

1 German Aerospace Center (DLR e.V.), Institute of Solar Research, Almería, Spain, 2 ANECOOP S.COOP, Valencia, Spain, 3 Fundacíon Finca Experimental UAL-Anecoop, Almería, Spain, 4 CIEMAT, Photovoltaic Solar Energy Unit, Madrid, Spain, 5 CIEMAT, Plataforma Solar de Almería, Almería, Spain

DLR

- 1. Motivation: Greenhouses in Almería, Spain
- 2. Agrivoltaic greenhouse experiment
 - 1. Planning
 - 2. Microclimate monitoring system
 - 3. Tomato cycle photo story
- 3. Microclimate monitoring
 - 1. Temperature
 - 2. Irradiance
- 4. Results
 - 1. Daily Light Integral and height of plants
 - 2. Fresh weight and number of fruits
- 5. Summary

DLR

1. Motivation: Greenhouses in Almería, Spain

- 2. Agrivoltaic greenhouse experiment
 - 1. Planning
 - 2. Microclimate monitoring system
 - 3. Tomato cycle photo story
- 3. Microclimate monitoring
 - 1. Temperature
 - 2. Irradiance
- 4. Results
 - 1. Daily Light Integral and height of plants
 - 2. Fresh weight and number of fruits
- 5. Summary

Motivation: Greenhouses in Almería, Spain

• the *Mar de Plastico* (Sea of Plastic): a 33,000 hectares network of greenhouses

- approx. 3000 sun hours per year [1]
- → greenhouse cultivation possible everyday of the year

- local high irradiation levels combined with existing infrastructure provide great potential for agrivoltaic solutions
- theoretical maximum PV coverage of about 44% for East-West oriented greenhouses [2]
- agrivoltaic concepts can actively support light management of growers

Development of an overall agrivoltaic greenhouse model by DLR and validation with agrivoltaic greenhouse experiment

- 1. Motivation: Greenhouses in Almería, Spain
- 2. Agrivoltaic greenhouse experiment
 - 1. Planning
 - 2. Microclimate monitoring system
 - 3. Tomato cycle photo story
- 3. Microclimate monitoring
 - 1. Temperature
 - 2. Irradiance
- 4. Results
 - 1. Daily Light Integral and height of plants
 - 2. Fresh weight and number of fruits
- 5. Summary

Agrivoltaic greenhouse experiment

Planning:

- Collaboration with company ANECOOP and Fundación ANECOOP-UAL
- August 2023: access to GH for monitoring system installation

State of the art (2023):

• lack on shading studies with higher shading ratios (>30%) in checkerboard pattern for raspa y amagado greenhouses

Agrivoltaic greenhouse experiment

Planning:

Usage of **DLR agrivoltaic greenhouse model** to define experiment:

- virtual copy of GH implemented to define experimental layout
- → definition of two test zones with 30% and 50% PV cover ratio and one 0% control zone (module size 1m x 1.7m)

Agrivoltaic greenhouse experiment

Microclimate monitoring system:

Microclimate Monitoring System

Continuous data monitoring with one-minute temporal resolution

in each zone:

- 4 pyranometers
- 1 UV-A sensor
- 1 UV-B sensor
- 2 temperature and relative humidity sensors

20 representative plants were monitored

- plant physiology
- crop yield

DLR

- 1. Motivation: Greenhouses in Almería, Spain
- 2. Agrivoltaic greenhouse experiment
 - 1. Planning
 - 2. Microclimate monitoring system
 - 3. Tomato cycle photo story

3. Microclimate monitoring

- 1. Temperature
- 2. Irradiance
- 4. Results
 - 1. Daily Light Integral and height of plants
 - 2. Fresh weight and number of fruits
- 5. Summary

Microclimate monitoring

DLR

Temperature:

- zone 30: less than 0.3°C absolute deviation w.r.t. control for 90% of crop cycle
- zone 50: lower temperature of approx. 2°C w.r.t. control
- no physical separation of zones
- → due to positioning of zone within greenhouse and shading of neighboring greenhouses (50% is more shaded)
- → also due to changes in plant physiology (more leaves, taller plants in zone 50)

Microclimate monitoring

DLR

<u>Irradiance:</u>

• distinct shadow pattern of individual PV modules visible in irradiance distribution

AgriVoltaics World Conference 2024 - Anna Kujawa

DLR

- 1. Motivation: Greenhouses in Almería, Spain
- 2. Agrivoltaic greenhouse experiment
 - 1. Planning
 - 2. Microclimate monitoring system
 - 3. Tomato cycle photo story
- 3. Microclimate monitoring
 - 1. Temperature
 - 2. Irradiance

4. Results

- 1. Daily Light Integral and height of plants
- 2. Fresh weight and number of fruits
- 5. Summary

Results

- → calculation of photosynthetic photon flux density (PPFD) and integration over one day results in the daily light integral (DLI) [4]
- DLI threshold for sufficient crop growth for tomatoes ~12 mol/m²day [4]
- resulting in visibly different plant development already after first few days of crop cycle
- → effect of etiolation [5]: i.e. elongation of stems, higher number of leaves, smaller leaves, ...

[4] Cossu, M. et al. "Agricultural sustainability estimation of the European photovoltaic greenhouses", European J. of Agronomy (2020). [5] Burgess, J. "An Introduction to Plant Cell Development" (1985).

Plant physiology: height of tomato plants

Results

Fresh weight measurements:

- strongest contribution to difference at beginning of crop cycle
- zone 30: reduction of 500 g/m² or 15% at end of crop cycle
- zone 50: reduction of 850 g/m² or 26% at end of crop cycle
- zone 30: delay of yield of approx. 10 days w.r.t. control zone at end of crop cycle
- zone 50: delay of yield of approx. 15 days w.r.t. control zone at end of crop cycle

Number of fruits:

- zone 30: 10 % less fruits at start of fruit production
- zone 50: 15% less fruits at start of fruit production
- general increase in number of fruits for zone 30 and 50
- 4% more fruits in zone 50 and 30 at end of growing period

DLR

- 1. Motivation: Greenhouses in Almería, Spain
- 2. Agrivoltaic greenhouse experiment
 - 1. Planning
 - 2. Microclimate monitoring system
 - 3. Tomato cycle photo story
- 3. Microclimate monitoring
 - 1. Temperature
 - 2. Irradiance
- 4. Results
 - 1. Daily Light Integral and height of plants
 - 2. Fresh weight and number of fruits

5. Summary

Summary

- agrivoltaic greenhouse experiment with 30% and 50% roof cover ratio in checkerboard pattern
- tomato growing season from September 2023 to March 2024
- microclimate measurements presented
- crop yield results:
 - yes, there was a yield reduction for both treatment zones (as expected)
 - delay in yield:
 - zone 30: 10 days w.r.t. control zone
 - zone 50: 15 days w.r.t. control zone
 - increase in number of fruits toward end of crop cycle
- several more plant physiology and yield quality parameters measured
 - plant physiology (number of branches, length of branches, number leaves, size of the leaves, diameter trunk)
 - fruit dimensions (width, length, dimension inner wall,...)
 - fruit durability
 - sugar content
- informal quality control: approved by colleagues

Microclimate monitoring

DLR

Relative Humidity:

- zone 50: overall highest relative humidity (3% higher w.r.t. control zone)
- zone 30: lowest relative humidity (on average 2% lower w.r.t. control, 5-8% lower w.r.t. zone 50)