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On stacking-sequence independent bending
properties of Double-Double laminates—A
short communication

Erik Kappel

Abstract
Double-Double (DD) laminates are discussed as an alternative to conventional laminates used in aerospace practice, which
are usually composed of 0°, 45°, 90°, and �45° plies. Double-Double laminates promise advantages mainly due to
simplification of design, optimization, and manufacturing processes. Stacking-sequence independent bending properties of
DD laminates allow for significant simplification in context of buckling analysis, as a recent publication shows. However, not
all conceivable ply-orientation combinations in DD’s building block lead to it. The present short communication outlines
briefly how stacking-sequence independent bending properties arise from DD’s laminate architecture. The analysis reveals
two valid and also a single invalid angle selection, for DD’s balanced 4-ply building block.
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Introduction

Double-Double laminates show advantageous aspects for
composite design1,2 in terms of optimization3 and also for
buckling problems. A recent study on buckling of simply
supported rectangular DD laminates4 outlines the effect of
the stacking-independence of DD laminates on identifying
optimum laminates for certain buckling-load states. As a
consequence, stacking-sequence discussions, known from
conventional laminates, with up to millions of conceivable
combinations, are obsolete for DD, which represents a
remarkable simplification for designers. It has neither been
outlined in the literature why DD laminates show stacking-
independent bending properties, nor it has been verified that
independence is achieved for all conceivable ply orders in
the building block.

The present short communication outlines why some DD
laminates show stacking-sequence independent bending
properties. The parameters φ and Ψ denote ply orientations
in the following. The presented analyses refer to the con-
ventional notation of the classical laminate theory (CLT),
which is well described in Nettles,5 for example. A brief

summary of relevant entities used hereafter is provided in
the Appendix.

Analysis

The building block (BB) of a DD laminate is defined by four
plies. The general form is described by

BB : ½angle1, angle2, angle3, angle4�: (1)

the corresponding angle-specific ply-stiffness matrices are
denoted as anglei → ½Qi� hereafter. The thickness-normalized
bending-stiffness matrix [D*] is defined as
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it is well known that [D] depends on the stacking sequence
for conventional laminates. However, the particular DD
architecture leads to the fact that thickness-normalized
bending properties are independent from the repeat pa-
rameter r, which is the key for remarkable simplification in
context of laminate optimization when buckling problems
are examined.

The following section outlines how stacking indepen-
dence arises from DD’s laminate architecture. Therefore,
equation (2) is analyzed in more detail. Table 1 summarizes
the relevant terms for the analysis.

The term h3k � h3k�1 determines the relative contribution
of a specific ply in the laminate stack to the total bending
stiffness of the whole laminate. From Table 1, one can
deduce the parametric expression depending on r and k,
which covers each entry.

h3k � h3k�1 ¼ f ðk, rÞ ¼ t3ply �
�
12r2 þ 6r � ð1� 2kÞ

þ 1þ 3k � ðk � 1Þ� (3)

When r = 1 only four plies contribute. The dependence of
the term from r changes when the total number of plies
increases. The repetitive pattern of the DD laminate leads to
the fact that the total number of ply contributions can be
summarized in four groups, referring to the BB-plies’
stiffness matrices: ½½Q1�, ½Q2�, ½Q3�, ½Q4��. Note that ½Q1�

refers to the first ply in the DD building block, while in
conventional CLT calculation ½Q�k it refers to the k-th ply in
the whole laminate stack. Table 1 shows that the factor t3ply is

found in all h3k � h3k�1 terms. In combination with equation
(2), it blanks out. A simple case study is executed hereafter
to outline how stacking independence arises. The study
covers the repeat values r = 1, 2, 3.

Evaluation for different r-cases

For the simple case r = 1, the normalized bending stiffness
from equation (2) is determined to
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for the case r = 2 (eight-ply laminate), one finds
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which can be summarized to

Table 1. Relevant terms for bending-stiffness matrix.

r k ½Q�i hk hk�1 h3k � h3k�1

1 1 ½Q�1 �r �4 � tply/2 + 1 � tply
�r �4 � tply/2 + 0 � tply 12r2t3ply � 6rt3ply þ t3ply

2 ½Q�2 �r �4 � tply/2 + 2 � tply
�r �4 � tply/2 + 1 � tply 12r2t3ply � 18rt3ply þ 7t3ply

3 ½Q�3 �r �4 � tply/2 + 3 � tply
�r �4 � tply/2 + 2 � tply 12r2t3ply � 30rt3ply þ 19t3ply

4 ½Q�4 �r �4 � tply/2 + 4 � tply
�r �4 � tply/2 + 3 � tply 12r2t3ply � 42rt3ply þ 37t3ply

2 5 ½Q�5 ¼ ½Q�1 �r �4 � tply/2 + 5 � tply
�r �4 � tply/2 + 4 � tply 12r2t3ply � 54rt3ply þ 61t3ply

6 ½Q�6 ¼ ½Q�2 �r �4 � tply/2 + 6 � tply
�r �4 � tply/2 + 5 � tply 12r2t3ply � 66rt3ply þ 91t3ply

7 ½Q�7 ¼ ½Q�3 �r �4 � tply/2 + 7 � tply
�r �4 � tply/2 + 6 � tply 12r2t3ply � 78rt3ply þ 127t3ply

8 ½Q�8 ¼ ½Q�4 �r �4 � tply/2 + 8 � tply
�r �4 � tply/2 + 7 � tply 12r2t3ply � 90rt3ply þ 169t3ply

9
…
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adapted to the format in equation (4), this leads to
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for r = 3, one obtains similarly after summarizing
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The previous cases show commonalities, as the fol-
lowing list shows.
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the vector 1/16 � […]T is found in all three previous
equations. It can be denoted as a normalized-contribution
vector

nc!¼ 1

16
� ½ nc1 nc2 nc3 nc4 �T : (12)

the examples in the equations (9)–(11) all show

1

16

X4

k¼1
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the vector determines the relative contributions of the in-
dividual plies to the total normalized bending stiffness. In
fact, one observes a kind of homogenization for increasing

r, as the normalized relative contributions nci of the plies
approach a value of 1/4. When the relative ply contributions
are compared, one finds differences for the provided r-cases.
However, one also finds important parallels, which are
important in context of the examined stacking-sequence
independence. Careful observation shows that the sums nc1
+ nc2 = 8 and nc1 + nc3 = 8 are independent from r. This is
not true for nc1 + nc4 and nc2 + nc3. Those observations are
the key to the stacking sequence independence of DD
laminates. It is essential to recall that a single BB in a DD
laminate is always balanced. The global ply-stiffness ma-
trices for a +φ ply and a �φ ply are
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the 11, 12, 22, and 66 coefficients are independent from the
ply-angle sign. Thus, when, for example, we set ½Q1� ¼ ½Qþφ�,
½Q2� ¼ ½Q�φ�, ½Q3� ¼ ½QþΨ� and ½Q4� ¼ ½Q�Ψ�, in the
equations (9)–(11), the 11, 12, 22, and 66 coefficients of [D*]
will be identical for all the provided r-cases. The [D*] matrix
will be of the form

½D*� ¼
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as the sign of the 16 and 26 coefficients in ½Qþφ� and ½Q�φ�
changes with the ply-angle sign, the term 12r2t3ply in ðh3k �
h3k�1Þ (see Table 1) blanks out when ± terms are summed. This

leads to the fact that D*16,D
*
26 are found proportional to 1/r2.

Generalization

The preceding numerical examples led to the observation
that the sum of the normalized contribution vector entries is
always

1

16

X4

k¼1

nck ¼ 1:

the following analyses aim to the verify this observation,
based on equation (3). Utilizing equation (13) allows for
writing the normalized bending-stiffness matrix as
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each contribution nci refers to a single ply of the building
block. The total contribution of the first ply in the building
block is composed of multiple fractions, when r increases.
For r = 3, for example, the total contribution is composed of
three summands, one from each of the three building blocks
in the full laminate (Table 2). The following table plots the
individual contributions, for the repeat range r = 1, 2, 3.

The numerical examples in Section 3 indicate that the
summed contributions of two plies in the building block to
[D*] are found constant for different building-block repeats.
This represents the basis for r-independence of the [D*]
matrix. Therefore, Table 3 provides different combinations
of summed ply contributions. The utilized nomenclature is

as follows. The ID 0½Q1� þ ½Q2�
0
, for example, refers to the

case when the first two plies in the building block refer to the
ply angle φ (½Q1� ¼ ½Qφ� and ½Q2� ¼ ½Q�φ�).

The results in Table 3 substantiate the numerical ex-

amples from the previous section. For the cases 0½Q1� þ
½Q2�

0
and 0½Q1� þ ½Q3�

0
, the summed contributions are found

independent from the repeat parameter r.
Thus, [φ, � φ, Ψ, � Ψ] and [φ, � Ψ, � φ, Ψ] are valid

BBs for DD. Both lead to the desired effect, that the nor-
malized bending-stiffness matrix [D*] entries 11, 12, 22,
and 66 are independent from the repeat parameter r. The
other cases (0½Q1� þ ½Q4�

0
and 0½Q2� þ ½Q3�

0
) show that the

BB angle selection [φ,�Ψ,Ψ,� φ] is invalid, as it does not
lead to the desired independence from r.

Conclusion

Building-block-repeat independent normalized bending
properties are a unique aspect of DD laminates, which
simplify laminate optimization tasks in context of buckling
analysis. The present short communication outlines how
independence arises from DD’s particular laminate archi-
tecture, which is characterized by simply stacking multiple,

Table 2. Contributions of the i-th ply in the building block for multiple repeat values r.

nci contr. r = 1 r = 2 r = 3

nc1 12r2 � 6r + 1 12r2 � 6r þ 1
12r2 � 54r þ 61

12r2 � 6r þ 1
12r2 � 54r þ 61
12r2 � 102r þ 217

nc2 12r2 � 18r + 7 12r2 � 18r þ 7
12r2 � 66r þ 91

12r2 � 18r þ 7
12r2 � 66r þ 91
12r2 � 114r þ 271

nc3 12r2 � 30r + 19 12r2 � 30r þ 19
12r2 � 78r þ 127

12r2 � 30r þ 19
12r2 � 78r þ 127
12r2 � 126r þ 331

nc4 12r2 � 42r + 37 12r2 � 42r þ 37
12r2 � 90r þ 169

12r2 � 42r þ 37
12r2 � 90r þ 169
12r2 � 138r þ 397

Table 3. Summed contributions.

Contr. to [D*] r = 1 r = 2 r = 3

0½Q1� þ ½Q2�
0 1=r3ð24r2 � 24r þ 8Þ 1=r3ð48r2 � 144r þ 160Þ 1=r3ð72r2 � 360r þ 648Þ

= 8
= 8 = 8

0½Q1� þ ½Q3�
0 1=r3ð24r2 � 36r þ 20Þ 1=r3ð48r2 � 168r þ 208Þ 1=r3ð72r2 � 396r þ 756Þ

= 8
= 8 = 8

0½Q1� þ ½Q4�
0 1=r3ð24r2 � 48r þ 38Þ 1=r3ð48r2 � 192r þ 268Þ 1=r3ð72r2 � 432r þ 882Þ

= 14
= 9.5 = 26/3 ≈ 8.667

0½Q2� þ ½Q3�
0 1=r3ð24r2 � 48r þ 26Þ 1=r3ð48r2 � 192r þ 244Þ 1=r3ð72r2 � 432r þ 846Þ

= 2
= 6.5 = 22/3 ≈ 7.333
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balanced four-ply building blocks r-times ð½angle1, angle2,
angle3, angle4�rTÞ.

Whenever the building block angles fulfill: |angle1| = |
angle2| or |angle1| = |angle3| stacking independence is
present for the 11, 12, 22, and 66 coefficients of the [D*]
matrix. The analysis reveals that building blocks with |
angle1| = |angle4| are invalid selections, when looking for
independence from r. Thus, [φ,� φ,Ψ,�Ψ] and [φ,�Ψ,�
φ, Ψ] are valid building blocks for DD laminates, while [φ,
Ψ, � Ψ, � φ] is found an invalid building block stacking
sequence.
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Appendix

Nomenclature CLT

The following definitions are in line with the CLT
document provided by Nettles.5 The compliance matrix of a
ply in local coordinates in defined by

½S� ¼
2
4
1=E1 �ν12=E1 0
�ν12=E1 1=E2 0
0 0 1=G12

3
5 (17)

with E1, E2, ν12, andG12 being the ply’s Young’s modulus in
fiber direction, in transverse direction, the Poisson’s ratio,
and the shear modulus, respectively. The ply’s stiffness
matrix in the local coordinate system [Q] is defined as

½Q� ¼ ½S��1
: (18)

the ply’s stiffness matrix in the global laminate coordinate
system is defined as

�
Q
� ¼ ½T ��1½Q�½T ��T

: (19)

with

½T � ¼
2
4
m2 n2 2mn
n2 m2 �2mn
�mn mn m2 � n2

3
5 (20)

being a rotation matrix withm = cos(α), n = sin(α). α denotes
the ply’s alignment with respect to the global laminate
x-direction.
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