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Motivation

goal: understand velocity scaling of jet installation noise

▪ interpolate in between test conditions
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Motivation

goal: understand velocity scaling of jet installation noise

▪ interpolate in between test conditions

▪ repair corrupted spectra, e.g. with poor signal to noise ratio 
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max Uj

Low frequency SNR limit

Max U∞

Jet velocity

wind tunnel velocity

Test matrix
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Motivation

goal: understand velocity scaling of jet installation noise

▪ interpolate in between test conditions

▪ repair corrupted spectra, e.g. with poor signal to noise ratio 

▪ solve “max wind tunnel velocity problem”: extrapolate test data for an operation which 
is out of scope for the current test facility
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Outline

1. Analytics: derive far-field noise of installed flight jets w/pylon (FW-H)

2. Test velocity scaling relation against experimental data (DJINN – AWB test)

3. Different velocity scaling for forward-overhead arc vs. rear arc

→ show transition

4. Put findings into practice: showcase “max wind tunnel velocity problem”

5. Transferability Limits: Can I use the findings for related JFI problems?

Pylon vs. non-pylon mounted installation
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Models for 
experiment
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WING

AIRBUS RDJ80

right-hand half 

model

cmid = 3 Dmix

two-element wing

flap δF=14°

ENGINE MODEL

SAFRAN

dual stream 

short cowl 

UHBR engine 

AByp/ACore~7

Dmix ~ Ø100mm 

ENGINE INTEGRATION incl. Pylon

H1 = 0.98 Dmix

H2 = 0.71 Dmix

L = 2.77 Dmix
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BE.CE.

1

47 x

Microphone instrumentation along Flyover arc

¼” - Microtech Gefell - MK301

Free-Field response
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Operations
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wind tunnel velocity U∞

jet velocity Uj

velocity ratio rU = U∞ / Uj

S/L convection velocity Uc = U∞ + 0.64 ΔU

S/L difference velocity ΔU = Uj - U∞ 

S/L Shear

Layer

Uc

ΔU

Uj

U∞

wind tunnel off,

(closed-circuit) rU=0.04

High wind tunnel setting

Low wind tunnel setting
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1 Analytic Derivation
Aerodynamic near-field of the jet shear layer
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Image based on: “A Review of Effects of Initial and Boundary Conditions on Turbulent Jets” Abdel-Rahman 2010

virtual S/L origin

(aerodyn. near field)

virtual S/L origin

(aerodyn. far field)

aerodynamic aerodynamic

Uc
Uj

Uj

mixed jet radius / “lip line”

jet centerline / “engine axis” 
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1 Analytical derivation – static jet, forward arc
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loading noise  

I~(ΔU)6 for He<1
deformed jet /

reflected jet noise 

I~ Uj
8 ∙ f(U∞/Uj)

Farfield solution FWH:

Measurement

Reference Point

Jet mixing

Nozzle exit

flap 

trailing 

edge
AWB nozzle

U∞

θ

Forward-overhead
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2 Experimental determination of the velocity scaling
in the forward-overhead arc 
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1 same ΔU

~ same gain

2 same Uc

same shape 

Measurement

Reference Point

Jet mixing

Nozzle exit

flap 

trailing 

edge
AWB nozzle

U∞

θ

Forward-overhead
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3 Velocity scaling of pylon-integrated jet engine
forward-overhead arc vs. rear arc
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q=8
isolated jet

q=6
Installed jet

q=8
isolated jet

q=8
Installed jet

Measurement

Reference Point

Jet mixing

Nozzle exit

flap 

trailing 

edge
AWB nozzle

U∞

θ

Just a slight 

offset to 

Jet noise
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3 The transition between forward-overhead and rear arc
This is the major contribution of this paper!
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- - - ΔUn |Uc=const

n

▬ Isolated jet noise

▬ Installed jet noise

rear arc

ΔU8

ΔU8

forward arc

Uc
2(ΔU)6

ΔU6

flow

overhead Use linear regression to determine 

velocity scaling exponent for each 

microphone position individually:

▪ find n in ΔUn: 3 test op’s Uc=const

The n exponents are very similar for both

isolated as well as installed jet noise.
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3 The transition between forward-overhead and rear arc
This is the major contribution of this paper!
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m

- - - ΔUn |Uc=const

-.-.- Uc
m |ΔU=const

n

▬ Isolated jet noise

▬ Installed jet noise

m+n

rear arc

ΔU8

ΔU8

forward arc

Uc
2(ΔU)6

ΔU6

minimal dependency on Uc

flow

overhead Use linear regression to determine 

velocity scaling exponent for each 

microphone position individually:

▪ find n in ΔUn: 3 test op’s Uc=const

▪ find m in Uc
m: 3 test op’s ΔU=const

The m exponents on installed jet noise are

almost negligible. Hence, installed jet noise

can be modelled using I~ΔUn.
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3 The transition between forward-overhead and rear arc
This is the major contribution of this paper!
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m

- - - ΔUn |Uc=const

-.-.- Uc
m |ΔU=const

n

▬ Isolated jet noise

▬ Installed jet noise

m+n

rear arc

ΔU8

ΔU8

forward arc

Uc
2(ΔU)6

ΔU6

minimal dependency on Uc

flow

overhead Use linear regression to determine 

velocity scaling exponent for each 

microphone position individually:

▪ find n in ΔUn: 3 test op’s Uc=const

▪ find m in Uc
m: 3 test op’s ΔU=const

The m exponents on isolated jet noise 

transition from m=2 to m=0. 

“Same ΔU produces same jet noise” is not 

generally valid, i.e. only valid in the rear arc.
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3 The transition between forward-overhead and rear arc
This is the major contribution of this paper!
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m

- - - ΔUn |Uc=const

-.-.- Uc
m |ΔU=const

n

▬ Isolated jet noise

▬ Installed jet noise

m+n

rear arc

ΔU8

ΔU8

forward arc

Uc
2(ΔU)6

ΔU6

minimal dependency on Uc

flow

overhead Use linear regression to determine 

velocity scaling exponent for each 

microphone position individually:

▪ find n in ΔUn: 3 test op’s Uc=const

▪ find m in Uc
m: 3 test op’s ΔU=const

The combination m+n = 8 for isolated jet 

noise agrees with Lighthill’s analogy.
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3 The transition between forward-overhead and rear arc
This is the major contribution of this paper!
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m

- - - ΔUn |Uc=const

-.-.- Uc
m |ΔU=const

n

▬ Isolated jet noise

▬ Installed jet noise

m+n

rear arc

ΔU8

ΔU8

forward arc

Uc
2(ΔU)6

ΔU6

minimal dependency on Uc

flow

overhead Use linear regression to determine 

velocity scaling exponent for each 

microphone position individually:

▪ find n in ΔUn: 3 test op’s Uc=const

▪ find m in Uc
m: 3 test op’s ΔU=const

The combination m+n = 8 for isolated jet 

noise agrees with Lighthill’s analogy.

Installed jet noise transitions from exponent 6 

to 8. [same trend as Brown&Ahuja 1984-2362]
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Outline

1. Analytics: derive far-field noise of installed flight jets w/pylon (FW-H)

2. Test velocity scaling relation against experimental data (DJINN – AWB test)

3. Different velocity scaling for forward-overhead arc vs. rear arc

→ show transition

4. Put findings into practice: showcase “max wind tunnel velocity 

problem”

5. Transferability Limits: Can I use the findings for related JFI problems?

Pylon vs. non-pylon mounted installation

18
Christian Jente, AIAA20024-3309, Rome, 06 June 2024, JA-12: Installed Jets



EU-DJINN

GA No 861438

4 Max wind tunnel velocity problem (installed jet)
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6040

ΔU

Produce comparable spectrum 
despite limited wind tunnel velocity:

Same ■ ΔU = Uj - U∞

+ same OASPL (here: within 0.3dB)

− but: shape function (gain by 
frequency) off

■ Reference with high wind tunnel velocity, tested e.g. conducted in other facility
279

too low

126° 96° 57°

-2dB

too high

+2dB

third-octave band

good
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4 Max wind tunnel velocity problem (installed jet)
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60

Produce comparable spectrum despite 

limited wind tunnel velocity:

Same ■ S/L convection velocity Uc

+ shape function (gain by frequency) better

− Higher ΔU: OASPL too high (here: +5dB), 

normalize gain with velocity scaling

■ Reference with high wind tunnel velocity, tested e.g. conducted in other facility
279

-2dB

+1dB

-1dB

too high

too low

126° 96° 57°

+2dB

third-octave band

improved!

40

Uc=200
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Outline

1. Analytics: derive far-field noise of installed flight jets w/pylon (FW-H)

2. Test velocity scaling relation against experimental data (DJINN – AWB test)

3. Different velocity scaling for forward-overhead arc vs. rear arc

→ show transition

4. Put findings into practice: showcase “max wind tunnel velocity problem”

5. Transferability Limits: Can I use the findings for related JFI problems?

Pylon vs. non-pylon mounted installation
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5 Velocity scaling: engine integrated w/o pylon
forward-overhead arc vs. rear arc
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Jet mixing
Nozzle exit

flap 

trailing 

edge

Measurement

Reference Point

q=8
isolated jet

q=6
Installed jet, 

x = tones removed

q=8
Installed jet

q=8
isolated jet

q=8

spectra w/tones removed 

produce same scaling coefficients

JExTRA experiment
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stream

engine

main wing

H=0.71 Dmix

L=2.77 Dmix

5 Aero-geometric characterization needs adaption for the 
pylon effect
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H=0.6 DjRjDj

flap δF=25°

main wing substitute

(static operations)

H - Rj

L - x0,NF

tan(θ‘) = 

θ‘≈3°

L=2 Dj
x0 0

single

stream

engine

θ‘ ≈ 3°

ΔOASPL = 10dB

JExTRA 2021

no Pylon
AWB 2022

assume Pylon negligible

θ‘≈4°

ΔOASPL = 3dB
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5 Steady aerodynamics flow analysis of isolated jet 
w/pylon
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X= 2.7 DByp (just down-

stream virtual flap TE/

wing not installed)

Top half jet (Z+)

approximately elliptic

Core stream

deflected to Z+

elliptic shape

XY-Plane for ENG = OP8 (Ucore > UByp) and UAWB = 60m/s 

Bottom half jet (Z-)

approximately circular

UCoreUByp UmixUAWB

Y-

Z+

Z-

outer inner

Y+

AR1.1

Y / DByp [-], 

corrected by -3mm

Uc ± 4m/s

0.5-0.5

-0.5

+0.5

Z
 /
 D

B
y
p
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c
o
rr

e
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d
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y 
-7

m
m

XZ-Plane for ENG = OP6 (UCore = UByp = 244 m/s) and UAWB = 60m/s

deflected jet
(data plane turned by 

1° for analysis)
0 U∞ Uc

99% 90% +4m/s-4m/s

~1°

~1°

Bypass Potential Core

Core Potential Core

Ujet

0 0.5 1.5 2
X / DByp [-]

1

Y / DByp [-]

Z
 /

 D
B

y
p

[-
]

x0,NF (Z-)

Pylon causes

significant shift 

in virtual S/L 

origin
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-0.5

Z
 /
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[-
]

x0,NF (Z+)

H - Rj

L - x0,NF

tan(θ‘) = 
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H=0.71 Dmix

θ‘=8.3°

x0,NF (Z
-)=0mm

Rmix(Z
+)

Dmix/2
Δx0,NF 

L=2.77 Dmix

main wing

pylon

P
y
lo

n dual

stream

engine

5 Aero-geometric characterization needs adaption for the 
pylon effect
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H=0.6 DjRjDj

flap δF=25°

main wing substitute

(static operations)

H – Rj(Z+)

L - x0,NF(Z+)tan(θ‘) = 

θ‘≈3°

L=2 Dj
x0 0

single

stream

engine

θ‘ ≈ 3°

ΔOASPL = 10dB

JExTRA 2021

no Pylon
AWB 2022

assume Pylon negligible

θ‘ ≈ 8.3°

ΔOASPL = 3dB
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Summary

▪ Aero-geometric characterization of the pylon-integrated problem is difficult

▪ presence of pylon → no tones → simplifies acoustic characterization

▪ Velocity scaling with ΔU, exponents 6 (forward-overhead) to 8(rear)

▪ frequency He<1 (loading noise) vs. He>1 (~ jet noise)

▪ Model building: Same shape functions with Uc

▪ Not discussed: Influence of core stream 
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Questions?


