EXPERIMENTAL RESULTS OF A FLUID ACTUATED MORPHING WINGLET TRAILING EDGE

Ralf Keimer, Michael Schäfer, Srinivas Vasista

German Aerospace Center (DLR)

Experimental Results of a Fluid Actuated Morphing Winglet Trailing Edge

Outline

- Motivation
- Structutral Design
- Systems Design
- Experimental Results
- Conclusion and Outlook

Supported by the Clean Sky 2 Joint Undertaking (JU)

MANTA - "Movables for Next Generation Aircraft"

AEROMO2 – "Towards the application of Morphing Movables in Aerostructures"

The JU is financed by the Horizon 2020 Research-Programme of the European Union

3

Motivation Application

Winglet-Tab

- Reduced induced drag, but increased load
- $\hfill \ensuremath{\,^\circ}$ Reduction of load desirable \rightarrow Potential for reduced weight
- Active load-reduction by integration of Winglet tab as control surface
- Small available volume, thin profiles
- Big distance from fuselage

Motivation Working Principle - Objectives

FAMoUS

- Fluid
 Actuated
 Morphing
 Unit
 Structures
- Look into feasibility
- Raise TRL
 - Starting at TRL 1
 - Goal: TRL 2-3
- Build structure AND system

Motivation Concept for Winglet tab

Motivation Requirements

	1 st Priority		2 nd Step
Function	High Speed Performance	Maneuver load alleviation	Gust load alleviation
Deflection Range	+/- 10°	+/- 15°	+/- 15°
Deflection Speed	10°/s	20°/s	80°/s
Position	+/- 0,1°		
Accuracy	Rationale: to ensure device position compliant with aerodynamic tolerance		
Design	Either 2 actuators or 1 actuator and damper		
Assumptions	Rationale: Damper to avoid flutter in case of actuator failure		
System Architecture	Hydraulics is baseline, MEA (More Electric Actuation) as trade		

STRUCTURAL DESIGN

Structural Design FE Model

Material Selection

Aluminium

EPDM

Resulting Parameters

- Fillet size 3 mm in stiffening rings
- Percentage of span comprising active units: 46.4%
- max ring stress = 110 Mpa
- Final TE angle = 16.08°
- 0,79°/bar deflection
- Fluid volume change for 15 bar differential pressure: +4.78% and -2.98%
- Thickness of EPDM and stiffening rings: 4 mm

Structural Design Manufacturing

DLR

Structural Design 1m Morphing Structure

Ralf Keimer, German Aerospace Center (DLR)

SYSTEMS DESIGN

Systems Design Fluid Selection

- Pressure-cells can be driven with pneumatic or hydraulic systems
 - Pneumatic: lightweight medium compressible
 - Hydraulic: heavy medium incompressible
- High deflection rate is driver:
 - \rightarrow Hydraulic system
- Chemical Compatibility with EPDM:
 - → mandates water-based fluid, selected fluid is able to work from -42°C to 60°C

Systems Design Core Hydraulic System

- Simplified Electro Hydrostatic Actuator
- Water-based fluid (Lubesave-Fe-46-EAL-HFC)
- Pump moving Fluid Volume between upper and lower cells (black)
- Relieve Valves release Overpressure to Tank (red)
- Second Pump insures minimum Pressure in all Cells through Check Valves (green)
- Input: Direction and Speed of 1. Pump

Systementwurf Test Hydrauliksystem

15

Ralf Keimer, German Aerospace Center (DLR)

Systems Design Closed Loop Control

- Closed loop control needed, due to non-linearity of EPDM
- Sensors
 - Fibre optical sensors (Primary)
 - Strain-gages (Backup)

Systems Design Redundancy

Ralf Keimer, German Aerospace Center (DLR)

EXPERIMENTAL RESULTS

Ralf Keimer, German Aerospace Center (DLR)

■ Angular deflection versus pressure → validate FE

Calibrating closed-loop control sensors (feedback sensors)

- Spanwise uniformity of angular deflection
- Static performance tests:
 Angular deflection versus pro

Dynamic performance tests:

Accuracy of deflection

Deflection rates

Goals

Experimental Results

19

Experimental Results Calibrating Closed-Loop Control Sensors

 Using external photogrammetry system

20

Experimental Results Calibrating Closed-Loop Contraol Sensors

- Using external photogrammetry system
- Linear correlation between feedback-sensors and external system
- Spanwise uniformity of deflection

- Non-linear correlation between differential pressure and angular deflection
- Spanwise uniformity of deflection
- Discrepancy of angular deflection
 - FE 11° at 14 bar 0,79°/bar
 - Test 3,5° at 11 bar
 0,32°/bar → 40%

Accounting for Discrepancy

Model	FE
Measurement vs Original FE	40%
Bladders reducing Force 30%	58%
Active Passive Ratio decreased from 46.4% to 27%	95%

Accuracy of Angular Deflection

Closed Loop

Ralf Keimer, German Aerospace Center (DLR)

Deflection Rates

 Deflection rate sufficient for high speed performance

Deflection

- Deflection rate sufficient for high speed performance
- Deviation of -3dB from set value

Deflection

- Deflection rate sufficient for high speed performance
- Deviation of -3dB from set value

DLR

Conclusion & Outlook Summary

- The main objective of this demonstrator to raise TRL to 2-3 is reached.
- An experimental proof of concept is done, analytical and experimental critical function and characteristics have been identified.
- 1 m spanwidth demonstrator is designed, manufactured and tested. This includes the morphing hardware, sensors, redundant hydraulic actuation system and a control-system
- The tests show that the requirements for size of deflection (+/- 15°) and control accuracy (better than 0.1°) are met, or can safely be assumed to be met in the next design due to validation of the design model.
- The requirement of deflection rate (> +/- 20°/s) is not yet reached, but a way
 forward is identified and will be tested going forward.

Conclusion & Outlook Way Forward

Control and Test

- Tuning of control parameters
- A deeper understanding of dynamic behavior of the pressure cells has to be assessed, especially separating control-parameters and material properties as cause
- Testing the structure with simulated aero-loads
- Testing under full range of temperatures is of interest
- Structural Design
 - Weight Optimization should be investigated in more detail
 - Account for observed failure-modes (e.g. as occasional leakage) in design
 - Aspects of Repairability should be taken into account.
- Material and Manufacturing
 - Reducing manufacturing complexity

FAMoUS Pressure Cells

Way Forward

- Control and Test
 - Tuning of control parameters
 - A deeper understanding of dynamic behavior of the pressure cells has to be assessed, especially separating control-parameters and material properties as cause.
 - Testing the structure with simulated aero-loads
 - Testing under full range of temperatures is of interest
- Structural Design
 - Weight Optimization should be investigated in more Detail
 - Observed failure-modes (e.g. as occasional leakage) in Design
 - Aspects of Repairability should be taken into Account.
- Material and Manufacturing
 - Reducing Manufacturing complexity

