Long-lasting hydrophobization of monolithic phenolic gels via silulation

Fabian Henn, René Tannert, Barbara Milow

Institute of Materials Research, Department of Aerogels and Aerogel Composites, German Aerospace Center, Linder Hoehe, 51147 Cologne, Germany

fabian.henn@dlr.de

- Aerogels and xerogels based on resorcinol-formaldehyde (RF) polymers have promising properties for applications as filters or catalysts^[1]
- However, free OH groups of the phenolic gels make them hydrophilic
- Previous publications include post-synthetic silylation of RF gels, but only on powdered materials using small silyl reagents^[2-3]
- Our approach is to functionalize monolithic RF xerogels, more specifically to silulate them with sterically demanding silulation reagents to create a long-lasting hydrophobicity

placement of water droplet unmodified RF xerogel absorbs RF xerogel water

- Silylation using polar aprotic solvents
- Addition of external base

Sample

TMS-A

TMS-B

TBS-A

TIPS-A

TIPS-B

TBDPS-A

Si Content

[%] (m/m)

0.61

1.16

1.51

0.20

0.27

1.23

Synthesis of silvlated RF xerogels

Motivation

- Use of sterically demanding silulating reagents
- Variation of Si-counterion (electronically activated triflate)

Sample	Silyl Reagent	Base
TMS-A	Trimethylsilyl chloride (TMS-Cl)	Imidazole
TMS-B	Trimethylsilyl triflate (TMS-OTf)	2,6-lutidine
TBS-A	tertButyldimethylsilyl chloride (TBS-Cl)	Imidazole
TIPS-A	Triisopropylsilyl triflate (TIPS-OTf)	Imidazole
TIPS-B	Triisopropylsilyl chloride (TIPS-Cl)	2,6-lutidine
TBDPS-A	tert Butyldiphenylsilyl chloride (TBDPS-Cl)	Imidazole

XPS analysis

- Successful incorporation of silicon
- Silicon is present in quantities < 2 % by weight
 - > Not all free hydroxy groups were silvlated
 - > Chemical reactivity of the phenolic hydroxyl groups in the gel does not seem to be crucial, but rather their accessbility within the pore network

XPS-analysis

- Resulting bond energies clearly indicate the presence of silicon-oxygen bonds
- Ratio of Si-O bonds to Si-C bonds correspond to expected 1:3 ratio for trialkylsilyl ethers
 - Formation of covalent Si-O bonds

SEM-EDX-Characterization

SEM-EDX images of an RF xerogel treated with TBS-A homogeneous distribution of carbon, oxygen and silicon

SEM-EDX analysis

Survey C 1s hv = 1486.7 eV hv = 1486.7 eV C-C C-0 C-Si C=0 200 284 400 294 292 290 288 286 282 Binding energy [eV] Binding energy (eV) O 1s Si 2p hv = 1486.7 eV hv = 1486.7 eV 0-C O-Si Si_O

Experimental

> The lower relative abundance of Si agrees with the hypothesis that not all phenolic hydroxy groups are silylated

Results Ø **Characterization**

SEM analysis

RF-TBS-A

Microstructural	properties

- Pycnometry revealed slight reduction in porosity for silvlated samples
- > the pore network is not significantly affected by the functionalization process, nor the porous network within the xerogel

	Density	[g·cm⁻³]	Porositv	Inner Surface Area		
Sample	Envelope	Skeletal	[%]	[m ² ·g ⁻¹]		
RF	0.3262	1.4453	77.39	0.676 ± 0.003		
RF-TMS-B	0.3213	1.3545	76.28	0.411 ± 0.044		
RF-TIPS-B	0.3239	1.3685	76.33	0.423 ± 0.008		

Determination of wetting behavior

• The monoliths in water and 10% aq. HCl were more inert between the silylated variants compared to the RF reference, except for RF-

	time exposed to air / months							
	1	2	3	4	5	8	11	
sample			contact angle [°]					
RF				n.a.				
RF-TMS-A				n.a.				
RF-TMS-B	139.5±1.8 (147.5±0,7)	137.2±2.9 (143.0±1.1)	136.5±3.7 (137.1±0.7)	135.7±3.4	n. d.	n. d.	n. d.	
RF-TBS-A	136.4±3.0 (140.0±2.9)	136.5±1.5 (142.1±1.0)	135.4±2.1 (142.9±2.5)	135.3±2.4	135.0±1.1	134.5±1.5	134.2±1.3	
RF-TIPS-A	142.8±1.2	n. d.	142.6±1.7	n. d.	141.1±2.2	137.9±1.9	136.9±1.9	
RF-TIPS-B	143.7±2.0 (151.1±1.1)	143.9±0.4 (149.9±0.6)	140.5±1.8 (146.6±1.7)	139.1±1.3	n. d.	n. d.	n.d.	
RF-TBDPS-B	138.3±2.2	n. d.	139.3±3.2	n. d.	139.2±2.2	135.1±1.8	133.9±2.5	

Static contact angles, as determined using tangent or the LB-ADSA (in brackets) method

Dynamic contact angles, as determined using Wilhelmy method

time exposed to air / months

	1	2	3	4	5	8	11	
sample		contact angle [°]						
RF				n.a.				
RF-TMS-A				n.a.				
RF-TMS-B	152.4±1.4	144.9±12.3	143.6±13.0	144.0±1.1	n. d.	n. d.	n. d.	
RF-TBS-A	123.8±15.9	121.6±2.4	123.4±12.8	124.3±2.0	136.1±1.7	132.3±2.9	125.3±16.5	
RF-TIPS-A	151.9±8.3	n. d.	150.1±7.4	n. d.	146.2±4.8	132.2±2.4	129.8±2.3	
RF-TIPS-B	139.1±8.0	137.9±4.0	138.0±1.9	137.4±1.4	n. d.	n. d.	n. d.	
F-TBDPS-B	101.8±11.3	n. d.	112.5±17.1	n. d.	120.0±6.4	112.8±10.7	119.2±5.9	
		n 2	- not applicable	o (droplot was	beerbed by me	nalith), nd - n	at datarminad	

n.a. = not applicable (droplet was absorbed by monolith); n.d. = not determined Static and dynamic contact angles

- Static contact angles between sample surface and water droplet (tangent method): 133.9 - 143.9°
- Automatized positioning of the tangent using low-bond axisymmetric drop shape analysis (LB-ADSA) consistently results in higher values (137.1 - 151.1°)
- Contact angles determined by Wilhelmy method in range of 101.8 152.4°
- > A procedure for the silulation of monolithic resorcinol-formaldehyde xerogels has been established
- > Sterically and electronically varied silyl reagents including electronically activated triflates could be applied in solution phase using auxiliary amines as external base
- onclusion Xerogels displayed marked hydrophobicity with contact angles consistently exceeding 130°
 - > The hydrophobic properties remained when the monoliths are exposed to humid air for several months
- > RF gels with sterically demanding silyl groups sustained water and even dilute hydrochloric acid for weeks^[4] U

Acknowledgement

We gratefully acknowledge funding by the German Aerospace Center for the projects NGC FS II and FFAE.

References

[1] M. A. Aegerter, N. Leventis, M. M. Koebel, *Aerogels Handbook*, Springer New York, **2011**.

[2] S. Schwarz, Organic gels, US6288132B1, E. I. du Pont de Nemours and Company, U.S.A., 2001. [3] I. D. Alonso-Buenaposada, M. A. Montes-Morán, J. A. Menéndez, A. Arenillas, Reactive and

Functional Polymers, **2017**, *120*, 92-97.

[4] F. Henn, R. Tannert, *Gels*, **2022**, *8*, 304.

