PERFORMANCE MEASUREMENTS FOR MUSUBI

NHR4CES Performance for CFD

Harald Klimach, DLR, Institute of Software Methods for Product Virtualisation

Harald Klimach, DLR, (SP-SUM), 2024-06-1

Most of the work I present has been done by my colleagues over the years:

- Manuel Hasert
- Kannan Masilamani
- Jiaxing Qi
- Simon Zimny
- Kartik Jain
- Jana Gericke
- Gregorio Gerardo Spinelli

Overview

- APES Framework
- Musubi Design
- Performance Measurements

imach, DLR, (SP-SUM) 20

APES-Suite Objectives

- Common infrastructure for stencil-based solvers
- Complete distributed parallelism across the process chain
 - Octree mesh: implicit information on topology
 - Space-Filling curve: Simple partitioning allows distributed reading of data
- High portability on HPC system
 - Few dependencies
- Sources (F2003) available at:

https://github.com/apes-suite

APES-Suite

Harald Klimach, DLR, (SP-SUM), 2024-06-14

Typical Processing Pipeline

 Example on HLRS Hermit (Cray XE System with AMD Opteron 6276 processors; 2012 - 2014)

Treelm

- Sparse octree mesh
- Distributed loading
 - Partitioning via Z-curve

- Neighborhood information generated after loading on distributed system:
 - Adds Halo elements on each partition for communication
 - Adds "Ghost" elements in each partition for interpolation

MUSUBI

velocity Magnitude

0.69

0.34

0

74

1

1.03

DLR

Lattice-Boltzmann Method (LBM)

- Considering the Boltzmann Equation but only in a discrete velocity space, Mesoscopic scale
 - Simple geometric representation
- Stencil-based with two foundational algorithmic steps: stream & collide

- Yields an explicit time stepping scheme for weakly compressible flows
- Few floating point operations
 - Typically memory-bound

Musubi

- LBM solver in Apes-Suite
- Multiple scales
- Multiple species
- Arbitrary stencil definitions
- Levelwise kernels:
 - Kernel implemented as in single-level, serial implementation
 - Communication in Halo elements outside kernel
 - Interpolation in Ghost elements outside kernel

11

Acoustic cylinder: L=H=300D, Re=150, Ma=0.2, BGK, Normalized pressure fluctuations

Musubi Diversity

- Different Physics
 - Navier-Stokes flow
 - Maxwell-Stefan diffusion
 - Poisson equation
- Different Collision Operators
 - BGK
 - MRT
 - TRT
 - Cumulant
- Different Stencils
 - D2Q9
 - D3Q19, D3Q27

(a) Clotting process inside an aneurysm

[Hasert]

- Focus on flows with high Reynolds number and curved walls
- Introducing and validating more collision operators like recursively regularized ones
- Turbulence modelling
 - Need to deal with gradients
- Turbulent wall models

- Lattice Updates Per Second (LUPS) have become a common metric to express the performance for LBM
- Akin to FLOPS, as there is a given number of floating point operations per lattice update

Collision Scheme	FLOP/LUP
(plain) BGK (Q19)	160
MRT (Q19)	205

Memory access, double buffering, indirect access (at least)

Stencil	Count	= Byt	tes/LUP		
D3Q19	19 x 8 + 18 x 4	=	224	Usually	
D3Q27	27 x 8 + 26 x 4	=	320		> TByte/FLOP

Computational balance of the machine given by

Maximum bandwidth Peak performance

- Examples:
 - NEC SX-ACE: 256 GB/s / 256 GFLOPS = 1 Byte/FLOP
 - AMD Opteron 6276 (Hermit): 51.2 GB/s / 147.2 GFLOPS = 0.35 Byte/FLOP
 - AMD EPYC 7742 (Hawk): 190 GB/s / 2300 GFLOPS = 0.08 Byte/FLOP

Roofline Model

(For example on SX-ACE)

Measurement with LIKWID

Harald Klimach, DLR, (SP-SUM), 2024-06-14

Dependency on Problem Size

- Achieved performance usually also depends on the problem size
 - Memory hierarchy
 - Utilization of SIMD instructions, pipelines

19

. . .

Performance Map

Musubi with Uniform Mesh on Hermit

21

Haswell Systems: Different Interconnects

HLRS Hornet (Intel Haswell, Xeon E5-2680v3, 12 Cores) **Aries Interconnect** nNodes 1 nNodes 64 0 0 nNodes 128 nNodes 2 O O nNodes 256 O nNodes 512 ♦ nNodes 1024 nNodes 2048 200 MLUPS/node 100 50

 10^{5}

nElems/node

 10^{4}

 10^{6}

 10^{7}

 10^{8}

LRZ SuperMUC2 (Intel Haswell, Xeon E5-2697v3, 14 Cores) Infiniband FDR14 Tree

22

 10^{2}

Juqueen: Limited Memory per Core

- IBM BlueGene/Q: PowerPC A2
- Per node: 16 cores / 16 GB
- Exhibited slow initialization

SX-ACE (HLRS Kabuki)

- Requirement of long vectors
- 4 cores / 64 GB
- High Memory Bandwidth
 - Larger relative communication fraction

Note on Vectorization

- Code mostly automatically vectorized
- Compiler sometimes needs some help

- Vectorization often also helps performance on scalar systems
- Blocking to limit memory, and possibly exploit caches / registers

Haswell – SX-ACE Comparison

Musubi performance map

nElems/node

26

- European Project Performance Optimisation and Productivity
- Analysis by the kind colleagues at HLRS
- José Gracia
- Christoph Niethammer
- Stephan Walter
- Anastasia Shamakina

Used System

- HorUS Cluster at University Siegen
- Nodes with two Intel Xeon X5650 processors (6 cores per processor)
- Infiniband Interconnect
- Installation of analysis tools by HLRS and cluster admins
 - No action on the user side

Testcase Setup

- Flow around sphere, D3Q19 stencil
 - Involves boundary conditions: q-value walls, inflow, outflow
 - Without Multilevel
 - Excluding IO, except for reading the mesh

Main Focus: Strong Scaling Performance

Harald Klimach, DLR, (SP-SUM), 2024-06-14

Main Cause for Degradation

[HLRS]

- Expected to see better strong scaling in this setting
- Boundary Conditions caused larger load-imbalance than expected
- Load Balance = average / maximal useful time = 86% on 192 processes

Communication Pattern

Each iteration:

- MPI_Irecv for all neighbors on every process
- MPI_Isend for all neighbors on every process
- MPI_waitall: wait on all communications to complete
- Observed up to 28 neighbors
- After M iterations (configurable):
 - MPI_Allreduce
- Available communication patterns (treelm), but all with waitall:
 - Isend_irecv
 - Isend_irecv_overlap
 - Typed_isend_ircev
 - Gathered_type

Harald Klimach, DLR, (SP-SUM), 2024-06-14

HorUS has Bad Days

Recommendations for Musubi

- Take care of imbalances!
- Use non-temporal stores (SSE2 feature)
 - Implemented and improved performance by around 50%
- Overlap communication and computation
 - Can be achieved by additional indirection (not implemented)

- Avoid indirection
 - Difficult in sparse mesh

Load Balancing

Balancing along the space-filling-curve (Chains-on-chains partitioning)

5 3 1 2 1 Σ=12	4 6 1 Σ=10	3 2 6	1 3	1 1 1 Σ=7	1	1 9	1 Σ=1	1 L3	1	1	1 1 Σ=	. 1 :5	1	Weights
Rank 0	Rank	1	Ra	Rank 2 Rank 3 Rank 4				Rank 3						
10.6		21.2		3	2.8				43	.4				
0 5 8 9 11 12 0 0 0 0 1 1	16 22 23 1 2 2	26 28	3 29 32 2 2	2 33 34 3 3	35	5 36 3	45 4	46 4	47 4	48 4	19 50 4 4) 51 4	52 4	Prefix-Sum (MPL Exscan)
Rank 0	Rank 1		Ran	1k 2 Rank 3				Rank 4]		
5 3 1 4 2	4 1 6	3 2	2 1	3 1	1	1 1	9	1	1	1	1 1	1	1	
Rank 0	Rank1	Ra	ank 2		Ra	nk 3				Ra	nk 4			New Distribution

Load-Balancing Effect on Partitions

No balancing

With balancing

[Qi]

Table 1.1: Load imbalance and simulation performance of the flow over sphere test case.Load balance is performed at the middle of the simulation.

		bef	ore balance		after balance					
procs	T _{max}	T _{mean}	imbalance	MLUPS	T _{max}	T _{mean}	imbalance	MLUPS		
2	55.17	52.17	105.75%	10.21	52.07	51.48	101.15%	10.81		
3	38.88	30.64	126.89%	14.43	30.60	30.33	100.89%	18.26		
4	31.48	23.20	135.73%	17.81	23.95	23.24	103.09%	23.06		
5	30.90	19.62	157.44%	18.19	20.54	19.71	104.21%	26.90		
6	23.77	16.16	147.07%	23.57	16.91	16.55	102.15%	32.54		
7	23.30	15.40	151.28%	24.02	16.33	15.68	104.11%	33.73		
8	20.13	13.61	147.94%	27.71	14.33	13.93	102.86%	38.26		

38

Issue with Balancing Multi-Level Meshes

- Balancing strategy works for some Multi-Level setups
- Often very limited
 - Levels serialized in LBM algorithm
 - Space-Filling-Curve "ignores" levels
- Need to move to levelwise partitioning
 - But: breaks the concept of identifying elements without communication
 - Possibly introduce a distributed indirection

Minimizing Global Synchronization

- Health-checks and control use global reduction
 - Not critical to the actual numerical computation
 - User-defined intervals
- Introduced a scheme to use non-blocking collectives introduced in MPI-3
 - Delay the reduction completion by one check interval

Non-blocking MPI_IAllreduce

Added Features: Reduced Computational Intensity

- For some features (like turbulence models) more quantities need to be kept
 - More memory accesses
- Traded performance for features deemed necessary
 - As kernels are memory-bound
 - Latest Musubi version has more features, but achieves usually lower MLUPS

Hybrid Parallelism in Musubi

- Main kernels are simple loops
 - Straight forward to add OpenMP parallel do
- Not all parts are OpenMP parallel in Musubi
- With elements ordered by space-filling-curve
 - OpenMP loop blocks behave similar to MPI partitions
- Performance measured on HAWK (2 AMD EPYC 7742 processors with 64 cores each)

BGK D3Q19 on 64 Nodes

Beyond 4 threads performance degrades.

- Importance to keep complete parallel workflow in mind
- Musubi as a versatile simulation tool on HPC systems
- Simple performance metrics enable categorization and comparison across implementations and machines
- POP analysis really helpful and identified regions of improvement

Thema: Performance Measurements for Musubi

- Datum: 2024-06-14
- Autor: Harald Klimach
- Institut: Institut für Softwaremethoden zur Produkt-Virtualisierung
- Bildcredits: Alle Bilder "DLR (CC BY-NC-ND 3.0)", sofern nicht anders angegeben