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A B S T R A C T

Omni first-ply-failure (FPF) envelopes are an elegant yet conservative approach to assess composite laminate
failure on a global level. Omni envelopes can be found increasingly in recent publications. However, the
development process of those envelopes shows a lack of clarity. At some point the illustration switches from
a laminate-strain basis (𝜀𝑥, 𝜀𝑦, 𝛾𝑥𝑦) to the particular case of laminate principal-strain (𝜀𝐼 , 𝜀𝐼𝐼 ) basis. The latter
is elegant, as the principal-strain space can be easily plotted in 2D. This article presents two procedures to
directly determine omni FPF envelopes and it clarifies the transfer to principal strains.

While the Tsai–Wu criterion is used in almost all available publications, the present article uses Cuntze’s
failure mode concept (FMC). The article provides a simple example case, which demonstrates the application
of omni envelopes in context of FEA based CFRP design.
1. Motivation

Well known failure criteria as Tsai–Wu [1] or Cuntze’s FMC [2]
usually assess ply stresses, which always require a ply-wise analysis
in the local coordinate system. This is considerable effort for parts
with dozens of laminate zones and hundreds of plies. The present
article aims to provide a robust global laminate-failure criterion, which
allows for determining laminate reserve factors. It is the ambition to
use in-plane principal strain information as input for the assessment,
while conventional strength parameters in stress space (𝑋𝑡, 𝑋𝑐 , 𝑌𝑡, 𝑌𝑐 , 𝑆)
remain the basis, as this is the baseline in todays certification processes.
The approach offers the advantage of an easy to illustrate load state as
in-plane principal strains are a standard output of today’s FE tools as
ABAQUS CAE [3], which is used in context of this article. The simple
expression

⎡

⎢

⎢

⎣

𝜀𝐼
𝜀𝐼𝐼
0

⎤

⎥

⎥

⎦𝑙𝑎𝑚𝑖𝑛𝑎𝑡𝑒

=

{

laminate Ok? → 𝑓𝑅𝐹 ≥ 1.
laminate not Ok? → 𝑓𝑅𝐹 < 1.

(1)

summarizes the ambition of the present approach, with 𝑓𝑅𝐹 denoting
the reserve factor. The difficulty in context of principal laminate strains
is that the principal axes are usually rotated with respect to the lami-
nate coordinate system. The transfer from principal to laminate strains,
requires transformation, which can be visualized using Mohr’s circle in
strain-space (see Appendix) but requires additional efforts.

The ambition of the present article is to allow an laminate assess-
ment just based on the principal strain information, even in cases when
the exact relation to the laminate coordinate system is unknown. Omni
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failure envelopes have been proposed in this context. Their creation
and the application is demonstrated in this article.

2. First-ply-failure envelopes and omni envelopes

Omni-envelopes are created based on multiple individual failure
curves of differently aligned plies, as shown in [4]. Those are all
illustrated with respect to the global laminate strains 𝜀𝑥, 𝜀𝑦, referring
to the laminate’s global (x,y) coordinate system (CoS). Note, that in
contrast to the majority of publications, Tsai uses the (1,2)-CoS for the
laminate and the (x,y)-system for the ply’s local CoS (see [1]).

Fig. 1 shows the aforementioned step from laminate strains to
principal strains for Tsai–Wu (see [5, p.32]) and for Cuntze failure-
mode-concept (FMC), which is in focus in the present article. Note, that
the envelopes in Figs. 1(a) (left) are plotted with respect to the laminate
CoS, while the right plot in Fig. 1(a) shows the envelopes referring to
principal strains.

The reason for this transfer has neither been outlined nor explained
in the literature. The following statement tries to summarize a personal
communication with Steve Tsai, who presented FPF omni envelopes for
the first time.

The idea behind the strain transfer: when all conceivable ply orientations
are considered for the envelope creating, the corresponding material is
isotropic. As the strain-state of an isotropic laminate/material is indepen-
dent of the load introduction directions, assessing principal strain becomes
vailable online 22 April 2024
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Fig. 1. FPF for a conventional laminate (Quad) and the corresponding omni envelope. The Figure can be found in [5, p.32]. Strains in h. Material data in Table 1.
possible without knowing the relative rotation of the laminate CoS and the
principal-axis system.

The principal strain illustration is particular interesting in context
of FE simulation models. The FE code ABAQUS, for example, allows
for the output of maximum and minimum in-plane principal strains.
Using the ‘Envelope’ setting in addition, allows for plotting maxima
and minima in all layers in a defined laminate, covering strain from
membrane loads but also from bending.

2.1. Cuntze’s FMC in 2D and material data

The ply specific effort in Cuntze’s FMC [2] is determined with

𝐸𝑓𝑓 = 𝑚
√

(

𝐸𝑓𝑓 ∥𝜎
)𝑚 +

(

𝐸𝑓𝑓 ∥𝜏
)𝑚 +

(

𝐸𝑓𝑓⟂𝜎
)𝑚 +

(

𝐸𝑓𝑓⟂𝜏
)𝑚 +

(

𝐸𝑓𝑓⟂∥
)𝑚 (2)

The total effort 𝐸𝑓𝑓 captures five mode-specific contributions. Those
refer to tension (𝐸𝑓𝑓 ∥𝜎) and compression (𝐸𝑓𝑓 ∥𝜏 ) in fiber direction,
to tension (𝐸𝑓𝑓⟂𝜎) and compression (𝐸𝑓𝑓⟂𝜏 ) in transverse direction
and to shear loads (𝐸𝑓𝑓⟂∥). For each mode-specific effort 𝐸𝑓𝑓 𝑖 = 1 is
reached when the stress reaches the corresponding strength limit.

𝐸𝑓𝑓 < 1 refers to an intact ply. 𝐸𝑓𝑓 > 1 indicates the onset of
failure has been passed. 𝐸𝑓𝑓 = 1 refers to the ply limit. It defines the
failure condition as

𝐸𝑓𝑓 = 1 =
(

𝐸𝑓𝑓 ∥𝜎)𝑚+
(

𝐸𝑓𝑓 ∥𝜏)𝑚+
(

𝐸𝑓𝑓⟂𝜎)𝑚+
(

𝐸𝑓𝑓⟂𝜏)𝑚+
(

𝐸𝑓𝑓⟂∥)𝑚

(3)

with the mode-specific material efforts being defined as

𝐸𝑓𝑓 ∥𝜎 =
𝜎1 + |𝜎1|
2 ⋅𝑋𝑡

, 𝐸𝑓𝑓 ∥𝜏 =
−𝜎1 + |𝜎1|
2 ⋅𝑋𝑐

(4)

𝐸𝑓𝑓⟂𝜎 =
𝜎2 + |𝜎2|
2 ⋅ 𝑌𝑡

, 𝐸𝑓𝑓⟂𝜏 =
−𝜎2 + |𝜎2|

2 ⋅ 𝑌𝑐
(5)

𝐸𝑓𝑓⟂∥ =
|𝜏12|

𝑆 − 𝜇⟂∥ ⋅ 𝜎2
← !note dependency on 𝜎2 and 𝜏12 (6)

The efforts 𝐸𝑓𝑓𝑖 are determined from the ply stresses [𝜎1, 𝜎2, 𝜏12]𝑇 and
five ply-strength parameters (𝑋𝑡, 𝑋𝑐 , 𝑌𝑡, 𝑌𝑐 , 𝑆). The FMC’s parameters
are set to 𝑚 = 2.7, 𝜇⟂∥ = 0.2, which is in line with previous publications
and a personal recommendation of Professor Ralf Cuntze (see upcoming
article [6]). The parameters 𝑚 and 𝜇⟂∥ are in general obtained based on
fitting experimental data. In [7], the statement ’A good guess for isotropic
and UD materials is 𝜇 = 0.2’ is provided. In addition one finds 𝑚 = 2.7
in the same article. As unidirectional (UD) carbon-fiber epoxy material
is in focus hereafter the parameter selection is considered a reasonable
selection.

The unidirectional carbon fiber/ epoxy resin prepreg IM7/977-3
material is used for the examples presented in this article. However,
the presented procedures are transferable to other materials.
2

Table 1
Engineering constants and Strength data for IM7/977-3 UD prepreg. Constants from
[1, p.321] and also in [8, p.18].

Parameter value unit Parameter value unit

𝐸1 191.00 GPa 𝑋𝑡 3250 MPa
𝐸2 9.94 GPa 𝑋𝑐 1600 MPa
𝜈12 0.35 – 𝑌𝑡 62 MPa
𝐺12 7.79 GPa 𝑌𝑐 98 MPa

S 75 MPa

Table 1 summarizes the relevant material data, which is used for all
calculations presented in this article.

In the following sections, two procedures are presented to directly
determine omni envelopes. It is distinguished between the ’single-ply’
and the ’all-ply’ approach, as derived in the following chapters.

3. The ’single-ply’ approach

Local ply stresses are determined based on global laminate strains
by using (see [9])

⎡

⎢

⎢

⎣

𝜎1
𝜎2
𝜏12

⎤

⎥

⎥

⎦

= [𝑇 ] ⋅ [�̄�] ⋅
⎡

⎢

⎢

⎣

𝜀𝑥
𝜀𝑦
𝛾𝑥𝑦

⎤

⎥

⎥

⎦𝑙𝑎𝑚𝑖𝑛𝑎𝑡𝑒

. (7)

The corresponding local stresses depend on the ply orientation (𝛽) with
respect to the global laminate CoS (𝑥, 𝑦) (as [𝑇 ] ⋅ [�̄�] = 𝑓 (𝛽)) and on the
current laminate strain. Thus, one need to cover all conceivable ply
orientations and all strain combinations, to define a conservative ’safe
region’ for a laminate, made from a specific material. The strain state
is formulated incrementally using

⎡

⎢

⎢

⎣

𝜀𝑥
𝜀𝑦
𝛾𝑥𝑦

⎤

⎥

⎥

⎦𝑙𝑎𝑚𝑖𝑛𝑎𝑡𝑒

= 𝑚𝑎𝑔 ⋅

⎡

⎢

⎢

⎢

⎣

− 1 + 2
𝑖𝑛𝑐−1 ⋅ 𝑘 , 𝑘 ∈ {0,… , 𝑖𝑛𝑐 − 1}

−1 + 2
𝑖𝑛𝑐−1 ⋅ 𝑖 , 𝑖 ∈ {0,… , 𝑖𝑛𝑐 − 1}

−1 + 2
𝑖𝑛𝑐−1 ⋅ 𝑗 , 𝑗 ∈ {0,… , 𝑖𝑛𝑐 − 1}

⎤

⎥

⎥

⎥

⎦

, (8)

which leads to 𝑖𝑛𝑐3 evaluated strain states. The 𝑚𝑎𝑔 parameter is used
to adjust the total strain magnitude, which helps in the later presented
limit-load identification. In the present case 𝑚𝑎𝑔 = 0.01 was used. The
mag parameter scales the total strains to realistic magnitude ranges for
the composite materials in focus, in order to receive 𝐸𝑓𝑓 values close
to 1. For the case at hand, all strain components change from −0.01 up
to 0.01, in 𝑖𝑛𝑐 discrete steps. Covering positive and negative strains is
essential in order to consider all conceivable load combinations. Listing
1 in the Appendix shows the corresponding Python code. With selecting
𝑖𝑛𝑐 = 12, 1728 strain states are examined. Increasing the number of
increments is possible. However, it will lead to longer runtimes, while
the envelope shapes do not change notably. Thus, 𝑖𝑛𝑐 = 12 is considered
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Fig. 2. Results ’single-ply’ approach. Strains in h.
Fig. 3. FPF procedure — for each ply-orientation 0◦ ≤ 𝛽 ≤ 90◦, 361 strain states are evaluated and the corresponding reserve factors are stored.
a reasonable choice here. Thus, the ply stresses of a ply with orientation
𝛽 are calculated according to

⎡

⎢

⎢

⎣

𝜎1
𝜎2
𝜏12

⎤

⎥

⎥

⎦𝛽,𝑘,𝑖,𝑗

= [𝑄] ⋅ [𝑇 ]−𝑇𝛽 ⋅
⎡

⎢

⎢

⎣

𝜀𝑥
𝜀𝑦
𝛾𝑥𝑦

⎤

⎥

⎥

⎦𝑘,𝑖,𝑗

, (9)

with 𝑘, 𝑖, 𝑗 referring to the instantaneous strain state (see ). Usually,
𝐸𝐹𝐹 ≠ 1 is determined. Thus, the strain-state vector is scaled, using
the scalar factor 𝑟𝛽 , until 𝐸𝑓𝑓 = 1 is achieved.

𝐸𝑓𝑓

⎛

⎜

⎜

⎜

⎝

𝑟𝛽 ⋅
⎡

⎢

⎢

⎣

𝜎1
𝜎2
𝜏12

⎤

⎥

⎥

⎦𝛽,𝑘,𝑖,𝑗

⎞

⎟

⎟

⎟

⎠

= 1 = 𝐸𝑓𝑓

⎛

⎜

⎜

⎜

⎝

[𝑄] ⋅ [𝑇 ]−𝑇𝛽 ⋅ 𝑟𝛽 ⋅
⎡

⎢

⎢

⎣

𝜀𝑥
𝜀𝑦
𝛾𝑥𝑦

⎤

⎥

⎥

⎦𝑘,𝑖,𝑗

⎞

⎟

⎟

⎟

⎠

(10)

This, procedure is executed for all ply orientations. For each strain-
state the minimum 𝑟𝛽 is relevant, as it refers to the most-critical ply
orientation for the specific strain state.

𝑟𝑘𝑖𝑗 = 𝑚𝑖𝑛
([

𝑟0◦ , 𝑟1◦ ,… ., 𝑟90◦
])

for each (𝑘, 𝑖, 𝑗)-state (11)

The determined, most critical strain states determine the final envelope.
For each case the corresponding principal strains are calculated using

⎡

⎢

⎢

⎣

𝜀𝐼
𝜀𝐼𝐼
0

⎤

⎥

⎥

⎦𝑘,𝑖,𝑗

= 𝑓

⎛

⎜

⎜

⎜

⎝

𝑟𝑘𝑖𝑗 ⋅
⎡

⎢

⎢

⎣

𝜀𝑥
𝜀𝑦
𝛾𝑥𝑦

⎤

⎥

⎥

⎦𝑘,𝑖,𝑗

⎞

⎟

⎟

⎟

⎠

. (12)

Fig. 2(a) shows the results for all 91 ply orientations from 0◦ to
90◦ for all examined strain states. Increasing the number of increments
leads to an increased point cloud density. In selected regions the
envelope shape can already be anticipated. However in four regions
the inner threshold needs to be identified. Further processing of the
determined results shows that all shear-free strain states lead to dots
on the inner envelope. Fig. 2(b) shows the corresponding results as red
dots. It is concluded that examining all shear-free states directly leads
to the envelope. Fig. 2(c) exclusively shows the envelope data for the
shear-free load states. Increasing the number of increments, allows for
3

increasing the envelope point density.
The preceding observation (only no-shear cases relevant) suggests
an adaptation of the calculation process, which reduces computational
efforts drastically. The incremental strain-state formulation from is
exchanged by a harmonic approach, which is depicted in Fig. 3. It
is described by the following formulation, with the ply-angle being
[0◦ ≤ 𝛽 ≤ 90◦] and load varying with [0◦ ≤ 𝜉 ≤ 360◦]. It is denoted as
’harmonic approach’, as strain is modeled using sine and cosine terms.

⎡

⎢

⎢

⎣

𝜎1
𝜎2
𝜏12

⎤

⎥

⎥

⎦𝛽,𝜉

= [𝑇 ]𝛽 ⋅ [�̄�]𝛽 ⋅
⎡

⎢

⎢

⎣

cos 𝜉
sin 𝜉
0

⎤

⎥

⎥

⎦

(13)

361 calculations for each ply orientation are executed with the fine
setting for 𝜉. Similar, as above, each load state is scaled until 𝐸𝑓𝑓 = 1
is reached. Fig. 4 shows the result of ’harmonic approach’ approach.
The red dots are those from Fig. 2(c), while the black solid line is
determined with the harmonic approach. It can be seen that the full
strain incrementation and the harmonic approach lead to identical
results.

3.1. A comment on principal strains

Principal strains 𝜀𝐼,𝐼𝐼 for an arbitrary strain-state are determined
using Mohr’s relation (see [1, pp. 44–45])

𝜀𝐼,𝐼𝐼 =
𝜀𝑥 + 𝜀𝑦

2
±

√

( 𝜀𝑥 − 𝜀𝑦
2

)2
+
( 𝛾𝑥𝑦

2

)2
(14)

The angle

𝛿 = 1
2
⋅ 𝑡𝑎𝑛−1

( 𝛾𝑥𝑦
𝜀𝑥 − 𝜀𝑦

)

→ [−45◦ ≤ 𝛿 ≤ 45◦] (15)

describes the rotation of the principal-axis system compared to the (𝑥, 𝑦)
system. Fig. 5 visualizes the orientation of the principal axis system for
a selected load case. The right upper portion of the figure shows the
corresponding shear-free load state. The red line visualizes a selected
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Fig. 4. Cuntze envelope from harmonic approach. The ’no shear’ data refers to above’s
calculation procedure (see Fig. 2(c)).

Fig. 5. Transfer from general force-loading to principal loading state. The red line
shows the fiber direction of a 60◦ ply.

ply orientation of the laminate. When principal strain system is rotated
this has no effect on the actual ply orientation.

The formulation of Eq. (13) implicitly assumes that the principal
strain system is aligned with the laminate coordinate system. But, this
represents a special case, only. In the general case, it would be nec-
essary to transfer laminate strains to corresponding principal strains.

⎡

⎢

⎢

⎣

𝜀𝐼
𝜀𝐼𝐼
0

⎤

⎥

⎥

⎦

=
(

[𝑇 ]−𝑇
)

𝛿

⎡

⎢

⎢

⎣

𝜀𝑥
𝜀𝑦
𝛾𝑥𝑦

⎤

⎥

⎥

⎦

. (16)

However, the 𝛿-rotation needs to be considered when a ply, rotated
by angle 𝛽 with respect to the (𝑥, 𝑦)-system is examined. The simple
case, shown in Fig. 5 shows, that the assessment of the 60◦ ply in the
(𝑥, 𝑦)-system is equivalent to assessing the 30◦ ply in the principal axis
system. In the rotated principal-axis system, the effective ply angle is
𝛽 − 𝛿. In interaction with an FE model one gets the principal strain
magnitudes directly. However, the corresponding alignment of the
principal axis system is no standard output parameter in FE tools. Thus,
the angle 𝛿 is most often unknown, which hinders the strain transfer.

This issue can be simplified, as it is shown hereafter. When the
equation for the principal axis rotation 𝛿 = 1 ⋅𝑡𝑎𝑛−1(…) is examined, one
4

2

finds that the 𝛿-range is limited to [−45◦ ≤ 𝛿 ≤ 45◦]. This information
can be used, as Fig. 6 shows. The omni envelope determination process,
outlined above, examines all plies in the range [0◦ ≤ 𝛽 ≤ 90◦] with
the strain vector [cos 𝜉, sin 𝜉, 0]𝑇 . Fig. 6 shows, that an unknown 𝛿 leads
to the fact, that in the extreme cases, with 𝛿 = 45◦ or 𝛿 = −45◦, the
green illustrated orientation ranges are not covered by the examined
ply-angle range. To cover those regions, the ply-angle range needs to
be extended, in order to account for any possible angle 𝛿. Thus, it is
proposed to extend the examined ply-angle range to [−45◦ ≤ 𝛽 ≤ 135◦].
This leads to the fact, that the green-marked regions in Fig. 6 are
captured. If this is realized, the harmonic strain formulation can be kept
to assess all conceivable ply-orientations, independent of the relative
rotation of the principal axis system. Thus, the envelope illustration in
principal strains is justified.

4. The ’all-ply’ laminate approach

An omni envelope circumscribes principal strains states, which
can be sustained by plies oriented in all conceivable directions. In
other words: a principle strain combination, which is found inside
the determined ’safe region’, will not lead to failure of a single ply in
the laminate stack. The laminate stays intact. The ’single-ply’ omni-
envelope development process, described above, considers all conceiv-
able ply orientations. The approach hereafter focuses on a full laminate.
The laminate features ply orientations from −90◦ to 90◦. Positive and
negative angles are mandatory, to assure a balanced laminate. Thus, the
laminate stacking is defined as [−90,−89,… ,−1, 0, 0, 1, 2,… , 89, 90]𝑇 ,
with 𝑡𝑙𝑎𝑚 = 2 ⋅ 91 ⋅ 0.125 mm = 22.75 mm. The corresponding in-plane
stiffness matrix [𝐴] and the thickness-normalized in-plane stiffness
matrix [𝐴∗] = [𝐴]∕𝑡𝑙𝑎𝑚 are given by

[𝐴] =
⎡

⎢

⎢

⎣

1838920.3 541092.4 0.0
541092.4 1838920.3 0.0

0.0 0.0 638659.8

⎤

⎥

⎥

⎦

N
mm ,

[𝐴∗] =
⎡

⎢

⎢

⎣

80831.7 23784.3 0.0
23784.3 80831.7 0.0

0.0 0.0 28073.0

⎤

⎥

⎥

⎦

N
mm2

The ’all-ply’ laminate is in-plane isotropic, as plies are aligned in all
conceivable directions from −90◦ to 90◦. For each load combination
(𝑛𝑥, 𝑛𝑦, 𝑛𝑥𝑦)𝑘 the resulting laminate strains are determined, according to

⎡

⎢

⎢

⎣

𝜀𝑥
𝜀𝑦
𝛾𝑥𝑦

⎤

⎥

⎥

⎦𝑘

= [𝐴]−1 ⋅
⎡

⎢

⎢

⎣

𝑛𝑥
𝑛𝑦
𝑛𝑥𝑦

⎤

⎥

⎥

⎦𝑘

= 1
𝑡𝑙𝑎𝑚

[𝐴∗]−1 ⋅
⎡

⎢

⎢

⎣

𝑛𝑥
𝑛𝑦
𝑛𝑥𝑦

⎤

⎥

⎥

⎦𝑘

(17)

The individual load states formulated incrementally, determined by the
parameter 𝑖𝑛𝑐.

𝑛𝑥,𝑦,𝑥𝑦 = [−1,… , 1]𝑖𝑛𝑐=11

= [−1.0,−0.8,−0.6,… , 0.6, 0.8, 1.0] (18)

From the load-specific resulting laminate strain, the corresponding local
ply stresses of all plies in the stack are determined.

⎡

⎢

⎢

⎣

𝜎1
𝜎2
𝜏12

⎤

⎥

⎥

⎦𝛽,𝑘

= [𝑄] ⋅ [𝑇 ]−𝑇𝛽 ⋅
⎡

⎢

⎢

⎣

𝜀𝑥
𝜀𝑦
𝛾𝑥𝑦

⎤

⎥

⎥

⎦𝑘

with [𝑄] = [𝑆]−1 =
⎡

⎢

⎢

⎣

1∕𝐸1 −𝜈12∕𝐸1 0
−𝜈12∕𝐸1 1∕𝐸2 0

0 0 1∕𝐺12

⎤

⎥

⎥

⎦

−1

Cuntze’s 2D criterion is evaluated for each ply and the ply-specific
efforts

𝐸𝑓𝑓
(𝑛𝑥 ,𝑛𝑦 ,𝑛𝑥𝑦)
𝛽,𝑘 = 𝑓

⎛

⎜

⎜

⎜

⎡

⎢

⎢

⎣

𝜎1
𝜎2
𝜏

⎤

⎥

⎥

⎦

⎞

⎟

⎟

⎟

(19)
⎝

12 𝛽,𝑘⎠
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are stored. The ply with the highest effort is selected from all plies. The
corresponding reserve factor is calculated

𝑓𝑅𝐹 = 1
𝐸𝑓𝑓

(20)

The Cuntze FMC is nonlinear in the 𝐸𝑓𝑓⟂∥ term, as it depends on 𝜏12
and 𝜎2 and due to the exponent 𝑚. Thus, a simple scaling of the load
using the reserve factor does usually not lead to fulfilling the failure
condition with 𝐸𝑓𝑓 = 1. Instead one gets:

𝐶𝑢𝑛𝑡𝑧𝑒

⎛

⎜

⎜

⎜

⎝

𝑓𝑅𝐹 ⋅
⎡

⎢

⎢

⎣

𝜎1
𝜎2
𝜏12

⎤

⎥

⎥

⎦𝛽,𝑘

⎞

⎟

⎟

⎟

⎠

> 1 (21)

as proportionality is not given for the

𝐸𝑓𝑓⟂∥ =
|𝑓𝑅𝐹 ⋅ 𝜏12|

𝑆 − 𝜇⟂∥ ⋅ 𝑓𝑅𝐹 ⋅ 𝜎2
̸∝ 𝑓𝑅𝐹 . (22)

parameter.
To circumvent this issue, a simple iterative process has been realized

in the analysis code. It features multiple load-iteration steps to account
for the aforementioned nonlinearity, in order to approach 𝐸𝑓𝑓 = 1.
Calculations show that already after three iterations 𝐸𝑓𝑓 = 1 is reached
with satisfying accuracy.

𝐸𝑓𝑓
(𝑛𝑥 ,𝑛𝑦 ,𝑛𝑥𝑦)
𝛽 = 𝐶𝑢𝑛𝑡𝑧𝑒

⎛

⎜

⎜

⎜

⎝

𝑓𝑅𝐹 ,1 ⋅ 𝑓𝑅𝐹 ,2 ⋅ 𝑓𝑅𝐹 ,3 ⋅
⎡

⎢

⎢

⎣

𝜎1
𝜎2
𝜏12

⎤

⎥

⎥

⎦𝛽,𝑘

⎞

⎟

⎟

⎟

⎠

(23)

More advanced approaches are conceivable, but Section 5 shows that
the simple approach is well suited. The limit load vector is determined
to

𝑛𝑚𝑎𝑥 = 𝑓𝑅𝐹 ,1 ⋅ 𝑓𝑅𝐹 ,2 ⋅ 𝑓𝑅𝐹 ,3 ⋅
⎡

⎢

⎢

⎣

𝑛𝑥
𝑛𝑦
𝑛𝑥𝑦

⎤

⎥

⎥

⎦𝑘

= 𝑟𝑚𝑎𝑥 ⋅
⎡

⎢

⎢

⎣

𝑛𝑥
𝑛𝑦
𝑛𝑥𝑦

⎤

⎥

⎥

⎦𝑘

, (24)

which leads to a corresponding laminate strain state

⎡

⎢

⎢

⎣

𝜀𝑥
𝜀𝑦
𝛾𝑥𝑦

⎤

⎥

⎥

⎦0,𝑚𝑎𝑥

=
𝑟𝑚𝑎𝑥
𝑡𝑙𝑎𝑚

⋅ [𝐴∗]−1 ⋅
⎡

⎢

⎢

⎣

𝑛𝑥
𝑛𝑦
𝑛𝑥𝑦

⎤

⎥

⎥

⎦𝑘

(25)

for each examined load case 𝑘. Eq. (14) is used again to determine the
principal strains, which are the basis for plotting the omni envelope.
The preceding analysis leads to the critical principal strain state for the
𝑘th load combination (𝜀𝐼 , 𝜀𝐼𝐼 )𝑘. It represents a single dot of the final
envelope. Thus, the process is evaluated 𝑖𝑛𝑐3 times, similar as before in
the presented ’single-ply’ approach.

Fig. 7 shows the results of the described approach as green dots.
The black line represents the result of the ’single-ply’ approach, already
shown in Fig. 4.

Similar as in the described ’single-ply’ approach, the general load
case can be transferred into a shear-load-free case by applying the
following relations .

⎡

⎢

⎢

⎣

𝑛𝐼
𝑛𝐼𝐼
0

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

𝑐2 𝑠2 2𝑠𝑐
𝑠2 𝑐2 −2𝑠𝑐
0 0 0

⎤

⎥

⎥

⎦

⋅
⎡

⎢

⎢

⎣

𝑛𝑥
𝑛𝑦
𝑛𝑥𝑦

⎤

⎥

⎥

⎦

with 𝛿 = 1
2
arctan

( 2 ⋅ 𝑛𝑥𝑦
𝑛𝑥 − 𝑛𝑦

)

,

(26)

with 𝑐 = cos(𝛿) and 𝑠 = sin(𝛿). The axes of the shear-load-free load state
are rotated by the angle 𝛿 compared to the (𝑥, 𝑦) systems. As principal
strains of the isotropic laminate are independent from the relative
position of the load coordinate system and the laminate coordinate
system it is sufficient to consider only varying 𝑛𝑥 and 𝑛𝑦 components
and keep 𝑛𝑥𝑦 = 0.

𝑛𝑤𝑖𝑡ℎ−𝑠ℎ𝑒𝑎𝑟 =
⎡

⎢

⎢

𝑛𝑥
𝑛𝑦

⎤

⎥

⎥

→ 𝑛𝑤𝑖𝑡ℎ𝑜𝑢𝑡−𝑠ℎ𝑒𝑎𝑟 =
⎡

⎢

⎢

𝑛𝑥
𝑛𝑦
⎤

⎥

⎥

=
⎡

⎢

⎢

𝑛𝐼
𝑛𝐼𝐼

⎤

⎥

⎥

(27)
5

⎣𝑛𝑥𝑦⎦ ⎣ 0 ⎦ ⎣ 0 ⎦
Fig. 6. Effect of principal axis rotation in context of ply-limit determinations.

Fig. 7. Omni envelopes. Strains in h.

The red dots in Fig. 7 are determined following this finding. Fig. 7
summarizes the results of the ’single-ply’ and the ’all-ply’ approach. The
plot substantiates that both approaches lead to identical results.
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Fig. 8. Internal fitting circle. IM7/977-3.

4.1. Circle simplification

Further simplification is possible, when defining an inner fitting cir-
cle to the omni envelope (Cuntze describes it as ’Non-FPF area’ in [6]).
The procedure is similar to the Unit-circle criterion, presented by Tsai
and Melo [10] or its simplification, the Nettles Circle, presented in
(NC) [11,12]. However, the slightly different shape of Cuntze envelopes
requires a modification. The radius of an NC is determined based on
the so called tensile anchors, as 𝑟 = |(𝜀𝐼 , 0)|. However, an NC would
show intersection with the Cuntze envelope. Thus, the fitting-circle
procedure needs to be adapted. The inner radius for a Cuntze envelope
is determined based on the smallest principal-strain-vector magnitude,
by using 𝑟 = 𝑚𝑖𝑛([

√

𝜀2𝐼 + 𝜀2𝐼𝐼 ]𝑘). This procedure avoid interference
between the envelope and the circle. Fig. 8 shows the inner circle, with
a radius of 5.842h.

The application of this circle in demonstrated in the following
section. It is noted, that in line proposed procedures with the Nettles
circle in [11], one can also define smaller radii with 𝑟 < 5.842h, for
safety reasons e.g 3.5h, considering an additional margin of safety.

5. Example application

A simple example case is presented in this section to demonstrate
the application of omni FPF envelopes in context of FE-based CFRP
design. Fig. 9 shows the schematic of the example case and its dimen-
sions. A 50 mm long, 10 mm wide laminate is considered. Engineering
constants for a unidirectional material from Table 1 are used. The
modeled laminate has a quasi-isotropic layup with a [45,−45, 90, 0]𝑠
stacking sequence. A single ply is 0.25 mm thick. 𝜀𝑥 = 𝑢1∕𝐿 =
0.1 mm∕50 mm = 0.2% The laminate is subjected by an asymmetric load
case, which combines a linear extension in 𝑥-direction and a rotation
of the right end. The resulting deformation is asymmetric as well. For
the case at hand the laminates center is of interest, indicated by the
red dot in Fig. 9. The omni envelope, determined above shall be used
to assessment whether a certain region of the laminate can sustain the
examined load case. Fig. 10 shows the corresponding FE model with
illustrated boundary conditions. The initial load scenario features a
0.1 mm extension (𝜀𝑥 = 𝑢1∕𝐿 = 0.1 mm∕50 mm = 0.2%) in 𝑥-direction
and a 3◦ end rotation, as shown in Fig. 9. The strain at the top-surface
6

Table 2
Ply stressed extracted from the FE model, corresponding efforts. From top to bottom
ply.

Ply (𝜎1 , 𝜎2 , 𝜏12)𝑇 in MPa 𝐸𝑓𝑓 𝐸𝑓𝑓 ∥𝜎 𝐸𝑓𝑓 ∥𝜏 𝐸𝑓𝑓⟂𝜎 𝐸𝑓𝑓⟂𝜏 𝐸𝑓𝑓⟂∥

45 (205.07, 14.93,−39.46)𝑇 0.57 0.06 0.00 0.24 0.00 0.55
−45 (199.53, 13.18, 34.65)𝑇 0.50 0.06 0.00 0.21 0.00 0.48
90 (−186.42, 24.53, 0.31)𝑇 0.40 0.00 0.12 0.40 0.00 0.00
0 (459.43, 0.33,−0.16)𝑇 0.14 0.14 0.00 0.01 0.00 0.00
0 (382.37, 1.04, 0.00)𝑇 0.12 0.12 0.00 0.02 0.00 0.00
90 (−68.06, 14.62,−0.16)𝑇 0.24 0.00 0.04 0.24 0.00 0.00
−45 (96.02, 7.02, 10.60)𝑇 0.17 0.03 0.00 0.11 0.00 0.14
45 (86.69, 5.39,−5.79)𝑇 0.11 0.03 0.00 0.09 0.00 0.08

Table 3
Ply stressed extracted from the FE model, corresponding efforts. From top to bottom
ply, 𝑟𝑚𝑎𝑥 = 1.498.

Ply (𝜎1 , 𝜎2 , 𝜏12)𝑇 in MPa 𝐸𝑓𝑓 𝐸𝑓𝑓 ∥𝜎 𝐸𝑓𝑓 ∥𝜏 𝐸𝑓𝑓⟂𝜎 𝐸𝑓𝑓⟂𝜏 𝐸𝑓𝑓⟂∥

45 (307.19, 22.37,−59.11)𝑇 0.87 0.09 0.00 0.36 0.00 0.84
−45 (298.90, 19.74, 51.91)𝑇 0.76 0.09 0.00 0.32 0.00 0.73
90 (−279.26, 36.75, 0.46)𝑇 0.60 0.00 0.17 0.59 0.00 0.01
0 (688.23, 0.49,−0.24)𝑇 0.21 0.21 0.00 0.01 0.00 0.00
0 (572.79, 1.56, 0.00)𝑇 0.18 0.18 0.00 0.03 0.00 0.00
90 (−101.95, 21.90,−0.24)𝑇 0.35 0.00 0.06 0.35 0.00 0.00
−45 (143.84, 10.52, 15.88)𝑇 0.25 0.04 0.00 0.17 0.00 0.22
45 (129.86, 8.07,−8.67)𝑇 0.16 0.04 0.00 0.13 0.00 0.12

position is evaluated in the FE results.1 The model’s principal strain
outputs are

⎡

⎢

⎢

⎣

𝜀𝑚𝑎𝑥.𝑝𝑟𝑖𝑛𝑐
𝜀𝑚𝑖𝑛.𝑝𝑟𝑖𝑛𝑐

0

⎤

⎥

⎥

⎦𝑡𝑜𝑝,𝑐𝑒𝑛𝑡𝑒𝑟

=
⎡

⎢

⎢

⎣

𝜀𝐼
𝜀𝐼𝐼
0

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

3.61965
−1.44672

0

⎤

⎥

⎥

⎦

h (28)

The corresponding absolute principal-strain-vector magnitude is deter-
mined to

√

𝜀2𝐼 + 𝜀2𝐼𝐼 = 3.898h.
Table 2 shows the ply stresses (in local CoS) of all plies in the

stack and the ply-specific total effort 𝐸𝑓𝑓 and the mode-specific efforts
(𝐸𝑓𝑓𝑖) for the Cuntze 2D criteria.

One can see that the uppermost ply is the most critical, with a
total effort of 57% (𝐸𝑓𝑓 = 0.57). Thus, the load can be increased.
The comparison of the inner circle radius (5.842h, see Fig. 8) and the
current principal-strain-vector magnitude allows for determining the
scaling factor to 𝑟𝑚𝑎𝑥 = 5.842

3.898 = 1.498. Thus, displacements and rotation
can be increased linearly based on 𝑟𝑚𝑎𝑥, which leads to 𝑢𝐿𝐿1 = 0.1498,
𝑢𝐿𝐿𝑟2 = 4.494◦. The corresponding principal strains change to

⎡

⎢

⎢

⎣

𝜀𝑚𝑎𝑥.𝑝𝑟𝑖𝑛𝑐
𝜀𝑚𝑖𝑛.𝑝𝑟𝑖𝑛𝑐

0

⎤

⎥

⎥

⎦

𝐿𝐿

𝑡𝑜𝑝,𝑐𝑒𝑛𝑡𝑒𝑟

=
⎡

⎢

⎢

⎣

5.42223
−2.16718

0

⎤

⎥

⎥

⎦

h (29)

which leads to the vector magnitude of
√

𝜀2𝐼 + 𝜀2𝐼𝐼 = 5.839h. This,
value represents 99.95% of the determined material-limit, which is
quantified by the FPF inner fitting circle’s radius. Fig. 11 shows the
results. The black-edged dot represents the initial load state (𝑢1 =
0.1 mm, 𝑢𝑟2 = 3◦). The red-edged circle represents the loading scaled
to the circle-based limit. The corresponding ply stresses are given in
Table 3.

One finds a maximum effort of 87% for the outer 45◦ ply. Fig. 11
visualizes the result. The red dot lies on the fitted circle circumference,
but there is still a little spacing to the envelope. Iterative scaling can be
used until 𝐸𝑓𝑓 = 1 is reached for the first ply in the laminate. For the

1 Note that the following equations intentionally provide multiple digits,
in order to avoid unwanted rounding effects, when accuracy is assessed. The
technical relevance of the third, fourth or fifth is limited. They can be skipped,
once the accuracy has been outlined.



Composites Part C: Open Access 14 (2024) 100460E. Kappel
Fig. 9. Example analysis case, with extension loading 𝑢1 and rotation 𝑢𝑟2.
Fig. 10. FE model in ABAQUS. Limit-Load case illustrated. Center location evaluated. Note, that the (Avg:75%) in the figure above refers to an ABAQUS internal visualization
setting.
Fig. 11. Results of the use-case application. IM7/977-3, strain in texth.

use case at hand, a scaling factor of 1.701 is found2. It induces the onset
of failure of the uppermost 45◦ ply in the laminate. Corresponding ply
stresses, total efforts and mode-specific efforts are given in Table 4.

2 Note, that the described procedure inherently assumes proportional
loading and linear elasticity, which is mandatory for strain ∝ load.
7

Table 4
Ply stressed extracted from the FE model, corresponding efforts. From top to bottom
ply, 𝑟𝑚𝑎𝑥 = 1.701.

Ply (𝜎1 , 𝜎2 , 𝜏12)𝑇 in MPa 𝐸𝑓𝑓 𝐸𝑓𝑓 ∥𝜎 𝐸𝑓𝑓 ∥𝜏 𝐸𝑓𝑓⟂𝜎 𝐸𝑓𝑓⟂𝜏 𝐸𝑓𝑓⟂∥

45 (350.28, 25.50,−67.40)𝑇 1.00 0.11 0.00 0.41 0.00 0.96
−45 (340.82, 22.51, 59.19)𝑇 0.87 0.10 0.00 0.36 0.00 0.84
90 (−318.42, 41.90, 0.53)𝑇 0.68 0.00 0.20 0.68 0.00 0.01
0 (784.75, 0.56,−0.27)𝑇 0.24 0.24 0.00 0.01 0.00 0.00
0 (653.13, 1.78, 0.00)𝑇 0.20 0.20 0.00 0.03 0.00 0.00
90 (−116.25, 24.97,−0.27)𝑇 0.40 0.00 0.07 0.40 0.00 0.00
−45 (164.01, 11.99, 18.11)𝑇 0.29 0.05 0.00 0.19 0.00 0.25
45 (148.08, 9.21,−9.89)𝑇 0.19 0.05 0.00 0.15 0.00 0.14

The presented example allows to demonstrate the inherent nonlin-
earity of the Cuntze FMC. The initial load led to 𝐸𝑓𝑓 = 0.57 (see
Table 2). Determining a reserve factor, by inverting this initial effort
𝐸𝑓𝑓 would have led to 1∕0.57 = 1.754. The incrementally determined
FPF-envelope limit is found to be lower, with 1.701. This deviation
is a consequence of the formulation of the FMC, mainly due to the
exponent parameter 𝑚 and the mode-specific effort 𝐸𝑓𝑓⟂∥, which
scales nonlinearly when a load state is scaled proportionally.

5.1. An alternative approach for directly determining the limit-strain state

An alternative strategy can be pursued to directly determine the
limit strain state based on the omni FPF data. When following the
usual convention for the principal strain calculation, with 𝜀𝐼 > 𝜀𝐼𝐼 ,
one can define two relevant sectors in the principal strain plot. Those,
are defined as:

Each load state can be plotted as a dot, as shown above in Fig. 11.
The initial load case for the example at hand (see Eq. (28)) can be
attributed to Sector 2. Its angular location can be determined based
on 𝜀𝐼 and 𝜀𝐼𝐼 . The 𝛼𝜀 refers to a triangle, as Fig. 12 shows. The angle
is determined to 𝛼𝑖𝑛𝑖 = arctan

(

|−1.44672|
)

≈ 21.8◦. The concept for
𝜀 3.61965
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Table 5
Sector definition for the principal-strain plot.
Sector 𝜀𝐼 𝜀𝐼𝐼 𝛼𝜀

1 > 0 > 0 = arctan
(

𝜀𝐼𝐼
𝜀𝐼

)

2 > 0 < 0 = arctan
(

|𝜀𝐼𝐼 |
𝜀𝐼

)

Fig. 12. Using the angle 𝛼𝜀 for direct determining the limit strain state from the
envelope data.

Fig. 13. Tsai–Wu and Cuntze omni envelopes with NC and inner circle; Material:
IM7/977-3 from Table 1.

identifying the limit strain state, is to find the point on the envelope,
which is positioned on a straight line with the origin and the initial-load
point (as in the intercept theorem). In a simple loop, all determined
8

envelope data points in Sector 2 are examined and the corresponding
angles (𝛼𝜀)𝑖 are calculated, according to the 𝛼𝜀 definition in Table 5. The
point of interest is found by identifying the 𝑖th point, which refers to
𝑚𝑖𝑛(|𝛼𝑖𝑛𝑖𝜀 − (𝛼𝜀)𝑖|). For the case at hand, the complete envelope consists
of 762 points. 180 points are attributed to Sector 2. The best match was
found for the point

⎡

⎢

⎢

⎣

𝜀𝐼
𝜀𝐼𝐼
0

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

6.1185
−2.4720

0

⎤

⎥

⎥

⎦

(30)

with refers to an angular position of 𝛼𝜀 = 22.0◦. The correspond-
ing principal-strain-vector magnitude is determined to

√

𝜀2𝐼 + 𝜀2𝐼𝐼 =
6599h. Thus, the scaling factor is 1.6929 = 6599∕3898 for the 𝛼𝜀-based
approach. The value is close to the incrementally determined scaling
factor of 1.701, determined in the previous section. The difference
can be explained by the point density of the FPF envelope data. The
presented procedure identifies the closest point, which leads to an angle
discrepancy of 0.2◦ for the case at hand. Increasing the number of FPF-
envelope data points, or using interpolation techniques, will help to
further minimize the discrepancy.

6. Conclusions

Omni first-ply-failure (FPF) envelopes are presented as an valuable
tool to assess composite laminate failure in context of FE supported
composite design processes. Omni envelopes base on conventional
Engineering constants and strength parameters in stress space. In recent
literature Omni envelopes are presented for the Tsai–Wu criterion. The
present article utilizes Cuntze’s Failure-mode-concept for the envelope
creation process, for the first time.

The article presents two different strategies for directly determining
Omni FPF envelopes and it is outlined, why omni envelopes refer to
laminate principal strains.

An omni FPF envelope circumscribes all principal-strain states of a
laminate, which can be sustained by plies aligned in all conceivable
orientations. As long a principal strain state (𝜀𝐼 , 𝜀𝐼𝐼 ) is within the
envelope, all plies remain intact. An omni envelope is a conserva-
tive criterion, as all conceivable ply orientations are captured, which
usually leads to the minimum-area envelope.

The provided simple application example outlines how composite
design engineers can use those envelopes in context of laminate-failure
assessment. Omni envelopes offer unique illustration opportunities.
Those are applied for the example case and it is demonstrated how
laminate reserve factors are deduced from the envelope representation.
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Appendix

A.1. Tsai–Wu failure criterion and strength ratio definition

The strength-ratio concept. Linearity is inherently assumed. The
envelope limit is defined by:

𝜎1 ⋅
[

1
𝑋𝑇

− 1
𝑋𝐶

]

+𝜎2 ⋅
[

1
𝑌𝑇

− 1
𝑌𝐶

]

+
𝜎2
1

𝑋𝑇𝑋𝐶
+

𝜎2
2

𝑌𝑇 𝑌𝐶
+
𝜎2
12

𝑆2
−

𝜎1𝜎2
√

𝑋𝑇𝑋𝐶𝑌𝑇 𝑌𝐶
= 1 (31)

Finding the limit until the failure condition is fulfilled scales the initial
load with the factor R. 𝜎𝑚𝑎𝑥 = 𝑅 ⋅𝜎𝑎𝑝𝑝𝑙𝑖𝑒𝑑 = 𝑅 ⋅[𝜎1, 𝜎2, 𝜎12]𝑇 The resulting
equation is rearranged

𝑅2 ⋅

(

𝜎21
𝑋𝑇𝑋𝐶

+
𝜎22

𝑌𝑇 𝑌𝐶
+

𝜎212
𝑆2

−
𝜎1𝜎2

√

𝑋𝑇𝑋𝐶𝑌𝑇 𝑌𝐶

)

+

+𝑅 ⋅
(

𝜎1 ⋅
[

1
𝑋𝑇

− 1
𝑋𝐶

]

+ 𝜎2 ⋅
[

1
𝑌𝑇

− 1
𝑌𝐶

])

− 1 = 0 (32)

and the quadratic function

𝑅2 ⋅ 𝑎 + 𝑅 ⋅ 𝑏 − 1 = 0 (33)

is solved for 𝑅

𝑅 = − 𝑏 +

√

( 𝑏 )2
+ 1 . (34)
9

2𝑎 2𝑎 𝑎
Fig. 13 shows a comparison of FPF envelopes, developed with the
Tsai–Wu or the Cuntze criterion, for IM7/977-3 material.

A.2. Python code

Listing 1: Python code for strain incrementation
i n c r emena t i on

inc = 12
magni tude t h r e s h o l d s
ag = 0.01

range d e f i n i t i o n s
exrange = np . l in space (−mag,mag , inc )
eyrange = np . l i n space (−mag,mag , inc )
gammaxyrange=np . l in space (−mag,mag , inc )

l o o p s t o a s s e s s comb ina t i on s
for ex in exrange :

for ey in eyrange :
for gxy in gammaxyrange :

#g l o b a l s t r a i n v e c t o r
epsglob = np . array ( [ [ ex ] , [ ey ] , [ gxy ] ] )
. . .

A.3. Mohr principal-strain circle

𝑞 =
𝜀1 − 𝜀2

2
, 𝑝 =

𝜀1 + 𝜀2
2

, 𝑅 =
√

𝑞2 + (𝛾12∕2)2

𝜀𝐼 = 𝑝 + 𝑅 =
𝜀1 + 𝜀2

2
+

√

( 𝜀1 − 𝜀2
2

)2
+ (𝛾12∕2)2

= 1
2

(

𝜀1 + 𝜀2 +
√

(𝜀1 − 𝜀2)2 + 𝛾212

)

(35)

𝜀𝐼𝐼 = 𝑝 − 𝑅 =
𝜀1 + 𝜀2

2
−

√

( 𝜀1 − 𝜀2
2

)2
+ (𝛾12∕2)2

= 1
2

(

𝜀1 + 𝜀2 −
√

(𝜀1 − 𝜀2)2 + 𝛾212

)

(36)



Composites Part C: Open Access 14 (2024) 100460E. Kappel
References

[1] S.W. Tsai, J.D.D. Melo, Composite Materials Design and Testing - Unlocking
Mystery with Invariants, Stanford University, 2015.

[2] Ralf Cuntze, Life-work cuntze - a compilation, 2022, The Failure-Mode-Concept
FMC, a physical and theoretical Material Symmetry-driven basis to generate
Strength Criteria, that gave a reason to look after a ’more closed’ Strength
Mechanics Building & in addition Very Much on Structural Materials, Techniques
and Design including work-life experiences of the author in many engineering
fields. (about 850 pages), downloadable from https://www.carbon-connected.de/
Group/Prof.Ralf.Cuntze.

[3] ABAQUS CAE 6.14-1 manual. Dassault systemes, 2014.
[4] S.W. Tsai, Double-double: New family of composite laminates, AIAA J. (2021)

http://dx.doi.org/10.2514/1.J060659.
[5] S.W. Tsai, B.G. Falzon, A. Arav, DOUBLE-DOUBLE Simplifying the Design

and Manufacture of Composite Laminates, Composite Design Group, Stanford
University, 2023.

[6] R. Cuntze, E. Kappel, Why not designing multi directional laminates with in-
plane strength design sheets applying the UD criteria of Tsai–Wu and Cuntze?, in:
Mechanics of Composite Materials, Springer, 2024, (submitted for publication).
10
[7] R. Cuntze, Comparative characterization of four significant UD strength failure
criteria (SFC) with focusing a direct use of friction values, use of ’strength’
𝑅⟂⟂ and ’Proportional Loading’, 2023, https://www.carbon-connected.de/Group/
Prof.Ralf.Cuntze/Pages/Start/Index/173223.

[8] S.W. Tsai, et al., DOUBLE-DOUBLE a New Perspective in the Manufacture and
Design of Composites, JEC/ Stanford publication, ISBN: 978-0-9819143-3-6,
2022.

[9] A.T. Nettles, Basic Mechanics of Laminated Composite Plates - NASA Reference
Publication 1351, Technical Report, NASA, 1994.

[10] S.W. Tsai, J.D.D. Melo, A unit circle failure criterion for carbon fiber reinforced
polymer composites, Compos. Sci. Technol. 123 (2016) 71–78.

[11] E. Kappel, Double-double laminates for aerospace applications - Finding best
laminates for given load sets, Composites C 8 (2022) 100244.

[12] W.E. Guin, A.T. Nettles, A Straightforward Approach To Thickness Tailoring
in Composite Structures using Non-Traditional Layups, NASA/T-20210021062
Marshall Space Flight Center, Huntsville, Alabama, 2021.

http://refhub.elsevier.com/S2666-6820(24)00031-8/sb1
http://refhub.elsevier.com/S2666-6820(24)00031-8/sb1
http://refhub.elsevier.com/S2666-6820(24)00031-8/sb1
https://www.carbon-connected.de/Group/Prof.Ralf.Cuntze
https://www.carbon-connected.de/Group/Prof.Ralf.Cuntze
https://www.carbon-connected.de/Group/Prof.Ralf.Cuntze
http://refhub.elsevier.com/S2666-6820(24)00031-8/sb3
http://dx.doi.org/10.2514/1.J060659
http://refhub.elsevier.com/S2666-6820(24)00031-8/sb5
http://refhub.elsevier.com/S2666-6820(24)00031-8/sb5
http://refhub.elsevier.com/S2666-6820(24)00031-8/sb5
http://refhub.elsevier.com/S2666-6820(24)00031-8/sb5
http://refhub.elsevier.com/S2666-6820(24)00031-8/sb5
http://refhub.elsevier.com/S2666-6820(24)00031-8/sb6
http://refhub.elsevier.com/S2666-6820(24)00031-8/sb6
http://refhub.elsevier.com/S2666-6820(24)00031-8/sb6
http://refhub.elsevier.com/S2666-6820(24)00031-8/sb6
http://refhub.elsevier.com/S2666-6820(24)00031-8/sb6
https://www.carbon-connected.de/Group/Prof.Ralf.Cuntze/Pages/Start/Index/173223
https://www.carbon-connected.de/Group/Prof.Ralf.Cuntze/Pages/Start/Index/173223
https://www.carbon-connected.de/Group/Prof.Ralf.Cuntze/Pages/Start/Index/173223
http://refhub.elsevier.com/S2666-6820(24)00031-8/sb8
http://refhub.elsevier.com/S2666-6820(24)00031-8/sb8
http://refhub.elsevier.com/S2666-6820(24)00031-8/sb8
http://refhub.elsevier.com/S2666-6820(24)00031-8/sb8
http://refhub.elsevier.com/S2666-6820(24)00031-8/sb8
http://refhub.elsevier.com/S2666-6820(24)00031-8/sb9
http://refhub.elsevier.com/S2666-6820(24)00031-8/sb9
http://refhub.elsevier.com/S2666-6820(24)00031-8/sb9
http://refhub.elsevier.com/S2666-6820(24)00031-8/sb10
http://refhub.elsevier.com/S2666-6820(24)00031-8/sb10
http://refhub.elsevier.com/S2666-6820(24)00031-8/sb10
http://refhub.elsevier.com/S2666-6820(24)00031-8/sb11
http://refhub.elsevier.com/S2666-6820(24)00031-8/sb11
http://refhub.elsevier.com/S2666-6820(24)00031-8/sb11
http://refhub.elsevier.com/S2666-6820(24)00031-8/sb12
http://refhub.elsevier.com/S2666-6820(24)00031-8/sb12
http://refhub.elsevier.com/S2666-6820(24)00031-8/sb12
http://refhub.elsevier.com/S2666-6820(24)00031-8/sb12
http://refhub.elsevier.com/S2666-6820(24)00031-8/sb12

	Omni first-ply-failure envelopes — A conservative approach to assess laminate failure
	Motivation
	First-ply-failure envelopes and omni envelopes
	Cuntze's FMC in 2D and material data

	The 'single-ply' approach
	A comment on principal strains

	The 'all-ply' laminate approach
	Circle simplification

	Example application
	An alternative approach for directly determining the limit-strain state

	Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	Appendix
	Tsai–Wu failure criterion and strength ratio definition
	Python code
	Mohr principal-strain circle

	References


