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Autonomous systems are being discussed increasingly as a next-level system paradigm after automated systems. Although the vision
of autonomous systems seems to be on the verge of realization today, there is still a lack of standards, and consequently a missing
common understanding on what exactly constitutes an autonomous system in the current research state. This paper contributes to the
clarification of system autonomy based on a systematic literature review. Thereby, the characteristics of autonomous systems and the
relation to comparable system classes are examined and a conceptual model for the self-x characterization of autonomous systems is
introduced.
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1 INTRODUCTION

The idea of autonomous systems has been discussed in society, science and industry for centuries [183]. Based on
technological advances in recent years [183] and progress in fields such as autonomous cars [47], the vision of
autonomous systems already seems to be reality today or is at least on the verge of becoming reality. Although
autonomous systems are increasingly being discussed [118], there is still a lack of standards and a missing common
understanding of the concepts of system autonomy in various application domains [77].

In research, many authors use self-x capabilities to characterize autonomous systems [8] such as self-management,
self-organization, or self-protection. These characteristics describe the main abilities that make a system autonomous.
Therefore, they are often used to define the vision of autonomy for a certain scenario and to decide whether a system is
autonomous or not [165]. As the concept of self-x capabilities is not standardized as well, the literature proposes a large
number of self-x properties today. The result is that authors across all domains use different sets of self-x requirements
to define the vision and characteristics of autonomy as a baseline for future work. Even if they describe similar system
capabilities and goals, they often have a slightly different skill set, use another wording for the same characteristics, or
classify the capabilities at conflicting levels as minor or major traits. This makes the self-x capabilities of autonomous
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2 Miadowicz et al.

systems difficult to compare between scenarios, authors, and domains. Consequently, it is still challenging to choose a
set of self-x properties that characterize system autonomy and help to decide whether a system is autonomous or not.

What intensifies the fuzzy concept of autonomous systems and their self-x capabilities is the description of similar
ideas by different system classes. While some authors write about autonomous systems [40, 41, 118], others describe
comparable concepts as automated [55, 100, 135], autonomic [39, 52, 109, 168, 192], intelligent [34, 66, 148, 176],
adaptive [21, 68, 77, 189], organic [70, 157, 163, 190] or use system class names interchangeably [108, 110, 165, 192].
Analogously to the characterization of autonomous systems, self-x capabilities are also used to describe related system
classes. Although these system classes have different names, their self-x capabilities can be identical, similar but with
a different wording, partially overlapping or completely distinct from others depending on the authors and domain.
This leads to a whole bunch of related system concepts with similar characterizations that are hard to distinguish and
compare.

Overall, this paper is motivated by the still fuzzy definition of autonomous systems, related system classes, and
self-x characterizations throughout the literature. The goal is to provide a clear distinction between different system
concepts and their desired self-x capabilities as a baseline for future work. In our view, a clear distinction of different
system concepts and their capabilities is needed as a basis for the discussion of autonomous system concepts and their
further development. It supports the definition of a clear picture of future autonomous systems and the combination of
progress from similar research fields to finally realize fully autonomous systems on a faster scale. For this reason, the
authors of this paper contribute to the current research state on the basis of a systematic literature review to investigate
the relations of autonomous and similar system classes, identify popular self-x terms from literature, and introduce a
conceptual model for the self-x characterization of autonomous systems and related system classes.

The outline of this work is divided into background, related work, method, results, and a conclusion. The paper starts
with a theoretical background on system autonomy, related system classes, and self-x characteristics (see Section 2).
Then related work (see Section 3) and the methodology of the study are discussed, including research questions,
objectives, and research design (see Section 4). Afterwards, the results of the work are presented with respect to the
relations of comparable system classes, a summary of common self-x terms used in the current research state, and finally
the conceptual self-x characterization model for autonomous systems (see Section 5). The closing chapter summarizes
the results and explicitly answers the identified research questions (see Section 6).

2 BACKGROUND

The background of the paper discusses theoretical concepts on the definition of autonomous systems, related system
classes, and self-x characteristics. Thereby, challenges regarding the characterization of autonomous systems and related
system classes are summarized to demonstrate the need for a common understanding on self-x capabilities and agreed
self-x characterization models across different application domains.

2.1 Autonomous system definition

As mentioned in the introduction, there is no standard today that defines autonomous systems and their capabili-
ties [118, 138]. Depending on the authors and domains, the concept of autonomy and its characteristics are presented
differently [77]. Therefore, this paper summarizes the definitions of autonomous systems from the current research
state and points out the agreements and disagreements.

Beginning with concepts which are widely accepted, we start with the origin of the word autonomy. It was sourced in
the early 17th century from the Greek word autonomia or autonomous which means self-governing [41, 77, 118, 149, 182].
Manuscript submitted to ACM
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Self-X Characterization of Autonomous Systems 3

Therefore, the term originally expresses the right to make decisions and organize independently without external
interference. Later, the word has been transferred to automation systems. Thereby, it expanded its meaning to the role
of machines that can take over the labor of humans independently [118, 182].

As the concept of autonomy has been broadly discussed since then, its description has been enhanced with further
contributions from the literature. A system is described as autonomous if it can pursue its goals without or with only
limited external intervention despite uncertain environmental conditions [10, 32, 40, 41, 77, 96, 118, 149, 183]. Therefore,
the system needs to be able to perceive its environment, make its own decisions, and act on its environment to solve
complex tasks. As the skills sense, analyze, and act are parts of a classical control loop, many authors agree on the
statement that every autonomous system is a control system [10, 41, 65, 183]. Compared to classical control systems, they
have higher capabilities and can cope with uncertainties or even find solutions to modified goals [40, 41, 65, 118, 183].

Other aspects of autonomy are described differently. First, there is the role of humans that interact with autonomous
systems. While some authors say that systems are only autonomous if no human intervention is required [65, 96, 118,
149, 187], others point out the pivotal role of humans for reasons of safety, security, or bias [40, 110]. The authors
of the underlying literature still agree that the degree of autonomy is higher or lower depending on the level of
human intervention [10, 41, 183], but the role of humans is described differently. Another disagreement is the need for
learning capabilities in autonomous systems. Some authors say that learning is superior to other capabilities, but not
mandatory [41, 77]. Others point out that learning is an essential part of autonomous systems, so that they are able to
learn and evolve in uncertain environments [6, 40, 149]. Another disagreement is related to the characterization of
autonomous systems. As pointed out in the introduction, this is typically done on the basis of self-x capabilities that
differ between authors and domains. Chapter 2.3 covers this in detail.

To summarize the definition of system autonomy, most authors of the underlying literature agree that a system
is autonomous if it can achieve its goals in an uncertain environment with minimal or no human influences. Some
authors have different opinions on whether an autonomous system must be completely independent of humans, provide
learning capabilities, or have a specific set of self-x characteristics.

2.2 Similar system classifications

Today, there exist similar system concepts along with the idea of autonomous systems, such as automated, autonomic,
intelligent, adaptive, and organic systems. This chapter describes each system class based on the underlying literature
as a basis for a comparison and delimitation of the concepts.

First, the transition from mass production and mechanization to automated systems began with the third industrial
revolution in 1970 [112]. Computers and electronics have been used to digitize production and replace manual labor
by machines [182]. Thereby, automated systems execute actions or whole processes using a set of rules with as little
human intervention as possible [110]. The main goal of automation is independence [77], so less human labor is
required, productivity in terms of energy and material savings is increased, and quality, accuracy, and precision can be
improved [149, 182].

Next, the concept of autonomic computing was suggested by Paul Horn from IBM in 2001 [39]. He criticizes the
ever-growing complexity of digital infrastructures that undermines the benefits of information technology (IT). The
basic idea of autonomic computing is inspired by the human nervous system. Humans can think and live without caring
for underlying body functions such as breath, blood circulation, or immune system. The same should become true for
computer systems that are supposed to manage themselves and adjust to varying circumstances, while human users can
concentrate on their actual tasks. Therefore, Horn proposes to embed the complexity of systems in the infrastructure

Manuscript submitted to ACM
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4 Miadowicz et al.

itself, so that the management of the IT infrastructure can be automated. The general goal of autonomic computing is
to provide a zero-cost maintenance and highly reliable system to end users with a transparent interface to complex
infrastructures [76].

Paul Horn characterized autonomic computing by eight key elements a system should provide [76]:

(1) it needs to know itself in terms of knowledge of its components, current status, capacity and connections to
other systems

(2) it must configure and reconfigure itself under changing conditions
(3) it should optimize itself, so that it can improve the workflow to achieve its system goals
(4) it is supposed to heal itself, so that it is able to recover from failure
(5) it has to maintain overall system security by detecting, identifying and protecting itself from attacks
(6) it needs to be aware of its context and interact with neighbouring systems accordingly
(7) it has to be open, because it is interdependent to other systems and therefore needs to function in a heterogeneous

world
(8) it should hide complexity from users and be anticipatory

Another class of systems are intelligent systems. They typically apply AI for some kind of exercise [77] and are
able to deal with uncertain problems or find solutions to new situations based on experience [66]. Therefore, they
emulate intelligent behaviors such as learning, adaptability, robustness, optimization, or reasoning [148]. AI technologies
are an important base for building intelligent systems [66]. Applications of AI can include, for example, perception
of the environment through computer vision, identification of patterns in data, or grouping of observations into
categories [176].

Adaptive systems are able to adjust themselves according to internal system states or external influences in the
environment [189]. They constantly evaluate their behavior and changes in their performance to achieve a set of
objectives or reach a goal in an optimized way [152]. They are described as a subclass of intelligent systems that uses
some sort of intelligence to adapt to changes in an uncertain environment or to find solutions to new or modified
goals [77]. Self-adaptive systems are capable of operating without human intervention, but typically receive guidance
through human policies as higher-level objectives [21]. The literature differentiates between structural and parametric
adoption. The first approach is adopted through the exchange of physical elements in a machine or the replacement of
components from the application software. Thus, the structure of the system is changed so that components can be
added, removed, or replaced. An example of structural adoption can be the replacement of a faulty or worn component,
such as a wrench. Parametric adoption modifies the configuration or properties of a system to adapt to changing
circumstances [34]. If a setting of a system is adjusted, for example, the speed of an assembly line in case of danger, it is
called a parametric adoption.

Similarly to autonomic systems, organic systems are inspired by the simplicity of living systems. They usemechanisms
observed in nature to organize complex computing systems that typically consist of many components and solve
computationally difficult problems [190]. Thereby, they have sufficient degrees of freedom and are able to adapt to the
current requirements of their execution environment to provide robust and reliable services to end users [163]. Organic
computing systems focus in particular on self-organizing distributed computing entities in the system structure to
effectively achieve the goals of the overall system as a result of local actions. The cooperation of computing resources
and the combination of local actions into global functionality is referred to as emergent behavior. It leads to a further
level of complexity due to its non-linearity [157]. Comparable to natural organisms, this complexity is hidden in the
Manuscript submitted to ACM
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Self-X Characterization of Autonomous Systems 5

inner structure of the system itself. From the outside, the complexity is transparent, so that organic systems are easy to
operate by humans [190].

In summary, the concept of autonomous systems is comparable to other system classes such as automated, autonomic,
intelligent, adaptive, and organic systems [77]. These types of systems are difficult to distinguish, because they have
similar definitions and shared characteristics. In the literature, it can be seen that these system class names are therefore
often used interchangeably [108, 110, 165, 192] or their relation is described in conflicting ways when comparing
different authors [39, 68, 184].

2.3 Self-x characteristics

Self-x capabilities or self-x properties are used to describe system autonomy [8, 110, 175] or the vision of related system
concepts such as automated, autonomic [39, 53, 165, 168, 192] or adaptive [68, 108, 184] resources and infrastructures.

The eight key elements of autonomic computing proposed by Horn [76] are widely accepted as a common ground
to characterize autonomic systems as well as similar system classes [39, 53, 108, 110, 152, 165, 168, 184, 192]. They
are often divided into major and minor attributes based on the understanding that minor attributes contribute to the
main objectives and support the abilities indirectly [165, 168]. The main characteristics are also known as self-CHOP
capabilities [165]:

• self-configuration: The system can automatically configure and reconfigure itself and its components.
• self-healing: The system can detect faulty components, diagnose the issue, and heal or recover itself from failure.
• self-optimizing: To improve efficiency or performance, the system can optimize itself and its components.
• self-protecting: The system is able to defend itself and its components from malicious attacks.

In addition, a self-managing system needs to be aware of itself, know its current external state, integrate into a
heterogeneous real-life environment, and hide complexity from end users. Therefore, minor characteristics are often
named self-knowledge or self-awareness, context-aware or environment-aware, open, and anticipatory [76, 165]. Other
authors name slightly different minor capabilities and add self-monitoring and self-adjusting as supporting autonomic
capabilities to detect changing circumstances and make adoptions accordingly [168].

With growing research interest in autonomous systems and related system classes, the number of self-x characteristics
grows steadily. Many authors invent new self-x capabilities according to their specialized research context and require-
ments, so there are hundreds of self-x terms today. Similarly to self-CHOP capabilities, the terms are linked and can be
structured hierarchically in various ways into major, minor, and further supportive subproperties [61, 130]. To give you
an impression of that, Attachment A.1 presents 33 self-x capabilities of autonomous, autonomic, and adaptive systems
that have been extracted from 15 references only. Although there are five papers from each system class across different
application domains, almost two-thirds of the references use self-CHOP capabilities to define system characteristics.
Therefore, autonomous, adaptive, and autonomic systems are sometimes described identically or at least with similar
self-x capabilities [39, 52, 108, 110, 152, 165, 168, 189, 192]. Only a few authors enhance self-CHOP with additional
capabilities [39, 39, 53, 108, 110, 165, 184], suggest new individual collections of self-x capabilities [40, 41, 109, 118] or
use partially overlapping self-x sets [68, 189].

Additionally, proposed sets of self-x capabilities from different authors for the same system class can be conflicting.
To give an example, two different self-x characterizations of autonomous systems are compared. The first is from Sing
and Kumar with a general focus on autonomous systems [165]. The other is concerned with an industrial autonomous
system and has been suggested by Müller et al. [118]. While Sing and Kumar use self-CHOP main capabilities inspired
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by Salehi [150] and Horn [76], Müller et al. use self-governance, systematic process execution, adaptability, and self-
containedness as major skills. In comparison to Sing and Kumar, they also use more fine-grained minor and subattributes
that contribute to the main attributes. Therefore, both models have a different structure that makes the characteristics
difficult to compare. The main reasons for this are further examined using three examples (see Figure 1):

• Different wording (blue): Different words are used for the same self-x capabilities. While Müller et al. use the
term adaptability which includes abilities for robustness, optimization, and resilience, Sing and Kumar express
similar concepts covered by the major characteristics self-healing, self-optimization, and self-protecting.

• Conflicting layers (green): Some terms can be found on contradictory layers of the models. Sing and Kumar
use self-optimization, for example, as a major characteristic, while Müller et al. use self-optimization as a
second-level attribute of adaptability.

• Different properties (gray): Some attributes cannot be matched to the other model at all, such as open, anticipatory,
or learning abilities.

1) Singh, T. and Kumar, A. (2016)

Autonomous / 
Autonomic Systems 

Characteristics

Major  
Characteristics

Minor 
Characteristics

Sef-configuring

Sef-healing

Sef-optimizing

Sef-protecting

Self-aware

Context-aware

Open

Anticipatory

Industrial 
autonomous  

system

Systematic 
Process 

Execution

Adaptibility

Self-governance

Self- 
containdness

Control of
uncertainity

Learning ability
Cooperability

Goal-orientation
Self-directedness

Self-directed
Self-organization

Comprehensibility
Self-explanation

Affiliation

Robustness
Self-optimization

Curiosity

Reactivity
Proactivity

Goal-generation

Decisionmaking
capabilities

Resilience
Self-motivation

Skepticisim

Self-perception
External

Perception

Self-Assessment

Different wording: Self-healing / Self-protecting from [1] can be mapped to adaptability incl. robustness or resilience from [2]

Conflicting Layers: Self-optimizing is proposed as a major capability in [1] or as a minor attribute in [2] 

2) Müller et al. (2021)

Different properties: Some attributes can't be found directly in the other model either in [1] or in [2]

Fig. 1. An example of conflicts between autonomous self-x characterization models on the basis of [118] and [165]

In summary, there is still no consent in the literature on a dedicated set of self-x capabilities that describe autonomous
systems or related system classes. In contrast, there are hundreds of self-x terms that have become overused buzzwords
and are described differently depending on the area of science and the authors using the term [20, 63]. Moreover, specific
sets of self-x characteristics from different authors cannot be compared easily because of a missing common wording
for the same terms, a conflicting structure of the properties into major and minor levels, or distinct skill sets in general.
Therefore, it can still be challenging today to define the vision for autonomous systems based on a common set of self-x
Manuscript submitted to ACM
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Self-X Characterization of Autonomous Systems 7

characteristics from the current research state. Additionally, different system classes can have identical, overlapping, or
distinct self-x characteristics. This makes it difficult to differentiate the system types and classify a system with one or
more system classes based on its capabilities.

3 RELATEDWORK

The related work of the study is associated with different research fields such as self-x capability models, the definition
and characterization of individual system classes, and the relation of comparable system concepts.

The first group of related papers focuses on the research of self-x capability models for autonomous systems and
related system classes. Thereby, Horn has proposed one of the first collections of self-x capabilities to characterize
autonomic systems (see Section 2.3). Most of the other underlying research papers suggest self-x capabilities for the
characterization of a certain system class based on general system theory [40, 41, 68, 152, 184], the deduction of skills
from a certain application domain [109, 118, 130, 177], or previous proposed self-x characterization models, especially
the one from Horn [39, 52, 108, 110, 165, 168, 189, 192]. Only one article from Brooks and Roy deals with a systematic
review of the self-x requirements of self-engineering systems [20]. The concept of self-engineering systems is closely
related to autonomic systems, but has higher capabilities and addresses not only computing systems. It can be seen as a
special form of autonomous systems that focuses on maintenance, repair, and overhaul and is applied to a wider range
of biological and engineered system types. In their review, the authors manually collect self-x terms used in the field of
self-engineering systems and analyze their frequency of use in papers and patents over the years to identify which
self-x terms have been the primary area of research. The review concentrates only on material and hardware systems
and leaves out other types of system, such as software, control, or operating systems. Two other research studies by
Berns and Ghosh [17] and Nuno et al. [130] investigate the relationship and meaning of different self-x properties. Both
works provide a valuable basis for defining the meanings of the terms and recognizing synonymous expressions in the
course of the study.

The second group of related papers is concerned with the literature on system classes such as automated [182],
autonomic [76, 168], adaptive [21, 108, 152, 189], intelligent [66, 148, 176], organic [70, 157, 163, 190], and autonomous
systems [40, 65, 110, 118]. The authors of the articles thereby describe basic system definitions and characteristics
of each system type to specify details of the concepts. The third group of related papers focuses on the relation of
comparable system classes. This group overlaps with the references of the second group of relevant papers in the sense
that many authors who do research on a certain system class tend to compare them with one or more other system
classes. Most of the authors who write about autonomous systems compare them with system automation [40, 139, 149].
Some authors who write about adaptive systems relate them with autonomic systems in various ways, for example,
as complementary classes, identical approaches, or concepts that build on top of each other [39, 68, 184, 192]. The
authors of the organic computing domain especially draw a line between the concepts of organic and autonomic
systems [157]. Only one article from Hrabia et al. briefly addresses the relation of multiple system classes including
autonomous, adaptive, intelligent, autonomic, automated and organic systems. Compared with our study, their work
focuses primarily on the definition of a measurement framework to quantify autonomy, rather than providing a detailed
discussion of the relationships between system classes and their characteristics [77].

In summary, aspects of autonomous systems, its characteristics and relations to other system classes are distributed
in various research papers. Most of the authors write about a single system class and its self-x characteristics with
a narrow focus. However, detailed discussions on the relations between autonomous systems and similar system
concepts and a holistic view on the self-x properties of multiple system classes are lacking. In addition, the authors
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from current research state often use self-x capabilities from previous models or individually deduce them from a
theoretical or practical research context. In this way, the number of self-x terms is continuously growing, resulting in
diverse self-x characterization models with different and often non-comparable self-x abilities and structures of the
model. A systematic review of self-x capabilities is missing that identifies popular terms, specifies their meanings, and
harmonizes their wording.

4 METHOD

The study addresses three research gaps and questions that will be described in the next subsection of this chapter. The
details of the research method are explained in the second subsection.

4.1 Research questions and objectives

Based on the theoretical background and related work, three research questions (RQ) have been identified that will be
examined as part of the study.

RQ1: What relationships do autonomous systems have to comparable system classes?

The first research question addresses the difficult categorization of system scenarios with one or more system classes.
There are comparable system concepts that exist along with the idea of autonomous systems as described in Chapter 2.2.
Although system classes are treated as different system types and are investigated in scattered research fields, the system
concepts are similar to the vision of autonomous systems and seem to intersect to some extent. Hence, it is notable
that some authors in the current research state tend to use system class names interchangeably [108, 110, 165, 192] or
specify the details of a system class based on the concepts of another system class [68, 110, 184, 189, 192]. Therefore, it
is challenging to draw a line between autonomous systems and similar system classes and categorize system scenarios
with a dedicated type of system.

To address the first research question, the relations of similar system classes are explored based on a literature review.
Thereby, the details of each system class from current research state are being used as a basis to understand their goals,
benefits and capabilities and derive knowledge on their relations afterwards. The goal is to provide a clear picture of
autonomous systems and the relations to comparable system classes, so that it becomes easier to classify systems as
autonomous or another related system class.

RQ2: Which self-x properties are used in the literature to describe characteristics of system autonomy and related

system classes?

As outlined in Chapter 2.3, self-x terms are used to describe autonomous systems and related system classes. Because
the meanings of the terms are not standardized, there are hundreds of self-x terms today that can be related to one
or more system classes. Furthermore, authors have a different understanding of the terms themselves, use another
wording for comparable characteristics, or use the terms incorrectly as overused buzzwords [20]. Therefore, it is still
challenging to define the vision for autonomous systems based on a common set of self-x characteristics of the current
research state. From the viewpoint of the authors, there is a need to identify popular self-x terms, develop a common
understanding of their meanings, and identify synonyms to reduce the number of relevant self-x terms to a distinct
collection of properties.

Therefore, the second research question addresses the need to collect, harmonize, and unify self-x requirements, so
that the specific terms and their understanding among the authors can be aligned. The goal is to systematically find
and count the self-x terms used in the underlying literature to provide a list of the most common self-x terms together
Manuscript submitted to ACM
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with their meanings. Thereby, terms that describe the same concepts should be identified, so that the list is condensed
and contains unique skills instead of presenting a huge collection with different words for the same capabilities.

RQ3: How can autonomous systems be characterized on the basis of self-x properties?

Finally, there are many self-x characterization models that are typically created for a specific scenario, domain, or
system class. Due to a different terminology, structure, and their narrow focus, it is difficult to compare existing self-x
capability models and rely on a specific set of self-x skills from the current research state for the characterization of
individual system scenarios (see Chapter 2.3). From the viewpoint of the authors, there is a lack of a general self-x
characterization model for autonomous systems that uses a harmonized set of self-x properties and takes into account
not only autonomous systems, but also related system classes with overlapping capabilities.

Therefore, we want to contribute to the current research state by presenting a conceptual model that characterizes
autonomous systems on the basis of the results of research questions one and two. First, it is based on a harmonized
list of self-x capabilities from current literature so that the most common characteristics for autonomous systems and
related system classes are included and condensed to a more unified view. Second, as autonomous systems skills overlap
with those from related system classes, the model does not take into account autonomous systems only, but provides
a holistic view that characterizes autonomous systems and their related system classes. It is not supposed to list all
capabilities an autonomous system needs to provide, but to structure popular self-x capabilities for autonomous systems
and related system classes from the literature to achieve a more consistent characterization throughout all system
classes. In the end, the characterization model supports characterizing autonomous systems with a common set of skills
and helps to categorize a system as autonomous or another related system class based on its desired self-x capabilities.

4.2 Research method

To address the identified research gaps and questions, a systematic literature search is conducted based on a tool chain
of a bibliographic database, reference management software, programming techniques and finally a manual review. The
study research method is based on a framework of Brocke et al. which comprises five steps as illustrated in Figure 2. All
of the steps will be discussed in the following subsections in detail.

1 2 3 4 5
Conceptualize

Topic
Literature

Search
Analysis and

Synthesis
Research

Scope

Taxonomy of
literature review
based on Cooper

Definition of
the search term

Web of Science
advanced search

Review results and
download using Citavi

Characterize
autonomous systems

& related classes

Research
Agenda

Fig. 2. Framework for literature reviews on the basis of Brocke et al. [80]

4.2.1 Review Scope. In order to clearly define the scope of the review, Brocke et al. suggest using an established
taxonomy for literature reviews as a basis [80]. Therefore, this study summarizes the scope of the review based on the
general taxonomy for categorizing reviews presented by Cooper [45]. This taxonomy consists of six characteristics that
can be found with the impliciations for this study in Table 1.

The focus of the study is a review of fundamental theories of the characterization of autonomous systems (1).
Thereby, the goal is to integrate past literature to identify self-x terms and harmonize their meanings to resolute
different understandings. Furthermore, the goal is to gain new knowledge about the relation between comparable
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system concepts and deduct a general applicable self-x characterization model based on the results of the review (2).
The perspective of the study is espousal, because the literature is accumulated in the service of synthesizing terms and
derive new knowledge (3). Next, the coverage is exhaustive based on a search term that allows to include most of the
literature with relevance for the topic. Special attention is thereby paid to the self-x terms and their meanings, while
other aspects of the papers are not discussed in detail (4). The gathered papers are grouped according to their self-x
terms so that papers with similar ideas and goals with respect to self-x characterization appear together (5). Finally, the
results of the study encompass a fundamental theory of system autonomy with a general scope, so that the findings can
be applied to various research domains (6).

Table 1. Taxonomy of literature review based on Cooper [45]

No. Characteristics Categories
1 Focus Theories
2 Goal Integration (Generalization and Conflict Resolution)
3 Perspective Espousal
4 Coverage Exhaustive
5 Organization Conceptual
6 Audience General Scholars

4.2.2 Conceptualization of the Topic. After the delimitation of the review scope, the first step is to define a search term
for the systematic literature review. Basically, we are interested in the literature on autonomous systems and related
system classes that discusses their characteristics based on self-x capabilities. Thereby, special attention is directed
towards studies that discuss self-x characteristics in general rather than concentrating on the research of specialized
self-x skills such as self-healing or self-optimization. Therefore, the search term comprises three building blocks:

(1) System class: The first term that needs to be included is one of the system class names of interest as referenced
in chapters 2.1 and 2.2. These are autonomous systems or one of the comparable system concepts such as
automated, autonomic, intelligent, adaptive or organic systems.

(2) Computer system: In this study we are concerned with computer systems or techniques rather than, for
example, material or social science. Therefore, the search term also needs to include the words computing or
system to focus on literature with special interest on computing systems.

(3) Self-x capabilities: Next the literature contribution needs to deal with self-x characteristics in general and,
therefore, needs to name the generic term rather than using only specialized characteristics. Therefore, the article
should include the term self-x or another word form for the term such as self-properties, self-star, self-systems or
selfware.

4.2.3 Literature search. Web of Science has been used as a bibliographic database to conduct the literature search. It
offers an advanced search query builder that can be used to find research articles based on a search term using logical
operators and filter the results on the basis of various exclusion criteria. Therefore, the defined search term has been
specified in the query language of Web of Science and has been applied to the literature fields title (TI), abstract (AB),
Manuscript submitted to ACM
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and author keywords (AK):

( 𝑎𝑢𝑡𝑜𝑛𝑜𝑚𝑜𝑢𝑠 𝑂𝑅 𝑎𝑢𝑡𝑜𝑛𝑜𝑚𝑖𝑐 𝑂𝑅 𝑎𝑑𝑎𝑝𝑡𝑖𝑣𝑒 𝑂𝑅 𝑎𝑢𝑡𝑜𝑚𝑎𝑡𝑒𝑑 𝑂𝑅 𝑖𝑛𝑡𝑒𝑙𝑙𝑖𝑔𝑒𝑛𝑡 𝑂𝑅 𝑜𝑟𝑔𝑎𝑛𝑖𝑐 )

𝐴𝑁𝐷 ( 𝑐𝑜𝑚𝑝𝑢𝑡𝑖𝑛𝑔 𝑂𝑅 𝑠𝑦𝑠𝑡𝑒𝑚 )

𝐴𝑁𝐷 ( 𝑠𝑒𝑙 𝑓 −𝑥 𝑂𝑅 𝑠𝑒𝑙 𝑓 −𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑖𝑒𝑠 𝑂𝑅 𝑠𝑒𝑙 𝑓 −𝑠𝑡𝑎𝑟 𝑂𝑅 𝑠𝑒𝑙 𝑓 −𝑠𝑦𝑠𝑡𝑒𝑚 𝑂𝑅 𝑠𝑒𝑙 𝑓 𝑤𝑎𝑟𝑒 )

(1)

The search query initially resulted in 159 papers. Afterwards, titles have been filtered based on their research area
to sort out papers from psychology, neuroscience, chemistry, educational research, and polymer science, so that the
result set finally includes papers with a focus on various types of computation systems only. The application of further
exclusion criteria has not been necessary, as the results include only English papers, cover years from 2005 - 2023 and
encompass paper types including articles, proceedings, or review papers anyway. In the end, the collection of search
results comprised 155 hits.

4.2.4 Literature analysis and Synthesis. As a next step, the list of search results has been exported from Web of Science
and imported into Citavi. Thereby, we manually reviewed the results and sorted out five papers with duplicate titles
that have been published as a journal and as a proceeding paper in the same year. The final list therefore comprises 150
titles that have been automatically downloaded using Citavi full-text search.

4.2.5 Research Agenda. The research agenda covers the main contributions of the study to answer the identified
research questions. First, a literature review is conducted to examine the relations of autonomous and similar system
classes (see Section 5.1). Second, self-x terms are extracted and harmonized based on a Python script and manual review.
The script is used to automate the analysis of the self-x terms from the literature. Thus, the tool parses each PDF file,
extracts self-x terms, filters the selection, unifies the word form, and creates a list with self-x terms, their counts of
papers, and their references1. The resulting list is then used to manually identify common self-x terms used in the
underlying literature, define their meanings based on related references, and sort out synonyms (see Section 5.2). Finally,
the authors deduce a conceptual self-x characterization model using the harmonized list of self-x terms and the relations
of autonomous and similar system classes as a foundation (see Section 5.3).

5 RESULTS

In addition to the current state of research, this chapter answers the identified research questions. Therefore, the relation
of comparable system classes is examined as a first step. Furthermore, the self-x characteristics of autonomous and
related system classes are extracted, harmonized, and defined, so that a list of common self-x terms from the literature
can be presented. On the basis of that, autonomous systems and similar system classes are characterized by the use of
the extracted self-x characteristics to finally deduce a conceptual alignment model of autonomous self-x capabilities.

5.1 Relation of similar system classes

Based on the definitions of autonomous, autonomic, automated, intelligent, adaptive, and organic systems, this chapter
describes the relation of system classes to answer the first research question.

Autonomous systems are often described as automation systems with higher capabilities for complex or uncertain
scenarios [183]. Advanced automated systems can have the appearance of autonomy as they work independently of
humans as long as they operate in a defined and limited scope [40]. Therefore, automated systems are often described

1Link to Python tool: https://github.com/DLR-SF/Extract_Selfx_Terms
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as a subclass of autonomous systems [77]. They also focus on executing processes independently of humans to replace
manual labor, increase productivity, or improve quality, but unlike autonomous systems, they do so only in a stable
and well-defined environment with clearly defined state spaces [39, 149]. Thereby, the necessary process steps can
be programmed based on a set of rules, so that the behavior is fully determined by its external input and internal
state [110, 149]. They are limited to repeated tasks, do not make complex decisions, and are unable to manage new
situations [118]. Their behavior can generally be described on the basis of a classical control loop with the phases
sense, analyze, and act. Autonomous systems can have higher capabilities and extend classical control loops with
functionalities to perceive sensed information according to the context, understand current circumstances as a baseline
for decision making, and the ability to also solve uncertain or new situations [65].

Autonomic systems are another subclass of autonomous systems [77]. These systems also focus on automation, but
in contrast to autonomous systems, they concentrate on automation of the management tasks of hardware and software
systems, as well as entire computing networks, to cope with the ever-growing complexity of IT infrastructures [76, 157].
Therefore, they differ from autonomous systems primarily in terms of the system objectives and the environment.
Autonomic computing systems try to reduce human effort in the underlying management tasks in complex technical
infrastructures so that human users can concentrate on their main exercises [53, 76]. In contrast to that, the goal of
autonomous systems is self-governance and therefore the ability to operate independently from external influences [183].
They manage themselves but can have an expanded responsibility to act autonomously, handle uncertainties, or solve
new exercises without human interference [65]. Thus, autonomy focuses on self-sufficient and goal-directed action,
while autonomicity ensures that maintenance-free operation can happen [169].

Next, there are intelligent systems that emulate intelligent behavior to solve some sort of exercise. They typically use
AI technologies to deal with challenges that cannot be effectively solved with rule-based programming techniques [66].
To draw a line between intelligent and autonomous systems, it can be concluded that intelligent systems do not have
general intelligence [77]. They use AI to solve a specific sort of challenge that cannot be programmed by a set of rules
but do not act fully autonomously in an uncertain environment. System intelligence can therefore be seen as a way to
deal with uncertain or new situations in complex and dynamic environments, but, unlike autonomous systems, they do
not have the goal of operating independently.

A subclass of intelligent systems are self-adaptive systems that use some sort of intelligence to learn and evolve from
experiences. This enables them to fulfill new objectives and adjust to an uncertain environment that is not completely
known at design time [77]. While autonomous system goals are self-governance and independence, adaptive systems are
concerned with adapting to internal or external disturbances or changes. They typically concentrate on the fulfillment
of functionality or the improvement of non-functional requirements like robustness, efficiency, or availability. Therefore,
their main focus is to reduce human effort in system interaction, provide dependable systems, and improve system
performance [189] rather than replacing human labor with machines. Autonomous systems can be adaptive, but do not
necessarily need to depending on the specific use case and scenario. Self-adoption capabilities are especially needed in
uncertain or new scenarios where the system needs to adopt to a changing environment or handle new situations. In
stable environments or complex computing infrastructures, automated or autonomic capabilities can be sufficient to
realize an autonomous system that executes tasks and manages itself independently [77].

Self-adaptive systems are strongly related to other types of system, especially autonomic systems. Many researchers
use the terms interchangeably [17, 192], because it is difficult to differentiate the system classes [151]. Researchers
who draw a line between both concepts do so in different ways. The first group of authors describes that self-adaptive
systems are a subcategory of autonomic systems because they basically adapt to complex environments to manage
Manuscript submitted to ACM
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themselves [46, 63]. The second group of authors describes it the other way around in the sense that self-adaptive
systems are a broader category than autonomic computing systems that can address more characteristics than specified
in self-managing self-CHOP capabilities [46, 51, 61, 99, 117, 141, 151, 159, 184]. We share the opinion with the second
larger group of authors that understand self-adaption as a more general term based on the similarities and differences
of the system class characteristics described in Chapter 2.2. Autonomic systems focus on self-management to provide a
highly reliable and maintenance-free system with a transparent interface to end users. Adaptive systems modify their
own structure or behavior in uncertain environments or attempt to find solutions to new or modified goals to reduce
human effort, improve functional or non-functional requirements, or handle unknown situations. Therefore, both types
of system have another focus and differentiate according to their main goals, benefits, and environment. On the other
hand, the term self-adaption can be mapped to one or more self-managing properties of autonomic computing. They
can be seen as specific adaption skills that address healing, protection, and optimization capabilities and adjust on the
basis of configuration changes [130]. Therefore, self-adaption can be achieved on the basis of autonomic capabilities,
but can also realize additional skills to preserve functional requirements, regulate non-functional requirements, or the
use of intelligence to cope with uncertainties or new situations [184].

Another related system class is organic computing. It especially has similarities with autonomic and adaptive systems.
Many authors state that they have the same self-x properties as requested in autonomic systems [119, 157, 163, 190].
They also follow autonomic system goals to manage themselves and provide simple interfaces to complex infrastructures
for human users [190]. Similarly to adaptive systems, organic systems are also able to dynamically adapt themselves to
current requirements of their execution environment and new situations based on intelligence [70, 190]. Therefore,
organic systems are described as systems with autonomic and adaptive capabilities [157]. The essential difference
from the classes of automatic and adaptive systems is that organic computing systems focus on the organization of
large collections of devices that provide services to humans [157]. In comparison, autonomic and adaptive systems
are concerned with self-management and self-adaption skills to reduce human effort in system interaction and do
not necessarily need to consist of many components [76, 189]. Moreover, organic systems are structured according to
biological paradigms [157]. Automatic and adaptive systems can be inspired by nature, but do not necessarily need to.
Therefore, an organic system can be seen as a way to realize autonomic and adaptive systems based on nature-inspired
design and the cooperation of computing units. However, autonomous and adaptive systems are separate system classes
that can be designed independently of organic computing principles. In contrast to autonomous systems, the goal
of organic systems is not to transfer human labor to machines and be independent but to provide self-managed and
self-adaptive services to human end users so that they can concentrate on their actual tasks.

Figure 3 summarizes the relations of similar system classes. It shows that an automated or autonomic system can be
categorized as a subtype of an autonomous system. In contrast to autonomous systems, their capabilities are limited to
achieve independence in a stable environment or to cope with complexity by providing self-managing infrastructures.
Adaptive systems are a subclass of intelligent systems because they use intelligent algorithms to adapt to internal
or external changes that cannot be foreseen at design time. Autonomous systems can be adaptive, but they do not
necessarily have to depending on the stability, uncertainty, and novelty of the environment. Nevertheless, autonomous
systems would not be able to solve real-world problems in dynamic or unknown environments without intelligent
behavior and the ability to self-learn. Therefore, autonomous systems are often described as an intersection of autonomic,
automated, and adaptive systems to be able to cope with uncertain environments or modified goals [77]. As a result, it
can be concluded that the concept of autonomous systems is directly related to automated, autonomic, and adaptive
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Fig. 3. Relation of autonomous systems and similar system classes

systems. The authors of this work use this relation as a basis for further analysis and as the foundation for the conceptual
alignment model of autonomous self-x characteristics.

5.2 Harmonization of self-x characteristics

To answer the second research question, we will collect and harmonize the self-x capabilities of the underlying literature
script-based and by manual review as a basis for further usage. Therefore, a Python tool is being used in the first step to
identify popular self-x characteristics from papers automatically. In a second step, the resulting list of self-x capabilities
is reviewed manually to define their meanings and reduce the list size by identifying possible synonyms.

First, the Python tool is used to extract and count all self-x usages in the 150 selected research papers (see Section 4.2).
The statistics of the tool show that 142 of 150 papers use self-x terms (see Figure 4). Overall, the articles mention self-x
properties more than 6,000 times. When the terms are unified to nouns and each word is only counted once, the papers
mention 184 different self-x capabilities in total. To further break down the collection of self-x characteristics, the tool
has been programmed to sort out unusual self-x terms by considering only those characteristics that have been named
by at least three papers. This further reduces the list size to 34 self-x properties that can be found together with the
number of papers that named them in the Attachment A.2.

Fig. 4. Logged statistics of the use of self-x terms in the underlying literature as a result of the execution of the Python tool

The most common self-x term used in the underlying literature is self-healing. It describes a system that detects
system errors or faulty components, diagnoses and corrects them [51]. In many papers, the term is named together
with the other autonomic self-CHOP capabilities self-configuration, self-optimization, and self-protecting to describe the
Manuscript submitted to ACM
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capabilities of a self-managing system (see Section 2.3). As these skills are not only used to characterize autonomic
systems, but also related system classes, self-management and self-CHOP are very popular self-x characteristics in the
underlying references.

In terms of popularity in papers, the results show that the term self-healing is closely followed by the terms self-
organization and self-adaption. Self-organization describes a system that rearranges or adapts its own structure to
achieve a global goal based on local actions [17]. It is used in papers across all system classes, but is predominantly
described as a system goal of organic computing to self-organize large collections of devices with shared objectives [157].
Self-adaption describes a system that adjusts itself in response to changing conditions or to improve its function [20].
The term is used as a goal for self-adaptive systems [68, 108, 152, 184, 189], but is also mentioned in the field of
autonomic [39, 53, 109, 168] or autonomous systems [40, 41, 110, 118].

The rest of the list has been manually reviewed to identify synonyms and closely related terms with comparable
meanings. Self-healing has, for example, self-repair and self-recovery as synonyms, since the terms basically describe
the same characteristics [60, 165]. Another example of comparable terms are self-optimization and self-balancing. Self-
optimization describes the system ability to improve itself with respect to certain goals [17]. Self-balancing is described
as the ability of the system to distribute or optimize the load between the resources of a system in the underlying
references [195, 196]. It can therefore be seen as a special form of self-optimization which is being used in the context
of load balancing of interactive network elements. Following the same pattern, further self-x capabilities have been
harmonized. Details about this are covered in the Attachment A.3.

Extracting and harmonizing the self-x list as described above, this paper presents 21 self-x properties as common
terms from the literature to describe system autonomy and related system classes. Thereby, 34 terms have been extracted
as popular terms by the Python tool and 13 have been identified as synonyms or comparable concepts of another term
by manual review. Appendix A.4 provides an overview of the resulting list of self-x capabilities, their mapped synonyms,
counts of papers, derived meanings, and references for the meaning.

5.3 Self-x characterization model

To answer the third research question, we want to introduce a conceptual alignment model to structure common self-x
properties of autonomous systems using system classes. Therefore, the definition and relation of similar system classes
described in Section 5.1 is being used as an underlying resource together with the harmonized list of self-x properties
shown in Appendix A.4.

The idea of the alignment approach is to first create a baseline structure of the model that shows the relation of
system classes and allows assigning self-x capabilities to autonomous systems or one or more directly related system
concepts. According to the principle separation of concerns, the characterization of automated, autonomic, and adaptive
systems is then derived individually based on gathered self-x terms. Each characterization begins with determining the
system class goals and derives major and minor capabilities from them. In the end, the individual self-x characterization
of each system class is used to finally present an overall self-x characterization of autonomous systems that can have
autonomic, automated and adaptive self-x properties.

Figure 5 gives an overview of the resulting model. As shown in sections 2.3 and 5.1, different system classes are
related to each other and can have similar or overlapping self-x capabilities. The baseline structure of the model captures
the relation of different system classes and self-x terms and is therefore composed out of three overlapping circles
which visualize capability domains of automated, autonomic and adaptive systems. As autonomous systems can be
automated, autonomic, and adaptive systems at the same time, their capability domain is visualized in the center as
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an intersection of other system classes. Another circle visualizes the capability domain of shared capabilities that are
related to all other capability domains. Therefore, the circle has been placed in the background and encloses the others.
Using the structure, each self-x capability can be related to at least one capability domain by adding it to a circle or
overlapping area. The color of the self-x capabilities highlights the categorization of each skill into system goal, major,
or minor characteristic.

Shared Capabilities

Autonomic Adaptive

Automated

self-adaption

self-configuration

self-healing

self-management

self-optimization

self-protection
self-governing

self-description

self-regulating

Autonomous

system goals
major capabilities

meanings:

self-awarenessself-monitor

self-assembly

minor capabilities

self-learning

self-evolving

self-directedness

self-organization

self-assessment

self-replication

self-generated

self-synchronization

self-destruction

Fig. 5. Conceptual alignment model for autonomous self-x capabilities structured by system class

As a next step, each system class can be characterized by the use of self-x capabilities. Starting with the system class
goals, these can be determined as self-regulation, self-adoption, self-management, and self-governing. As described
in chapter 2.1, the overall goal of an autonomous system is self-governing [118, 183]. Automated systems automate
the execution of processes or the fulfillment of tasks independently and therefore have self-regulation as their main
goal [40, 134]. Adaptive systems have themain focus of adjusting in response to an uncertain environment, maintaining or
Manuscript submitted to ACM
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improving function, or finding solutions to modified goals and therefore have self-adaption as the major objective [20]. As
autonomic systems attempt to relieve end users from IT management tasks, their overall intent is self-management [20].

To continue with the characterization, we derive major characteristics from the system class goals. Self-management
has been defined by self-CHOP properties self-configuration, self-healing, self-optimization, and self-protection with
broad acceptance in the literature (see Section 2.3). Self-adaptive systems adapt their structure or behavior in response
to a changing environment and plan actions to pursue modified or new goals independently. Therefore, they need the
ability to plan tasks independently to achieve an overall goal despite an uncertain environment [118]. They also need
the ability to learn and evolve from experience to gain knowledge, predict forthcoming events, and improve their future
operations [8, 133]. Therefore, self-adaptive systems can be characterized by the major capabilities self-directedness,
self-learning, and self-evolving. A major goal of organic computing is self-organization [157, 190]. As self-adaptive and
autonomic systems can be organic at the same time, the term self-organization is added to the shared capability domain
of autonomic and adaptive systems as a major system capability by placing it in the overlapping area.

As highlighted in Section 5.1 autonomic and adaptive systems are highly related. From our perspective, self-adoption
can be seen as a more general term with an extended meaning, which can be mapped to one or more self-x properties
of autonomic computing. While autonomic capabilities support self-management goals, self-adoption can additionally
focus on preserving functional requirements, regulating non-functional requirements, or the use of intelligence to cope
with uncertainties or new situations [184]. Therefore, the model includes autonomic capabilities as well as self-adoption,
but categorizes self-adoption as a main goal of adaptive systems and self-CHOP as minor characteristics of autonomic
systems. In this way, the more specific skills of self-managing systems are captured along with self-adaptive systems to
indicate that autonomous systems can have autonomic and adaptive system capabilities but do not necessarily need to.

After characterizing system goals and major capabilities of all system classes with self-x terms, there are ten remaining
self-x capabilities from the harmonized list that cannot directly be categorized into a capability domain. One term is
self-generated, which describes systems that are able to generate a cognitive model, input parameters, or knowledge by
themselves [4, 106, 185]. The term is directly related to the self-learning ability and is therefore categorized as a minor
property of adaptive systems.

Four other attributes, self-assembly, self-assessment, self-replication, and self-destruction, have been characterized
as minor capabilities of autonomic and adaptive systems. The ability self-assembly describes system environments
in which individual elements can self-assemble into complex forms to achieve higher-level objectives [75]. This has
been inspired by nature where molecules can form crystals or ants can build bridges [57]. Transferred to computer
systems, the term is often used in the context of robots that assemble a group to accomplish tasks that a single robot
would not be able to perform [75]. Therefore, the term can be seen as a special form of self-organization or, in broader
terms, structural self-adoption that might be beneficial in a specialized field [34]. Self-assessment is needed as a basis
for self-healing, self-protecting, self-optimization or in broader sense self-adaption. The effectiveness of the system is
being assessed to identify failures, evaluate performance degradation or risks and inform other components to heal,
protect, optimize or adapt [60, 118, 149]. Self-replication is the ability to duplicate oneself or individual components of
a system [175]. In computer systems, service resources can, for example, be replicated to achieve horizontal scaling,
which is typically done by a configuration change of the underlying orchestration system or simply by making a copy
of resources. Thus, a self-replicating system must either be able to self-configure, for example, to self-optimize load or,
in wider terms, self-adopt its overall structure by adding a new component [20]. Finally, self-destruction refers to the
ability of a system to abort execution or exclude components when an unsolvable safety problem that could damage
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the system or the environment is detected [130, 169]. It is a skill that is needed as a basis for self-managing systems in
order to protect, heal, or optimize itself and, in broader sense, for structural adaption in self-adaptive systems.

The last four remaining self-x attributes, self-monitoring, self-awareness, self-synchronization and self-description,
can contribute to all other capabilities and system classes and therefore relate to the shared domain. Self-monitoring
provides the basis for almost all other properties by the ability to observe the system state and detect changing
circumstances [168]. Self-awareness is also needed as a basis for all other system classes, as it describes that a system is
aware of its internal state which is directly dependent on self-monitoring [168]. Self-synchronization describes the
ability to synchronize the behavior of components in a group with a collective goal. In the references it is described
as an important basis for systems with a self-organizing or self-assembly ability to synchronize behavior in a group
or collection [19, 181, 195, 196]. In general, it is a necessary basis for parallel computing to constrain the ordering of
instructions performed by different threads, processes, or collaborating computing systems [162]. Therefore, it is an
important basis for different distributed computing scenarios in all types of related system classes. Furthermore, self-
descriptive systems are capable of describing their own structure and services in a dynamic or static environment [175].
Therefore, this capability can also be useful for autonomic, automated, and adaptive systems to some extent.

Overall, 21 self-x capabilities have been used to characterize autonomous systems based on their relation to autonomic,
adaptive, and automated system classes. Thereby, four characteristics have been identified as system goals, eight as
major capabilities, and nine as related or shared minor traits. Autonomous systems can be automated, autonomic, or
adaptive at the same time, and therefore inherit necessary capabilities from each related system class to realize the
vision of self-governing systems. As use cases across all domains can have different goals and environments, a different
type of system, and consequently another set of self-x capabilities might be required. Therefore, the proposed self-x
model characterizes each system class and allows to define the vision of autonomy based on a single or combined view
of different system classes and self-x requirements depending on individual scenarios. The resulting alignment model is
accordingly not supposed to list all requirements an autonomous system needs to provide, but suggests a conceptual
model for a more unified view on self-x capabilities and their relations to different system concepts.

6 CONCLUSION

Overall, it becomes clear that there is still a lot of ambiguity between the differences of autonomous and comparable
system classes such as automated, intelligent, organic, adaptive, and autonomic systems in the current research state.
The system class names are sometimes used interchangeably or their relationship is described in conflicting ways.
Accordingly, it is especially difficult to draw a line between autonomous systems and similar system concepts and
classify existing or future system scenarios with a dedicated system class (see Sections 2.1 and 2.2).

To describe the vision of autonomy and decide whether a system is autonomous or not, self-x capabilities are being
used throughout the literature. Because there is currently no standard that defines the characteristics of autonomous
systems, there are many self-x characterizations today. As emphasized by the authors of the paper, this makes self-x
characteristics hard to compare, because of a different wording for similar concepts, distinct skill sets, and conflicting
structures of self-x characterization models. The result is a still fuzzy characterization of autonomous systems and
similar system classes that further complicates the differentiation of system concepts and a common understanding of
system autonomy (see Section 2.3).

To create an underlying basis for the discussion of autonomous system concepts and their self-x capabilities, this
research provides a systematic literature review on the characterization of autonomous systems and their relation to
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similar system classes to finally present a conceptual alignment model of autonomous self-x characteristics. Thereby,
three research questions have been identified that will be answered explicitly in the following paragraphs (see Section 4).

The first research question addresses the relationship between autonomous systems and comparable system classes.
As outlined in Chapter 5.1 the concept of autonomous systems is directly related to automated, adaptive, and autonomic
systems. An autonomous system can be an automated system if the system goal is to realize a process from start
to end without human intervention in a stable and clearly defined environment. As the scenario is deterministic, a
self-regulated system that acts according to rules can be sufficient to achieve system autonomy. If the environment
is complex and provides a lot of management effort, autonomic system capabilities could also be needed to improve
reliability, lower the effort of maintenance tasks, and thereby decrease the necessary degree of human intervention in
system management. If the environment is uncertain additionally or the system has the responsibility to cope with new
or modified goals, the system needs to provide self-adaptive skills in order to satisfy functional and non-functional
requirements. Therefore, we argue that an autonomous system needs to provide different capabilities according to the
scenario and can therefore be classified as autonomic, automated, and adaptive at the same time. Overall, we believe
that autonomous systems often occur in a mixed form of similar system classes when applied in real-life domains
depending on the specific environment, system goals, and required self-x capabilities.

The second research question addresses the large amount of non-standardized self-x capabilities. As described in
Chapter 5.2, there are hundreds of terms that are used in the literature to define the characteristics of autonomous
systems and related system classes. In this work, the authors of the study reviewed 150 research papers automatically
and manually to present a list of 21 self-x characteristics together with their meanings to the reader. Thereby, the
popularity of the terms with respect to the number of papers which named them has been used as a basis to identify
relevant terms. In addition, synonyms and closely related concepts have been identified to provide a condensed list of
terms as a basis for further usage.

The third research question addresses the need for a holistic self-x capability model to provide a characterization
of autonomous systems and related system classes. Thereby, the use case and the specific scenario create a need
for a dedicated set of self-x characteristics of an autonomous system from the viewpoint of the authors. These can
be automated, autonomic, adaptive, or related to multiple system classes. Because of that, we propose a conceptual
alignment model that structures the self-x characterization of system autonomy based on autonomous systems and
related system classes, as described in Chapter 5.3. Thereby, the model can be used to define the vision of autonomy
based on a popular set of self-x goals, major and minor capabilities, but is not limited to identified terms. In addition, it
can help to categorize individual system scenarios with system classes according to their system environment, goals,
and self-x capabilities.

Overall, this work emphasizes a clear distinction of different system classes from the literature, but also points out
similarities of system concepts, shared self-x capabilities, and mixed system classes in real-life scenarios. As a result,
this paper contributes to the clarification of autonomous system concepts by aligning the definition of different system
classes and their self-x capabilities as a baseline for future work.
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A APPENDIX

A.1 Self-X comparison between system classes

No Name Autonomous Autonomic Adaptive
[165] [118] [110] [40] [41] [192] [39] [168] [109] [52] [184] [68] [108] [152] [189]

1 self-configuration X X X X X X X X X
2 self-healing X X X X X X X X X X
3 self-optimizing X X X X X X X X X X X X
4 self-protecting X X X X X X X X X X
5 self-awareness X X X X X
6 self-determination X
7 self-managing X X X X X X X X X X X
8 self-containedness X X
9 self-directedness X
10 self-explanation X
11 self-motivation X
12 self-assessment X
13 self-adaptability X X X X X X X X X X X X X
14 self-evolution X
15 self-repairing X
16 self-regulating X X X
17 self-control X
18 self-organization X X X X X X
19 self-governance X X
20 self-perception X X
21 self-guidance X
22 self-calibration X
23 self-monitoring X X X
24 self-prediction X
25 self-inspection X
26 self-representation X
27 self-tuning X X
28 self-assembly X
29 self-improve X
30 self-analyze X
31 self-recovery X
32 self-maintenance X
33 self-learning X X
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A.2 Extracted Self-X Capabilities from underlying literature

No Self-x term Papers References
1 self-healing 99 [1–4, 7, 9, 11, 12, 17, 19, 22, 25–29, 33, 35–38, 43, 46, 50, 51, 54, 58, 59, 61–

64, 67, 71, 73, 74, 79, 82, 83, 85–87, 89–92, 95, 99, 102, 104–106, 111, 114–116, 121,
123, 124, 126–128, 130, 140–142, 144, 146, 147, 151, 153–159, 161, 166, 167, 169–
174, 177–179, 181, 185, 186, 188, 193–198]

2 self-organization 98 [3, 9, 11, 15, 17, 19, 22–24, 26–28, 30, 31, 33, 35, 37, 38, 42–44, 46, 48, 54, 58, 59,
61–64, 67, 71–74, 78, 81–84, 86, 92, 93, 95, 97–99, 101, 102, 104–107, 111, 113–
116, 120–122, 124–127, 129–132, 136, 140, 142–144, 146, 147, 151, 154–159, 161,
164, 166, 167, 169, 171, 177, 178, 185, 186, 191, 193, 195–197]

3 self-adaption 97 [1–5, 9, 11, 13, 14, 16–19, 22–27, 30, 31, 33, 35, 36, 38, 42, 43, 46, 48–51, 54, 56,
58, 61–63, 67, 71–74, 78, 79, 81, 83, 85, 90, 92, 93, 95, 97, 99, 102, 104, 111, 113–
116, 121–124, 127, 130, 132, 136, 140–147, 151, 154, 156, 161, 167, 169–174, 177,
178, 185, 188, 191, 193–195, 197]

4 self-optimization 85 [2, 3, 5, 9, 12, 15, 17, 19, 22–24, 26–29, 35–38, 43, 46, 50, 51, 54, 58, 59, 63, 64,
72, 74, 78, 79, 81, 84–87, 90, 91, 93, 95, 102, 104–107, 111, 113–116, 123, 126, 130,
136, 140–142, 144–146, 151, 153–156, 158, 159, 164, 166, 167, 169–174, 177, 185,
186, 193, 195–198]

5 self-management 69 [3, 9, 12–15, 17, 18, 22, 23, 26–28, 35, 36, 38, 43, 46, 49–51, 54, 58, 61–64, 67,
69, 71, 73, 74, 81, 85–87, 90, 91, 95, 99, 101, 102, 124, 125, 127, 129, 130, 140–
142, 151, 153, 158, 159, 166, 167, 169–174, 177, 185, 188, 193, 195, 196, 198]

6 self-configuration 62 [3, 4, 7, 9, 11, 12, 15, 17, 22, 25, 28, 35–38, 42, 46, 48, 61–64, 67, 71, 85, 90, 95, 98,
99, 102, 104, 106, 107, 111, 122, 130, 132, 137, 140, 141, 145–147, 151, 156, 159,
161, 166, 167, 169–174, 185, 193–198]

7 self-protection 55 [3, 12, 13, 17, 26, 27, 29, 31, 35–38, 43, 46, 51, 59, 61–63, 74, 85, 87, 90, 91, 95,
99, 102, 104–106, 111, 114–116, 123, 129, 130, 140–142, 151, 154–156, 167, 169–
174, 177, 185, 193, 198]

8 self-awareness 36 [3, 9, 14, 17, 23, 24, 26, 27, 30, 31, 35, 36, 38, 42, 46, 81, 85, 92, 99, 102, 103, 111,
131, 141, 151, 153, 156, 166, 169–174, 193, 198]

9 self-repairing 22 [12, 17, 24, 30, 31, 38, 61–63, 67, 82, 85, 101, 106, 128, 129, 141, 151, 169, 171, 178,
194]

10 self-monitoring 18 [3, 17, 25, 38, 67, 78, 82, 90, 95, 147, 151, 169–174, 181]
11 self-diagnosis 13 [15, 36, 38, 61, 63, 67, 85, 101, 102, 130, 132, 141, 151]
12 self-learning 12 [48, 74, 84, 88, 102, 106, 160, 177, 179–181, 195]
13 self-governing 10 [151, 156, 169–173, 185, 195, 196]
14 self-stabilizing 9 [17, 79, 83, 98, 104, 120, 130, 141, 159]
15 self-tuning 7 [12, 24, 69, 83, 132, 151, 174]
16 self-assembly 7 [31, 61–63, 151, 169, 171]
17 self-calibration 7 [1, 2, 67, 91, 130, 180, 181]
18 self-destruction 7 [90, 130, 169, 171–173, 198]
19 self-directedness 6 [62, 164, 169–171, 173]
20 self-regulating 6 [4, 83, 130, 170, 177, 198]
21 self-similarity 6 [62, 63, 95, 103, 169, 171]
22 self-maintenance 6 [63, 67, 141, 151, 195, 196]
23 self-description 5 [22, 56, 99, 106, 188]
24 self-recovery 5 [102, 130, 151, 195, 196]

(Continued next page)
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No Self-x term Papers References
25 self-expression 4 [26, 27, 30, 156]
26 self-evolving 4 [5, 132, 195, 196]
27 self-synchronization 4 [19, 181, 195, 196]
28 self-replication 3 [61, 63, 106]
29 self-balancing 3 [127, 195, 196]
30 self-sustaining 3 [128, 141, 144]
31 self-assessment 3 [22, 69, 130]
32 self-representation 3 [43, 141, 156]
33 self-improving 3 [74, 78, 160]
34 self-generated 3 [4, 106, 185]
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A.3 Synonyms of self-x capabilities

No Capabilities Explanation Ref.
1 self-healing,

self-repairing,
self-stabilizing,
self-recovery

Self-healing describes the ability of a system to detect system errors or faulty
components, diagnose and correct them. Therefore, it has a comparable meaning to
the terms self-repairing, self-recovery and self-stabilizing which are also concerned
with reaching a safe state after fault.

[51, 61,
63, 130,
141]

2 self-
optimization;
self-tuning;
self-balancing

Self-optimization means that the system can improve itself regarding certain goals.
The property has the same meaning than self-tuning, which is actively used as a
synonym in the references. A special form of self-optimization is self-balancing
which is being used in the context of load balancing of interactive network elements
to optimize system load and can therefore be seen as another synonym in specialized
fields.

[20, 94,
151,
165,
196]

3 self-
management;
self-
maintenance;
self-sustaining

The goal of autonomic computing is self-management and therefore to provide
a zero cost maintenance and highly reliable system to end users encompassing
self-CHOP properties. The term self-maintenance is being used in more specialized
fields such as industry or networking, but is often named together with self-CHOP
capabilities and basically follows the same goals as self-management. Self-sustaining
is actively used as a synonym for self-managing systems in the related references.

[20, 67,
91, 128,
130,
141,
195]

4 self-assembly;
self-similarity;

Self-assembly describes systems where individual elements can self-assemble
into complex forms to achieve higher-level objectives. A specialized form of self-
assembly is self-similarity, which describes components created from similar compo-
nents. Both properties are named are especially in the context of swarm intelligence
and self-organizing systems.

[95,
169,
171]

5 self-
description;
self-
representation

Both terms describe the ability of a system to describe itself and its components. [43,
141]

6 self-evolving;
self-improving

Self-evolving or self-improving systems assist in the evolution of components that
adapt to changing conditions of operation and self-improve function over time.
These terms are used as synonyms in the related references.

[74,
133,
160]

7 self-
organization;
self-expression

self-organization describes systems that are capable of rearranging their own orga-
nization or structure to achieve a global goal based on local actions. The property
is especially used in the context of organic computing and is closely related to
swarm intelligence and emergent behavior. The term self-expression is described
as a synonym of self-organization that is used in the field of autonomic computing.
It describes components that can dynamically change their coordination pattern
during run-time execution and therefore modify the internal organization of a
system.

[26, 27,
30]

8 self-
configuration;
self-calibration

self-configuration describes the system ability to configure and re-configuring
automatically, for example, for the purpose of self-optimization or self-healing. Self-
calibration is a synonym of self-configuration as it describes the re-configuration
of paramters with respect to a calibration standard or optimal performance.

[11, 51,
61, 91,
130]

9 self-
assessment;
self-diagnosis

Self-assessment describes the ability to automatically identify system failure,
risks and problem-solving capacity as a basis for autonomic self-healing and self-
protection or in wider terms changes in self-adaptive systems. Therefore, this
property includes capabilities to diagnose errors or faults and can be seen as a
broader term for self-diagnosis that is used as a basis for self-healing.

[22,
118,
130]
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A.4 Harmonized list of self-x characteristics

No Self-x term Synonyms Papers Meaning Ref.
1 self-healing self-repairing,

self-stabilizing,
self-recovery

135 System detects system errors or faulty components, di-
agnoses and corrects them

[51, 61, 63]

2 self-
organization

self-expression 102 System rearranges or adapts its own structure to achieve
a global goal based on local actions

[17, 38, 54]

3 self-adaption 97 Systems adjusts itself in response to changing condi-
tions to maintain or improve function

[20, 61, 143,
151]

4 self-
optimization

self-tuning, self-
balancing

95 System can improve itself regarding certain goals [130, 141,
198]

5 self-
management

self-maintenance,
self-sustaining

78 System manages a substantial amount of computing
functions to relieve users from management activities

[17, 20, 61]

6 self-
configuration

self-calibration 69 System is able to configure and re-configuring automat-
ically

[46, 130,
169]

7 self-protecting 55 System is capable of defending itself and its components
from attacks

[171]

8 self-awareness 36 System is aware of its internal state and behavior [3, 169, 171]
9 self-

monitoring
18 System observes its state and detects changing circum-

stances
[90, 171,
174]

10 self-assessment self-diagnosis 16 System automatically assesses system failure, risks and
problem-solving capacity

[22, 118,
130]

11 self-assembly self-similarity 13 System allows individual elements to self-assemble into
complex forms to achieve higher-level objectives

[61, 63, 171]

12 self-learning 12 System learns from experiences rather than being pre-
programmed

[74, 106,
195]

13 self-governing 10 System takes responsibility, performs tasks despite
uncertain environment and makes decisions indepen-
dently from external interventions

[168, 171]

14 self-description self-representation 8 System can describe itself and its components [99, 106,
188]

15 self-evolving self-improving 7 System assists in the evolution of components or itself
to improve its operation over time

[94, 133]

16 self-
destruction

7 System can abort execution or exclude components
when a risk or safety problem is detected for the system
or its environment

[130, 169]

17 self-
directedness

6 System is able to plan goals and actions independently
to complete a given task

[118, 169,
173]

18 self-regulating 6 Independent execution of actions to fulfill a repetitive
task

[41, 76, 130]

19 self-
synchronization

4 System is able to synchronize the behavior of resources
in a group with a collective goal

[61, 130,
141, 151]

20 self-replication 3 System is able to duplicate oneself or individual system
components

[20, 61]

21 self-generated 3 System finds its own representations and goals accord-
ing to some specific task

[4, 106, 185]
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