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Abstract—Interferometric synthetic aperture radar (InSAR) is
an increasingly important remote sensing technique that enables
three-dimensional (3D) sensing applications such as the generation
of accurate digital elevation models (DEMs). In this paper,
we investigate the joint formation and communication resource
allocation optimization for a system comprising two unmanned
aerial vehicles (UAVs) to perform InSAR sensing and to transfer
the acquired data to the ground. To this end, we adopt as sensing
performance metrics the interferometric coherence, i.e., the local
correlation between the two co-registered UAV radar images, and
the height of ambiguity (HoA), which together are a measure
for the accuracy with which the InSAR system can estimate the
height of ground objects. In addition, an analytical expression
for the coverage of the considered InSAR sensing system is
derived. Our objective is to maximize the InSAR coverage while
satisfying all relevant InSAR-specific sensing and communication
performance metrics. To tackle the non-convexity of the formu-
lated optimization problem, we employ alternating optimization
(AO) techniques combined with successive convex approximation
(SCA). Our simulation results reveal that the resulting resource
allocation algorithm outperforms two benchmark schemes in
terms of InSAR coverage, while satisfying all sensing and real-
time communication requirements. Furthermore, we highlight
the importance of efficient communication resource allocation
in facilitating real-time sensing and unveil the trade-off between
InSAR height estimation accuracy and coverage.

I. INTRODUCTION

The widespread use of unmanned aerial vehicles (UAVs) has
revolutionized modern technology, impacting fields like remote
sensing, communication, and disaster monitoring [1]. Their ver-
satility and cost-effectiveness have made them an indispensable
tool for these diverse applications. Specifically, UAVs excel
in remote sensing applications due to their remarkable ability
to swiftly acquire high-quality data, be it for ranging and
detection or imaging purposes [2]. In this context, seamless
UAV-to-UAV as well as UAV-to-ground connectivity enables
the timely collection and tranfer of essential information in
highly dynamic scenarios. In fact, researchers have made signif-
icant strides in developing robust communication architectures
that can ensure real-time UAV-based communication even in
challenging environments [3].

Interferometric synthetic aperture radar (InSAR) is a well-
established remote sensing technique, for which the use of
UAVs will open up new application opportunities for the high-
resolution observation of small-scale areas and the systematic
monitoring of local processes [4]. InSAR systems employ
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two synthetic aperture radar (SAR) sensors to illuminate a
given area from different angles and by analyzing the phase
difference of the two received radar signals, information about
the topography and temporal variations of the target area can
be derived [5]. For InSAR, the sensing area is defined by the
region where the ground footprints of the two side-looking
radar antennas overlap. Furthermore, conventional sensing per-
formance metrics, such as the detection probability and the
false alarm rate, are inadequate for evaluating the InSAR
performance. In fact, the key performance metric for estimating
interferometric performance is coherence, which is a function
of the correlation between the co-registered master and slave
SAR images [5]. Another relevant performance metric is the
height of ambiguity (HoA), which is a proportionality constant
between the interferometric phase and the terrain height and
is thus related to the sensitivity of the radar to the ground
topography [5]. An interesting trade-off in performance arises
here; while a large inter-UAV separation distance leads to a
small HoA, improving sensing accuracy, it also leads to a
degradation of the image coherence [6]. Based on the above
discussion, existing results for conventional UAV-based sensing
[7] are not applicable for UAV-based InSAR sensing. Moreover,
while some preliminary UAV-based InSAR experiments have
been reported in [8], [9], the optimization-based design of these
systems has not been yet considered in the open literature.

In this paper, we present the first optimization framework
for communication-assisted UAV-based bistatic InSAR sensing.
Our contributions can be summarized as follows:

• We adopt InSAR-specific sensing performance metrics
such as InSAR coverage, HoA, and interferometric co-
herence for optimization of InSAR systems.

• We formulate and solve a joint formation and commu-
nication resource optimization problem to maximize the
UAVs’ coverage while guaranteeing the pertinent sensing
and communication constraints.

• Our simulations reveal that, in comparison with two
benchmark schemes, a significantly larger ground area
can be covered with the proposed scheme and highlight
interesting InSAR-specific performance trade-offs.

Notations: In this paper, lower-case letters x refer to scalar
numbers, while boldface lower-case letters x denote vectors.
{a, ..., b} denotes the set of all integers between a and b. | ·
| denotes the absolute value operator. RN represents the set
of all N -dimensional vectors with real-valued entries. For a
vector x ∈ RN , ||x||2 denotes the Euclidean norm, whereas
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Fig. 1: InSAR sensing system with two UAV SAR sensors and a GS
for real-time data offloading.

xT stands for the transpose of x. For a real-valued multivariate
function f(x), ∇xf(a) denotes the gradient vector of f with
respect to (w.r.t.) x evaluated for an arbitrary vector a. For
real numbers a and b, max(a, b) and min(a, b) stand for the
maximum and minimum of a and b, respectively. For a scalar
x ∈ R, [x]+ refers to max(0, x). The notation Xn(x1, ...,xi)
is an equivalent notation for X highlighting that X depends on
optimization variables (x1, ...,xi) and time slot n.

II. SYSTEM MODEL

We consider two rotary-wing UAVs, denoted by U1 and U2,
that perform InSAR sensing of a given ground area. U1, serving
as the master drone, transmits and receives radar signals,
whereas U2, serving as the slave drone, only receives the
echoes. We adopt a three-dimensional (3D) coordinate system,
where the x-axis represents the ground range direction, the y-
axis represents the azimuth direction, and the z-axis defines the
altitude of the drones above ground, see Figure 1. We discretize
the total mission time T into N uniform time slots δt such that
T = N ·δt . We perform across-track interferometry [4], where
both drones are located in the same x−z plane, also referred to
as the across-track plane [4], and follow a linear trajectory, i.e.,
the stripmap SAR imaging mode is employed [10]. Therefore,
the radar coverage along the x-axis, referred to as swath, is
centered w.r.t. a line that is parallel to the y-axis and passes
through point (xt, 0, 0), see Figure 1. Usually, multiple swaths
are required to cover a large area, therefore maximizing the
swath is required [11]. Moreover, for InSAR, to ensure that
U1 and U2 are always in the same across-track plane, they fly
with the same fixed velocity vy = (vy[1], ..., vy[N ])T ∈ RN

such that in time slot n, the velocity vector is given by
v[n] = (0, vy[n], 0)

T ∈ R3,∀n, [12]. The location of Ui in time
slot n is denoted by qi[n] = (xi, y[n], zi)

T , i ∈ {1, 2}, where
the y-axis position vector y = (y[1] = 0, y[2], ..., y[N ])T ∈ RN

is given by:

y[n+ 1] = y[n] + vy[n]δt,∀n ∈ {1, N − 1}. (1)

Hereinafter, as the y-axis position is pre-determined, we use the
simplified notation qi = (xi, zi)

T ∈ R2,∀i ∈ {1, 2}, to denote
the position of Ui in the across-track plane. Furthermore, the
interferometric baseline, which is the distance between the two
InSAR sensors, is given by:

b(q1,q2) = ||q2 − q1||2. (2)

A. Bistatic InSAR Coverage

Unlike cooperative UAV-based sensing [13], the InSAR
coverage is limited to the area in which the beam footprints
of U1 and U2 overlap, see Figure 2. The coverage problem
for UAV-based sensing is challenging because of its near-range
nature which causes the swath width to be limited. The usable
swath width where the beam footprints of both UAVs overlap
can be obtained as follows:

S(q1,q2) =
[
min (x2 + tan(θfar)z2, x1 + tan(θfar)z1)−

max(x1 + tan(θnear)z1, x2 + tan(θnear)z2)
]+

,

(3)

where θfar = θd+
θ3dB
2 , θnear = θd− θ3dB

2 , θd is the depression
angle of the SAR antenna, and θ3dB its -3 dB beamwidth in
elevation, see Figure 2. Thus, the total area covered by the
InSAR radar in time slot n is approximated1 as follows:

CN (q1,q2) =

N∑
n=1

S(q1,q2)vy[n]δt. (4)

Now, let r1 and r2 denote the slant range of the radars of U1

and U2, respectively. These slant ranges are given by [4]:

ri(qi) =
√

(xi − xt)2 + (zi)2,∀i ∈ {1, 2}. (5)

To maximize the coverage, the master UAV is positioned in the
across-track plane such that its SAR antenna beam footprint on
the ground is centered at xt. Furthermore, we assume r2(q2) ≤
r1(q1) and impose the following condition:

x1 = xt − z1 tan(θd). (6)

B. InSAR Performance

Next, we introduce the relevant InSAR sensing performance
metrics, namely the coherence and HoA.

1) InSAR coherence: Important types of decorrelation that
affect InSAR coherence, and thereby InSAR performance,
are the signal-to-noise ratio (SNR) decorrelation and baseline
decorrelation. In particular, low SNRs in SAR data acquisition
result in a loss of coherence between the master and slave SAR
images during processing. In time slot n, the resulting SNR
decorrelation is given by [12]:

γSNR,n(q1,q2) =
∏

i∈{1,2}

1√
1 + SNR−1

i,n(q1,q2)
,∀n, (7)

where SNRi,n denotes the SNR achieved by Ui in time slot n.
In particular, the SNR achieved by U1 is given by [12]:

SNR1,n(q1) =
cn

r31(q1) sin(θ1)
,∀n, (8)

1The approximation is due to the elliptical shape of the beam footprint on
the ground and becomes negligible for large N .
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Fig. 2: Illustration of the bistatic UAV formation, denoted by
{q1,q2}, in the across-track plane.

where θ1 is the angle that U1’s line-of-sight (LOS)2 has with
the vertical and cn =

σ0Pt Gt Gr λ3 c τp PRF
44π3vy [n]kbTsys BRg F Latm Lsys Laz

. Here,
σ0 is the normalized backscatter coefficient, Pt is the radar
transmit power, Gt is the transmit antenna gain, Gr is the
receive antenna gain, λ is the wavelength, c is the speed of
light, τp is the pulse duration, PRF is the pulse repetition
frequency, kb is the Boltzmann constant, Tsys is the receiver
temperature, BRg is the bandwidth of the radar pulse, F is the
noise figure, and Latm, Lsys, and Laz, represent the atmospheric
losses, system losses, and azimuth losses, respectively. The
SNR achieved by the slave UAV is given by [12]:

SNR2,n(q1,q2) =
cn

r21(q1)r2(q2) sin(θ2(q2))
,∀n, (9)

where θ2 is the angle that U2’s LOS has with the vertical.
Another relevant type of decorrelation is the baseline decorrela-
tion. It reflects the loss of coherence caused by the acquisition
of the two SAR images in InSAR under different angles. The
baseline decorrelation is given by [9]:

γRg(q2) =
(2 +Bp) sin (θ2(q2))− (2−Bp) sin(θ1)

Bp (sin(θ1) + sin (θ2(q2)))
, (10)

where Bp =
BRg

f0
is the fractional bandwidth and f0 is the radar

center frequency. It can be shown that a large interferometric
baseline results in high baseline decorrelation and, therefore,
degrades the coherence.

2) Height of Ambiguity (HoA): The HoA is defined as the
height difference which results in a complete 2π cycle of the
interferometric phase [12]. It is therefore related to the accuracy
of the height estimate in the generated digital elevation model
(DEM). Similar to the baseline decorrelation, the HoA depends
on the UAV formation and is given by [12]:

hamb(q1,q2) =
λr1(q1) sin(θ1)

b⊥(q1,q2)
, (11)

where b⊥ is the perpendicular baseline, which is the magnitude
of the projection of the baseline vector perpendicular to the

2The radar LOS is defined by the line connecting the UAV with the reference
point (xt, 0, 0).

slant range, see Figure 2. The perpendicular baseline can be
obtained as follows:

b⊥(q1,q2) = b(q1,q2) cos
(
θ1 − α(q1,q2)

)
, (12)

where α(q1,q2) is the angle between the interferometric base-
line and the horizontal plane, see Figure 2. Notice that a
large interferometric baseline leads to a small HoA value, and
therefore, to a better sensitivity to the ground topography for a
given error of the interferometric coherence [5].

C. Communication Performance

We target real-time offloading of the radar data to a com-
munication ground station (GS), where we adopt frequency-
division multiple-access (FDMA) transmission from the master
and slave UAVs to the GS. The instantaneous transmit power
consumed for communication by the master and slave UAVs
is given by Pcom,1 = (Pcom,1[1], ..., Pcom,1[N ])T ∈ RN and
Pcom,2 = (Pcom,2[1], ..., Pcom,2[N ])T ∈ RN , respectively. We
denote the location of the GS by g = (xg, yg, zg)

T ∈ R3 and
the distance from Ui to the GS by di,n(qi) = ||qi[n]−g||2,∀i ∈
{1, 2},∀n. We suppose that both UAVs fly at sufficiently high
altitudes to allow obstacle-free communication with the GS
over a LOS link. Thus, based on the free-space path loss model
and FDMA, the instantaneous throughput from Ui,∀i ∈ {1, 2},
to the GS is given by:

Ri,n(qi,Pcom,i) = Bc,i log2

(
1 +

Pcom,i[n] γ

d2i,n(qi)

)
,∀n, (13)

where Bc,i is the fixed communication bandwidth allocated for
Ui and γ is the reference channel gain3 divided by the noise
variance.

III. PROBLEM FORMULATION AND SOLUTION

A. Problem Formulation

In this paper, we aim to maximize the InSAR coverage by
jointly optimizing the UAV formation {q1,q2} and the commu-
nication resources {Pcom,1,Pcom,2} while satisfying commu-
nication and interferometric quality-of-service constraints. To
this end, the following optimization problem is formulated:

(P.1) : max
q1,q2,Pcom,1,Pcom,2

CN (q1,q2)

s.t. C1 : zmin ≤ zi ≤ zmax,∀i ∈ {1, 2},
C2 : x1 = xt − z1 tan(θd),

C3 : r2(q2) ≤ r1(q1),

C4 : x2 ≤ xt,

C5 : b(q1,q2) ≥ bmin,

C6 : γSNR,n(q1,q2) ≥ γmin
SNR,∀n,

C7 : γRg(q2) ≥ γmin
Rg ,

C8 : hmin
amb ≤ hamb(q1,q2) ≤ hmax

amb,

C9 : 0 ≤ Pcom,i[n] ≤ Pmax
com ,∀ i ∈ {1, 2},∀n,

C10 : Ri,n(qi,Pcom,i) ≥ Rmin,i,∀ i ∈ {1, 2},∀n,
3The reference channel gain is the channel power gain at a reference distance

of 1 m.



C11 :

N∑
n=1

Pcom,i[n]δt ≤ Ecom,∀i ∈ {1, 2},∀n.

Note that the InSAR coverage CN differs from the cooperative
sensing coverage [13]. Constraint C1 define the maximum and
minimum allowed flying altitude, denoted by zmax and zmin,
respectively. Constraints C2 and C3 ensure maximum overlap
between the beam footprint of the master drone and the area
of interest. Constraint C4 is imposed because a side-looking
SAR is assumed. Constraint C5 ensures safe operation, where
bmin is the minimum separation distance of the two drones.
Constraints C6 and C7 ensure minimum required coherence
thresholds on the sensing SNR and baseline decorrelation,
denoted by γmin

SNR and γmin
Rg , respectively. Constraint C8 imposes

minimum and maximum HoAs denoted by hmin
amb and hmax

amb,
respectively, that satisfy prescribed DEM requirements [5].
Note that constraints C6, C7, and C8 are specific to InSAR
applications and have not been considered in existing UAV-
based optimization frameworks. In fact, if the baseline of the
UAV formation is too large, the signals are corrupted due
to a high baseline decorrelation, while if the baseline is too
small, the sensitivity to the ground topology is reduced [6].
Constraint C9 ensures that the communication transmit power
is non-negative and does not exceed the maximum allowed level
denoted by Pmax

com . Constraint C10 ensures that the achievable
throughput of drone Ui does not fall below the minimum
required data rate Rmin,i, which corresponds to an upper bound
on the amount of sensing data collected by Ui. Constraint C11
limits the consumed communication energy to Ecom. Note that
some constraints do not depend on time n as some variables,
such as x1 and z2, are optimized but are fixed across time
due to the prescribed linear InSAR trajectory imposed by the
stripmap mode SAR operation [10].

B. Solution of the Optimization Problem

Problem (P.1) is non-convex due to its objective function and
constraints C3 and C5− C8, which are non-convex and involve
coupled optimization variables q1 and q2. In general, it is very
challenging to find the globally optimal solution to problem
(P.1) and the available optimal algorithms suffer from high
time complexity. To strike a balance between performance and
complexity, we provide a low-complexity sub-optimal solution
for the formulated problem based on alternating optimization
(AO). To this end, problem (P.1) is divided into two sub-
problems, namely (P.1.a) and (P.1.b).

1) Slave UAV Optimization: First, problem (P.1) is solved
for fixed {q1,Pcom,1}. The resulting problem, denoted by
sub-problem (P.1.a), is still non-convex and difficult to solve
due to its objective function as well as non-convex constraints
C5, C7, and C8. Yet, we provide a low-complexity sub-optimal
solution based on successive convex approximation (SCA).
In a first step, we replace the non-concave objective function
with an equivalent concave function.

Proposition 1. Non-concave objective function CN can be
equivalently replaced by the following concave function:

C̃(q1,q2) = min(x1 + tan(θfar)z1, x2 + tan(θfar)z2)−
max(x1 + tan(θnear)z1, x2 + tan(θnear)z2), (14)

Proof. The proposition can be proved by noting that

CN (q1,q2) = δt
N∑

n=1
vy[n] max(0, C̃(q1,q2)). The detailed

proof, omitted here due to space limitation, is provided in the
arxiv version of this paper [14].

Based on Proposition 1, we equivalently maximize objective
function C̃ instead of CN . Next, we approximate non-convex
constraint C5 with a convex constraint.

Lemma 1. A first-order convex approximation for the concave
term −b2(q1,q2) around an arbitrary point a ∈ R2 and for
fixed q1 is obtained based on surrogate functions as follows:

g(q2) = b2(q1,q2)− 2(a− q1)
T (2q2 − a− q1). (15)

Proof. The proof requires verifying the first-order conditions
for surrogate functions detailed in [15]. The complete proof is
provided in the arxiv version of this paper [14].

Based on Lemma 1, in the jth iteration of the SCA
algorithm, constraint C5 can be approximated around point
q
(j)
2 ∈ R2 by the following convex constraint:

C̃5 : b2(q1,q2)− 2(q
(j)
2 − q1)

T (2q2 − q
(j)
2 − q1) ≤ −b2min.

(16)

Next, we use first-order Taylor expansion around point q(j)
2 ∈

R2 to provide a convex approximation for constraint C7:

C̃7 :(x2 − xt)−A sin(θ1)r2(q
(j)
2 )−

A sin(θ1)∇q2
r2(q

(j)
2 )T (q2 − q

(j)
2 ) ≤ 0, (17)

where A =
−γmin

Rg Bp−2+Bp

γmin
Rg Bp−2−Bp

≥ 0.

Proposition 2. Based on C2 and C3, the perpendicular base-
line is independent of q1, and can be rewritten as:

b⊥(q2) =
1√

tan(θ1)2 + 1

∣∣∣(xt − x2)− tan(θ1)z2

∣∣∣. (18)

Proof. The proposition can be proved by exploiting the geom-
etry of the problem. Due to space limitation, the full proof is
provided in the arxiv version of this paper [14].

Based on Taylor expansion and Proposition 2, non-convex
constraint C8 can be approximated around point q(j)

2 ∈ R2 by
the following convex constraints:

C̃8a :((xt − x2)− tan(θ1)z2)
2 ≤ a(

hmin
amb

)2 , (19)

C̃8b :J(q
(j)
2 ) +∇q2J(q

(j)
2 )T (q2 − q

(j)
2 ) ≤ −a

(hmax
amb)

2 , (20)

where a = (tan2(θ1) + 1)λc tan(θ1)z1 and J(q2) = −((xt −
x2) − tan(θ1)z2)

2 . To summarize, sub-problem (P.1.a) is
approximated by the following convex optimization problem:

(P̃.1.a) : max
q2,Pcom,2

C̃(q1,q2)

s.t. C1− C4, C̃5,C6, C̃7, C̃8a, C̃8b,C9− C11.



The proposed procedure to solve sub-problem (P.1.a) is
summarized in Algorithm 1, where the convex approximation
(P̃.1.a) is solved using the Python convex optimization library
CVXPY [16]. Algorithm 1 converges to a local optimum of
sub-problem (P.1.a) in polynomial time complexity [17].

Algorithm 1 Successive Convex Approximation for (P.1.a)

1: For fixed {q1,Pcom,1}, set initial point {q(1)
2 ,P

(1)
com,2},

iteration index j = 1, and error tolerance 0 < ϵ ≪ 1.
2: repeat
3: Determine coverage C̃(q1,q2), q2, and Pcom,2 by solving

˜(P.1.a) around point {q(j)
2 ,P

(j)
com,2}.

4: Set j = j + 1, q
(j)
2 = q2, P

(j)
com,2 = Pcom,2.

5: until
∣∣ C̃(q1,q

(j)
2 )−C̃(q1,q

(j−1)
2 )

C̃(q1,q
(j)
2 )

∣∣ ≤ ϵ

6: return solution

2) Master UAV Optimization: Next, problem (P.1) is solved
for fixed {q2,Pcom,2}. The resulting problem, denoted by
sub-problem (P.1.b), is still non-convex due to the objective
function and constraints C5 and C8. Problem (P.1.b) is solved
based on SCA, similar to (P.1.a). First, we replace the objective
function CN with C̃ as in (14). Similar to (16), and based on
Lemma 1, in the jth iteration of the SCA algorithm, constraint
C5 is approximated around point q(j)

1 ∈ R2:˜̃
C5 : b2(q1,q2)− 2(q

(j)
1 − q2)

T(2q1 − q
(j)
1 − q2) ≤ −b2min.

(21)
Based on Proposition 2 and first-order Taylor expansion,
constraint C8 is approximated around point q(j)

1 ∈ R2 by the
following convex constraints:˜̃

C8a : r1(q1) ≤
hmax
ambb⊥(q2)

λ sin(θ1)
, (22)

˜̃
C8b : r21(q

(j)
1 ) +∇q1r1(q

(j)
1 )T (q1 − q

(j)
1 ) ≥

(hmin
ambb⊥(q2)

λ sin(θ1)

)2
.

(23)
To summarize, sub-problem (P.1.b) is approximated by the
following convex optimization problem:

(P̃.1.b) : max
q1,Pcom,1

C̃(q1,q2)

s.t. C1− C3,
˜̃
C5,C6,

˜̃
C8a,

˜̃
C8b,C9− C11.

Similar to (P.1.a), problem (P.1.b) is solved based on
SCA, where the convex approximation ˜(P.1.b) is solved using
CVXPY [16]. The algorithm converges to a local optimum in
polynomial time complexity [17]. As the proposed algorithm
is similar to Algorithm 1, its detailed steps are omitted.

C. Solution to Problem (P.1)

To summarize, to solve problem (P.1), we use AO by solving
sub-problems (P.1.a) and (P.1.b) iteratively. In Algorithm 2,
we summarize all the steps of the solution to problem (P.1).
Based on [18], Algorithm 2 converges to a local optimum of
problem (P.1) in polynomial time complexity. In practice, this
outcome is achieved in just a few iterations.

Algorithm 2 Alternating Optimization Algorithm

1: Set initial formation (q
(1)
1 ,q

(1)
2 ), initial communication

resources (P
(1)
com,1,P

(1)
com,2), iteration index k = 1, and

error tolerance 0 < ϵ ≪ 1.
2: repeat
3: Determine coverage C̃(q

(k)
1 ,q2), q2, and Pcom,2 by

solving (P.1.a) for fixed (q
(k)
1 ,P

(k)
com,1) with initial point

(q
(k)
2 ,P

(k)
com,2) using Algorithm 1.

4: Set k = k + 1, q(k)
2 = q2 and P

(k)
com,2 = Pcom,2.

5: Determine coverage C̃(q1,q
(k)
2 ), q1, and Pcom,1 by

solving (P.1.b) for fixed (q
(k)
2 ,P

(k)
com,2) with initial point

(q
(k−1)
1 ,P

(k−1)
com,1).

6: Set q(k)
1 = q1, and P

(k)
com,1 = Pcom,1.

7: until
∣∣ C̃(q

(k)
1 ,q

(k)
2 )−C̃(q

(k−1)
1 ,q

(k−1)
2 )

C̃(q
(k)
1 ,q

(k)
2 )

∣∣ ≤ ϵ

8: return solution {q(k)
1 ,q

(k)
2 ,P

(k)
com,1,P

(k)
com,2}

TABLE I: System parameters [5], [9], [11], [12].

Parameter Value Parameter Value Parameter value
zmin 1 m xg = yg -93 m f0 2.5 GHz
zmax 100 m zg 2 m BRg 3 GHz
hmin
amb 0.6 m Pmax

com 10 dB Tsys 400 K
hmax
amb 2 m Rmin,i 1 Mbits Lsys 2 dB
xt 20 m Ecom 700 J Lazm 2 dB

bmin 2 m Bc,i 1 GHz Latm 0 dB
δt 0.5 s γ 20 dB F 5 dB
N 102 θ3dB 30° σ0 -5 dBm2

γmin
Rg 0.8 θd 45° τp × PRF 0.8

γmin
SNR 0.8 vy 2 m/s Gt 6 dBi
Pt 15 dBm λ 0.12 m Gr 6 dBi

IV. SIMULATION RESULTS AND DISCUSSION

In this section, we present simulation results for the proposed
UAV formation and resource allocation algorithm. The system
parameters are specified in Table I. The proposed solution is
compared with the two following benchmark schemes:
Benchmark scheme 1: Here, we employ a vertical bistatic
formation, i.e., we optimize the x-position of one of the drones
and impose x1 = x2 [19]. The remaining optimization variables
are determined based on Algorithm 2.
Benchmark scheme 2: Here, we use equal communication
powers, i.e., we optimize Pcom,i[1] and enforce Pcom,i[n] =
Pcom,i[n−1], ∀i ∈ {1, 2}, ∀n ≥ 2. The remaining optimization
variables are determined by Algorithm 2.

Figure 3 illustrates the convergence of the proposed Al-
gorithm 2, which solves problem (P.1), as well as that of
Algorithm 1, which solves sub-problem (P.1.a). For different
initial bistatic formations, Algorithm 2 converges consistently
to the same objective function value. Though the convergence
rate depend on the initial UAV formation, the optimal value is
found in a few iterations for both algorithms.

Figure 4 shows the achieved InSAR coverage versus the max-
imum UAV communication power, Pmax

com . Benchmark scheme
2, which employs a static communication power allocation,
exhibits the lowest performance. Benchmark scheme 1 achieves
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Fig. 3: Convergence of the proposed solution for different initial
bistatic UAV formations. The error tolerance is ϵ = 10−4.
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a higher performance than benchmark scheme 2, due to the op-
timization of the communication power allocation, which leads
to an enhanced range of the drones. For a maximum HoA of
hmax
amb = 2.2 m, the proposed solution substantially outperforms

benchmark schemes 1 and 2 as it jointly optimizes the UAVs
formation and the communication resource allocation, with
an additionally covered area of more than 575 m2 and 2300
m2, respectively. Figure 4 also reveals an interesting InSAR
performance trade-off; while a smaller HoA improves the
accuracy of the InSAR sensing [4]–[6], it results in a reduced
InSAR coverage. This is because a lower HoA necessitates a
UAV formation with a larger perpendicular baseline, which in
turn leads to an increased offset between the ground footprints
of the master and slave radar systems. For instance, a maximum
HoA of 2.2 m requires a perpendicular baseline of only 5.54
m, whereas a maximum HoA of 1.2 m requires a perpendicular
baseline of 10 m leading to a loss of 7.48% in total coverage.

V. CONCLUSION

In this paper, we investigated the UAV joint formation and
communication resource allocation optimization for bistatic
UAV-based InSAR sensing, where InSAR coverage, interfero-
metric coherence, and HoA were introduced as relevant InSAR
sensing performance metrics. A non-convex optimization prob-
lem was formulated and solved for the maximization of the
bistatic InSAR ground coverage while enforcing the pertinent
communication and sensing performance limits. Simulation
results confirmed the superior performance of the proposed
algorithm compared to two benchmark schemes and empha-
sized the important role of efficient communication resource
allocation for maximum InSAR coverage. We showed that UAV
formations with a long perpendicular interferometric baseline,
which achieve higher sensing accuracy, result in reduced InSAR
coverage. This creates an interesting sensing performance trade-
off specific to UAV-based InSAR systems.
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