
Bachelor thesis

in the degree program

Maritime Technologies (MAR)

Integration of High-resolution

Embedded Camera for Maritime

Object Georeferencing

Submitted by

Yanneck Deichmann

Matr. Nr.: 32942

on April 29, 2024

at the HS Bremerhaven

University supervisor: Prof. Dr. Axel Bochert

Company: German Aerospace Center Institute for the Protection of

Maritime Infrastructures

Technical supervisor: Borja Jesus Carrillo Perez

Yanneck Deichmann

Affidavit

I, Yanneck Deichmann, declare that I have authored this thesis independently, that

I have not used other than the declared sources, and that I have explicitly marked

all material which has been quoted either literally or by content from the sources

used.

Bremerhaven, the April 29, 2024

Yanneck Deichmann

I

Yanneck Deichmann

Acknowledement

Dear readers, thank you to all who have contributed to the realisation of this bachelor

thesis on developing a photosensitive embedded system that enables image trans-

formation with the help of sensor data from a smartphone. Special thanks go to

Prof. Dr. Axel Bochert, my supervisor at the Hochschule Bremerhaven. His expert

knowledge, constructive feedback, and support have been instrumental in enabling

me to complete this thesis.

Also, a special thanks goes to Borja Jesus Carrillo Perez, my supervisor at the

German Aerospace Institute, for the protection of Maritime infrastructure. His

practical experience and his dedication have been an indescribable help to me in

writing this thesis.

A special thanks go to the DLR Institute for the Protection of Maritime Infrastruc-

tures because they made it possible for me to do my bachelor’s thesis with their

company.

My thanks go to everyone who supported me in these difficult moments.

Last, I want to thank my parents, my beloved partner, and the DLR staff. Your

moral support, encouragement and encouraging words constantly strengthen me

when things get complicated.

Thank you for everything.

II

Yanneck Deichmann

Abstract

In maritime security contexts, it is essential to have an accurate and timely geo-

referencing system for maritime objects such as ships and vessels. This is crucial

for enhancing situational awareness and ensuring efficient monitoring. Existing sys-

tems are often static, and when they are moved, they lose the reference for image

transformation. To address this issue, this thesis proposes the integration of a high-

resolution camera into a mobile housing unit with an embedded system for image

processing and a smartphone for complementary data acquisition, which allows ship

georeferencing in a mobile manner.

The ship recognition software used in this system is YOLOv8, and the Android

smartphone collects sensor data. This configuration facilitates accurate conversion

of pixel coordinates of the recognized ships into geographic locations using raycasting

as georeferencing method, which enables display of latitudes and longitudes of ships

on a map. The experimental results validate that the detection and georeferencing

of ships is performed with an error of 16±7 meters using the integrated system.

These results are comparable to those of static camera systems, however adding

the potential of mobile embedded systems to further enhance maritime monitoring

capabilities. This innovative solution is a step forward in improving the accuracy

and efficiency of maritime monitoring systems

III

Yanneck Deichmann

Table of Contents

Acronyms VI

1. Introduction 1

1.1. Motivation . 1

1.2. Goals of the Thesis . 2

1.3. Structure of the Thesis . 3

2. Theory 5

2.1. Embedded Vision for Maritime Awareness 5

2.2. Object Recognition in the Maritime Domain 6

2.3. Image Georeferencing for Maritime Applications 7

2.3.1. Image Transformation . 8

2.4. Mathematical Conversion of Pixel to World Coordinates 10

3. System Description 13

3.1. Diagram that summarises the pipeline 14

3.2. High Resolution Camera . 15

3.3. Embedded Device . 15

3.4. Extrinsic Parameter Extraction using an Android Phone 16

3.5. Ship Detection using YOLOv8 . 18

3.6. Ship Georeferencing using Raycasting 20

4. System Calibration 23

4.1. Positioning of the Phone for GPS Location 23

4.2. Angles and Altitude calibration . 26

4.2.1. Calibration of the Angles . 27

4.2.2. Offset and Calculation of the Altitude 28

IV

Yanneck Deichmann

5. Experimental Set Up And Results 32

5.1. Image Acquisition . 32

5.2. GPS, Altitude and Orientation Data Acquisition 35

5.3. Using Raycasting and YOLOv8 . 37

5.4. Final Results and Calculation . 40

5.4.1. Calculation of the Results . 40

6. Conclusions 43

6.1. Contributions . 43

6.2. Future Work . 44

List of Figures 45

Listings 46

Bibliography 47

A. Appendix 52

V

Yanneck Deichmann

Acronyms

R Rotation Matrix.

T Translation Vector.

CMOS Complementary Metal Oxide Semiconductor.

CNNs Convolutional Neural Networks.

CPU Central Processing Unit.

DLR German Aerospace Center.

FoV Field of View.

FPGAs Field Programmable Gate Arrays.

GB Gigabyte.

GPS Global Positioning System.

GPUs Graphics Processing Units.

hAcc Horizontal Accuracy.

lat Latitude.

lon Longitude.

MI Institute for the Protection of Maritime Infrastruc-

tures.

VI

Yanneck Deichmann

PCIe Peripheral Component Interconnect Express.

USB Universal Serial Bus.

WGS84 World Geodetic System 1984.

YOLOv8 You Only Look Once, Version 8.

VII

Yanneck Deichmann

1. Introduction

This thesis was developed in collaboration with the Institute for the Protection of

Maritime Infrastructures (MI) of the German Aerospace Center (DLR) in coop-

eration with the Methods and Processing group. Focusing on the processing and

analysis of sensor and instrument data, this group explores maritime regions to

detect and assess critical infrastructures both above and below the waterline [15].

The foundation of this thesis lies in the recognition of the maritime situation for

the improvement of situational awareness. Throughout this thesis, the resources,

materials, and premises of the institution have been utilized.

1.1. Motivation

In the context of this Bachelor’s thesis, the importance of ship detection and geo-

referencing in improving maritime situational awareness is highlighted. Maritime

Situational Awareness involves understanding and monitoring maritime activities

to mitigate security risks, protect the environment, and optimize navigation [24].

By accurately detecting vessels from optical cameras and precisely referencing their

geographical positions, the risk of collisions can be reduced, the utilization of mar-

itime resources can be optimized, and the maritime industry’s strict safety and

security protocols can be maintained [25].

The choice of topic for this bachelor thesis stems from the interest in developing

maritime systems with security relevance. the integration of an embedded system

and a high-resolution camera that aimed to detect ships and convert the pixel of the

detected ships into real-world coordinates. In previous works [5], ship recognition

and georeferencing were accomplished using image transformation. However, when

the camera was moved, the calibration was no longer valid, therefore losing the

1

1.2. Goals of the Thesis Yanneck Deichmann

geographic references. Moreover, the work in [5] uses low-resolution cameras. The

use of a high-resolution camera and an embedded system that integrates sensor

data to dynamically georeference ships would address the gap presented. The high-

resolution of the high-resolution camera enhances the system’s capability for object

recognition and georeferencing, and using an embedded system allows the processing

of data locally, enhancing speed and security [6].

Another innovative aspect is the utilization of data from sensors on an Android

smartphone for transformation and calibration. Furthermore, the use of external

sensors to calibrate the system for georeferencing, allows the system’s mobility and

sets it apart from the stationary system of [5] and a lightweight and compact size

facilitate easy transport. This mobility serves several purposes: it allows for cost-

effective deployment of the camera, and it enables temporary monitoring, during

the construction of maritime infrastructures, during natural disasters or accidents.

Additionally, it significantly enhances maritime security by enabling real-time mon-

itoring, thereby aiding in the prevention of unauthorized or suspicious activities and

facilitating prompt responses to potential threats or emergencies.

1.2. Goals of the Thesis

This thesis is centered around the development of a embedded vision system with a

high-resolution industrial camera designed to recognize ships in images and georefer-

ence them to obtain their Latitude (lat) and Longitude (lon) coordinates relative to

the geographic coordinate system. The completion of this thesis contributes to the

field of maritime computer vision and provides insights into the realm of maritime

security. The main goals of this bachelor thesis are outlined as follows:

• Integration of hardware components into the system, encompassing a high-

resolution camera, an embedded device, a smartphone, a lens, a Peripheral

Component Interconnect Express (PCIe) and a hard drive.

• Calibration of the system to ensure optimal performance.

• Integration of essential software for ship detection and georeferencing of cap-

tured high-resolution images.

2

1.3. Structure of the Thesis Yanneck Deichmann

• Experimental evaluation of the accuracy of the employed georeferencing method

within this thesis, to assess the performance of the entire pipeline.

1.3. Structure of the Thesis

To ensure a thorough and engaging understanding of the objectives put forward in

this thesis, it has been thoughtfully divided into five distinct and interconnected

parts. Each part has been structured to provide a detailed analysis of the research

objectives, building on the previous section to create a cohesive and compelling

narrative. This division of the thesis into distinct parts allows for a clear and logical

presentation of the research findings, making it easier for the reader to follow and

comprehend.

Chapter 2 delves into the theoretical foundation, discussing embedded vision for

maritime awareness, background on object detection with a focus on the maritime

domain, and image georeferencing for maritime applications.

Chapter 3 focuses on the description of the system, beginning with a summary of

the system pipeline using a diagram and elaborating on each pipeline component.

This includes the 50-megapixel high-resolution camera, its housing, the lens, the

Jetson AGX Xavier as embedded system, and a PCIe to connect the camera with

the system. it will also be discussed how metadata required for the system are

acquired by reading sensors from a smartphone, comprising longitude, latitude, and

orientation angles crucial for image georeferencing.

A machine-learning object detector, specifically Ultralytics’ You Only Look Once,

Version 8 (YOLOv8), is employed to detect ships in the images. The chapter con-

cludes with the utilization of the raycasting method for ship georeferencing.

Chapter 4 focuses on system calibration, involving the calculation, determination,

and calibration of individual parameters of the smartphone sensors. Ensuring the

smartphone’s optimal positioning for accurate data determination and signal strength

is paramount.

Chapter 5, discusses the implementation, execution of experiments, test setup, and

presentation of results.

3

1.3. Structure of the Thesis Yanneck Deichmann

Finally, the conclusion chapter evaluates the measurements and provides recommen-

dations for future work on the project.

4

Yanneck Deichmann

2. Theory

This chapter aims to present the fundamental concepts crucial for comprehending

this thesis. Firstly, it offers an overview of embedded vision’s application in the

maritime domain. Second, it presents the process of object recognition and subse-

quent georeferencing from images. Additionally, it presents mathematical principles

necessary for converting pixel coordinates into world coordinates.

2.1. Embedded Vision for Maritime Awareness

Given the complexity of the maritime environment, which includes various ships,

boats, and other maritime operations, maritime awareness is essential for minimizing

collisions, illegal activities, environmental impacts, and threats to maritime security

[24]. A comprehensive understanding of the marine environment is necessary to

implement preventive measures. Hence, embedded vision has been utilized in mar-

itime surveillance, revolutionizing the implementation of advanced image processing

in embedded systems [24]. Embedded vision systems facilitate real-time processing,

automatic pattern recognition, and object tracking. The efficiency of embedded

vision in maritime surveillance has been bolstered through specialized hardware

components such as powerful Graphics Processing Units (GPUs) and Field Pro-

grammable Gate Arrays (FPGAs). This hardware enables parallel processing of

large volumes of visual data and helps optimize the performance of surveillance sys-

tems [23]. Integrating high-resolution cameras and sensors forms the cornerstone of

embedded vision in maritime surveillance. These modern imaging devices facilitate

real-time capture of detailed visual information about ships, boats, and other mar-

itime objects [6]. The application of specialized image processing algorithms is crit-

ical for extracting relevant information from the captured visual data. Algorithms

5

2.2. Object Recognition in the Maritime Domain Yanneck Deichmann

for object detection, pattern recognition, and tracking contribute to secure vessel

identification and precise monitoring of their movements [9]. Another rationale for

using embedded systems in computer vision setups is data security. Transferring

data to a server risks cyberattacks, such as privacy breaches [34]. Moreover, data

privacy laws can be better respected when the system processes confidential data

such as people present on the scene, without the risk of data transfer to a server

or cloud [17]. This thesis utilizes embedded systems to perform ship detection and

georeferencing from high-resolution images.

2.2. Object Recognition in the Maritime Domain

Object recognition in the maritime domain has its foundation in image processing,

with potential applications ranging from monitoring ship traffic to detecting possible

collisions at sea [30]. This powerful tool enables the recognition and highlighting of

ships in images and videos, as illustrated in Figure 2.1 [28]. Combining this with

machine learning capabilities allows the system to automatically reference important

information. Automatic recognition is essential to provide the system with objects

and corresponding object classes for object georeferencing [40]. Artificial neural

networks, such as Convolutional Neural Networks (CNNs), are highly effective for

image and object recognition as they can directly learn features from raw data [33],

[40]. To enable this, characteristic features of the objects to be recognized, including

shape, color, or texture, are first extracted by the CNNs. Once these features are

extracted, they are compared with features in various object classes. Upon detection

of an object, its position is localized in the image, usually in the form of bounding

boxes around the detected object. Finally, each recognized object within the image

is matched with object classes [41]. In this thesis, the class “boat” is utilized; this

is a pre-defined object class, and the YOLOv8 [36] software is responsible for object

recognition in the camera system used in this thesis. Details and special features of

YOLOv8 are described in more detail in Chapter 3.5.

6

2.3. Image Georeferencing for Maritime Applications Yanneck Deichmann

Figure 2.1.: Mock-up example of how ships and other relevant elements at the mar-
itime infrastructure are detected and classified [15].

2.3. Image Georeferencing for Maritime Applications

In this thesis, image georeferencing is employed as one of the tasks, particularly to

automatically assign the latitude and longitude of the ships detected in the high-

resolution images. Accurate information about the positioning of ships relative to

the camera system is indispensable for effective monitoring reference. Optimized

monitoring of ships necessitates real-time detection, enabling tracking of relevant

variables in maritime situations [5]. Additionally, it facilitates the detection of

geographical positions within critical infrastructures. Similar systems have been

utilized in previous works at DLR to detect and reference ships [6]. However, the

7

2.3. Image Georeferencing for Maritime Applications Yanneck Deichmann

camera systems used in prior research were static, which makes the system unusable

in mobile setups. This thesis addresses this issue by developing a system capable of

producing accurate ship georeferences even after changes in location or realignment.

Therefore, the collection of sensor metadata is crucial for referencing and image

transformation in subsequent stages.

2.3.1. Image Transformation

Image transformation, in the realm of computer vision, constitutes a fundamental

process for manipulating and adjusting visual data captured by cameras, allowing

to be presented in a different space. This transformation procedure is essential for

converting images to meet specific criteria or applications. Image transformation

involves a series of mathematical operations applied to the raw visual input, result-

ing in a modified representation that aligns with the desired objectives [37]. This

transformation finds application in various contexts, making it a key element in

image processing, where it models precise spatial relationships between objects and

the camera [35]. Additionally, image transformation plays a crucial role in specific

object georeferencing. Adjusting perspectives and orientations enables advanced al-

gorithms to accurately identify objects in a scene and display them on a map [22].

Furthermore, in surveillance systems, camera transformation also plays a central

role in accurately monitoring objects, improving situational awareness.

2.3.1.1. Extrinsic And Intrinsic Parameters

Extrinsic and intrinsic parameters are essential terms for image transformation and

must first be explained. The extrinsic parameters describe the spatial relationship

between the camera and the external world. Moreover they provide information

about how the camera was positioned and oriented in three-dimensional space [39].

The intrinsic parameters are the properties of the camera itself and are characteristic

values for each camera and lens.

The first component of the extrinsic parameters is represented by Translation Vector

(T), denoting the camera’s position in the world coordinate system [4]. It comprises

three values, which are as follows:

8

2.3. Image Georeferencing for Maritime Applications Yanneck Deichmann

T =
[
Tx Ty Tz

]
(2.1)

Tx, Ty, and Tz indicate displacement along the X, Y , and Z axes. For example, if Tx

= 2 meters, Ty = 1 meter, and Tz = 3 meters, the camera was 2 meters to the right,

1 meter up, and 3 meters forward from the reference point. The second component

of the extrinsic parameters is denoted by Rotation Matrix (R), which describes

the camera’s orientation. It consists of nine elements representing the rotational

transformation around the three axes (pitch ϕ, yaw θ, and roll ψ) as shown in: 2.2.

R =

ϕxx ϕxy ϕxz

θyx θyy θyz

ψzx ψzy ψzz

 (2.2)

Each element in the matrix contributes to the camera’s rotation in the respective

direction. Combining the translation vector and rotation matrix forms the extrinsic

matrix (often denoted as [R | T]), ultimately defining the camera’s extrinsic pa-

rameters, as shown in 2.3 [42]. Understanding extrinsic parameters and how to use

them was crucial for various applications where accuracy between the camera and

the environment is essential.

[R|T] =

ϕxx ϕxy ϕxz Tx

θyx θyy θyz Ty

ψzx ψzy ψzz Tz

0 0 0 1

 (2.3)

This matrix shown in (2.3) represents the combined rotation matrix and translation

vector. Typically, this is a 3x4 matrix, but in computer vision and graphics, a fourth

row with [0 0 0 1] is often added to extend the matrix to homogeneous coordinates

[11]. This is done because, in computer graphics and computer vision, homogeneous

coordinates are often used to describe transformations in a uniform framework,

which is also why this approach enables seamless integration of camera extrusion

and intrinsic parameters for image transformation and 3D visualisation [3].

In regard to the intrinsic parameters, a significant parameter is the focal length (fx,

9

2.4. Mathematical Conversion of Pixel to World Coordinates Yanneck Deichmann

fy) which is a crucial parameter representing the distance from the camera’s lens to

the image sensor. It determines the camera’s ability to focus and affects the scale

of objects in the image [42]. A longer focal length results in magnification and a

narrower Field of View (FoV), while a shorter one provides a broader field. The

focal length is typically expressed in pixels. This is determined by the lens used.

The second intrinsic parameter is the sensor diagonal size (cx, cy) in millimeters,

of the camera itself. This indicates the length of the diagonal of the image sensor

used in the camera. A larger diagonal means higher image quality, thanks to better

light sensitivity. These two parameters are used to calculate the camera’s FoV, an

essential intrinsic value for subsequent image georeferencing [26].

Both the focal length and the sensor diagonal size are included in the intrinsic

matrix K, as can be seen in 2.4. This matrix is a fundamental component of camera

calibration and geometry. It describes the intrinsic parameters of a camera that

relate to the optical properties of the camera itself, regardless of its position or

orientation in the scene.

K =

fx 0 cx

0 fy cy

0 0 1

 (2.4)

2.4. Mathematical Conversion of Pixel to World

Coordinates

Converting pixel coordinates into geographical coordinates requires calibration and

knowledge of the intrinsic and extrinsic camera parameters. The focal length is the

principal point of the intrinsic parameters, and from the extrinsic parameters, the

rotation matrix (R) and translation vector (T) are needed. This individual formulas

and their derivations will be explained in more detail in the Methods Chapter 5; in

this chapter, the aim is to understand the function of the formulas in question. The

first step is to find the perspective division; when viewing a scene through a camera,

the three-dimensional scene is projected onto a two-dimensional image plane [22].

This process can be described by perspective division, makes objects farther away

10

2.4. Mathematical Conversion of Pixel to World Coordinates Yanneck Deichmann

appear smaller in the image. In georeferencing, the perspective division is used to

bring the projected image coordinates into a standardised form, which can then be

converted into 2D image coordinate space, for example, to create camera surveillance

or a cartographic representation. This is achieved using the following Matrix:

X ′

Y ′

Z ′

 =
1

Z

X

Y

Z

 (2.5)

After the perspective division, the normalized image coordinates (X ′, Y ′, Z ′) are

obtained. To convert the image coordinates into normalised camera coordinates,

the inverse of the intrinsic matrix K−1 was used. The inverse intrinsic matrix was

applied to the normalized image coordinates by multiplying

X ′′

Y ′′

Z”

 = K−1

X ′

Y ′

Z ′

 (2.6)

The results (X ′′, Y ′′, Z ′′) are now normalized camera coordinates. In the next step,

these normalized camera coordinates are further transformed to obtain the global

3D coordinates of the point. This step is essential to determine the spatial position

of the point concerning the camera, which is done with the help of the inverse of

the rotation matrix (R−1). The purpose of this inverse matrix is to transform the

normalized camera coordinates again, but this time in the global space. The rotation

matrix R describes the rotation of the camera in 3D space. This matrix’s inverse

(R−1) transforms the normalized camera coordinates into the global space:

X ′′′

Y ′′′

Z ′”

 = R−1

X ′′

Y ′′

Z”

 (2.7)

After obtaining the coordinates (X ′′′, Y ′′′, Z ′′′) in the global space through the in-

verse of the rotation matrix, the next step involves reverting the translation. The

translation vector (T) represents the camera’s position in the 3D-space. To obtain

11

2.4. Mathematical Conversion of Pixel to World Coordinates Yanneck Deichmann

the precise global 3D coordinates of the point, the subtraction of the translation

vector is performed:

Xglobal

Yglobal

Zglobal

 =

X ′′′

Y ′′′

Z ′”

− T (2.8)

Here, Xglobal, Yglobal, and Zglobal are the final global coordinates of the point in 3D

space. This step accounts for the camera’s translation from the origin. It ensures

that the coordinates are placed in the global coordinate system rather than being

relative to the camera position. For example, in latitudes and longitudes, the origin

is located at (0°, 0°) where the prime meridian and the equator intersect. This

process, known as camera transformation, is crucial for mapping pixel coordinates

to real-world spatial coordinates, enabling applications such as object localization

in computer vision and photogrammetry [22]. The last step in this transformation

involves converting these coordinates into geographic coordinates, precisely latitude

(lat) and longitude (lon). Let us denote the final global coordinates again asXglobal,

Y global, and Zglobal, and the resulting geographic coordinates as (lat, lon). The

conversion look like this:

lat = arctan

 Zglobal√
X2

global + Y 2
global

 (2.9)

lon = arctan2 (Yglobal, Xglobal) (2.10)

In this case, arctan was the arctangent function, and arctan2 was a modified arc-

tangent function that considers the signs of both its arguments, providing a full

range of angles. These formulas give the latitude and longitude of the point in the

global space. The resulting coordinates (lat, lon) represent the point’s geographic

location on the earth’s surface. In this thesis, the raycasting (explained in section

3.6) leverages the theoretical concepts presented in this section to bring pixels to

real world coordinates.

12

Yanneck Deichmann

3. System Description

In an internship prior to this work, the basic structure of the housing in which

the camera and the associated components are located was created prior to the

start of this thesis. Several essential criteria had to be taken into account when

selecting the housing. These criteria were: the lightest possible housing construction,

waterproof, resistant, and suitable for outdoor environments, with enough space for

the individual components. The housing was developed to be easily integrated

with the embedded system and the industrial camera. It should also be possible

to machine the housing easily. For these reasons, the choice fell on the aluminium

housing GA model 9119.210 from Rittal GmbH & Co. KG [31] see Figure A.3.

To organize the planned position structure within the housing as space-savingly as

possible, the necessary brackets and supports were designed with Solidworks and

produced with a 3D printer. A circular cut-out was also made in the housing to

insert a window to enable the camera to capture images. In addition, an opening

for the cable feed was cut into the inside of the housing on the opposite side. Also,

a holder for a silica package was attached to the inside of the removable lid of the

housing together with them. This was to counteract excessive humidity, as this

would damage the electronics inside the housing. In this thesis, one of the main

tasks was to integrate the described hardware components and software to create a

working pipeline for the system.

This chapter examines the intricacies of the pipeline that underpins this thesis, in-

cluding its structure and individual components. It also explains how the individual

components are linked and work together to create a coherent and effective pipeline.

13

3.1. Diagram that summarises the pipeline Yanneck Deichmann

3.1. Diagram that summarises the pipeline

Extrinsic parametersAndroid
phone

ImagesHigh-
resolution
camera

Detected shipsObject
detector

(YOLOv8)

Georeferencing
(Raycasting)

Intrinsic parameters

Embedded device

Latitude &
Longitude

of the ships

Figure 3.1.: Pipeline of the System

Figure 3.1 shows the diagram of the pipeline that summarizes the integration. The

pipeline consists on the use of a high-resolution camera for image capture, along

with intrinsic parameters. An android phone is used to obtain the extrinsic parame-

ters. The images and the parameters are used for ship detection and georeferencing,

which will provide the latitude and longitude of the detected ships. The individual

components will be explained in more detail. First, the camera and the lens are pre-

sented. This is followed by a description of the embedded device used. Afterwards, a

description of the extrinsic parameters collected with the help of an Android phone

is provided. The subsequent module is the object detection algorithm YOLOv8 and

how it is employed for ship detection. The explanation concludes with a description

of the raycasting principle used for ship georeferencing.

14

3.2. High Resolution Camera Yanneck Deichmann

3.2. High Resolution Camera

The first step in the pipeline is the collection of high-resolution images. For this

purpose, the 50-megapixel camera CB500CG-CM from Ximea was used in this thesis

[38]. This is a state-of-the-art industrial camera characterized by its high resolu-

tion and impressive performance, see in the Appendix A.2. This high resolution

is achieved by the built-in Complementary Metal Oxide Semiconductor (CMOS)

image sensor, which enables the camera to create images with up to 50 megapixels.

Previous works used low-resolution cameras for georeferencing [5]. To the best of

our knowledge, this work is the first one using this 50Mpix industrial camera for

georeferencing purposes in the context of maritime awareness. The CB500CG-CM

is a color camera, which means that it can capture and reproduce the various of

50 megapixel at 16 bit resolution, allowing 65534 possible colors. Also, with its

fast frame rate thanks to the PCIe connection, the camera can capture 30 images

per second, which is crucial for monitoring mobile infrastructures A.2. Another

advantage of this camera is its compact design,which enables it to be mounted in

our system. The PCIe connection is essential here, as the camera was connected to

the embedded device via this connection, which transmitted the image data at high

speed of 1GB/s. The EF24-70mm f/2.8L II USM lens, see in Appendix A.1 from

Canon was also attached to the camera itself, which can offer a wide range of possi-

bilities thanks to its focal length of 24-70mm. Thanks to the maximum aperture of

f/2.8, the lens can provide good image quality even in limited lighting conditions.

The images acquired by this integration of camera and lens are then sent to the

embedded device, and the intrinsic camera parameters 5 used in the pipeline.

3.3. Embedded Device

In this section, the embedded device used, its features, and their utilization in this

thesis are described. An embedded device is a hardware component inside a more

complex system. Unlike conventional computers designed for various general pur-

poses, embedded devices are specialized for specific functions or applications. Due

to their lower computing capabilities. Examples include controlling sensors to col-

15

3.4. Extrinsic Parameter Extraction using an Android Phone Yanneck Deichmann

lect data or monitoring processes within the system [32]. The compact size of the

device is also advantageous as it dose not occupy excessive space within the system,

which was particularly crucial for more compact setups like the system of this the-

sis. As embedded devices are increasingly employed in critical environments such

as monitoring or security systems, they must possess high reliability and robustness

despite their compact design. Most embedded devices have various communica-

tion interfaces to receive data from other software within the system or to transmit

data themselves. In this thesis, the embedded device served as the central interface

between the various components, where captured images and data from the smart-

phone were used for ship detection and georeferencing using Python scripts, and

the interaction of various software components. The embedded device utilized in

this thesis was the Jetson AGX Xavier from NVIDIA [8]. The Jetson AGX Xavier

is specifically tailored for computer vision applications, providing high computing

power for neural networks, machine learning, and computer vision, despite its small

size. The built-in powerful Central Processing Unit (CPU) and GPUs make the

Xavier an useful embedded device for applications requiring collection and process-

ing of sensor data. A 500 Gigabyte (GB) hard drive connected to the Jetson via

Universal Serial Bus (USB) was used to store the images and the transformed geo-

referenced data. The system runs on Linux, specifically on Ubuntu 18.04 LTS, to

enable communication with the rest of the software modules terminal is used.

3.4. Extrinsic Parameter Extraction using an Android

Phone

Collecting extrinsic parameters is a crucial step in georeferencing images, typically

involving specialized equipment. However, in this thesis, a unique approach was

taken: an Android smartphone was used as opposed to using dedicated sensors.

This offers several advantages, particularly in the project’s prototype phase. Mod-

ern smartphones are equipped with various detection sensors, from gyroscopes to

altimeters and compasses, which are essential for this thesis. Various localization

and navigation options, including the Global Positioning System (GPS), used in this

thesis to determine the phone’s coordinates, are also provided. Moreover, phones

16

3.4. Extrinsic Parameter Extraction using an Android Phone Yanneck Deichmann

provide the opportunity to collect data on the rotation axes, the system’s altitude

in relation to the environment. The smartphone’s internet connectivity was another

significant advantage, allowing for real-time data transfer from the system to a sit-

uational awareness room. A USB interface connects the phone and the embedded

system, to transfer sensor data to the embedded device, and power from the device

to the phone. This setup minimizes the system’s power requirements and ensures

its portability. The phone was positioned on the right outer wall of the housing to

avoid interference with the reception as it will be shown in the calibration Chapter

4. The Ulephone module Power Armor 13 [13] was chosen for the system due to its

relevant features and capabilities:

1. The necessary sensors like the compass, gyroscope, altimeter, and GPS recep-

tion to measure the parameters are incorporated.

2. The smartphone possesses a waterproof and dust-proof casing, ideal for out-

door use.

The Android interface was chosen for its easy access to the system’s developer set-

tings, simplifying the collection of necessary sensor data. The interface is accessed

from the system using the terminal. The embedded device can address all the re-

quired sensors simultaneously. The collected extrinsic parameters include the lat

and lon coordinates, which were determined using GPS. The rotation axes of the

smartphone, known as yaw, pitch, and roll, are also determined using the smart-

phone. These parameters provide crucial information on the camera’s behavior in

space, essential for georeferencing the captured images. The system’s altitude, in-

dicating its height, is another collected extrinsic parameter. A Python script reads

these parameter values from the phone’s system, see Appendix A.2. The functional-

ity of this script is detailed in the results of Chapter 5. These extrinsic parameters

are then sent to the embedded device for georeferencing, following the same process

as the intrinsic parameters, as it can be seen in diagram 3.1.

17

3.5. Ship Detection using YOLOv8 Yanneck Deichmann

3.5. Ship Detection using YOLOv8

In order to georeference ships in images, they must first be recognized within the

images. An object detection tool was utilized in this work, as introduced in Chapter

2.2. This section will concentrate on the tool employed in this thesis, the software

YOLOv8 from Ultralytics [36]. YOLO is a deep-learning based object recognition

architecture in computer vision. It was initially introduced in 2016 and was notably

characterized by its efficiency in real-time recognition [36]. Unlike other approaches

to object recognition, which require multiple steps to recognize objects, YOLO ac-

complishes object recognition in a single step, hence the name You Only Look Once.

In contrast to other object recognition approaches, which focus on specific regions

or sections, YOLO simultaneously examines the entire image. This enables YOLO

to develop a comprehensive understanding of the image context and utilize this

knowledge when recognizing objects. An example of YOLO’s capability to recog-

nize objects even in complex scenarios or environments, is depicted in Figure 3.2.

Figure 3.2.: Detection of different objects with the help of YOLO [19]

Even if objects are partially obscured, lighting conditions are poor, or the back-

18

3.5. Ship Detection using YOLOv8 Yanneck Deichmann

ground varies greatly, YOLO can leverage the context of the entire image to ac-

curately identify objects. This capability proves particularly useful for images of

ships on the water [6]. YOLO can recognize connections and relationships between

different objects, structures, and background elements by considering the entire im-

age. This aids the model in localizing and classifying objects more accurately as

it utilizes context to avoid potential misinterpretations, as shown in diagram 3.3.

Due to this efficiency, the YOLO architecture is frequently employed in areas where

systems must be able to act in real time [36]. These include the automotive indus-

try in the field of autonomous driving, as well as surveillance systems and shipping.

The diagram 3.3 shows the individual steps of object recognition by YOLOv8 and

how they build on each other. In this thesis, a pretrained version of YOLOv8 was

used; for this reason, the test dataset could directly be used to recognise the ships

on high-resolution images, without the need of training.

A Python script was utilized to perform YOLOv8 in the embedded device. YOLOv8

has already been employed in previous work at DLR [6] and has therefore been

adapted to the recognition of ships, which proved to be immensely beneficial for this

thesis. After the ships in the images are recognized and highlighted with bounding

boxes, the ships on high-resolution images.

19

3.6. Ship Georeferencing using Raycasting Yanneck Deichmann

Image
acquisition

Validation
dataset

Training the
YOLOv8

model

NO

Completed
validation

YES Perform the
recognition

Test datasetTraining
dataset

Image with
detected
objects

Figure 3.3.: The object recognition diagram of YOLOv8

3.6. Ship Georeferencing using Raycasting

The final step in the process was georeferencing the images. This step integrates all

the preceding steps, including the intrinsic parameters of the camera and lens, ex-

trinsic parameters collected with the assistance of an Android smartphone, and the

20

3.6. Ship Georeferencing using Raycasting Yanneck Deichmann

information about the ships recognized using YOLOv8 as can be seen in Diagram

3.1. The objective was to georeference all visible ships in the images. Raycasting

is the practical tool to implement the theoretical concepts presented in Chapter 2,

providing details on how it is used in the actual georeferencing process within this

thesis. The results in Chapter 5 provide a more detailed explanation of the cor-

responding Python script A.4. The advancement of computer graphics and image

synthesis in the 1960s and 1970s significantly contributed to the emergence of the

raycasting method [7]. This method found applications in various fields, includ-

ing computer graphics, robotics, video game development, and physical simulations

[29]. This thesis uses the raycasting method to determine the actual geographical

coordinates of ships detected by YOLOv8 relative to the camera. In Figure 3.4 the

principle of raycasting can be seen.

Figure 3.4.: The principle of raycasting [12].

The method involves establishing a starting point for the raycasting process for the

corresponding pixel of each ship recognized and marked by YOLOv8. To achieve

this, a ray, aligned with the position and viewing direction of the camera, is projected

into the centre of the plane to be captured at the beginning of the raycasting method.

This point then reflects the central pixel in the image. From this pixel, a ray is

then created for each pixel within the image as seen in Figure 3.5. For each ship,

the bottom line of the bounding boxes was selected as the georeferencing point.

Precisely determining the starting point for raycasting is crucial to ensure accurate

21

3.6. Ship Georeferencing using Raycasting Yanneck Deichmann

conversion of the bottom-centre pixel coordinates into actual geographic coordinates.

The generated ray interacts with the objects or features in the image, including the

detected ships. When a ray intersects with an object in the scene, an intersection

point is created between the ray and the object hit. In this case, the centre of the

bottom line of the bounding boxes in the image is considered the endpoint of the ray.

These intersection points represent the 3D positions of the points in the scene seen

by the corresponding pixel in the image. Once the 3D positions of the intersection

points have been determined, the pixel coordinates of this point can be converted

into geographical coordinates. To enable this, the extrinsic and intrinsic parameters

of the camera are required [29]. Once this process is complete, the pixel coordinates

of the referenced object are output in the converted geographical coordinates as

shown in Chapter 4.

Figure 3.5.: Visualisation of the rays hitting a object [20].

22

Yanneck Deichmann

4. System Calibration

This chapter explains the methodology and results for determining the position of

the Android smartphone, on the housing, encompassing GPS, rotation angles, and

altitude, through experimental investigations. The calibration of the system will

allow to obtain accurate extrinsic parameters for ship georeferencing using the high-

resolution images.

4.1. Positioning of the Phone for GPS Location

During both this thesis and the preceding hardware development phase, careful con-

sideration was given to the optimal placement of the phone to obtain the extrinsic

parameters of the system. Initially, the idea was to position it inside the housing

alongside all other components. However, this approach faced significant drawbacks.

The aluminium layers of the housing could obstruct the GPS signal and the inter-

net connection. Additionally, the touchscreen function can not be used inside the

housing, rendering all measurements unreliable and invalid [27].

Attaching the smartphone to the exterior of the system exposes it to environmental

factors which could introduce deviations in the measured parameters, especially

the GPS. Thus, it was necessary to ensure that the smartphone was mounted in a

manner that minimized the impact of such effects. Therefore, before determining

the mounting method, the correct placement of the phone needed to be calculated.

Potential positions for the phone included the top, left and right sides, as well as the

back of the housing, see Figure 4.1. To align the positions on each side with that of

the camera, the distance from the camera to each side was measured and projected

accordingly. An experiment was conducted outdoors to identify the optimal option

23

4.1. Positioning of the Phone for GPS Location Yanneck Deichmann

Figure 4.1.: Showcase of the housing, with markings for the possible positions for
attaching the smartphone

among the four. Ten different positions were marked, and ten measurements were

taken for each side, yielding 40 measurements in total. For each of the four sides, the

average value and standard deviation for the latitude and longitude were calculated,

as shown in equation 4.1 and 4.2 respectively.

x̄ =
1

n

n∑
i=1

xi (4.1)

σ =

√√√√ 1

n

n∑
i=1

(xi − x̄)2 (4.2)

24

4.1. Positioning of the Phone for GPS Location Yanneck Deichmann

To establish a reference for the values, a handheld GPS device (eTrex 32x from

Garmin [16]) was utilized and also placed on the four dedicated sides that can be

seen in Figure 4.1. For this calculation. The table 4.3 below compares the results of

each respective side with the average value of the eTrex 32x 4.4, aiming to identify

the best possible position. Here, the sixth decimal place indicates an accuracy in

the centimeters range.

Position Average

Latitude

Average

Longitude

Standard deviation

Latitude

Standard deviation

Longitude

Top side 53.521767° 8.583583° 1.75× 10−5 ° 1.83× 10−5 °

Right

side

53.521767° 8.583600° 1.21× 10−5 ° 1.17× 10−5 °

Left

side

53.521783° 8.583583° 1.92× 10−5 ° 1.89× 10−5 °

Back

side

53.521783° 8.583600° 1.76× 10−5 ° 1.72× 10−5 °

(4.3)

Handheld GPS Average Latitude Average Longitude

eTrex 32x 53.521767° 8.583600°
(4.4)

Two significant conclusions can be drawn from the results of this experiment. Firstly,

the position with the lowest standard deviation is the right side of the case, which

holds for both the latitude and longitude values. Secondly, it is evident that the GPS

coordinates collected by the Android smartphone are, on average, the uncertainty in

the order of centimetres to those obtained with the handheld GPS device. A change

only occurs after the sixth decimal place; before that, the values of the handheld

and the phone are identical and lie at 53.521767° for the latitude and 8.583600° for
the longitude. This underscores the validity and reliability of using the smartphone

25

4.2. Angles and Altitude calibration Yanneck Deichmann

to measure the parameters.

Now that the optimal position for the smartphone has been identified, it can be

securely mounted there to minimize the impact of external factors on the collected

parameters. A bracket was designed, see Figure 4.2 and fabricated using a 3D printer

to fix it to the right housing wall. The smartphone is securely held in place within

the bracket, allowing for continued access to the display and the USB connection.

Figure 4.2.: Image of the holding bracket for the phone with the dimensions

4.2. Angles and Altitude calibration

With the Android phone now situated on the right side of the housing, it becomes

crucial to calibrate its orientation including the compass and altitude of the sys-

tem. To mitigate any potential deviations to ensure optimal extrinsic parameter

obtention.

26

4.2. Angles and Altitude calibration Yanneck Deichmann

4.2.1. Calibration of the Angles

The calibration of the angles is an essential step because the system orientation must

be chosen with respect to respect the earth’s coordinates. To ensure alignment

between the phone’s three rotation angles (pitch ϕ, yaw θ, and roll ψ) and the

camera, it is essential to account for any offsets introduced by the phone’s positioning

relative to the camera. During the hardware design and assembly of the system

preceding this Bachelor thesis, the camera’s position was adjusted to form angles of

0° relative to the housing walls. Therefore, when the phone is affixed to the right

side, as depicted in Figure 4.3, the offset angles between the phone’s position and

the camera can be projected.

To obtain reliable measurements of the phone angles with respect to the camera,

the smartphone is placed in its final position on the right side of the housing. Ten

measurements are taken at this position, and then the average value and the stan-

dard deviation for each of the three rotation angles are are computed. The results

can be seen in Table 4.5.

Figure 4.3.: Angle projection of the camera onto the housing sides

It’s important to note that the housing is is calibrated while being oriented towards

the north (z), such that the compass of the phone and the camera are calibrated at

27

4.2. Angles and Altitude calibration Yanneck Deichmann

0°, where:

• Roll (ψ) is the angle between the axes X and Y .

• Pitch (ϕ) is the angle between the axes X and Z.

• Yaw (θ) is the angle between the axes Y and Z.

Angels Average Standard deviation

Pitch ϕ -1,10° 0,26°

Yaw(north) θ 0,57° 1,88°

Roll ψ 88,69° 0,04°
(4.5)

The values indicate that the assumption of 90° for Roll (ψ) shows an average value

of 88.69±0, 04. The Pitch (ϕ) and Yaw (θ) show a offset of −1, 1±0, 3 and 0, 6±1, 9,

respectively. The calibration values for ϕ, θ and ψ are used in the georeferencing

process to compensate the angular offset between the values measured by the phone

and the actual camera angular values.

4.2.2. Offset and Calculation of the Altitude

In addition to the extrinsic parameters, the android phone was also used to measure

the altitude of the system, the altitude is given in the formula 2.1 as Ty. This is

crucial for the georeferencing in the Chapter 5 parameter, as it requires information

about the height difference between the system and the water on which the ship is

located. It was noticeable, during the calibration, that the phone measurement for

the altitude did not match the values of the area of the world the phone was placed

in. For example, in Bremerhaven, the expected altitude was 2 meters. However,

the phone would provide approximately 42 meters when measuring on the ground

in different parts of the city. This disparity arises because the smartphone employs

the World Geodetic System 1984 (WGS84) to determine altitude. The WGS84 is a

global reference system for surveying and mapping [10], with a crucial component

28

4.2. Angles and Altitude calibration Yanneck Deichmann

being the geoid, which represents the theoretical shape of the Earth’s surface con-

sidering gravity [21]. However, the geoid is imperfect, featuring irregularities due to

mass distribution within the Earth, as depicted in Figure 4.4. Consequently, height

measurements are expressed relative to the geoid, with positive altitudes denoting

positions above the geoid and negative altitudes indicating positions below it [10].

Figure 4.4.: 3D module of earth’s geoid [18]

Figure 4.5 illustrates a map depicting the variations in altitude attributed to the

geoid’s influence. This visualization aided in identifying an offset of approximately

40 meters. Subsequently, after deducting the 40 meters inferred from the smartphone

measurements, the resulting altitude value also aligned with the 2 meters altitude

determined by other systems.

In order to empirically validate this assumption, another four sets of 10 altitude

measurements were conducted, encompassing four distinct elevation levels for com-

parative analysis. These 40 measurements were executed on the institutes rooftop,

2nd floor, ground level, and water level in the port basin Fischereihafen. For each

position, the average value and standard deviation were computed from the ten ac-

quired results per set, as depicted in Table 4.6. The two highlighted lines represent

the pivotal values for subsequent georeferencing.

29

4.2. Angles and Altitude calibration Yanneck Deichmann

Figure 4.5.: Map showing the WGS84 geoid hight [2]

Position Average phone Alti-

tude

Standard deviation phone Alti-

tude

Rooftop 54,510m 0,097m

Second

floor

51,550m 0,110m

Ground 40,670m 0,067m

Water 38,340m 0,136m

(4.6)

The experiment for ship georeferencing shown in Chapter 5 are conducted by placing

the system on the 2nd floor at the window facing the ship on the water in the port

basin in front of the institute. We can observe that the water level, expected at

0m, presents an average altitude of 38.340m. When the camera is placed at the 2nd

floor, the height difference between the 2nd floor and the water shows the altitude

between the ship to be georeferenced and the camera. In light of these findings, the

30

4.2. Angles and Altitude calibration Yanneck Deichmann

altitude utilized for georeferencing within the Python script is determined to be the

average value from the 2nd floor subtracted by the average of the water level, with

the result for the altitude of 13,210m, and this is the value used in the code of the

script shown in A.4. For georeferencing and that will be explained in Chapter 5.

31

Yanneck Deichmann

5. Experimental Set Up And Results

This chapter presents the conclusive experiment of this thesis: the offset values

calculated in the previous Chapter 4 are used here in the Python script for georef-

erencing of ships on images captured with a high-resolution camera. Initially, the

integration of the image acquisition process will be explained. Subsequently, the

collection of sensor data from the Android smartphone will be addressed. Then,

YOLOv8 is used for ship detection and raycasting for ship georeferencing. The goal

of the experiment is to show quantitatively how the ship georeferencing works when

using the integrated system.

5.1. Image Acquisition

This section focuses on the practical collection of images using the high-resolution

camera and a connected lens. Initially, the system was installed at 13,210 meters

altitude (2nd floor), as demonstrated in Chapter 4, facing the harbor basin, to cap-

ture the images. After the calibration offset calculated in the previous chapter, the

system setup is illustrated in Figure 5.1 below.

32

5.1. Image Acquisition Yanneck Deichmann

Figure 5.1.: Image of the completed system

To facilitate this process, the integration of two Python scripts is required. The first

script adjusts the camera settings, including the exposure time, lens aperture, frames

per second (FPS), and duration of the acquisition in minutes. These parameters are

used to select the quality of the captured images which are 50 Megapixel large,

and the number of images in the sets. The snippet of the configuration file 5.1

shows how these parameters can be configured in a JSON file. During the pipeline

test, these parameters were adjusted to capture ten images per image set. Three

sets of ten images were used for the experimental evaluation of ship georeferencing,

allowing for the determination of average values and deviations in latitude and

longitude coordinates for each ship marker. This approach aimed to assess the

system’s accuracy and precision in detecting and georeferencing a ship. Using the

high resolution camera images, its intrinsic parameters, and the extrinsic parameters

acquired with the Android phone.

33

5.1. Image Acquisition Yanneck Deichmann

1 Automatic gain and exposure time (True/False): "False"

2 Exposure time (usec , not valid when automatic is True): 100000

3 Lens aperture f/ [from 1.8 to 22]: 17.5

4 Image data format: "XI_RGB24"

5 Trigger (Internal/External): "Internal"

6 Timeout (msec): 10000

7 Framerate (FPS , not valid when external trigger is True): 1

8 Duration (min , not valid when external trigger is True): 0.167

9 Automatic white balance (True/False): "True"

Listing 5.1: An example of the acquisition parameter for the camera

Once the camera settings are configured, the next step is to capture the image series.

This is achieved by executing a Python script on the embedded device. The complete

code for this script can be found in the code snippet labeled A.1. After modifying the

script to capture an image from the designated image set, it is restarted to capture

subsequent images if any adjustments to the acquisition parameters are necessary.

Figure 5.2 shows an example of a 50 Megapixel image of the ship which was taken

with the help of the integrated system from the second floor of the institute, this is

the acquisition part of the Diagram 3.1. In addition to the script for creating the

image series, another script runs simultaneously, as described in the next section.

In compliance with data protection guidelines, areas of the image not belonging to

the water were anonymized automatically (blurred) during the acquisition process.

34

5.2. GPS, Altitude and Orientation Data Acquisition Yanneck Deichmann

Figure 5.2.: 50 Megapixel image of a ship, taken with the integrated system from
the second floor of the DLR.

5.2. GPS, Altitude and Orientation Data Acquisition

As shown in the diagram of the pipeline 3.1, a concurrent script is executed on

the embedded device. This device is addressed and controlled via the terminal

of the Jetson,which is connected to the phone via USB, to generate image sets

while collecting extrinsic parameters from the smartphone. To achieve this, the

phone must be accessed by the command adb shell dumpsys. The adb shell

dumpsys command, when executed on a Linux system connected to an Android

device via USB, generates a detailed report on the device’s system services. This

command is a diagnostic tool used to assess and debug the Android operating system

and its services. It provides information on battery status, app activities, memory

usage, and internal sensor data, by listing statuses and metrics from various system

35

5.2. GPS, Altitude and Orientation Data Acquisition Yanneck Deichmann

components.

The commands for retrieving sensor data and the sensors themselves are explained

as follows. The code is referenced in the appendix see A.2. The initial stage of this

script entails implementing date and time functions, crucial for synchronizing the

creation of the photo series with the corresponding sensor data.

Subsequently, the script extracts the GPS data information from the android phone.

In this context, the script selects the keyword “fused” as depicted in code snippet

5.2. The choice of the keyword “fused” is based on the observation that multiple

packages related to GPS services are present when querying the smartphone’s sensor

service files. However, only the package labeled “fused” is relevant as it provides the

most accurate GPS data. The command “adb shell dumpsys location | grep last”

is employed to extract the smartphone’s last-known GPS position in the Android

phone, ensuring that the current position is reported each time the command is

executed. Alongside the latitude and longitude of the system, the script receives

additional information which are essential for the ship georeferencing. Such as the

Horizontal Accuracy (hAcc), which denotes the radius of deviation of the system.

Lastly, the script also retrieves the altitude data of the phone, as determined in the

Section 4.2.2. The offset of 38.340m must be taken into account; it is essential to

note that this offset can vary depending on the system’s location.

1 current_datetime = datetime.now()

2 target_word = "fused"

3 pattern_1 = re.compile(rf’’ + re.escape(target_word) + ’ ([^\s]+)

hAcc =([^\s]+) et=[^\s]+ alt =([^\s]+)’)

4 command = "adb shell dumpsys location | grep last"

Listing 5.2: Excerpt from the GPS data recording

The second part of the script involves gathering values for the orientation (ϕ, θ and

ψ) of the smartphone. This data extraction is illustrated the Appendix A.2. Similar

to the GPS measurement, the command “adb shell dumpsys” is utilized to access the

smartphone. The term “sensorservice | grep -A 10” specifies the orientation sensor

for the three axes. The segment “ORIENTATION: last ten events” retrieves the

last ten measurements received from the sensor, with each measurement comprising

36

5.3. Using Raycasting and YOLOv8 Yanneck Deichmann

three values representing each rotation angle. This process is iterated ten more times

to accumulate 100 measurements, each with three angles. Subsequently, the average

of all these determined values is computed, and the output is formatted within the

complete script.

Additionally, a provision is added to ensure the creation of a text document to store

the script’s collected results. Every time a new measurement is taken, it generates a

new measurement for each run. This is crucial for subsequent steps, as the camera’s

extrinsic parameters in space for each photo set are required for reference.

5.3. Using Raycasting and YOLOv8

This section delves into the practical implementation of YOLOv8 for ship detection

and raycasting for georeferencing, which are shown in diagram 3.1. Both processes

run simultaneously in the embedded device. Here, ships can be directly detected and

classified in images by YOLOv8 and then georeferenced by raycasting, as depicted

in Appendix A.4. It is crucial to note that neither the object recognition software

nor the code for raycasting itself was developed as part of this thesis. This work

consists in the integration of these tools and proves that, together with the extrinsic

parameters, they can be used to georeference ships on high-resolution systems using

an embedded device. The code A.4, which encompasses both ship recognition and

raycasting, is preceded by a separate script for executing raycasting, which is also

available in Appendix A.3.

All previously collected extrinsic and intrinsic information is compiled and executed

in this script. As seen in code snippet 5.3, the first parameters to be entered are

the height and the width of the image to be referenced in pixels; these intrinsic

parameters are the same for all images of the camera in the current setting. The

FoV is also a fixed intrinsic parameter of the camera in combination with the used

lens. This was calculated with formula 5.1. FoVhorizontal represents the horizontal

field of view, Sensor width denotes the camera sensor’s width, and Focal length the

lens’s focal length. The values of those variables can be extracted from the respective

camera datasheets A.2 and A.1.

37

5.3. Using Raycasting and YOLOv8 Yanneck Deichmann

FoVhorizontal = 2 · arctan
(

Sensor width

2 · Focal length

)
(5.1)

Following the intrinsic parameters, we collect the extrinsic parameters using our

mobile georeferencing system.

When specifying the values for the rotation angles (ϕ, ψ, θ), it is important to

deduct the average values of each angle calculated in Chapter 4 from the phone’s

values see 5.3. The variable tz is the altitude between the 2nd floor of the institute

and the water level of the port basin area as calculated in section 4.2.2. The last

extrinsic parameter collected is the current GPS position of the system, which is

also extracted with the phone, at the time the images were taken, as these are not

permanent due to the mobile setup of the system. These steps were repeated for

each image set with their corresponding parameters.

1 def main():

2 # Define camera setup parameters for georeferencing

3 w, h = 7920, 6004 # Image dimensions (width , height)

4 fov = np.radians (74.35) # Field of view in radians

5

6 theta = np.radians (40.10 -1.10) # Camera pitch angle in radians

7 phi = np.radians (1.93 -0.57) # Camera yaw angle in radians

8 psi = np.radians (88.74 -88.69) # Camera roll angle in radians

9 tz = 13.21 # Camera height above the water in meters

10

11 # Convert the camera ’s geographic location to UTM coordinates

12 latitude , longitude = 53.522028 , 8.583522

Listing 5.3: Insert extrinsic and intrinsic parameters into the georeferencing code

Finally, the path of the image to be referenced must be inserted into the script. The

selected image is then run by YOLOv8 to detect the ship automatically. In this

case, a bounding box is created around the object to be recognized. In the example

of this thesis, the x and y pixel coordinates of the bottom center of the box, which

are relevant for the raycasting, are determined as shown in the image, see Figure

5.3.

38

5.3. Using Raycasting and YOLOv8 Yanneck Deichmann

Figure 5.3.: Image of the georeferenced ship before

The image and ship detections are saved in a folder created for this purpose and then

processed directly in the raycasting script to convert the latitude and longitude from

the pixel coordinates of the bottom bounding box center. The determined coordi-

nates are then returned to the system and displayed in the console. Additionally,

it was implemented in the script that after the raycasting is completed, an online

map opens using Leaflet map [1] via Folium [14], where the position of the deter-

mined GPS coordinates is displayed. This allows to quickly assess the result and its

accuracy.

39

5.4. Final Results and Calculation Yanneck Deichmann

5.4. Final Results and Calculation

As mentioned at the beginning of the chapter, three sets of each ten images were

taken with the camera and georeferenced by the script. This section calculates

the validity of these measurements and presents the final results of this thesis by

assessing the georeferencing accuracy of the integrated system.

5.4.1. Calculation of the Results

In order to assess both the accuracy and precision of the system, the average value

and the standard deviation were determined from the results, using formulas previ-

ously described in Chapter 4. For comparison with the actual GPS coordinates of

the ship, the actual latitude and longitude of the ship were obtained on-site with

the assistance of the GPS handheld device. Ten measurements were again carried

out, yielding average values for the ship’s latitude of 53.522665° and longitude of

8.583962°. These values are considered the real coordinates of the ship for further

calculations, in this thesis and are utilized as a reference for comparison. The dis-

play of the GPS coordinates in the decimal degree format by the system should be

noted, which is why the ship coordinates were also provided in this format. Here,

the sixth decimal place indicates an accuracy in the cm range.

In order to be able to make precise statements about the distance between the

individual GPS coordinates, these were calculated using the haversine formula 5.2.

The haversine formula takes into account the curvature of the earth and, therefore,

provides more accurate distances between points on the earth’s surface compared to

a Euclidean calculation suitable for flat surfaces.

d = 2r arcsin

(√
1− cos(φ2 − φ1) + cos(φ1) · cos(φ2) · (1− cos(λ2 − λ1))

2

)
, (5.2)

where:

• d is the distance between the two points,

40

5.4. Final Results and Calculation Yanneck Deichmann

• r is the radius of the sphere (for example, Earth’s radius),

• φ1, φ2 are the latitudes of the two points,

• λ1, λ2 are the longitudes of the two points.

The subsequent table presents the average, standard deviation and the distance of

the 30 coordinates obtained after raycasting. During the image collection process,

the images were divided into three sets of 10 images each. After every set of 10

images, the camera’s position was altered to simulate the system’s mobility. Conse-

quently, the average value, standard deviation and the distance for each of the three

sets were initially calculated, as illustrated in the table. The final georeferenced

values were then determined in the following Table 5.3.

Image

set

Average

ship

Latitude

Average

ship Lon-

gitude

Standard de-

viation Lati-

tude

Standard de-

viation Longi-

tude

Average

Distance

Standard

deviation

Distance

Image

1-10

53.522718° 8.583745° 4.64× 10−5 ° 5.35× 10−5 ° 15,6m 6,55m

Image

11-20

53.522715° 8.583741° 4.57× 10−5 ° 5.31× 10−5 ° 15,7m 6,64m

Image

21-30

53.522712° 8.583749° 4.51× 10−5 ° 5.33× 10−5 ° 15,1m 6,32m

Final

value

53.522715° 8.583745° 4.57× 10−5 ° 5.33× 10−5 ° 15,4m 6,50m

(5.3)

To evaluate the accuracy of the measurements, the final average values of latitude

and longitude were compared with the values collected from the referenced ship.

In Figure 5.4, we compare the final determined GPS coordinates obtained through

raycasting with the real ship coordinates. Upon conducting this test series, the error

between the georeferencing coordinates and the real ship coordinates was 16 meters.

For the uncertainty,the maximum value was taken, which is 6.64m, and approximate

it to 7m as shown in the Table 5.3.

41

5.4. Final Results and Calculation Yanneck Deichmann

Figure 5.4.: Showing the offset between the georeferenced average GPS coordinates
(blue) and the coordinates of the ship (red) [1]

At the end, the total error for the georeferencing system is determined to be: 16± 7

meters. Comparison with the values of the offset from previous work, such as [6],

reveals that a value for the offset of 18± 13 was collected. However, as opposed to

previous work, this result was achived by using the sensors of a android smartphone

and a embedded high-resolution camera system. These results prove that the hard-

ware and software integration of the pipeline 3.1 have proven to work together in

this specific setup.

42

Yanneck Deichmann

6. Conclusions

In this chapter, the integration for the high-resolution embedded camera for ship

detection and georeferencing. The completion of the goals are discussed, and ideas

for possible improvements and further development are offered.

6.1. Contributions

This thesis, in Chapter 3, presents a pipeline for integrating ship detection and

georeferencing using an industrial camera, embedded device, and smartphone for

data collection. The embedded device processes images and data collected by the

smartphone to determine the precise position of a ship using the robust raycasting

principle after detecting it using YOLOv8. This approach offers numerous benefits

regarding of cost-effectiveness, reliability, and accuracy, providing an effective and

efficient solution for ship detection and georeferencing.

Chapter 4 discusses the placement of an Android smartphone on the housing to

obtain accurate extrinsic parameters for ship georeferencing using high-resolution

images. After conducting experiments, it was determined that the optimal position

for the phone was on the right side of the housing, which resulted in the lowest

standard deviation for both latitude and longitude values. To secure the smartphone

in this position, a bracket was designed and fabricated using a 3D printer. It was

also crucial to calibrate the orientation and altitude of the system to ensure precise

georeferencing. Calibration of the phone’s angles was performed to align with the

earth’s coordinates, and the offset angles between the phone’s position and the

camera were projected to obtain reliable measurements of the phone angles with

respect to the camera.

43

6.2. Future Work Yanneck Deichmann

The mobile prototype developed during this project can recognize and georeference

ships in images, as demonstrated in Chapter 5. This achievement was made pos-

sible by integrating the high-resolution camera with the Android smartphone and

other system components. A system calibration was performed to align the extrinsic

parameters of the smartphone sensors with those of the camera, enabling the cam-

era’s movement to be accurately represented by the smartphone. The experiment

resulted in a georeferencing error of 16± 7 meters, which compares to the result of

stationary systems, however now offering a mobile approach.

6.2. Future Work

While the system has demonstrated its functionality, there are exciting opportuni-

ties for further improvement in its current state. Future projects could explore the

application of the pipeline in a real-time use case, measuring the timings and per-

forming optimizations were needed. This enhancement would allow the camera to

capture images and georefernece ships in real-world scenarios, and to send the ship

coordinates to a situational awareness system. Another promising avenue is find-

ing a solution for adjusting the zoom level, which could be achieved by controlling

a servo motor. Once the system’s performance and functionality are further vali-

dated through testing, more extensive field missions can be planned to demonstrate

how mobile object recognition systems equipped with high-resolution cameras can

enhance maritime monitoring.

44

Yanneck Deichmann

List of Figures

2.1. Mock-up example of how ships and other relevant elements at the

maritime infrastructure are detected and classified [15]. 7

3.1. Pipeline of the System . 14

3.2. Detection of different objects with the help of YOLO [19] 18

3.3. The object recognition diagram of YOLOv8 20

3.4. The principle of raycasting [12]. 21

3.5. Visualisation of the rays hitting a object [20]. 22

4.1. Showcase of the housing, with markings for the possible positions for

attaching the smartphone . 24

4.2. Image of the holding bracket for the phone with the dimensions . . . 26

4.3. Angle projection of the camera onto the housing sides 27

4.4. 3D module of earth’s geoid [18] . 29

4.5. Map showing the WGS84 geoid hight [2] 30

5.1. Image of the completed system . 33

5.2. 50 Megapixel image of a ship, taken with the integrated system from

the second floor of the DLR. 35

5.3. Image of the georeferenced ship before 39

5.4. Showing the offset between the georeferenced average GPS coordi-

nates (blue) and the coordinates of the ship (red) [1] 42

A.1. Data sheet for the lens . 59

A.2. Data sheet for the camera . 62

A.3. Data sheet for the housing . 63

45

Yanneck Deichmann

Listings

5.1. An example of the acquisition parameter for the camera 34

5.2. Excerpt from the GPS data recording 36

5.3. Insert extrinsic and intrinsic parameters into the georeferencing code 38

A.1. Image acquisition . 52

A.2. Sensor reading . 53

A.3. Existing script for raycastin g from another DLR project 54

A.4. An example of the georeferencing of a image 56

.

46

Yanneck Deichmann

Bibliography

[1] Volodymyr Agafonkin. an open-source javascript library for mobile-friendly

interactive maps. https://leafletjs.com/.

[2] Mitchell Baldwi. Overview ellipsoid spheroid geoid datum projection coordinate

system. https://slideplayer.com/slide/13618396/.

[3] A. Bartoli and P. Sturm. The 3d line motion matrix and alignment of line

reconstructions. In Proceedings of the 2001 IEEE Computer Society Conference

on Computer Vision and Pattern Recognition. CVPR 2001, volume 1, pages I–I,

2001.

[4] Bajramovic Brückner. Intrinsic and extrinsic active self-calibration of multi-

camera systems. Machine Vision and Applications, 25:389–403, 2014.

[5] Borja Carrillo-Perez, Sarah Barnes, and Maurice Stephan. Ship segmentation

and georeferencing from static oblique view images. Sensors, 22(7), 2022.

[6] Borja Carrillo-Perez, Angel Bueno Rodriguez, Sarah Barnes, and Maurice

Stephan. Improving yolov8 with scattering transform and attention for mar-

itime awareness. In 2023 International Symposium on Image and Signal Pro-

cessing and Analysis (ISPA), pages 1–6, 2023.

[7] M.F. Cohen and J.R. Wallace. Radiosity and Realistic Image Synthesis. Mor-

gan Kaufmann Series in Computer Graphics and Geometric Modeling. Elsevier

Science, 1993.

[8] NVIDIA Corporation. Jetson agx xavier. Datasheet available on-

line: https://ausdroid.co/wp-content/uploads/2020/08/Jetson-AGX-Xavier-

Series-Datasheet.pdf.

[9] Gonçalo Cruz and Alexandre Bernardino. Aerial detection in maritime scenar-

47

Bibliography Yanneck Deichmann

ios using convolutional neural networks. In Advanced Concepts for Intelligent

Vision Systems. Springer International Publishing, 2016.

[10] B LOUIS Decker. World geodetic system 1984. Defense Mapping Agency

Aerospace Center St Louis Afs Mo, 1986.

[11] M.P. Deisenroth, A.A. Faisal, and C.S. Ong. Mathematics for Machine Learn-

ing. Cambridge University Press, 2020.

[12] Game Development. Understanding the rendering of the raycasting on flat

screen. https://i.stack.imgur.com/5q6Ex.png.

[13] Shenzhen Gotron Electronic. Ulefone power armor 13. Product page available

online: https://www.ulefone.com/power-armor-13.html?PageName=specs.

[14] Folium. Python data, leaflet.js maps. https://python-

visualization.github.io/folium/latest/getting started.html.

[15] Institute for the Protection of Maritime Infrastruc-

ture. Methods and processing group. Available online:

https://www.dlr.de/mi/en/desktopdefault.aspx/tabid-13115/22887 read-

53251/.

[16] Garmin. etrex 32x. Product page available online:

https://www.garmin.com/de-DE/p/669215.

[17] Amanda Geniviva, Jason Faulring, and Carl Salvaggio. Automatic georeferenc-

ing of imagery from high-resolution, low-altitude, low-cost aerial platforms. In

Donnie Self, Matthew F. Pellechia, Kannappan Palaniappan, Shiloh L. Dock-

stader, Paul B. Deignan, and Peter J. Doucette, editors, Geospatial InfoFusion

and Video Analytics IV; and Motion Imagery for ISR and Situational Aware-

ness II, volume 9089, page 90890D. International Society for Optics and Pho-

tonics, SPIE, 2014.

[18] gfz potsdam. Visualization of gravity field models and their differences.

https://icgem.gfz-potsdam.de/vis3d/longtime.

[19] Github. Pytorch yolov5 but with different results.

[20] Computer Hope. Ray casting. https://www.computerhope.com/jargon/r/ray-

casting-diagram.png.

48

Bibliography Yanneck Deichmann

[21] Xiong Li and Hans-Jürgen Götze. Ellipsoid, geoid, gravity, geodesy, and geo-

physics. Geophysics, 66(6):1660–1668, 2001.

[22] Rina Mardiati, Edi Mulyana, Iyon Maryono, Koredianto Usman, and Tedi Pri-

atna. The derivation of matrix transformation from pixel coordinates to real-

world coordinates for vehicle trajectory tracking. In 2019 IEEE 5th Interna-

tional Conference on Wireless and Telematics (ICWT), 2019.

[23] Vincent Marié, Ikhlef Béchar, and Frédéri Bouchara. Towards maritime video-

surveillance using 4k videos. In Smart Multimedia. Springer International Pub-

lishing, 2018.

[24] Vincent Marié, Ikhlef Béchar, and Frédéric Bouchara. Real-time maritime sit-

uation awareness based on deep learning with dynamic anchors. In 2018 15th

IEEE International Conference on Advanced Video and Signal Based Surveil-

lance (AVSS), 2018.

[25] M. McNicholas. Maritime Security: An Introduction. Elsevier Science, 2016.

[26] B. Micusik and T. Pajdla. Structure from motion with wide circular field of view

cameras. IEEE Transactions on Pattern Analysis and Machine Intelligence,

28(7):1135–1149, 2006.

[27] Ahmed S. Mohamed, Mohamed I. Doma, and Mostafa M. Rabah. Study the

effect of surrounding surface material types on the multipath of gps signal and

its impact on the accuracy of positioning determination. American Journal of

Geographic Information System, 8(5):199–205, 2019.

[28] Cornelia Nita and Marijke Vandewal. Cnn-based object detection and segmen-

tation for maritime domain awareness. In Artificial Intelligence and Machine

Learning in Defense Applications II, volume 11543, pages 13–21. SPIE, 2020.

[29] Goran Paulin, Sasa Sambolek, and Marina Ivasic-Kos. Application of raycast

method for person geolocalization and distance determination using uav images

in real-world land search and rescue scenarios. Expert Systems with Applica-

tions, 237:121495, 2024.

[30] Dilip K. Prasad, Deepu Rajan, Lily Rachmawati, Eshan Rajabally, and Chai

Quek. Video processing from electro-optical sensors for object detection and

49

Bibliography Yanneck Deichmann

tracking in a maritime environment: A survey. IEEE Transactions on Intelli-

gent Transportation Systems, 18(8):1993–2016, 2017.

[31] RITTAL. Cast aluminium enclosures ga. Avail-

able online: https://www.rittal.com/de-de/products/

PG0002SCHRANK1/PG0003SCHRANK1/PG0011SCHRANK1/PRO0009?variantId=9119210.

[32] Elias T. Silva, Fausto Sampaio, Lucas C. da Silva, David S. Medeiros, and

Gustavo P. Correia. A method for embedding a computer vision application

into a wearable device. Microprocessors and Microsystems, 76:103086, 2020.

[33] Jia Song, Shaohua Gao, Yunqiang Zhu, and Chenyan Ma. A survey of remote

sensing image classification based on cnns. Big Earth Data, 3(3):232–254, 2019.

[34] Ioannis Stellios, Panayiotis Kotzanikolaou, Mihalis Psarakis, Cristina Alcaraz,

and Javier Lopez. A survey of iot-enabled cyberattacks: Assessing attack paths

to critical infrastructures and services. IEEE Communications Surveys & Tu-

torials, 20(4):3453–3495, 2018.

[35] M.A. Sutton, J.J. Orteu, and H. Schreier. Image Correlation for Shape, Mo-

tion and Deformation Measurements: Basic Concepts,Theory and Applications.

Springer US, 2009.

[36] Ultralytics. Yolov8. Blog post available online:

https://www.ultralytics.com/de/blog/ultralytics-yolov8-turns-one-a-year-

of-breakthroughs-and-innovations.

[37] Jian Wu, Liwei Ma, and Xiaolin Hu. Predicting world coordinates of pixels

in rgb images using convolutional neural network for camera relocalization. In

2016 Seventh International Conference on Intelligent Control and Information

Processing (ICICIP), 2016.

[38] XIMEA. Cb500cg-cm. Technical manual available online:

https://www.ximea.com/downloads/cb/manuals/xib xib64 technical manual.pdf.

[39] Zhengyou Zhang. Camera Parameters (Intrinsic, Extrinsic), pages 135–140.

Springer International Publishing, Cham, 2021.

[40] Zhong-Qiu Zhao, Peng Zheng, Shou-Tao Xu, and Xindong Wu. Object detec-

tion with deep learning: A review. IEEE Transactions on Neural Networks and

50

Bibliography Yanneck Deichmann

Learning Systems, 30(11):3212–3232, 2019.

[41] Zhong-Qiu Zhao, Peng Zheng, Shou-tao Xu, and Xindong Wu. Object detection

with deep learning: A review. IEEE Transactions on Neural Networks and

Learning Systems, 30(11):3212–3232, 2019.

[42] Andrea Zingoni, Marco Diani, and Giovanni Corsini. Tutorial: Dealing with ro-

tation matrices and translation vectors in image-based applications: A tutorial.

IEEE Aerospace and Electronic Systems Magazine, 34(2):38–53, 2019.

51

Yanneck Deichmann

A. Appendix

1 #Imports

2 #3rd party

3 import threading

4 import os

5 import sys

6

7 #local import

8 sys.path.insert(0, os.path.abspath("../")) #include path to mi50

folde

9 sys.path.insert(0, os.path.abspath("../ mi50")) #include path to

ximea folder

10 from mi50 import acquisition

11

12 if __name__ == ’__main__ ’:

13

14 #init variables (exposure time , lens aperture and frame rate)

15 enable_aeag , exposure_val , lens_aperture_val , frame_rate , trigger

, tgr_timeout , imgdataformat , auto_wb , n_total , flag =

acquisition.set_parameters ();

16

17 #creation of new sequence of images

18 acquisition.new_sequence(enable_aeag , exposure_val ,

lens_aperture_val , frame_rate , trigger , imgdataformat , auto_wb ,

n_total);

19

20 #start acquisition

21 for data ,data_dict ,n_im in acquisition.start(enable_aeag ,

exposure_val , lens_aperture_val , frame_rate , trigger ,

tgr_timeout , imgdataformat , auto_wb , n_total , flag):

22

52

Yanneck Deichmann

23 threading.Thread(target=acquisition.save_tiff ,args=(data ,

data_dict , n_im)).start() #new thread created

Listing A.1: Image acquisition

1 import subprocess

2 import re

3 import numpy as np

4 import time

5 import os

6 from datetime import datetime

7

8 current_datetime = datetime.now()

9 target_word = "fused"

10 pattern_1 = re.compile(rf’’ + re.escape(target_word) + ’ ([^\s]+)

hAcc =([^\s]+) et=[^\s]+ alt =([^\s]+)’)

11 command = "adb shell dumpsys location | grep last"

12 output = os.popen(command).read()

13 match_1 = pattern_1.search(output)

14 extracted_data = match_1.group (1).split(",")

15

16

17 def get_orientation_data ():

18 adb_command = "adb shell dumpsys sensorservice | grep -A 10 \"

ORIENTATION: last 10 events \""

19 result = np.zeros ((100 ,3))

20 count = 0

21 for i in range (10):

22 output = subprocess.check_output(adb_command , shell=True ,

text=True)

23 for line in output.split("\n"):

24 pattern = re.compile(rf’([0 -9]+) \(ts=[0 -9.]+, wall

=[0 -9:.]+\) ([0-9\-.,\s]+),’)

25 match = pattern.search(line)

26 if match:

27 extracted_data = np.array(match.group (2).split(’, ’

))

28 y = extracted_data.astype(np.float)

29 result[count] = y

30 count += 1

31 time.sleep (0.2)

53

Yanneck Deichmann

32 means = np.mean(result , axis = 0)

33 print(f"{current_datetime}, {means}")

34 get_orientation_data ()

35 print(f"{current_datetime}, Lat: {extracted_data [0]}")

36 print(f"{current_datetime}, Long: {extracted_data [1]}")

37 print(f"{current_datetime}, hAcc: {match_1.group (2)}")

38 print(f"{current_datetime}, Alt: {float(match_1.group (3))-h_1} ")

Listing A.2: Sensor reading

1 import numpy as np

2 import utm

3

4 def normalize(v):

5 """

6 Normalizes a vector to have a magnitude of 1.

7

8 Parameters:

9 - v: The vector to be normalized.

10

11 Returns:

12 - A normalized vector with the same direction but a magnitude

of 1.

13 """

14 l = 1.0 / np.sqrt(np.dot(v, v))

15 return np.array(v * l)

16

17 def calcRotationMatrix(theta , phi , psi):

18 """

19 Calculates a 3D rotation matrix from Euler angles.

20

21 Parameters:

22 - theta: Rotation around the X-axis (pitch) in radians.

23 - phi: Rotation around the Y-axis (yaw) in radians.

24 - psi: Rotation around the Z-axis (roll) in radians.

25

26 Returns:

27 - A 3x3 rotation matrix.

28 """

29 Rx = np.array ([[1, 0, 0], [0, np.cos(theta), -np.sin(theta)],

[0, np.sin(theta), np.cos(theta)]])

54

Yanneck Deichmann

30 Ry = np.array ([[np.cos(phi), 0, np.sin(phi)], [0, 1, 0], [-np.

sin(phi), 0, np.cos(phi)]])

31 Rz = np.array ([[np.cos(psi), -np.sin(psi), 0], [np.sin(psi), np

.cos(psi), 0], [0, 0, 1]])

32 return np.matmul(Rz , np.matmul(Ry , Rx)) # Order: ZYX (roll ,

pitch , yaw)

33

34 def calcCameraRay(u, v, fov , w, h, Rt):

35 """

36 Generates a ray from the camera to a point in the world.

37

38 Parameters:

39 - u, v: Pixel coordinates in the image.

40 - fov: Field of view of the camera in radians.

41 - w, h: Width and height of the image in pixels.

42 - Rt: Camera ’s rotation and translation matrix.

43

44 Returns:

45 - A tuple containing the normalized ray direction and the ray

origin in world coordinates.

46 """

47 aspect_ratio = w / h

48 t_fov = np.tan(fov * 0.5)

49 Px = (2 * ((u + 0.5) / w) - 1) * t_fov * aspect_ratio

50 Py = (1 - 2 * ((v + 0.5) / h)) * t_fov

51

52 rO = np.matmul(Rt , np.array([0, 0, 0, 1])) # Ray origin:

camera ’s position in world coordinates

53 rP = np.matmul(Rt , np.array([Px , Py , -1.0, 1.0])) # Ray

through pixel in world coordinates

54

55 return normalize(rP[:3] - rO [:3]), rO[:3]

56

57 def intersectPlane(n, pO , rO , rD):

58 """

59 Finds the intersection of a ray and a plane , if it exists.

60

61 Parameters:

62 - n: The normal vector of the plane.

63 - pO: A point on the plane (used to define the plane).

55

Yanneck Deichmann

64 - rO: The origin of the ray.

65 - rD: The direction of the ray , normalized.

66

67 Returns:

68 - A tuple of a boolean indicating if there is an intersection ,

and the distance along the ray to the intersection.

69 """

70 denom = np.dot(n, rD)

71 if np.abs(denom) > 1e-6: # Avoid division by zero

72 delta_p = pO - rO

73 d = np.dot(delta_p , n) / denom

74 return (d >= 0), d # Intersection exists if d is positive

75 return False , 0

Listing A.3: Existing script for raycastin g from another DLR project

1 import numpy as np

2 from raycasting_utils import calcCameraRay , intersectPlane ,

calcRotationMatrix

3 import utm

4 from ultralytics import YOLO # Make sure to install the

Ultralytics YOLO package

5 import folium

6

7 def main():

8 # Define camera setup parameters for georeferencing

9 w, h = 7920, 6004 # Image dimensions (width , height)

10 fov = np.radians (74.35) # Field of view in radians

11

12 theta = np.radians (39.0080) # Camera pitch angle in radians

13 phi = np.radians (1.3640) # Camera yaw angle in radians

14 psi = np.radians (0.0549) # Camera roll angle in radians

15

16 tz = 13.21 # Camera height above the water in meters

17

18 # Convert the camera ’s geographic location to UTM coordinates

19 latitude , longitude = 53.522028 , 8.583522

20

21 utm_coords = utm.from_latlon(latitude , longitude)

22 print(utm_coords)

23 tx, ty = utm_coords [0], utm_coords [1] # UTM coordinates of the

56

Yanneck Deichmann

camera

24

25 # Calculate the camera ’s rotation and translation matrix

26 R = calcRotationMatrix(theta , phi , psi)

27 Rt = np.vstack ([np.c_[R, [tx , ty , tz]], np.array([0, 0, 0, 1])

])

28

29 # Load the YOLO model and perform object detection

30 model = YOLO(’yolov8x.pt’) # Make sure the YOLOv8x model

weights are accessible

31 result = model(’/media/xavier/hd/Bild 1.tif’, classes =[8], save

=True) # Analyze an image , focusing on class 8 (boats)

32

33 boat_coordinates = [] # Store georeferenced locations of

detected boats

34

35 # Process detected boats

36 for box in result [0]. boxes.xywh:

37 cx, cy, bw, bh = box.cpu().numpy () # Center , width , and

height of the bounding box

38 px = int(cx) # Bottom center of the bounding box (x

coordinate)

39 py = int(cy + bh / 2) # Bottom center of the bounding box

(y coordinate)

40

41 # Calculate the geographic coordinates of the detected boat

42 rayD , rayO = calcCameraRay(px , py , fov , w, h, Rt)

43 retval , d = intersectPlane(np.array([0, 0, 1]), np.array

([1, 1, 0]), rayO , rayD)

44 if retval:

45 Pworld = rayO + rayD * d

46 latlon = utm.to_latlon(Pworld [0], Pworld [1], utm_coords

[2], utm_coords [3])

47 boat_coordinates.append(latlon)

48 boat_map = folium.Map(location =[boat_coordinates [0][0] ,

boat_coordinates [0][1]] , zoom_start =5)

49

50 # Print the latitude and longitude of each detected boat

51 for coord in boat_coordinates:

52 print(f"Latitude: {coord [0]}, Longitude: {coord [1]}")

57

Yanneck Deichmann

53 folium.Marker ([coord[0], coord [1]]).add_to(boat_map)

54 boat_map.save("boat_map.html")

55

56 import webbrowser

57 webbrowser.open("boat_map.html")

58

59 if __name__ == "__main__":

60 main()

Listing A.4: An example of the georeferencing of a image

58

Yanneck Deichmann

ENG-11

Specifications

●● The lens length is measured from the mount surface to the front end of the lens.
Add 21.5 mm to include the E-82U lens cap and dust cap, and 24 mm for the E-82 II.

●● The size and weight listed are for the lens only, except as indicated.
●● Extenders cannot be used with this lens. In addition, there are no close-up lenses designed for use
with this lens.

●● Aperture settings are specified on the camera.
●● All data listed is measured according to Canon standards.
●● Product specifications and appearance are subject to change without notice.

Focal Length/Aperture 24-70mm f/2.8
Lens Construction 13 groups, 18 elements
Minimum Aperture f/22

Angle of View
Diagonal: 84° – 34°
Vertical: 53° – 19° 30′
Horizontal: 74° – 29°

Min. Focusing Distance 0.38 m/1.25 ft.
Max. Magnification 0.21x (at 70 mm/2.76 inch)
Field of View 369 x 554 – 134 x 202 mm/14.53 x 21.81 – 5.28 x 7.95 inch (at 0.38 m/1.25 ft.)
Filter Diameter 82 mm/3.23 inch
Max. Diameter and Length 88.5 x 113.0 mm/3.48 x 4.45 inch
Weight Approx. 805 g/28.4 oz
Hood EW-88C
Lens Cap E-82U/E-82 II
Case LP1219

CO
PY

Figure A.1.: Data sheet for the lens

59

Yanneck Deichmann

xiB & xiB-64 - Technical Manual Version 1.08 26

3.6.3. CB500xG-CM

3.6.3.1. Sensor and camera parameters

xiB model CB500CG-CM CB500MG-CM

Sensor parameter

Part number CMV50000-1E3C1PA CMV50000-1E3M1PA

Color filter RGB Bayer mosaic None

Type Global shutter

Pixel Resolution (H × W) [pixel] 7920 x 6004

Active area size (H × W) [mm] 36.4 x 27.6

Sensor diagonal [mm] 45.72

Optical format [inch] Slightly bigger than ‘full frame’

Pixel Size [µm] 4.6

ADC resolution [bit] 12

FWC [ke-] 14.5

Dynamic range [dB] 64

SNR Max [dB] 41.6

Conversion gain [e-/LSB12] 3.58

Dark noise [e-] 8.8

Dark current [e-/s] 33

DSNU [e-] 24.5

PRNU % < 1.0

Linearity [%] < 0.5

Shutter efficiency 1/18000

Micro lenses yes

Camera parameters

Digitization [bit] 12

Supported bit resolutions [bit/pixel] 8, 9, 10, 11, 12, 16

Exposure time (EXP) [ms] 0.1 – 1050

Variable Gain Range (VGA) [dB] 0-12

Refresh rate (MRR) [fps] 32 @ 8-bit/pixel

Power consumption

typical [W] 9

Maximum [W] 9.5

Mechanical

height [mm] 60

width [mm] 60

depth [mm] 37.8 (w/o EF mount)

mass [g] 170 (w/o EF mount)

table 3-9, CB500xG-CM, sensor and camera parameters

Notes: 1) Analog gain has only several discrete steps.

60

Yanneck Deichmann

xiB & xiB-64 - Technical Manual Version 1.08 27

Binning/skipping Output resolution Bit/px fps Readout time [ms]

1x1/1x1 7920 × 6004 8 30.9 32.36

1x1/1x1 7920 × 6004 10 28.8 34.70

1x1/1x1 7920 × 6004 12 24.1 41.62

1x1/1x2 7920 × 3002 8 61.4 16.29

1x1/1x2 7920 × 3002 10 57.1 17.48

1x1/1x2 7920 × 3002 12 47.9 20.94

1x1/2x2 3960 × 3000 8 61.4 16.29

1x1/2x2 3960 × 3000 10 61.4 16.29

1x1/2x2 3960 × 3000 12 61.4 16.29

2x2/1x1 3960 × 3000 8 30.8 32.43

2x2/1x1 3960 × 3000 10 30.8 32.43

2x2/1x1 3960 × 3000 12 30.8 32.43

table 3-10, CB500xG-CM, standard readout modes

3.6.3.2. Quantum efficiency curves [%]

figure 3-10 CMV50000 Quantum Efficiency ©CMOSIS

0%

10%

20%

30%

40%

50%

60%

70%

350 400 450 500 550 600 650 700 750 800 850 900 950 1000 1050

Q
u

a
n

tu
m

 E
ff

ic
ie

n
c

y
 (

%
)

Wavelength (nm)

CMV50000 - Spectral Response

Monochrome

Red Bayer

Green Bayer

Blue Bayer

61

Yanneck Deichmann

xiB & xiB-64 - Technical Manual Version 1.08 28

3.6.3.3. Dimensional drawings CB500xG-CM (with and without EF mount)

figure 3-11, dimensional drawing CB500xG-CM w/o EF-mount adapter

figure 3-12, dimensional drawing CB500xG-CM with EF-mount adapter

Figure A.2.: Data sheet for the camera

62

Yanneck Deichmann

Enclosures

dri1308002en.fm – 1-102 – 1 of 1Technical details/Enclosures/02.2014

Small enclosures

Ø D1

T4

Ø D2

1

B1

H
1

B5

H
3

B3

H
5

B2

H
2

AA

M3

H
4

H
4

B2 H
5

H
7

B5

H
2

B4

B3

H
3

B1

H
1

H
5

A A

M4

B4
B1

B2H
1

B3

H
2

H
5

B5

H
4

H
7

H
3

15

A A

M4

T2

T3

T1

T7

T5

T6

B2 H
1

B4

B5

H
6

H
4

B3

H
5

B1

H
2

H
3

A A

M6

Cast aluminium enclosures GA

Model No.
GA Version

Width dimensions
mm

Height dimensions
mm

Depth dimensions
mm

Diameter
mm

B1 B2 B3 B4 B5 H1 H2 H3 H4 H5 H6 H7 T1 T2 T3 T4 T5 T6 T7 D1 D2

9101.210 B 58 50 46 40 34 64 56 52 33 32 – 14 34 29 9 8 – – – 4.5 8

9102.210 B 98 90 86 81 74 64 57 52 33 32 – 14 35 29 10 8 – – – 4.5 8

9104.210 C 75 66 63 56 52 80 71 68 39 48 – 14 57 50 15 9.5 – – – 4.5 8

9105.210 C 125 116 113 106 99 80 71 68 39 48 – 14 57 50 15 10 1.5 6 42.5 4.5 8

9106.210 C 175 166 163 156 152 80 71 68 39 48 – 14 57 50 15 8 1.5 6 42.5 4.5 7

9107.210 C 250 241 238 231 226 80 71 68 39 48 – 14 57 50 15 9.5 1.5 6 42.5 4.5 7.5

9108.210 D 122 112 106 95 90 120 111 104 52 64 82 – 80 72 20 15.5 1.5 8 62.5 6.5 10.5

9110.210 D 220 211 204 195 183 120 111 104 50 64 82 – 91 82 30 15 1.5 9 71.5 6.7 11

9111.210 D 360 349 344 333 322 120 111 104 48 62 82 – 82 72 20 9 2 8.5 61.5 6.5 10.8

9112.210 D 160 151 140 132 120 160 151 140 76 89 110 – 91 82 20 20 2 8.5 71.5 7 12

9113.210 D 260 251 240 230 220 160 151 140 76 90 110 – 91 82 20 19 1.5 8.5 72 7 13

9114.210 D 360 350 340 330 316 160 151 140 76 89 110 – 91 82 20 19 2 9 71 7 13.5

9116.210 D 202 190 180 170 159 232 221 210 144 159 180 – 111 102 20 21 2 9 91 6 13

9117.210 D 280 271 260 250 239 232 221 210 144 159 180 – 111 102 20 21 2 9 91 6 13

9118.210 D 334 321 310 300 289 233 223 210 144 160 180 – 111 102 20 25 2 9 91 6.4 13.5

9119.210 D 330 321 310 300 290 230 221 210 144 160 180 – 181 170 20 9 2 9 159 7.5 11

Version A Version B Section A – A

Version C Version D

Note:
– For installations manufactured by the customer,

the width and height dimensions of the mounting
plate must not be exceeded.

– For enclosures where no mounting plate is
available, the following dimensions shall apply
analogously:

Model No. GA Width mm Height mm
9101.210 48 54
9102.210 88 54
9104.210 64 69
9106.210 164 69
9107.210 239 69
9111.210 347 107

Figure A.3.: Data sheet for the housing

63

	Acronyms
	Introduction
	Motivation
	Goals of the Thesis
	Structure of the Thesis

	Theory
	Embedded Vision for Maritime Awareness
	Object Recognition in the Maritime Domain
	Image Georeferencing for Maritime Applications
	Image Transformation

	Mathematical Conversion of Pixel to World Coordinates

	System Description
	Diagram that summarises the pipeline
	High Resolution Camera
	Embedded Device
	Extrinsic Parameter Extraction using an Android Phone
	Ship Detection using YOLOv8
	Ship Georeferencing using Raycasting

	System Calibration
	Positioning of the Phone for GPS Location
	Angles and Altitude calibration
	Calibration of the Angles
	Offset and Calculation of the Altitude

	Experimental Set Up And Results
	Image Acquisition
	GPS, Altitude and Orientation Data Acquisition
	Using Raycasting and YOLOv8
	Final Results and Calculation
	Calculation of the Results

	Conclusions
	Contributions
	Future Work

	List of Figures
	Listings
	Bibliography
	Appendix

		2024-04-29T15:39:25+0200
	Yanneck Deichmann

