved emulation skill of this network
compared to the reference ANN. The MSE of cVAE in training mode with respect to SP
training, validation or test data (0.049 / 0.050 / 0.050) is more than half as small as the one
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Hyperparameter cVAE Values
Learning Rate 0.00096133
Training / learning rate
decrease

40 epochs, learning decrease every 7𝑡ℎ epoch by
factor 5

Batch size 666
Latent Space Width 5 nodes
Node Size of Encoder [[65,64],457,457,228,114,57,29,5]
Node Size of Decoder [5,29,57,114,228,457,457,65]
Activation Encoder [Input, ReLU, ReLU, ReLU, ReLU, ReLU, ReLU,

Lambda]
Activation Decoder [Input, ReLU, ReLU, ReLU, ReLU, ReLU, ReLU,

ELU]
KL Annealing Linear annealing from 2𝑛𝑑 to 7𝑡ℎ epoch

Table A.6.: Hyperparameters and architecture of the constructed conditional Variational AutoEncoder
Decoder (cVAE) which uses subgrid-scale SP variables Y and large-scale CAM variables X to simulate
subgrid-scale SP variables Y. This Table is directly reproduced from Behrens et al. 2022.

of reference ANN (0.133 / 0.135 / 0.135) using the VED output normalization. We observe
similar emulation capabilities for the related coefficients of determination R2 of the lower
tropospheric specific humidity and temperature tendencies. More than 96% of the horizontal
grid points have a R2 value larger than 0.7 for 700 hPa temperature tendencies in the case
of the cVAE in training mode. For cVAE, only 38% of the grid points exceed a coefficient
of determination of 0.7. Nevertheless the emulation capabilities in test mode, where only
the CAM climate variables X are fed into cVAE, are remarkably weaker than for all other
evaluated networks. This is one clear disadvantage of the “brute-force training strategy”
of the cVAE with our architecture, where we train the encoder and decoder together. The
strong decrease in emulation skill between training and test mode suggests that the largest
portion of optimization goes into the emulation of the subgrid-scale variables Y. Another
discouraging point is the overall poorly developed interpretability of the latent space of cVAE
with respect to essential subgrid-scale and climate variables like outgoing longwave radiation,
solar insolation or surface air temperature. cVAE is not capable to distinguish between day
and night-time conditions in its latent space. This is a crucial benchmark of all other evaluated
models. Overall, cVAE focuses in its latent space exclusively on variations in convective
moistening and heating tendencies or the related formation of precipitation. This clearly
limits the interpretability of drivers of convective predictability in the latent space of cVAE.
Furthermore it suggests that key information about the background climate state of convective
processes are dominantly propagated trough the additional link of X to the decoder of cVAE
(see Figure A.15). This leads to the fact that the encoding of large-scale information in the
latent space of cVAE in training mode is clearly outperformed by a traditional PCA on the
climate variables X. Despite these discouraging results, we think cVAE could be upgraded
towards a generative and stochastic parameterization of SP. Pan et al. 2022 described that their
initial cVAE structure exhibited large differences in performance between the training and test
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A.5. Generated SP/CAM Variables with z𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛 / z𝑚𝑒𝑑𝑖𝑎𝑛 and Squared Pearson Correlation R2

Plots between Latent Nodes and Vertical Profiles

Latent Node 1
Global Temperature
variations

10𝑡ℎ perc 25𝑡ℎ perc 50𝑡ℎ perc 75𝑡ℎ perc 90𝑡ℎ perc

Q𝑠𝑤 𝑡𝑜𝑝 [ 𝑊
𝑚2 ] 4 115 451 36 6

Q𝑠𝑤 𝑠𝑢𝑟 𝑓 [ 𝑊
𝑚2 ] -1 49 284 24 1

Q𝑙𝑤 𝑡𝑜𝑝 [ 𝑊
𝑚2 ] 181 221 241 260 275

Q𝑙𝑤 𝑠𝑢𝑟 𝑓 [ 𝑊
𝑚2 ] 55 12 28 60 44

precip [𝑚𝑚
ℎ

] 0.11 0.01 0.03 0.12 0.07
P𝑠𝑢𝑟 𝑓 [hPa] 933 982 995 995 989
Q𝑠𝑜𝑙 [ 𝑊

𝑚2 ] 15 263 748 45 8
Q𝑠𝑒𝑛𝑠 [ 𝑊

𝑚2 ] 25 9 3 9 12
Q𝑙𝑎𝑡 [ 𝑊

𝑚2 ] 52 19 39 85 163

Table A.7.: Generated shortwave and longwave heat flux at the model top and surface, precipitation,
surface pressure, solar insolation, sensible and latent heat flux of z𝑚𝑒𝑑𝑖𝑎𝑛 (4𝑡ℎ column, 50𝑡ℎ perc) and
z𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛 of the 10𝑡ℎ , 25𝑡ℎ , 75𝑡ℎ and 90𝑡ℎ percentile of latent node 1 (Global Temperature variations).
This Table is directly reproduced from Behrens et al. 2022.

mode too. Therefore they developed a step-wise concept, where first the decoder is trained
on X, then the encoder on Y and later the entire network on the complete variable list O. With
this concept of step-wise training they were able to drastically improve the emulation abilities
of their cVAE (Pan et al. 2022). In our case this upgraded training strategy might result in
an enhanced interpretability of the latent space of cVAE with respect to large-scale drivers of
convective predictability similar to results shown in this study for VED.

A.5. Generated SP/CAM Variables with z𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛 / z𝑚𝑒𝑑𝑖𝑎𝑛 and
Squared Pearson Correlation R2 Plots between Latent Nodes
and Vertical Profiles

This section comprises the Tables A.7-A.11 of generated 2D variables in X and Y for each latent
node with our generative modeling approach. Additionally the squared Pearson correlation
R2 between the Nodes 1 to 5 and vertical profiles of dq/dt, dT/dt, q and T are displayed
for space-time series (Figure A.18) or time series (Figure A.19) respectively. For Figure A.18
the Pearson correlation is computed based on the concatenated space-time series (with the
shape [horizontal grid-cells H × time steps P, latent space width K or output variable size
M]) of the latent nodes and profiles in O, which means that these arrays include information
about the large-scale geographic variability, e.g. the large meridional temperature and specific
humidity contrasts between the tropics and poles. For Figure A.19 the Pearson correlation is
calculated in each horizontal grid-cell between the time series (with the shape [P, K or M]
of the latent nodes and output profiles in O. As a second step the median of the Pearson
correlation coefficients is calculated across all horizontal grid-cells H.
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Latent Node 2
Large-scale variability
along the mid latitude
storm tracks

10𝑡ℎ perc 25𝑡ℎ perc 50𝑡ℎ perc 75𝑡ℎ perc 90𝑡ℎ perc

Q𝑠𝑤 𝑡𝑜𝑝 [ 𝑊
𝑚2 ] 987 1092 451 57 158

Q𝑠𝑤 𝑠𝑢𝑟 𝑓 [ 𝑊
𝑚2 ] 773 845 284 30 49

Q𝑙𝑤 𝑡𝑜𝑝 [ 𝑊
𝑚2 ] 252 249 241 205 173

Q𝑙𝑤 𝑠𝑢𝑟 𝑓 [ 𝑊
𝑚2 ] 85 73 28 44 13

precip [𝑚𝑚
ℎ

] -0.01 0.00 0.03 0.12 0.15
P𝑠𝑢𝑟 𝑓 [hPa] 983 989 995 993 992
Q𝑠𝑜𝑙 [ 𝑊

𝑚2 ] 1214 1347 748 125 443
Q𝑠𝑒𝑛𝑠 [ 𝑊

𝑚2 ] 19 9 3 6 23
Q𝑙𝑎𝑡 [ 𝑊

𝑚2 ] 83 55 39 86 101

Table A.8.: Generated shortwave and longwave heat flux at the model top and surface, precipitation,
surface pressure, solar insolation, sensible and latent heat flux of z𝑚𝑒𝑑𝑖𝑎𝑛 (4𝑡ℎ column, 50𝑡ℎ perc) and
z𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛 of the 10𝑡ℎ , 25𝑡ℎ , 75𝑡ℎ and 90𝑡ℎ percentile of latent node 2 (Large-scale variability along mid
latitude storm tracks). This Table is directly reproduced from Behrens et al. 2022.

Latent Node 3
Shallow Convection 10𝑡ℎ perc 25𝑡ℎ perc 50𝑡ℎ perc 75𝑡ℎ perc 90𝑡ℎ perc
Q𝑠𝑤 𝑡𝑜𝑝 [ 𝑊

𝑚2 ] 5 134 451 1200 1112
Q𝑠𝑤 𝑠𝑢𝑟 𝑓 [ 𝑊

𝑚2 ] 2 49 284 925 838
Q𝑙𝑤 𝑡𝑜𝑝 [ 𝑊

𝑚2 ] 178 220 241 251 255
Q𝑙𝑤 𝑠𝑢𝑟 𝑓 [ 𝑊

𝑚2 ] 3 8 28 73 72
precip [𝑚𝑚

ℎ
] 0.08 0.05 0.03 0.04 0.05

P𝑠𝑢𝑟 𝑓 [hPa] 985 999 995 991 991
Q𝑠𝑜𝑙 [ 𝑊

𝑚2 ] 15 329 748 1488 1468
Q𝑠𝑒𝑛𝑠 [ 𝑊

𝑚2 ] -15 -11 3 30 51
Q𝑙𝑎𝑡 [ 𝑊

𝑚2 ] -33 -13 39 207 242

Table A.9.: Generated shortwave and longwave heat flux at the model top and surface, precipitation,
surface pressure, solar insolation, sensible and latent heat flux of z𝑚𝑒𝑑𝑖𝑎𝑛 (4𝑡ℎ column, 50𝑡ℎ perc) and
z𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛 of the 10𝑡ℎ , 25𝑡ℎ , 75𝑡ℎ and 90𝑡ℎ percentile of latent node 3 (Shallow Convection). This Table
is directly reproduced from Behrens et al. 2022.
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A.5. Generated SP/CAM Variables with z𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛 / z𝑚𝑒𝑑𝑖𝑎𝑛 and Squared Pearson Correlation R2

Plots between Latent Nodes and Vertical Profiles

Latent Node 4
Mid latitude frontal
systems

10𝑡ℎ perc 25𝑡ℎ perc 50𝑡ℎ perc 75𝑡ℎ perc 90𝑡ℎ perc

Q𝑠𝑤 𝑡𝑜𝑝 [ 𝑊
𝑚2 ] 440 456 451 435 442

Q𝑠𝑤 𝑠𝑢𝑟 𝑓 [ 𝑊
𝑚2 ] 317 317 284 266 270

Q𝑙𝑤 𝑡𝑜𝑝 [ 𝑊
𝑚2 ] 175 202 241 224 215

Q𝑙𝑤 𝑠𝑢𝑟 𝑓 [ 𝑊
𝑚2 ] 59 53 28 39 43

precip [𝑚𝑚
ℎ

] 0.00 0.00 0.03 0.15 0.25
P𝑠𝑢𝑟 𝑓 [hPa] 1001 1000 995 990 986
Q𝑠𝑜𝑙 [ 𝑊

𝑚2 ] 625 678 748 741 746
Q𝑠𝑒𝑛𝑠 [ 𝑊

𝑚2 ] -5 -4 3 8 15
Q𝑙𝑎𝑡 [ 𝑊

𝑚2 ] 29 27 39 75 97

Table A.10.: Generated shortwave and longwave heat flux at the model top and surface, precipitation,
surface pressure, solar insolation, sensible and latent heat flux of z𝑚𝑒𝑑𝑖𝑎𝑛 (4𝑡ℎ column, 50𝑡ℎ perc) and
z𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛 of the 10𝑡ℎ , 25𝑡ℎ , 75𝑡ℎ and 90𝑡ℎ percentile of latent node 4 (Mid latitude frontal systems). This
Table is directly reproduced from Behrens et al. 2022.

Latent Node 5
Deep Convection 10𝑡ℎ perc 25𝑡ℎ perc 50𝑡ℎ perc 75𝑡ℎ perc 90𝑡ℎ perc
Q𝑠𝑤 𝑡𝑜𝑝 [ 𝑊

𝑚2 ] 206 577 451 172 7
Q𝑠𝑤 𝑠𝑢𝑟 𝑓 [ 𝑊

𝑚2 ] 80 327 284 109 0
Q𝑙𝑤 𝑡𝑜𝑝 [ 𝑊

𝑚2 ] 188 208 241 254 266
Q𝑙𝑤 𝑠𝑢𝑟 𝑓 [ 𝑊

𝑚2 ] 24 26 28 93 113
precip [𝑚𝑚

ℎ
] 0.60 0.24 0.03 0.01 -0.01

P𝑠𝑢𝑟 𝑓 [hPa] 989 989 995 999 998
Q𝑠𝑜𝑙 [ 𝑊

𝑚2 ] 489 1036 748 264 4
Q𝑠𝑒𝑛𝑠 [ 𝑊

𝑚2 ] 4 2 3 3 6
Q𝑙𝑎𝑡 [ 𝑊

𝑚2 ] 57 51 39 64 80

Table A.11.: Generated shortwave and longwave heat flux at the model top and surface, precipitation,
surface pressure, solar insolation, sensible and latent heat flux of z𝑚𝑒𝑑𝑖𝑎𝑛 (4𝑡ℎ column, 50𝑡ℎ perc) and
z𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛 of the 10𝑡ℎ , 25𝑡ℎ , 75𝑡ℎ and 90𝑡ℎ percentile of latent node 5 (Deep Convection). This Table is
directly reproduced from Behrens et al. 2022.
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Figure A.18.: Squared Pearson correlation coefficient (linear explained variance) R2 between the la-
tent nodes of VED and predicted vertical profiles of specific humidity tendency (dq/dt), temperature
tendency (dT/dt), specific humidity (q) and temperature (T) in space-time (which features the large
meridional gradients of q and T). The light blue line resembles the R2 value for latent node 1 / Global
Temperature variations. The dark blue / black / dark cyan / bronze curve denotes the explained
variance of latent node 2 (Large-scale variability along storm tracks) / 3 (Shallow Convection) / 4 (Mid
latitude frontal system) / 5 (Deep Convection). This Figure is directly reproduced from Behrens et al.
2022.

Figure A.19.: Median Squared Pearson correlation coefficient (linear explained variance) R2 between the
latent nodes of VED and predicted vertical profiles of specific humidity tendency (dq/dt), temperature
tendency (dT/dt), specific humidity (q) and temperature (T) in time (without large meridional gradients
of q and T). The light blue line resembles the median R2 value for latent node 1 / Global Temperature
variations. The dark blue / black / dark cyan / bronze curve denotes the median explained variance
of latent node 2 (Large-scale variability along storm tracks) / 3 (Shallow Convection) / 4 (Mid latitude
frontal systems) / 5 (Deep Convection). This Figure is directly reproduced from Behrens et al. 2022.
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B. Supporting materials for Chapter 4 and 5:
Improving Atmospheric Processes in Earth
System Models with Deep Learning
Ensembles and Stochastic Parameterizations

This section is reproduced from the supporting material of my paper that is currently in
review (Behrens et al. 2024) with minor modifications of the naming of different deep learning
models and ensembles. All Figures and Tables were produced from me as author of the thesis.
Moreover I led the writing of the text for the supporting material that is shown in this appendix.

B.1. Introduction

Section B.2 describes the overall network configurations and Normalization. This section
explains the hyperparameter tuning (subsection B.2.1), the Input and Output normalization
(subsection B.2.2) and shows the hyperparameter of the best-performing ANNs (subsection
B.2.3) and VEDs (subsection B.2.4). Section B.3 contains all supporting Figures with respect
to the deterministic metrics. Section B.4 includes the additional Figures with respect to the
ensemble or uncertainty metrics. Section B.5 describes our approach to find a suitable value
for the applied latent space perturbation 𝛼 with a static magnitude or a varying magnitude
that is varying across the latent dimensions. We use VED 1 here as a baseline model. Section
B.6 contains all supporting Figures related to the online runs.

B.2. Network Configurations and applied Normalizations

B.2.1. Hyperparameter Tuning

We conducted hyperparameter tuning experiments for two model types Artificial Neural
Networks (ANN) and Variational Encoder Decoder structures (VEDs). For the ANNs we
tested in total 116 suitable configurations. We run the ANNs over 15 epochs with two learning
rate steps after the 5𝑡ℎ and 10𝑡ℎ epoch by dividing the initial learning rate by factor 5 and
25. We use Adam (Kingma and Ba 2014) as optimizer during the training. We use the same
training and validation sets as in the main text, the first 7 consecutive days from each month
ofthe year 2013 (training) / 2014 (validation). We selected the validation mean-square error
of the subgrid SP variables 𝒀 as our hyperparameter optimization objective. We further saved
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Hyperparameter range of ANNs Values
Initial learning rate 10−4 to 5 × 10−3

Batch size 200 to 13824
Activation function of hidden layers ReLU, ELU, leaky ReLU,

Tanh
Node Size of hidden layers 200 to 500
Depth of ANNs in hidden layers 4 to 8 hidden layers

Table B.1.: Hyperparameter range of the search for skilful ANNs, which reproduce SP subgrid variables
𝒀 with large-scale CAM variables and CAM precip 𝑿 as input data set. The hyperparameter search
was conducted over 116 trials and 15 epochs with a learning rate decrease after every 5𝑡ℎ epoch by a
factor of 5. This Table is reproduced with minor modifications from Behrens et al. 2024.

the accuracy and mean absolute error as additional evaluation metrics for the validation and
training data. Table B.1 details the hyperparameter and the associated range / options we
tested.

We observed that the most sensitive hyperparameters are the initial learning rate and the
activation function of the hidden layers, where ELU overall had the best performance.

For the Variational Encoder Decoder structures we conducted a similar hyperparameter
tuning experiment. One major difference to the ANN is the presence of a latent space (lower-
dimensional) space between the encoding and decoding part of the network. The latent space
width is one of the main tuning parameter of these networks, like it was shown in Behrens
et al. 2022. For the VEDs we prescribed the dimensionality reduction or expansion in the
Encoder and Decoder. The fourth or third last hidden layer of the Encoder in front of the
latent space has the half of the original node size of the first hidden layer, if the Encoder has
more than 4 hidden layers or 4 hidden layer. The third or second last hidden layer of the
Encoder in front of the latent space has a quarter of the original node size if the Encoder has
more than 4 hidden layer or 4 hidden layers. While the second last or last hidden layer of the
Encoder in front of the latent space has an eight of the original node size, if the Encoder has
more than 4 hidden layers or 4 hidden layers. Additionally if the Encoder has more than 4
hidden layers, the last hidden layer consists of 1

16 of Nodes of the first hidden layer.
The Decoder is mirroring the Encoder with an increase from the first to the third or fourth

hidden layer from an eight or a 1
16
𝑡ℎ to a half of the node size of the last hidden layer of the

Decoder.
VEDs have an additional KL loss term in their loss function. We chose a static KL regular-

ization term to use it as an additional hyperparameter for the network configuration which
gives us an active tuning knob to score a suitable balance between reconstruction (here a mean
square error (mse) loss is used) and the KL loss term.

As an objective for the hyperparameter tuning of the VEDs we set the validation loss (sum
of reconstruction loss and annealed kl loss, see Equation 4.5). The learning rate schedule,
Adam (Kingma and Ba 2014) as optimizer and the training over 15 epochs, the training and
validation set is the same as before. In total we conduct 60 trial with varying hyperparamters.
Table B.2 shows the evaluated hyperparameters for the VEDs and the associated ranges.
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Hyperparameter range of VEDs Values
Initial learning rate 10−4 to 5 × 10−3

� kl regularization coefficient 5 × 10−5 to 10−3

Batch size 200 to 13824
Latent Space Width 2 to 15 latent nodes
Activation function of hidden layers ReLU, ELU, leaky ReLU,

Tanh
Node Size of first / last hidden layers of Encoder
/ Decoder

200 to 500

Depth of VEDs in hidden layers 5 to 6 hidden layers

Table B.2.: Hyperparameter range of search for skilful Variational Encoder Decoder (VED) structures,
which reproduce SP subgrid variables 𝒀 with large-scale CAM variables and CAM precip 𝑿 as input
data set. The hyperparameter search was conducted over 60 trials and 15 epochs with a learning rate
decrease after every 5𝑡ℎ epoch by a factor of 5. This Table is directly reproduced from Behrens et al.
2024.

We observed that the initial learning rates, the latent space width in combination with the
kl regularization factor � are the most sensitive hyperparameters. A larger latent space width
in combination with a smaller � is beneficial for the overall network performance with our
approach.

B.2.2. Input, Output normalization and computation of tendency terms before
coupling

Regarding the used Input and Output normalization, we built up on existing knowledge and
experience from previous papers (Behrens et al. 2022; Rasp et al. 2018) when it comes to the
normalization of large-scale CAM variables and CAM precipitation 𝑿 (input) and subgrid
SP variables 𝒀 (output normalization). Regarding the input normalization we used the same
strategy as is presented in Rasp et al. 2018 or Behrens et al. 2022. We computed a longterm
mean (84 days = period of training data set) for all variables and all levels. We subtract
the mean array from each input data sample and divide the residuals by the range between
longterm minimum and maximum anomaly. With this input normalization we constrain the
normalized inputs 𝑿 into the range of [-1,1].

For the output normalization we use a similar strategy as is presented in Behrens et al.
2022. We normalize the �̇�(p) profile by the longterm maximum standard deviation along the
vertical axis (over two 2 months, June and July of 2013) of all levels, which comes from the
surface layer. For �̇�(p) we found the maximum standard deviation also in the surface layer
and used this value for the output normalization. For �̇�𝑐𝑙(p) we used the standard deviation
from 831 hPa (level 22) for the output normalization, while for �̇�𝑐𝑖(p) from 244 hPa (level 14).
The remaining 8 2D SP variables in 𝒀 were standardised accordingly.

Equation B.1 illustrates the general computation of the tendency terms before coupling
for the example of �̇�(p). Herein QBC(p) is the vertical profile of specific humidity with the
updates from SP but before the radiative adjustment and coupling to CLM5, QBP(p) is the
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vertical profile of the specific humidity before calling SP and dt is the native CESM time step
of 1800s.

�̇�(𝑝) =
QBC(p) − QBP(p)

dt (B.1)

B.2.3. ANN ensemble: Hyperparameter of all ANNs

We evaluated the ANN hyperparameter tuning experiment and selected the 7 best - performing
ANNs to form the base for our deterministic and stochastic ANN SP parameterizations (ANN
and ANN-ensemble). Table B.3 shows the hyperparameter configuration of the 7 ANNs. We
train all ANNs over 40 epochs with a learning rate decrease after every 7𝑡ℎ epoch by a factor
of 5 using ADAM (Kingma and Ba 2014). The hyperparameter setting of ANN 1 are moreover
used fro ANN-dropout

ANN 1 ANN 2 ANN 3 ANN 4 ANN 5 ANN 6 ANN 7
Initial
learning
rate

6.16
×10−4

3.36
×10−4

4.82
×10−4

4.72
×10−4

12.62
×10−4

13.73
×10−4

4.74
×10−4

Batch
size

3551 9402 8833 9802 10740 11162 7800

Activation
function

ELU ELU ELU ELU ELU ELU ELU

Activation
function
Output
layer

Linear Linear Linear Linear Linear Linear Linear

Node
Size

405 455 422 350 323 433 279

Depth
ANNs
[hid.
lay.]

4 6 8 8 4 5 8

Table B.3.: Hyperparameters of the best-performing ANNs that form the base for the stochastic and
deterministic ANN ensemble. This Table is reproduced with minor modifications from Behrens et al.
2024.

B.2.4. VED ensemble: Hyperparameter of all VEDs

Table B.4 shows the hyperparameter of the 7 best-performing VEDs, all except VED 6 (due
to unstable behaviour especially on the test data set) form the “quasi-deterministic” VED
ensemble (VED). Additionally VED 1 is used as the example model, on which we apply our
latent space perturbation approach (VED-varying, VED-static).
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VED 1 VED 2 VED 3 VED 4 VED 5 VED 6* VED 7
Initial
learning
rate

16.12
×10−4

4.41
×10−4

6.52
×10−4

14.57
×10−4

10.13
×10−4

7.18
×10−4

6.17
×10−4

Batch size 9123 9047 8627 2313 4624 2770 8821
Activation
function

ELU ELU ELU leaky
ReLU

ELU ELU leaky
ReLU

kl weight
�

6.8
×10−5

5.3
×10−5

11.2
×10−5

5.0
×10−5

6.8
×10−5

17.2
×10−5

7.2
×10−5

Encoder
Node Size

[109,307,
307,154,
77,39,
20,13]

[109,411,
411,206,
103,52,
26,10]

[109,426,
426,213,
107,54,
27,9]

[109,359,
359,180,
90,45,
23,12]

[109,337,
337,169,
85,43,
22,13]

[109,411,
411,206,
103,52,
21,13]

[109,492,
246,123,
62,31,6]

Decoder
Node Size

[13,20,
39,77,
154,307,
307,112]

[10,26,
52,103,
206,411,
411,112]

[9,27,
54,107,
213,426,
426,112]

[12,23,
45,90,
180,359,
359,112]

[13,22,
43,85,
169,337,
337,112]

[13,21,
52,103,
206,411,
411,112]

[6,31,62,
123,246,
492,112]

Depth
Encoder
/ De-
coder
[hid. lay.]

6 6 6 6 6 6 5

Table B.4.: Hyperparameters of the 7 best-performing VEDs. The * denotes VED 6, which shows
unstable behaviour on the validation and test data set if the model is trained over 40 epochs. Therefore
we exclude this VED from the “quasi-deterministic” VED ensemble presented in the paper. This Table
is directly reproduced from Behrens et al. 2024

B.3. Reproduction of subgrid convective processes with ensembles

Figure B.1 shows the median Coefficient of Determination (R2) of the vertical profiles of �̇�𝑐𝑙
and �̇�𝑐𝑖 for all developed staochastic and

Figure B.2 depicts the latitude longitude plots of the coefficient of determination R2 of �̇� on
956 hPa for ANN (subplot a) and ANN-ensemble (b), ANN 1 (c) as an example of a single
ANN realisation and ANN-dropout (d).

Figure B.3 shows the median coefficients of determination for the 2D SP precipitation and
radiative fluxes for all approaches.

Figure B.4 shows the median MAEs of the vertical profiles of �̇�, �̇�, �̇�𝑐𝑙 , �̇�𝑐𝑖 for ensemble and
stochastic parameterizations.

Figure B.5 shows the median MAEs for the remaining 8 SP variables. Note that we used
the original output normalized predictions and test data to compile this plot. The associated
y-axis reflects therefore the median MAE with respect to the used standard deviations.

131



B. Supporting materials for Chapter 4 and 5: Improving Atmospheric Processes in Earth System
Models with Deep Learning Ensembles and Stochastic Parameterizations

Figure B.1.: Vertical profiles of median Coefficient of Determination (R2) for a) cloud liquid water
tendency �̇�𝒄𝒍 , b) cloud ice water tendency �̇�𝒄𝒊 of different individual ANNs and VEDs and in the
background (grey solid and dashed lines), ANN-dropout (solid navy blue); ANN and ANN-ensemble
(solid and dashed black), VED (solid red); VED-static (dashed cyan) and VED-varying (dotted cyan
line). This Figure is reproduced with minor modifications from Behrens et al. 2024.

B.4. Uncertainty Estimates of subgrid convective processes with
stochastic and deterministic ensembles

Figure B.6 shows the aggregated continuous rank probability score (CRPS) for all approaches
over all SP variables 𝒀 with respect to the output loss dictionary. Figure B.7 shows the CRPS
of all approaches with respect to �̇�𝑐𝑙 on 831 hPa. Figures B.8 and B.9 illustrate the CRPS of
surface �̇� and �̇�.

Figure B.10 - B.12 depicts the probability integral transform histograms of upper tropo-
spheric �̇�𝑐𝑖 , �̇�𝑐𝑙 in the upper part of the planetary boundary layer, surface �̇� and surface �̇�.

B.5. Hyperparameter tuning of the latent space perturbation 𝛼𝑖

To score a balance between reproduction skill and calibration of the ensemble spread based
on a single VED (we select VED 1) with perturbation of the latent space (Approach 3), we
conduct a further hyperparameter optimization. We compute the PIT distance (Equation B.2,
following Haynes et al. 2023), where B is the number of bins in the PIT histogram, 𝐸𝑏 is the
number of samples within a distinct bin, E is the total number of evaluated samples and b is
the ID of a distinct bin. We use the median of PIT distances of all SP variables as a first metric
for the intra-ensemble spread.

PIT distance = [ 1
𝐵

𝐵∑︂
𝑏=1

(𝐸𝑏
𝐸

− 1
𝐵
)] 1

2 (B.2)
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Figure B.2.: Coefficient of determination R2 of the specific humidity tendency �̇� on 956 hPa of a) ANN,
b) ANN-ensemble, c) ANN 1 as an example of an individual member and d) ANN-dropout. The
median, the 2.5𝑡ℎ and 97.5𝑡ℎ percentiles of the horizontal R2 field are shown above each panel to the
right. This Figure is reproduced with minor modifications from Behrens et al. 2024

The second metric is the median of all coefficients of determination R2, computed this time
over the concatenated space-time axis, of the SP variables𝒀 , which measures the reproduction
skill.

These two metrics are complemented by the median and mean CRPS across all SP variables
𝒀 as third metric, which focuses both on the reproduction skill and the calibration of the
ensemble spread.

These three metrics give us a robust toolbox to find a good magnitude of either a static latent
perturbation 𝛼𝑖 or varying 𝛼𝑖 along all latent dimensions . We picked the VED 1 as an example
to find both a suitable static 𝛼 and varying 𝛼 along its 13 latent dimensions. Therefore we
selected 100 time steps (∼ 1.4 million samples) and generated a 7 member ensemble, which is
fed then into the decoder.

This step is then repeated a few times in an algorithm and all metrics are tracked for the
respective static 𝛼𝑖 or varying 𝛼𝑖 arrays. As a first step we conduct a search for the static 𝛼𝑖
between 0 and 1 using a step size of 0.1. For mean / median CRPS we found a global minimum
between 0.1 and 0.3. The same is also true if we focus on the sum of 1 minus the median R2 and
median PIT difference, where we see a decrease until 0.15 to 0.4 and an increase afterwards,
which is in line with the decay of reproduction skill with increasing degree of latent space
perturbation.
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Figure B.3.: Median coefficient of determination R2 for the remaining 8 2D output variables of different
individual ANNs and VEDs in the background (solid and dashed grey lines), ANN-dropout (navy
blue); ANN and ANN-ensemble (solid and dashed black line), VED (solid red line); VED-static (dashed
cyan line) and VED-varying (dotted cyan line). This Figure is reproduced with minor modifications
from Behrens et al. 2024.

As a second step we ‘fine-search” the 𝛼-range between 0.1 and 0.4 with a stepping of 0.01.
In this case the sum between 1 minus median R2 and the median PIT distance has a minimum
at 𝛼𝑖=0.40. For the median CRPS of all 𝒀 we find the minimum around 𝛼𝑖=0.36, while for
the mean CRPS the minimum is located at 0.19. We test this approach also for higher and
lower percentiles for CRPS and the sum term and do not find strong shifts of a suitable static
𝛼𝑖 that provides a good balance between reproduction skill and the calibration of the spread.
In general we find that a static 𝛼𝑖 of around 0.2 to 0.4 provides an improved CRPS and PIT
distances, while not dramatically reducing the prediction skill of VED 1.

For the varying 𝛼𝑖 along the latent dimensions of VED 1 we conduct in total 2800 trials
based on 50 randomly drawn time steps. Here we use first a range from 0 to 2.5 to randomly
draw values for each 𝛼𝑖 , where i is a distinct latent dimension. Later we reduce the range
from 0 to 1, which results in an increase of CRPS, R2 and PIT distance values. To evaluate
the skill and to get the best performance, we search for those 𝛼𝑖 arrays that have a median
CRPS smaller than the 2.5𝑡ℎ percentile of all median CRPS values, and a median loss term
based on PIT distance and R2 also smaller than the overall 2.5𝑡ℎ percentile. We select two
favourable 𝛼 arrays out of the entire set, see Table B.5. We use 𝛼 array 1, which was drawn
in a pre-hyperparameter search where we only focused on improving the PIT distance, due
to its improved CRPS and PIT compared to 𝛼 array 2. Compared to the static 𝛼 approach the
varying 𝛼 arrays have a smaller median CRPS with a comparable median loss term (1 - R2
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𝛼 array 1 𝛼 array 2
alpha array [0.09 0.52 0.07 0.73 0.4

0.33 0.77 0.29 0.95 0.61
0.73 0.84 0.35]

[0.25, 0.05, 0.25, 0.68,
0.77, 0.09, 0.61, 0.92,
0.02, 0.44, 0. , 0.15, 0.93]

median CRPS 0.0203 0.0201
mean CRPS 0.0453 0.0448
median R2 0.266 0.320
median PIT distance 0.00144 0.00165
1 - median R2 + median PIT
distance

0.735 0.681

Table B.5.: Suitable 𝛼 arrays for the perturbation of the latent space of VED 1. Illustrated are the 𝛼
arrays and key performance metrics to put them into context with the static 𝛼 approach. The metrics
are computed over 100 randomly drawn time steps similar to Figure B.13 and B.15. This Table is directly
reproduced from Behrens et al. 2024.

- PIT distance). This indicates an improved calibration of the intra-ensemble spread, which
does not lead to a decay in reproduction skill.

B.6. Online results: Evaluation of developed stochastic and
deterministic ensemble parameterizations and related
benchmark parameterizations

Figure B.16 and Figure B.17 shows the time series of the mean RMSE of specific humidity re-
spectively temperature below 200 hPa simulated with the developed deterministic, stochastic
ensemble parameterizations and ANNs with respect to an independent run with a superpa-
rameterization in CESM2.

Figure B.18 shows the zonal averages of the temperature field for the period February - June
2013 with a superparameterization coupled to CESM, related differences between SP-CESM
and our developed ensemble parameterizations and also the differences between SP-CESM
and the CESM2 run with the Zhang-McFarlane scheme.

Figure B.19 shows the zonal averages of the specific humidity field for the period February
- June 2013 with a superparameterization coupled to CESM, related differences between
SP-CESM and our developed ensemble parameterizations and also the differences between
SP-CESM and the CESM2 run with the Zhang-McFarlane scheme.

Figure B.20 shows the precipitation histograms of the developed deterministic and stochastic
ensemble parameterizations in comparison to the superparameterization and the Zhang-
McFarlane Scheme Zhang and McFarlane 1995 based on 10 million randomly drawn samples
from the period February to June 2013.

Figure B.21 depicts the global maps of median precipitation of the CESM runs with the
different parameterizations for the period February to June 2013.

Figure B.22 shows the regions on the globe that we select for the evaluation of the represented
diurnal cycle of all parameterizations.

135



B. Supporting materials for Chapter 4 and 5: Improving Atmospheric Processes in Earth System
Models with Deep Learning Ensembles and Stochastic Parameterizations

Figure B.23 shows the diurnal cycles of precipitation simulated with the superparame-
terization, the developed deterministic and stochastic ensemble parameterizations and the
Zhang-McFarlane scheme over the regions illustrated in Figure B.22.
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Figure B.4.: Vertical profiles of the median mean absolute error (MAE) for specific humidity tendency
(a, �̇�), temperature tendency (b, �̇�), cloud liquid tendency (c, �̇�𝑐𝑙) and cloud ice tendency (d, �̇�𝑐𝑖) of
the individual ANNs and VEDs in the background (grey), ANN-dropout (solid navy blue); ANN and
ANN-ensemble (solid and dashed black), VED (solid red); VED-draws (solid cyan), VED-static (dashed
cyan) and VED-varying (dotted cyan line). This Figure is reproduced with minor modifications from
Behrens et al. 2024.
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Figure B.5.: Median mean absolute error (MAE) of the 2D output variables of different individual
ANNs and VEDs in the background (solid and dashed grey lines), ANN-dropout (navy blue) ; ANN
and ANN-ensemble (solid and dashed black line), VED (solid red line); VED-draws (solid cyan line),
VED-static (dashed cyan line) and VED-varying (dotted cyan line). This Figure is reproduced with
minor modifications from Behrens et al. 2024.
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Figure B.6.: Aggregated Continuous Rank Probability Score (CRPS) for different stochastic and deter-
ministic parameterizations. The blue line indicates the mean, the black line illustrates the median, the
red line the 70𝑡ℎ , the cyan line the 90𝑡ℎ percentile computed over all SPCESM variables Y based on 500
randomly drawn time steps from test data. The y-axis illustrates the normalized CRPS loss and the
evaluated parameterizations are shown along the x-axis with the respective name as tick label. This
Figure is reproduced with minor modifications from Behrens et al. 2024.
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Figure B.7.: CRPS of �̇�𝑐𝑙 in the upper planetary boundary layer on 831 hPa. The order of the shown
parameterizations is identical to Figure 5.4. This Figure is reproduced with minor modifications from
Behrens et al. 2024.
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and related benchmark parameterizations

Figure B.8.: CRPS of surface �̇�. The order of the shown parameterizations is identical to Figure 5.4.
This Figure is reproduced with minor modifications from Behrens et al. 2024.
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Figure B.9.: CRPS of surface �̇�. The order of the shown parameterizations is identical to Figure 5.4.
This Figure is reproduced with minor modifications from Behrens et al. 2024.
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Figure B.10.: Probability Integral Transform (PIT) histogram of �̇�𝑐𝑖 in the upper troposphere between
200 and 300 hPa. The x-axis represent the CDF of the ranks with respect to the number of ensemble
members. The y-axis depicts the probability associated with each rank. The PIT histograms are based
on 400 randomly drawn time steps from the test data set. The thick dashed gray line in the subplot in
horizontal direction symbolises the perfect PIT histogram. The PIT curve of ANN-dropout is shown in
blue and the PIT curves of ANN and ANN-ensemble in solid and dashed black. The PIT curve of VED
is depicted in red. Additionally the PIT curves of VED-static and VED-varying are shown in dashed
and dotted cyan. This Figure is reproduced with minor modifications from Behrens et al. 2024.

Figure B.11.: The PIT histograms for QBCTEND at the surface. The PIT histograms are again based on
400 randomly drawn time steps from the test data set. The color coding for the evaluated ensemble
methods is identical to Figure B.10. This Figure is reproduced with minor modifications from Behrens
et al. 2024.
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Figure B.12.: The PIT histograms for �̇� at the surface. The PIT histograms are again based on 400
randomly drawn time steps from the test data set. The color coding for the evaluated ensemble
methods is identical to Figure B.10. This Figure is reproduced with minor modifications from Behrens
et al. 2024.

Figure B.13.: Aggregated CRPS over all SP variables 𝒀 as a function of static latent space perturbation
𝛼. Shown are the median, mean, the 5𝑡ℎ ,25𝑡ℎ , 75𝑡ℎ , 95𝑡ℎ percentile for both the coarse (in the range
𝛼 = [0, 1]) and fine (𝛼 = [0.1, 0.4]) hyperparameter search. This Figure is directly reproduced from
Behrens et al. 2024.
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Figure B.14.: Aggregated coefficient of determination R2 over all SP variables 𝒀 as a function of static
latent space perturbation 𝛼. Shown are the median, mean, the 5𝑡ℎ , 25𝑡ℎ , 75𝑡ℎ , 95𝑡ℎ percentile for both
the coarse (in the range 𝛼 = [0, 1]) and fine (𝛼 = [0.1, 0.4]) hyperparameter search. This Figure is
directly reproduced from Behrens et al. 2024.

Figure B.15.: Aggregated loss function (1-R2+PIT distance) over all SP variables 𝒀 as a function of static
latent space perturbation 𝛼. Shown are the median, the 5𝑡ℎ , 25𝑡ℎ , 75𝑡ℎ , 95𝑡ℎ percentile for both the
coarse (in the range 𝛼 = [0, 1]) and fine (𝛼 = [0.1, 0.4]) hyperparameter search. This Figure is directly
reproduced from Behrens et al. 2024.
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Figure B.16.: Mean Root Mean Squared Error (RMSE) of 𝒒 below 200 hPa of the coupled runs with the
deterministic ANN ensemble parameterization (ANN-CESM, orange), the stochastic ANN ensemble
parameterization (ANN-ens-CESM, green) and individual ANNs that for the ensembles (dotted grey
lines) with respect to the independent run with the superparamterization (SP-CESM). Subplot a) depicts
the mean RMSE timeseries from beginning of February to the end of June 2013. Subplot b) shows the
timeseries zoomed in on the first six days of the simulations. This Figure is reproduced with minor
modifications from Behrens et al. 2024.
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Figure B.17.: Mean Root Mean Squared Error (RMSE) of 𝑻 below 200 hPa of the coupled runs with the
deterministic ANN ensemble parameterization (ANN-CESM, orange), the stochastic ANN ensemble
parameterization (ANN-ens-CESM, green) and individual ANNs that for the ensembles (dotted grey
lines) with respect to the independent run with the superparamterization (SP-CESM). Subplot a) depicts
the mean RMSE timeseries from beginning of February to the end of June 2013. Subplot b) shows the
timeseries zoomed in on the first six days of the simulations. This Figure is reproduced with minor
modifications from Behrens et al. 2024.
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Figure B.18.: Zonal averages of the temperature field of SP-CESM over the period February to June 2013
(panel a), the difference in zonal averages between SP-CESM and CESM2 run with the deterministic
ensemble parameterization (ANN-CESM, panel b), between SP-CESM and CESM2 with the stochastic
ensemble parameterization (ANN-ens-CESM, panel c) and between SP-CESM and with the Zhang-
McFarlane scheme (ZM-CESM, panel d). This Figure is reproduced with minor modifications from
Behrens et al. 2024.
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Figure B.19.: Zonal averages of the specific humidity field of SP-CESM over the period February to June
2013 (panel a), the difference in zonal averages between SP-CESM and CESM2 run with the deterministic
ensemble parameterization (ANN-CESM, panel b), between SP-CESM and CESM2 with the stochastic
ensemble parameterization (ANN-ens-CESM, panel c) and between SP-CESM and with the Zhang-
McFarlane scheme (ZM-CESM, panel d). This Figure is reproduced with minor modifications from
Behrens et al. 2024.
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Figure B.20.: Precipitation histograms based on 10 million randomly drawn samples from the CESM2
runs with the superparameterization (SP-CESM, blue filled histogram), the deterministic ANN ensem-
ble parameterization (ANN-CESM, orange), the stochastic ANN ensemble parameterization (ANN-ens-
CESM, green) and the Zhang-McFarlane scheme (ZM-CESM, red histogram) for the period February
to June 2013. This Figure is reproduced with minor modifications from Behrens et al. 2024.
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Figure B.21.: Global maps of the simulated median precipitation in CESM2 runs with the deterministic
ANN ensemble parameterization (ANN-CESM, panel a), the stochastic ANN ensemble parameteriza-
tion (ANN-ens-CESM, b), the superparameterization (SP-CESM, c) and the Zhang-McFarlane scheme
(ZM-CESM, d) for the period February to June 2013. The median value of the global map and the
RMSE with respect to SP-CESM is shown above each respective panel. This Figure is reproduced with
minor modifications from Behrens et al. 2024.

Figure B.22.: Regions that are used for the evaluation of the represented diurnal cycle in Figure B.23.
This Figure is directly reproduced from Behrens et al. 2024.
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Figure B.23.: The simulated diurnal cycle of precipitation represented by the different parameterizations
for the period February to June 2013 over Amazonia (panel a), tropical Africa (panel b), Europe (panel
c), the United States (panel d), South Africa (panel e) and India (panel f). The diurnal cycle with
the superparameterization is displayed by the blue line in each panel (SP-CESM), the deterministic
ensemble parameterization by the orange line (ANN-CESM), the stochastic ensemble by the green
line (ANN-ens-CESM) and the Zhang-McFarlane scheme by the red line (ZM-CESM). This Figure is
reproduced with minor modifications from Behrens et al. 2024.
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