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Zusammenfassung

Lithium-Ionen-Batterien werden heutzutage vielfach in diversen alltäglichen Gerä-
ten verwendet wie Smartphones, Laptops und elektrischen Fahrzeugen. Aber auch
in der Luft- und Raumfahrt spielen sie eine wichtige Rolle. Wegen ihrer hohen
spezifischen Energie eignen sie sich besonders gut für den Einsatz in Raumfahrt-
missionen, bei denen unter anderem das Gewicht der verbauten Geräte entschei-
dend ist. Außerdem sind sie sicher und zuverlässig; zwei unbedingt notwendige
Faktoren in der Raumfahrt. Die Verwendung in Satelliten, die um die Erde kreisen,
bietet sich hier besonders an, da die Batterien so unbegrenzt über Solarzellen von
der Sonne geladen werden können.
Die besonders hohen Anforderungen an Sicherheit und Zuverlässigkeit in Raum-
fahrt-Anwendungen stellt besondere Herausforderungen an den Betrieb der Bat-
terien. Die Dauer der Mission hängt unter anderem von der Lebensdauer der
Batterien ab. Deshalb muss ihr Betrieb so gestaltet sein, dass es zu keinen Un-
fällen kommt, die Lebensdauer möglichst lang ist und die Alterung der Batterien
möglichst genau vorhergesagt werden kann.
Um das zu garantieren, ist es notwendig, die Prozesse in Li-Ionen-Batterien zu ver-
stehen. Sowohl während der Lagerung als auch während der Zyklisierung finden
verschiedene Prozesse in den Batterien statt, die diese altern lassen. Einer der
Hauptmechanismen ist das Wachstum der sogenannten Solid-Electrolyte Inter-
phase (SEI). Dies ist eine passivierende Schicht, die sich auf der Oberfläche der
Anoden-Partikel bildet und dadurch kontinuierlich Li-Ionen konsumiert, was zu
einem unumkehrbaren Kapazitätsverlust führt. Für die Prozesse in der Batterie
während der Zyklisierung und für die Alterung gibt es Modelle, die diese akkurat
beschreiben.
Die vorliegende Arbeit untersucht, mit Hilfe dieser Modelle, den Betrieb und die
Alterung von Li-Ionen-Batterien in Satelliten-Anwendungen und schätzt die in-
neren Zustände der Batterien, die nicht gemessen werden können. Hierzu werden
Daten des kleinen japanischen Satelliten REIMEI verwendet, die von der Japanis-
chen Raumfahrtbehörde JAXA zur Verfügung gestellt wurden.
Basierend auf terrestrischen Experimenten, die die REIMEI-Mission begleiteten,
werden die Modelle parametrisiert, sodass damit die typische Zyklisierung von
Satelliten-Batterien simuliert und die Alterung unter diesen speziellen Einsatzbe-
dingungen untersucht werden kann. Die Parametrisierung erfolgt mit direkten
Verfahren, bei denen Parameter zum Beispiel in Mikro-CT Aufnahmen gemessen



werden und mit indirekten Verfahren, bei denen Zyklisierungsmessungen mit den
Simulationen verglichen und Parameter so bestimmt werden, dass eine möglichst
große Übereinstimmung erreicht wird. Die Simulationen werden mit verschiedenen
Auflösungen durchgeführt. Dreidimensionale mikrostruktur-aufgelöste Simulatio-
nen erlauben dabei einen besonders realistischen Einblick in die Alterungsprozesse
in der Batterie.
Die parametrisierten Modelle werden anschließend verwendet, um die Zustände in
der Batterie in Betrieb zu schätzen. Innere Zustände, wie der Ladezustand und der
Gesundheitszustand der Batterie, können nicht direkt gemessen werden. Deshalb
werden Filtermethoden verwendet, um die Batterie-Modelle mit den messbaren
Größen wie Strom und Spannung zu kombinieren und damit akkuratere Schätzun-
gen der Zustände zu erhalten. Filter wie das Kalman-Filter bieten sich besonders
an für komplexe Systeme, bei denen sowohl die Messgrößen als auch die Mod-
elle fehlerbehaftet sind. Um der unterschiedlichen Zeitentwicklung der Zustände
gerecht zu werden, wird ein Algorithmus entwickelt, der zwei Filter koppelt und
damit die Zustände simultan schätzt. Der Algorithmus wird weiter dazu verwen-
det, die Güte der verwendeten Modelle zu bewerten und das Alterungsverhalten
zu prognostizieren.
Die hier beschriebenen Methoden sind eine wertvolle Ergänzung, um einen sicheren
und zuverlässigen Betrieb von Li-Ionen-Batterien in Raumfahrt-Anwendungen zu
gewährleisten und die Vorbereitung zukünftiger Missionen zu unterstützen.
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Abstract

Lithium-ion batteries are widely used today in various devices of everyday use,
such as smartphones, laptops, and electric vehicles. But they also play an impor-
tant role in the aerospace industry. Due to their high specific energy, they are
particularly suitable for application in space missions where, among other things,
the weight of the installed devices is crucial. They are also safe and reliable,
two essential factors in aerospace applications. Their use in satellites orbiting the
earth is particularly beneficial here, as the batteries can be charged infinitely via
solar cells by the sun.
The very high safety and reliability requirements in space applications pose spe-
cial challenges for battery operation. The duration of the mission depends, among
other things, on the service life of the batteries. Their operation must therefore
be designed in such a way that no accidents occur, the service life is as long as
possible, and the aging of the batteries can be predicted as accurately as possible.
To guarantee this, it is necessary to understand the processes in Li-ion batter-
ies. During both storage and cycling, various processes take place in the batteries
that cause them to degrade. One of the main mechanisms is the growth of the so-
called solid-electrolyte interphase (SEI). This is a passivating layer that forms on
the surface of the anode particles and thus continuously consumes Li-ions, leading
to an irreversible loss of capacity. There are models that accurately describe the
processes in the battery during cycling and aging.
This thesis uses these models to investigate the operation and aging of Li-ion bat-
teries in satellite applications and estimates the internal states of the batteries,
which cannot be measured. For this purpose, data from the small Japanese satel-
lite REIMEI provided by the Japan Aerospace Exploration Agency (JAXA) are
used.
Based on terrestrial experiments that accompanied the REIMEI mission, the mod-
els are parameterized so that the typical cycling of satellite batteries can be simu-
lated and the aging under these special operating conditions can be investigated.
The parameterization is carried out using direct methods, in which parameters are
measured, for example in micro-CT images, and indirect methods, in which cy-
cling measurements are compared with simulations and the model parameters are
determined in such a way that the best possible agreement is achieved. The simula-
tions are carried out with different resolutions. Three-dimensional microstructure-
resolved simulations provide a particularly realistic insight into the aging processes



in the battery.
The parameterized models are subsequently used to estimate the states in the
battery in operation. Internal states, such as the state of charge and the state of
health of the battery, cannot be measured directly. Therefore, filtering methods
are used to combine the battery models with the measurable quantities such as
current and voltage to obtain more accurate estimates of the states. Filters such
as the Kalman filter are particularly suitable for complex systems in which both
the measured variables and the models are subject to errors. In order to account
for the different time evolution of the states, an algorithm is developed that cou-
ples two filters and in this way estimates the states simultaneously. The algorithm
is also used to evaluate the accuracy of the models used and to predict the aging
behavior.
The methods described here are a valuable addition to ensure safe and reliable
operation of Li-ion batteries in space applications and to support the preparation
of future missions.
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1 Introduction

Lithium-ion (Li-ion) batteries are used in various applications. Among the best-
known are electric vehicles, smartphones, laptops, and other portable devices. In
space, batteries have generally been used for a long time. However, although the
first commercial Li-ion battery was produced in 1991, it took some time before
space agencies started using Li-ion batteries for space applications as well. Nowa-
days, they are popular in all kinds of aerospace applications, among other things
because of their light weight.

Satellites orbiting the Earth differ in several categories, such as height above the
Earth, size or weight, and the type of mission they perform. Typically, satellites
are on a geostationary orbit (GEO) with a fixed position relative to Earth or on
a low Earth orbit (LEO), which is the area of space below 2,000 km. In addition,
they are distinguished by weight, with small satellites, for example, weighing less
than 500 kg. The orbit of the satellite and its weight depend on its mission. These
can be scientific, commercial, or military and include tasks such as navigation,
communication, and Earth or weather observation [34, 8, 87].

One critical aspect of space missions is their cost. These depend, among other
things, on the weight, size and price of the components. One way to reduce the
effort and cost of missions is to use commercial off-the-shelf (COTS) components
[8, 7].

Requirements of Satellite Batteries

Batteries for space applications must meet special requirements that differ from
those for applications on Earth, such as electric vehicles. Already during launch,
the batteries have to withstand harsh conditions such as shocks, vibrations, and
acceleration [34]. In space, the satellite is exposed to special conditions such
as extreme temperatures. Therefore, the batteries must be heated and cooled
to keep them at a moderate temperature of about 20°C [98]. In addition, the
batteries must operate in a hard vacuum, which places special demands on battery
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1 Introduction

chemistry such as the electrolyte [108]. It might be assumed that radiation in space
would also be a challenge for batteries. However, it turns out that radiation does
not affect the behavior of the batteries [96]. The REIMEI mission also studied
the effect of microgravity and vacuum on battery operation in space [98].

Another important requirement is the cycle life capability. Batteries are usually
required to operate reliably for five years [34]. As described below, the usual
cycling protocol results in approximately 5,000 charge and discharge cycles per
year. This means that the batteries must deliver the required capacity and voltage
range specified by the payloads and satellite systems for at least 25,000 cycles.

To meet all of these requirements, the batteries must be tested prior to mission
launch. Especially for cycling tests, which usually take a long time, the testing ef-
fort can be reduced by virtual support such as models that predict the degradation
and end of life of the batteries.

History of Batteries in Satellites

Batteries have long been an important source of energy in aerospace. The first
battery used in a satellite was a silver-zinc primary battery. It was used in the
Russian spacecraft Sputnik in 1957 for operations and communications. Due to
the lack of solar cells, the battery could not be recharged and was exhausted after
three weeks [34, 8]. With the use of solar panels in satellites, secondary cells
became employed. The first secondary battery was a nickel-cadmium (Ni-Cd)
battery. One of the first spacecrafts to use this type of battery was the TIROS I,
a weather satellite launched by NASA in 1960. To ensure a long battery life, the
depth of discharge was only 3 %. The necessary capacity was achieved by large
size and cost of the battery. The next common battery type was nickel-hydrogen
(Ni-H2) batteries. These were first used by the U.S. Navy in 1966 in a spacecraft
as a backup for a Ni-Cd battery. Later, in 1983, nickel-hydrogen batteries were
used in an Intelsat V satellite for a GEO mission [34].

With the endeavor to reduce battery size and increase energy density, Li-ion bat-
teries became attractive for space applications. The first use of a Li-ion battery in
a satellite was in 2004, when Eutelsat’s telecommunications satellite using SAFT
batteries was placed in geostationary orbit [62]. Satellite REIMEI, launched in
2005, is another example of one of the first satellites to be equipped with a Li-ion
battery. This type of battery was one of the technologies to be tested during the
mission [86].
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The advantages of Li-ion batteries compared to Ni-Cd and Ni-H2 batteries are
shown in Table 1.1.

Table 1.1: Comparison of different battery types used in satellites as of 2014. Ex-
cerpt from the table of Mattesco et al. and Malet et al. [62, 59].

NiCd NiH2 Li-ion System impact

Energy density
(Wh/kg)

30 60 153 Dry mass saving

Energy efficiency (%) 72 70 96 Reduction of charge
power: solar panel mass
and dimension.

Thermal power (scale
1-10)

8 10 1 Reduction of radiators,
heat pipes sizes

Self discharge (% per
day)

1 10 0.3 Simple management at
launch pad and more
margin during transfer

Temperature range
(°C)

0,40 -20,30 10,30 Management at ambient

Memory effect yes yes no No reconditioning man-
agement

Energy gauge no pressure voltage Easier state of charge as-
sessment

Cycling Protocols of LEO Satellite Batteries

Most satellites are located in LEO, which is the area of space below 2,000 km.
Satellites in LEO have a typical orbital period of about 100 minutes. Fig. 1.1
shows the typical satellite orbit where the satellite is exposed to the sun for about
65 minutes and is in the earth’s shadow for 35 minutes. This directly affects the
cycling of the batteries. While the satellite is in the sun, the batteries are charged
by the solar cells. In the shadow, the satellite loads are powered, which discharges
the batteries. The LEO cycling protocol results in about 14 cycles per day and
about 5,000 cycles per year [34, 18].
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1 Introduction

Figure 1.1: Typical orbit of LEO satellite. The batteries of the satellite get charged
while it is in the sun and discharged during the eclipse. From PhD
thesis of Shelley Brown [18].

The battery data measured in orbit are shown in Fig. 1.2 for several cycles. The
data consist of voltage, current, and temperature of the individual batteries. The
data shown here as an example are from the satellite REIMEI and were published
in Ref. [97] by Sone et al.

Operation of Batteries in Satellites

The structure of a satellite usually consists of the satellite bus, which is the infras-
tructure of the satellite components, and the payloads. The bus consists of several
subsystems that maintain the satellite’s operation. This includes the housing that
protects the components from space conditions, such as extreme temperatures,
and from vibrations to which they are subjected during launch. The power sub-
system controls the power supply to the loads from solar panels and the power
storage in batteries. Measurement data of the loads are sent to Earth control sta-
tions and operation commands are received. Furthermore, there are subsystems
that regulate the temperature of the satellite components and its altitude [87, 7].

The energy supply via the power subsystem in the satellite is controlled by several
components. These include energy generation, conversion to electrical energy,
energy storage, and energy distribution. Solar cells are usually used for power
generation, especially for satellites in Earth orbit. For spacecrafts too far from
the sun to draw sufficient power from it, nuclear generators are often used [28].
The generated power is either used for the payloads and satellite bus systems or
stored in secondary batteries [87, 7].

The batteries usually consist of several cells, which are connected in series or
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Figure 1.2: Battery data of in-orbit satellite REIMEI. The data consist of voltage,
current and temperature of the two Li-ion batteries in the satellite.
From Sone et al. [97].

parallel depending on the requirements of the loads. Since Li-ion cells have a
specific safe operating window in terms of voltage, current, and temperature, they
must be regulated. This is done by the battery management system (BMS). The
BMS controls the charging and discharging of the batteries or individual cells
depending on the commands it receives from the satellite’s power control unit.
It monitors the temperature of the battery or cells and keeps them within a safe
range by heating and cooling them. Another important function of the BMS is
battery balancing, which involves monitoring and distributing the total charge of
the cells to prevent overcharging of individual cells [4].

The application of batteries in space imposes special requirements on battery
control that differ from terrestrial applications. Maintaining the batteries in a
safe operating window ensures a minimum number of cycles before the capacity
or end-of-discharge voltage (EoDV) falls below a certain value, which is given
by the requirements of the satellite loads. Since the number of cycles on space
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1 Introduction

missions is relatively high and there is no possibility to maintain or replace the
cells, they are usually charged to only 4.1 V instead of the typical maximum
voltage of 4.2 V. The depth of discharge is also usually kept around 20 %. These
precautions extend the cycle life of the cells [105, 19, 4].

Another important factor in battery control is the estimation of state of charge
(SOC) and state of health (SOH). These states are necessary to operate the cells
optimally and to predict the remaining useful life. Different from typical terrestrial
applications, it is not usual that the SOH or even SOC are determined in the
BMS of a small satellite. Since weight and size of the components are of great
importance in space applications, also the BMS must be small. However, since
the use of batteries in satellites is very different from terrestrial applications such
as electric vehicles, it is not essential to implement these estimators into the BMS
on board the satellite. One of the main differences is the cycling of the cells. For
electric vehicles, the cycle is very dynamic with current peaks during high energy
demand. In contrast, the cycle of LEO satellite batteries usually follows a specific
protocol, with charging every 100 minutes at a constant current. Another major
difference is that the satellite is not completely autonomous, but is controlled by
the ground station, to which it sends in-orbit data daily. This telemetry data can
then be used to determine the states of the satellite and the batteries, which leads
to new commands that are in turn sent to the satellite [25, 6, 59].

Japanese Satellite REIMEI

Here, we focus on small satellites on a LEO. Especially, on the small scientific satel-
lite REIMEI, developed by the Japan Aerospace Exploration Agency (JAXA). The
satellite was launched in 2005 on the Dnepr rocket as piggy-bag. It uses COTS
Li-ion batteries [86, 87, 105]. The mission was accompanied by terrestrial exper-
iments [105]. These investigated the degradation of Li-ion batteries cycled with
a typical LEO satellite protocol. Also Brown et al. investigated the degradation
behavior of satellite REIMEI’s batteries in cycling experiments [19, 18].

This work is based on a collaboration with JAXA, who provided measurement
data of the on-board batteries of satellite REIMEI, which span several years of
in-flight cycling. These in-flight data are a unique basis to investigate long-term
degradation and to develop and validate methods that predict the battery lifetime.
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Battery Modeling and State Estimation in Satellites

It is important to understand the processes taking place in the batteries during
operation, to be able to operate them safely and to reliably predict their per-
formance during the mission. To this aim, it is helpful to use battery models
and state estimation techniques to get a deeper insight, which goes beyond the
observation of the measurable quantities.

For common applications like electric vehicles, there are many publications that
investigate the simulation and state estimation of Li-ion batteries under terrestrial
conditions [35]. However, the methods are not always transferable to space ap-
plications. One of the special challenges is, for example, the determination of the
battery capacity, since fully discharging the cells to measure the capacity is not
possible in space applications. Chapel et al. give an overview of how degradation
estimation methods can be used in space applications [22].

Especially, research using physics-based models in combination with Li-ion bat-
teries in space applications is sparse [22]. Some use entirely data-based methods
[69, 112]. Song et al. propose an approach, with which it is possible to combine
a data-driven method with a model-based one using a filter. With this approach
they aim to estimate the SOH of satellite batteries [99]. The SOC and SOH of
satellite batteries under LEO cycling conditions are estimated in Refs. [80, 45, 6].
While Rahimian et al. use physics-based models combined with synthetic data,
Jun et al. use empirical models in combination with terrestrial experiments. Aung
et al. also use empirical models as basis for the estimation method and test it
with in-flight data.

To the best of our knowledge, there are no publications that cover SOC and SOH
estimation with physics-based models in satellite applications, which are validated
with on-orbit field data, especially covering operation of several years.

To fill this gap, we develop methods to simulate long-term cycling of Li-ion bat-
teries in satellites with physics-based models and to estimate the SOC and SOH
of the batteries in operation based on the in-flight data of satellite REIMEI.

This work is structured as follows. In chapter 2, we give an overview of the
physics-based models, which describe the performance and degradation of Li-ion
batteries. These are the thermodynamic consistent transport theory of Latz et
al. [49] and the growth model of the solid-electrolyte interphase, which is the main
mechanism for capacity fading, of von Kolzenberg et al. [48].

Next, in chapter 3, the batteries and in-flight data of satellite REIMEI are ex-
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1 Introduction

plained. We summarize related terrestrial experiments by Uno et al. and Brown
et al. [105, 19, 20]. These experiments will be used for parameterizing the battery
model. Furthermore, we elaborate on the processing and information extraction
of the in-flight data, so that these can be used to validate the models.

The parameterization of the models is described in chapter 4. Approaches like
direct parameter extraction from experimental data are used as well as sophisti-
cated techniques for determining the parameters in order to achieve an optimal
agreement between simulation and experiment. The parameterized models are
then used to simulate the degradation in a pseudo-2D and 3D framework in order
to gain deeper insight into the processes in the battery during aging.

Finally, in chapter 5, the models and satellite data are used to estimate the state
of charge and state of health of REIMEI’s batteries. For the state estimation, an
algorithm is developed that couples two Kalman filters to simultaneously estimate
these two states, which evolve on different timescales. The development of the
algorithm is performed using synthetic data and validated with the actual in-
flight data. Eventually, the algorithm is used to investigate the accuracy of the
models.

Chapter 6 concludes this work and gives an outlook on future applications and
potential follow-up investigations.
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2 Battery Theory and Methods

Physics-based models are an essential tool to describe the processes in Li-ion bat-
teries. On the one hand, these models can be used to gain a deeper understanding
of the processes by reproducing the measurable behavior of the batteries with
simulations. On the other hand, models are a necessary basis for battery man-
agement systems to estimate and predict the states in the battery and thereby be
able to control the batteries according to specific requirements.

Since batteries are complex systems, where diverse interdependent processes take
place on different spatial and timescales, it is necessary to model these multi-scale
problems as simple as possible and still sufficiently accurate.

There are several kinds of models, which cover different aspects of Li-ion batter-
ies. Physics-based models, which describe the full cell, are for example continuum
models or equivalent circuit models [27, 32, 17, 73, 41]. In this work, we use
continuum models to simulate performance and aging of Li-ion batteries. There-
fore, we first introduce the thermodynamic consistent transport theory of Latz et
al. [49] and subsequently describe a model of von Kolzenberg et al. for a degra-
dation process of Li-ion batteries [48]. Further, we explain how to use it in a
pseudo-two-dimensional (P2D) or three-dimensional (3D) framework.

We already described the models in Ref. [15]. Here, we outline them and give
further detail on the computational methods used for the simulations.

Other theoretical principles used in this work, apart from the theory of batteries,
can be found at the beginning of the sections in which they are required.
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2 Battery Theory and Methods

2.1 Electrochemistry of Li-Ion Batteries and
Continuum Models

Newman and his coworkers were one of the first to describe a physics-based model
for Li-ion batteries on the cell level. It is sometimes also referred to as Doyle-Fuller-
Newman (DFN) model [27, 32]. This model and its variants and simplifications
have since been used a lot to simulate battery dynamics [44, 14, 102, 29, 31, 81].

The thermodynamic consistent transport theory for Li-ion batteries of Latz et al.
models transport and reactions of Li-ions in electrolyte and electrode particles
on the microstructural scale of batteries. A set of differential algebraic equations
(DAEs) describe how the inner states are distributed in the cell and how they
evolve over time. The equations are derived in such a way that they are thermo-
dynamic consistent and that the entropy production is positive. The states are the
Li-ion concentration in electrolyte ce, the electrochemical potential of electrolyte
φe, the Li-ion concentration in solid cs, and the electrical potential Φs [49].

We assume isothermal conditions throughout the cell, which simplifies the equa-
tions. These are stated in the following.

Transport in Electrolyte

The transport of Li-ions in the electrolyte is described by the continuity equation

∂ce
∂t

= ∇· (De∇ce) − ∇·
(

t+
z+F

· j
)

(2.1)

with the electrical current

j = −κ∇ϕ−κ
1− t+
z+F

(
∂µ

∂c

)
∇c (2.2)

and the equation for charge conservation

0 = ∇· (κ∇φe) − ∇·
(

κ
1− t+
z+F

(
∂µ

∂c

)
∇ce

)
(2.3)

with the Faraday constant F , the temperature T , the ionic conductivity κ, the
diffusion coefficient in electrolyte De, the transference number t+, the number
of elementary charges per ion z+, the chemical potential of Li ions µ, and the
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concentration of Li-ions c.

Transport in Electrodes

The transport equations in the electrodes are

∂cs
∂t

= ∇· (Ds∇cs) (2.4)

with the diffusion constant in solid Ds and

0 = ∇· (σ∇Φs) (2.5)

with the electronic conductivity σ.

Interface Reaction Kinetics

The interface conditions for ionic flux and electric current determine how the
transport in electrolyte and electrode particles is coupled. The current density
jLi+ across the interface of electrode and electrolyte is given by a Butler-Volmer
equation:

jLi+ = F · i0

(
exp

[
αF

RT
ηs

]
− exp

[
−(1−α)F

RT
ηs

])
(2.6)

with the universal gas constant R and the overpotential

ηs = Φs −φe −U0, (2.7)

where U0 is the open circuit voltage (OCV) of the respective electrode. The
reaction rate is

i0 = k · cα
e cα

s (cs,max − cs)1−α, (2.8)

with the Butler-Volmer rate constant k, the maximum Li concentration inside the
electrode cs,max, and the charge transfer coefficient α ∈ [0,1]. Here, we assume
α = 0.5.

The main difference between the model of Latz et al. and the DFN model is that
Latz et al. use the electrochemical potential instead of electrical potential for
electrolyte to guarantee positive entropy and to not violate the Onsager relations.
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a)

b)

c)

Figure 2.1: Lithium transport on different scales. a) Li-ion transport in electrolyte
between electrode particles. b) Li-ion current at electrode interface.
c) SEI growth during calendar aging (A) and during cycling (A + B).
From Bolay et al. [15].

2.2 Solid-Electrolyte Interphase

In order to understand and simulate the processes taking place in the cell, a
physics-based model for the short-term cycling as well as the long-term degra-
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2.2 Solid-Electrolyte Interphase

dation behavior of the cells is necessary. The long-term degradation of the cell
is mainly determined by capacity fading, which is caused by the loss of Li-ion
inventory.

The major degradation process taking place in Li-ion batteries is the growth of
the solid-electrolyte interphase (SEI). This passivation layer builds on the anode
surface during the first cycles of the cell, when solvent molecules from the elec-
trolyte react with Li-ions and electrons. This process prevents the electrolyte
from further reaction but does not passivate the reaction completely. The SEI is
growing continuously during storage as well as during cycling. Thereby, Li-ions
are consumed irreversibly, which causes capacity loss of the cell.

The growth of the SEI is discussed extensively in literature, both in experiment
and in theory. Usually, either short-term growth, which considers growth behavior
during the first cycle, or long-term growth, which considers continuous growth
over months and years, is investigated. In this work, only long-term degradation
is discussed.

In experiments, a square-root-of-time (
√

t) behavior is observed for long-term
growth [19, 105]. Furthermore, experiments show that SEI growth is accelerated
during cycling compared to storage [19]. Attia et al. show that the SEI is especially
growing faster during charging of the cell [5]. Another aspect is the inhomogeneous
growth of the SEI, which is investigated on nanoscale [16, 42, 79] and on cell level
[70].

Short-term SEI growth, i.e. the initial build-up of the SEI during the first cycles,
is addressed by atomistic theories like density functional theory and molecular
dynamic simulations [107, 10]. The long-term growth behavior of the SEI can be
described with empirical models [88, 90]. However, a better understanding of the
internal processes is given by physics-based models. For these, several transport
mechanisms are considered as the rate-limiting process. The most important are
electron conduction [85, 26], electron tunneling [58, 51], reaction kinetics [39, 24],
radical diffusion [94, 100], and solvent diffusion [71, 77, 30, 84]. Single et al.
compared all of these transport processes to storage experiments and showed that
the most probable mechanism for SEI growth during storage is radical diffusion
[94]. Das et al. model the asymmetric growth behavior which was shown in
Ref. [5] by coupling SEI growth to the Li-ion concentration in the SEI [26]. Von
Kolzenberg et al. extended the model of radical diffusion in Ref. [94] by an electron
migration effect during cycling, which also reproduces the asymmetric growth.
They describe the transitions between transport- and reaction-limited growth and
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with that give a consistent explanation for the short-term and long-term growth
behavior [48]. A comprehensive review of SEI models is given by Horstmann et
al. in Ref. [40].

Here, we summarize the SEI model of von Kolzenberg et al. [48] and couple it to
the thermodynamic consistent transport theory for Li-ion batteries of Latz et al.
[49].

The relation between irreversible capacity loss QSEI,irr, SEI thickness LSEI, and
the growth causing flux NSEI is given as

∂tQSEI,irr = AFsSEI
VSEI

·∂tLSEI = AF ·NSEI, (2.9)

where NSEI ≥ 0, A is the surface area of the anode, sSEI is the mean stoichiometric
coefficient of Li in the SEI formation reaction, VSEI is the mean partial molar
volume of the SEI, and F is the Faraday constant.

Single et al. provided evidence that electron diffusion through the SEI is causing
calendaric aging [94]. These electrons diffuse through localized state, e.g., neutral
Li-interstitials diffusion [91]. The corresponding flux is deduced from Fick’s law
and is given as

NSEI,diff = De-
· ce-

LSEI
, (2.10)

where De- is the diffusion coefficient and ce- is the interstitial concentration at the
anode-SEI interface, which is dependent on the electrochemical potential of the
anode relative to Li. This process is depicted as process A in Fig. 2.1 c).

The capacity loss increases when the cell is cycled. Attia et al. show that the SEI
grows almost exclusively during lithiation of the anode [5]. This phenomenon is
also modeled by an electron flux, which is influenced by the Li-ion current through
the SEI. This can be seen in Fig. 2.1 c) process B. To take the influence of the
Li-ion current into account, an electron migration flux is incorporated and the SEI
flux is derived from the Nernst-Planck equation

NSEI = De-
· ce-

LSEI
− zFκe-

SEI∇Φ, (2.11)

with the valence z = −1, the conductivity of the localized electrons κe-
SEI, and the

potential gradient ∇Φ in the SEI caused by the Li-ion flux. According to [94], the
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electron concentration in the SEI is approximated by

ce-
= ce-

0 · exp
(

− F

RT
ηSEI

)
, (2.12)

with the electron concentration ce-
0 at 0 V anode potential, the universal gas con-

stant R, and the temperature T . Furthermore, the potential gradient is approxi-
mated by

∇Φ = −USEI
LSEI

, (2.13)

where the potential drop is defined as

USEI = LSEI

κLi+
SEI

· jLi+ , (2.14)

with the conductivity κLi+
SEI of Li-ions in the SEI.

With the help of the Nernst-Einstein equation, the conductivity κe-
SEI is approxi-

mated by the diffusion coefficient

De-
= RTκe-

SEI/ce-
≈ 2RTκe-

SEI/ce-
0 (2.15)

and eq. (2.11) is rearranged to

NSEI = De- · ce-
0

LSEI
· exp

(
− F

RT
ηSEI

)
·
(

1− F

2RT
USEI

)
. (2.16)

The overpotential for the reaction is given as

ηSEI = Φs −φe −USEI, (2.17)

where Φs is the anode potential and φe is the electrochemical potential of the
electrolyte.

The growth of the SEI not only affects the cell capacity but also its inner resistance.
This is taken into account in the Butler-Volmer rate for the intercalation into
graphite, where the overpotential from eq. (2.7) is supplemented by the potential
drop in the SEI and becomes

η̃s = ηs −USEI. (2.18)
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With this, the SEI formation can be included as side reaction in the model of Latz
et al. as mentioned in Ref. [49].

2.3 Computational Methods

To solve the set of equations of the continuum models for Li-ion batteries different
software tools can be used depending on the resolution of the simulation. These
use mathematical methods to solve the DAE system numerically and determine
the states of the discretized cell domain at discrete time points.

2.3.1 Microstructure-resolved (3D) Model

For the microstructure-resolved simulations, first, the morphology of the electrodes
needs to be reconstructed from tomographic image data or simulated with given
morphology characteristics. For example, this is done with stochastic geometry
methods by Hein et al. [37]. In our research group, this 3D representation of
the Li-ion cell is then used with the software BEST and its successor BESTER
to perform spatially resolved electrochemical simulations [43, 50]. The set of
equations in Ref. [49] is implemented in this software. The simulations can be
used to study and analyze the heterogeneous surface effects as in Ref. [38] by Hein
et al.

The microstructure-resolved simulations use a voxel representation of the elec-
trodes. The DAE system is then solved with the finite volume method which is
particularly suitable to conserve physical quantities. This conservative discretiza-
tion method is used in BEST and is described in Refs. [36, 89].

2.3.2 Pseudo-2D Model

The DFN model by Doyle, Fuller and Newman mentioned above is also often
called the P2D model since it describes the transport in the electrolyte in one
dimension that spans the whole cell between two current collectors via electrodes
and separator. The second dimension represents the transport in the particles
from center to the surface.

The P2D model is illustrated in Fig. 2.1 a) and b). In Fig. 2.1 a), the volume-
averaged transport of Li-ions in the electrolyte between electrodes is shown, which
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represents the first dimension. The interfacial reaction kinetics between electrolyte
and electrode and the transport inside the particles is depicted in Fig. 2.1 b).

Using volume averaging techniques the transport theory by Latz et al. can be
transformed into the P2D model. This way, the porous structure of the different
layers in the Li-ion cell is not resolved on a microstructural level but represented
by a porosity parameter of the material.

The chemical potential can be described with µ = 2RT ln c
c0

[65] and we get

∂µ

∂c
= 2RT · 1

c
. (2.19)

With this, the continuity equation for Li-ion transport in the electrolyte can be
transformed to

∂εce
∂t

= ∇·
(

κeff t+
F

∇φe

)
+ ∇·

((
Deff

e − 2κefft+(1− t+)RT

F 2
1
ce

)
∇ce

)
(2.20)

with the effective parameters κeff = ε
τ κ and Deff

e = ε
τ De, the porosity ε, and the

tortuosity τ . The equation for charge conservation is transformed to

0 = ∇·
(
κeff∇φe

)
− ∇·

(
2κeff(1− t+)RT

F

1
ce

∇ce

)
. (2.21)

The equations for transport inside the particles and also those for the interface
reaction do not change since they are not affected by the volume averaging.

To simulate the P2D model, the cell level as well as the particle are discretized
and the system of nonlinear equations is transformed using the finite difference
method. On these discretized domains the DAE system is then solved with a
numerical method. The software MATLAB is suitable for this, since there are
several algorithms implemented for solving systems of equations efficiently. One
of them is the solver ode15s, which is applicable to stiff DAEs. With the solver,
the variables are determined at discrete time steps. These time steps are adapted
by the solver. By interpolating the discrete solutions, a continuous solution is
obtained for the simulated time period [61].

The major advantage of simulating the model of Latz et al. in a P2D framework
instead of 3D is that the computation is much faster.
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3 Satellite Batteries and Battery
Data

An important application field of Li-ion batteries is aerospace devices like satel-
lites. At the same time, these applications provide a unique data source to study
the long-term degradation behavior of the cells under constant conditions. Bat-
tery data from terrestrial experiments and in-flight operations are a valuable basis
for the development, calibration, and validation of electrochemical models, which
describe the behavior and aging of Li-ion batteries.

This work is based on a collaboration with the Japan Aerospace Exploration
Agency (JAXA), which provided battery data of their satellite REIMEI. In this
section, we describe the satellite and its batteries, outline the terrestrial experi-
ments that accompanied the satellite mission, and elaborate on the data which
are acquired from the on-board batteries.

We already described the satellite, its batteries, and the corresponding exper-
iments in Ref. [15]. Here, we will give more detail and especially explain the
processing of the in-flight data.

3.1 Satellite REIMEI

REIMEI is a small scientific satellite developed by JAXA. It was launched at 06:10
on August 24, 2005 (JST) on the Dnepr Rocket from Kazakhstan. It orbits the
Earth on a quasi-circular polar low Earth orbit (LEO) with an altitude of 610 -
654 km. It has a size of 60 cm x 60 cm x 70 cm and a mass of 60 kg. Before its
launch, it had the code name INDEX. To ensure operability in space it was tested
against vacuum, vibration, and radiation prior to the launch. The main control
station of REIMEI is in Sagamihara, Japan [96, 97, 87].

The main scientific mission of REIMEI was to observe the aurora and demonstrate
advanced satellite technology, one of which is Li-ion batteries that use commercial
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off-the-shelf pouch cells. In 2013, the aurora observation was terminated. The
satellite operation was extended with the main focus shifted to the investigation
of performance and aging of the on-board Li-ion batteries [98, 63, 105, 19].

3.2 Satellite Batteries

Satellite REIMEI, which flies on a polar LEO, has an orbital period of 96 minutes.
During the sunlight period, the batteries get charged via the solar panels, while
they discharge during the eclipse period to power the loads [105]. This results in
15 cycles a day. To ensure a reliable operability of 3 - 5 years, the temperature
of the batteries is maintained at 19 − 22◦C [87, 98] and the depth of discharge
around 20 % [105].

Two identical batteries are connected in parallel on board of the satellite REIMEI,
each consisting of seven pouch cells connected in series. The lithium-ion cells
are produced by NEC-Tokin Corporation. The positive active material is spinel
lithium manganese oxide (LMO) and the negative electrode consists of graphite.
The liquid electrolyte is 1 M LiPF6 in EC/DEC (3:7 by wt%) with additives
[98, 105]. The cells have a voltage range of 3.0 V - 4.1 V (4.2 V). Their nominal
capacity is 3 Ah [19].

The in-flight operation of the cells depends on the loads in use. Given by the on-
board devices, the cells reach their end of life when the end-of-discharge voltage
(EoDV) falls below 3.75 V [105].

While the satellite is in the sun, the batteries get charged via the solar panels
for around 63 minutes. While in the shadow of the earth, they get discharged to
power the loads for around 33 minutes by a depth of discharge (DOD) of about
15 %. The discharging takes place with constant currents (CC) depending on
the loads in use. The constant current values range between 0.4 A and 1.7 A.
The charging profile of the cell is constant current / constant voltage (CC/CV),
where a charge current of 1.5 A is applied until 4.1 V is reached. For a few cycles
in between and at a later stage of the battery life, the upper cut-off voltage is
changed to 4.2 V to prolong the battery life. The temperature of the cells in space
is kept around 20 °C [105]. The specifications of the satellite batteries and cells
are listed in Tables A.2 and A.1. The cycling protocol can be found in Table 3.1.
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Table 3.1: Charge and discharge protocols for terrestrial and in-flight cycling, cf.
[19, 105].

Terrestrial North Pole South Pole

Charge (CC/CV) 1.5 A / 4.1 V, 65 min 1.5 A / 4.1 V, 63 min

Discharge (CC) 1.0 A, 35 min
0.88 A, 15 min 0.78 A, 25 min

0.74 A, 18 min
0.96 A, 5 min

1.6 A, 3 min

DOD 20 % 14 % 16 %

Temperature 25 °C 20 °C

3.2.1 Terrestrial Electrochemical Measurements

Accompanying the REIMEI mission, Uno et al. and Brown et al. performed
terrestrial experiments with the same kind of cells as those of the satellite [105, 19].
They performed cycling experiments with a cycling protocol similar to the one used
in the satellite. Table 3.1 compares the cycling protocols.

We use the experimental data to calibrate and validate our simulations. We
describe the experiments in the following.

Experiments of Uno et al. in 2011

Uno et al. conducted cycling experiments over a period of about five years [105].
They charged and discharged several cells about 27,000 times. To track the degra-
dation of the cells, they measured the remaining capacity and the EoDV of the
cells recurrently.

In the experiments, the cells get discharged with a constant current (CC) of 1 A
for 35 minutes, which corresponds to approximately 20 % DOD. Then they get
charged for 65 minutes with a constant current / constant voltage (CC/CV) pro-
file. The charging is performed at 1.5 A to the upper voltage limit of 4.1 V. After
each discharge, the EoDV is measured. As the cells are degrading, the EoDV falls
below 3.75 V after several thousand cycles. At that point, the upper voltage limit
for the charging gets changed to 4.2 V to prolong the remaining useful life of the
cells. Before and during the cycling, they measure the remaining capacity of the
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cells several times by discharging it with a CC of 1 A to 3.0 V. We use these
electrochemical measurements of Uno et al. in sec. 4.3 to parameterize the P2D
model. For the model, we assume constant temperature and constant pressure
throughout the cell. This assumption is based on the experiments of Uno et al.
and on the in-flight data. In sec. 4.4, the measurements are used to parameterize
the degradation.

In Fig. 3.1, the results of the cycling experiments can be seen. In a), we see
the voltage curves of the capacity measurements of one of the cells after different
numbers of cycles. b) and d) show the capacity and EoDV of all cells for the
whole period of the experiments. A zoom-in of the EoDV for the first 250 cycles
is shown in c).

The EoDV is compared for the terrestrial and in-flight experiments in Fig. 3.4. It
can be seen, that the decrease of the EoDV is faster for the terrestrial experiments
which have a higher DOD.

Experiments of Brown et al. in 2008

In 2008, Brown et al. conducted comprehensive terrestrial experiments at JAXA
[19, 20]. They investigated the degradation of cycled and calendaric aged cells
under various conditions. For the cycling, they use the same cycling protocol
as Uno et al. and vary the temperatures and discharge currents respectively the
DOD. They examined full and half cells before, during, and after the aging process.

For both electrodes, they measured full charge and discharge at a low current of
C/10 respectively 2.08 A m-2. This can be used to determine the OCVs of the
electrodes as the mean of the charge and discharge curve. The results can be
seen in Fig. 3.2. The OCV curves are determined and used in sec. 4.3 for the
P2D model. Furthermore, our cycling protocols in sec. 4.4.2 are based on those
of Brown et al.

3.2.2 CT Data

One of the pouch cells of the kind used in the satellite was stored by JAXA. Several
years after the start of the mission, CT images of the cell, which was stored at
room temperature, were taken in different resolutions. Examples of the CT images
can be seen in Fig. 3.3. From the CT images, we extract several parameters of
the cell structure, like the thickness of the cell layers or the area of the full cell,
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a)

b)

c)

d)

Figure 3.1: Aging experiments with cells of satellite REIMEI. a) Capacity mea-
surements of one cell at several points of time. b) Trend of remaining
capacity over about 27,000 cycles of 7 cells. c) Zoom-in of EoDV dur-
ing initial 250 cycles. d) EoDV of 7 cells during whole period of about
27,000 cycles. From Uno et al. [105].

in sec. 4.3.1. These values are necessary to parameterize the model described in
sec. 2.1. The area of the full cell is especially required to relate half cell and full
cell experiments of Brown et al. [19, 20].

3.3 In-flight Battery Data

JAXA acquires in-flight data from the satellite batteries throughout the operation
of the satellite. As the batteries are no longer available after the launch, they have
to be measured on board the satellite and the data is retrieved from the ground
station on a daily basis. The data are provided by JAXA to enable us to investigate
the degradation of Li-ion cells in a satellite application.

The data consist of a time indicator for the measurements, the current of each of
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a) b)

Figure 3.2: Charge and discharge curves of half cells at low current (C/10) for
fresh (black) and aged (red) cell. a) Positive electrode cycled between
3 V and 4.2 V. b) Negative electrode cycled between 0.01 V and 1.5
V. From Brown et al. [20].

the two on-board batteries, the battery voltage, and the battery temperature. To
obtain the voltage of the cells, the battery voltage is divided by seven. The charge
current has a negative sign and the discharge current is positive. We adhere to
these signs in our simulation.

The batteries are measured on average every 32 seconds. Some of the measure-
ments are distributed equidistantly, but for the majority of the data, there are
repeated groups of four measurements with a distance of 104 seconds, whereby
the measurements within the groups are 8 seconds apart.

The on-board operation of the cells depends on the loads in use. So, the discharge
current is not only determined by the NP or SP protocol but also depends on the
energy needed for the control of the attitude and heater, the acquisition of data,
and its transmission to the ground station [98].

In Fig. 3.4, the EoDV of one of the batteries is depicted for a time span of about
five years. Additionally, the EoDV of the corresponding terrestrial experiments is
shown together with a correction according to the difference between terrestrial
and in-flight cycling protocols. Also, the NP and SP phases are marked. It can
clearly be seen, how the EoDV depends on the specific cycling protocol. Since
the DOD is greater in the terrestrial experiments than in the in-flight cycling, the
EoDV reaches the lower limit earlier.
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(a) 1 µm (b) 3.5 µm

(c) 24 µm (d) 140 µm

Figure 3.3: Micro CT images of satellite REIMEI Li-ion cell with different resolu-
tions. From Bolay et al. [15].

3.3.1 Irregularities in Data

The raw data are acquired over a very long time span and not under laboratory
conditions. This leads to several irregularities in the data. The most important,
which hamper the use of the data for the simulations, are described here.

Cycle Blocks and Gaps in Data. One challenge is the discontinuity of the data.
There are small gaps, where only a few data points are missing, and larger gaps
that cover several hours or cycles. Typically, the data appear in blocks of 8 to 23
cycles with gaps in between that also range from about 8 to 23 cycles. For these
gaps, we have no information about the batteries.
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Figure 3.4: EoDV of REIMEI battery in-flight data with highlighted North Pole
and South Pole observation periods and actual (red) and corrected
(green) terrestrial data. From Uno et al. [105].

Phases in Data. During several years of on-board battery cycling, there are
different phases that can be observed in the in-flight data. At the beginning of
the measurements in space in 2005, the temperature of the batteries is lower than
stated in literature. Also, the cycling is messy at the beginning. Therefore, we
dismiss this first part of about ten days and only consider the measurements at
normal temperatures for our subsequent work.

Beginning of 2011, the cycling protocol changes in such a way that the CC values
are smaller on average during discharge. The cycling behavior from before 2011
is restored in 2012. From mid 2012 to mid 2015 the CV during charge takes on a
higher value around 4.2 V.

In early to mid 2013, the data recording ends and remains interrupted for some
time. In 2014, there are very sporadic records spread throughout the year. Only
in 2015, the records are more complete again, whereby the density of the recorded
cycles is significantly lower than in first years and the cycle blocks consist on
average of only one to two cycles. This might be due to the severe earthquake
and tsunami in 2011 in Japan, which had a massive impact on the whole country.
Also, the main part of the mission to observe the aurora ended in 2013 and the
main focus of the mission was shifted to the on-board Li-ion cells [97].

In later years, the discharge duration decreases continuously. This is due to the
fact that the orbit of the satellite changes and it is in the shadow of the Earth
for a shorter and shorter time. This can already be seen in the data in 2015. At
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the end of 2017, the cycling of the batteries ends completely when the satellite is
continuously in the sun.

Solar Eclipse. While the satellite orbits the earth it can occur that it passes the
shadow of a solar eclipse. This will stop the charging of the batteries and for a
short time they get discharged. An example can be seen in Fig. 3.5 for the solar
eclipse on 29 March 2006. In a) the cell current is depicted and in b) the cell
voltage. We see that in the charging phase of the fifth cycle, the current changes
from negative to positive values during a few minutes. Table A.3 lists the solar
eclipses of the period between mid of 2005 and end of 2011.

a)

b)

Figure 3.5: Solar eclipse on 29 March 2006. In-flight measurement data and cy-
cling protocol. a) Cell current. b) Cell voltage.
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Single Erroneous Measurement Points. Starting in 2006, there are several
measurement points that seem to be shifted in time. These are all single points
that prolong the typical time for charge or discharge and usually have the same
value as the previous measurement point. Also, the beginning of charge or dis-
charge immediately after the respective point seem to be in the middle of the
process. An example of such points can be seen in Fig. 3.6. These points are
assumed to not represent the true states of the cell and are deleted in the next
section 3.4. There are further points during charge and discharge that can be as-
sumed outliers. These are single points that, for example, have a negative current
value during discharging or a very low voltage value during charging.

Figure 3.6: Single erroneous measurement point, which prolongs typical discharge
time. In-flight measurement data and cycling protocol.

3.4 Processing of In-flight Data

The in-flight data consist of raw data without meta information like cycling pro-
tocols or time information about the cycles. The actual values for CC discharge
and CV charge deviate from those given in literature, so the metadata have to be
extracted from the noisy current and voltage measurements.

There are a number of challenges that need to be addressed in order to use the
in-flight data for our simulations. Among these issues is that the length of the
cycles varies, so a grid of time points for the beginning of cycles cannot simply
be defined. Furthermore, there are short and long gaps in the data for which
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the input to the simulations and, in some cases, the relevant cycle times must
be estimated. Outliers in the voltage and current values further complicate the
characterization of the cycling.

Therefore, the data need to be processed before being used for the simulations.
We performed this elaborate data processing for the in-flight data of one of the
batteries for the years 2005 to 2011.

Examples of the in-flight data can be seen in Figures 3.5, 3.6, or 5.13, where the
current and voltage measurement points are depicted together with the constant
values of the cycling protocol.

Shift of Data Times. Another challenge is that the time stamps of the raw
data are not always continuous. At larger intervals, the time stamps are reset.
So these have to be shifted to get a continuous time series. The time stamps of
the files, which comprise a few cycles each, help here. However, the entry cannot
be assigned clearly to the beginning or end of the stored measurement. The shift
is further determined in such a way that the distance between cycles consistently
corresponds to the average cycle length.

3.4.1 Generation of Cycling Protocol

We want to perform simulations with the models described in sec. 2 according
to the cycling of the on-board batteries, which is recorded in the in-flight data.
Therefore, we need metadata that describe the cycling of the cells. These comprise
the times when switching between charging and discharging, that is, the end of
discharge (EoD) and end of charge (EoC). The switching from CC charge to CV
charge does not have to be timed, since it is automatically switched when the
upper voltage limit is reached during CC charge. During charging, the CV must
be set in the protocol. During discharging, the CC values must be defined for
time periods.

Charge Current. The batteries are charged with a CC/CV protocol. In the
experiments the charge current is stated to be -1.5 A [19, 105]. In reality the CC
part is extremely short, if even existent. Still, there is a spike at the beginning of
charge followed by a curve converging to 0 A, as can be seen in Fig. 3.5 or 1.2.
The first current value of the spike varies between different cycles. It is often less
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than -1.5 A but greater than -2 A. So, for our cycling protocol we assume a charge
CC of -2 A.

CC Values. We developed an algorithm to extract CC values out of the raw
data, which uses basic signal processing and statistical methods. The algorithm
can be applied directly to the data and does not need additional meta information.
However, this will not produce a final CC-cycling protocol but will provide a good
basis for further processing the raw data and extracting metadata from it. In the
whole procedure of generating a cycling protocol, the CC-value generator will be
applied iteratively, to update the CC protocol after processing the data.

For the transformation of the current from raw data measurements to CC values,
first, all current values less than 0.3 A are set to the charge CC. These values are
assumed to belong to the charging or the switching between charge and discharge.
Next, the discharge current is to be separated into ranges in which the variation
of the current value is so small that it can be averaged to a constant value. This
is done by identifying major changes in the current curve. This is similar to the
procedure for processing the CT data that we describe in sec. 4.3.1. To do so, the
vector of current measurements is convoluted with the 1D kernel (1 1 1 -1 -1 -1).
This can be interpreted as a numerical first derivative [92]. The resulting signal
is corrected by setting very small values to zero. This way very small changes
in the current are ignored. Afterwards, the corrected signal is convoluted with a
second kernel (1 1 -1 -1). The resulting signal can be interpreted as the second
derivative. The zeros of this signal mark the ranges within which constant current
can be assumed. The CC values are then obtained by averaging the current values
in these ranges.

Cycle Duration (EoC and EoD). With the generated CC value signal, we can
separate the whole time frame of the data into charge and discharge segments or,
taken together, into single cycles. The first approach is to determine those points,
where the sign of the current changes, which are the zeros of the signal. These are
the EoD and EoC points. However, the points determined in this way still contain
false candidates. These occur, for example, due to single erroneous points or due
to the gaps in the data that cause the measurements at the EoD or EoC and thus
the time markers to be missing. Therefore, we use our prior knowledge about the
typical duration of charge and discharge from literature [19, 105]. We calculate
the distances between all points and dismiss those candidates, which produce a
strong deviation from the expected duration. With these corrected candidates we
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can generate a complete grid of EoD and EoC points, which also fills the data
gaps.

Deleting Erroneous Points. With the complete grid of EoD and EoC points, we
can determine points that are very likely errors in the measurement or the data,
as described above. These are identified by searching the current measurements
for positive values during charge and negative values during discharge. The same
is done with the voltage, where a threshold is set for values during charging and
discharging.

CV Values. The determination of CV values is less challenging than for the CC
value, since it mostly takes the value 4.1 V. In the discrete CV measurements
during charge, we can see a slow decay from the beginning of charge to EoC, cf.
Fig 3.5 b). Still, we assume constant voltage. Another irregularity is the occur-
rence of periods of a few cycles, where the CV is greater than 4.1 V. Therefore,
we determine the mean voltage of the charge phase of every cycle and set the CV
value to the higher value when a threshold is exceeded.

Protocol in Data Gaps. With the complete grid of EoD and EoC points and the
determined CV and CC values in the ranges, where measurements are available,
we can now set a cycling protocol in the data gaps. For the charging, the CV
in the gaps is set to the value of the last cycle, where the CV is known. During
discharge, CC values need to be set. We determine the mean of CC values for
each cycle block, that is, contiguous cycles between major data gaps. The CC
value of discharges in data gaps is then set to the mean value of the cycle block
prior to the gap.

Solar Eclipse. Solar eclipses, which occur during charge and therefore lead to a
short period of discharge, are an exception from the erroneous points described
above. Using the list of solar eclipses in the relevant period, we searched the data
for extraordinary discharge phases. Not every solar eclipse has an effect on the
cycling. For those, which did, the CC values for the short discharge period, caused
by the eclipse, are manually adjusted. This can also be seen in Fig. 3.5 a), where
the charging period of the cycle in the middle is interrupted by a short discharge
period with small CC values.
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4 Parameterization and Simulation
of Battery Models

The long-term behavior of a battery is simulated with a model that adequately
describes the processes occurring over the relevant time period. Modeling and
simulation can be used to better understand the processes within the battery
and to make reliable predictions for battery behavior under given conditions. In
aerospace applications, it is important to be able to predict battery behavior and,
in particular, the degradation of the cells, since their failure results in the satellite
end-of-life.

A continuum cell model in combination with a degradation model is a promising
approach to cover the whole lifetime of the battery. There are many degradation
processes that occur in a Li-ion battery. Birkl et al. give a comprehensive overview
of the different processes [12].

The degradation processes can occur at different times during the life of the bat-
tery. Some, such as SEI growth, occur continuously. Others, such as particle
cracking, occur at a later time when the cell has already aged. Some processes,
like lithium plating, only take place under certain conditions. Another aging pro-
cess is the delamination of the electrodes and current collectors. This can also be
seen on the CT images of the aged REIMEI cells in sec. 3.2.2.

Coupling several degradation processes is very challenging [68]. Therefore, we
focus on the process, which is the main reason for capacity fading in Li-ion cells,
which is the continual growth of the SEI. We investigate the capability of this
process to describe the aging sufficiently.

To gain a full cell model, we combine the models described in sec. 2. We use
this model to simulate the battery behavior under satellite cycling conditions,
according to the terrestrial and on-board cycling experiments described in sec. 3.

To use the models described in sec. 2, they have to be parameterized with ex-
perimental data. Here, we parameterize the models that describe battery perfor-
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Table 4.1: Cycling protocols used in experiments and simulations. From Bolay et
al. [15].

Protocol Charge (CC/CV) Discharge (CC) Temperature

P1 1.5 A / 4.1 V 0.88 A 0.74 A 20°C

(in-flight) 63 min 15 min 19 min

P2 1.5 A / 4.1 V (4.2 V) 1.0 A 25°C

(P2D) 65 min 35 min

P3 1.5 A / 4.1 V 1.0 A 25°C

(3D) 65 min 35 min

P4 1.5 A / 4.1 V 2.0 A 25°C

(3D) 65 min 35 min

P5 3.0 A / 4.1 V 2.0 A 25°C

(3D) 65 min 35 min

mance and degradation with different parameterization techniques using several
experimental data described in sec. 3. We first parameterize the P2D model
and subsequently the degradation model, where we use the previously determined
parameters of the P2D model. However, since the models are coupled and the
parameters of one model affect the behavior of the other, we also consider the
parameters of the respective other model in each parameterization step.

Furthermore, we use the parameterized models to simulate the satellite battery
with corresponding cycling protocols in a P2D and 3D framework. The simulation
in 3D provides further insights into the processes on a microstructural resolution.

We already described this parameterization procedure in Ref. [15]. We will repro-
duce the content here and explain it in more detail.

The degradation with the P2D model is implemented in MATLAB [61]. The 3D
model is implemented with the software BEST [43]. Both kinds of simulations are
run on the high performance computer cluster JUSTUS 2, which belongs to the
bwHPC.

Table 4.1 presents an overview of the cycling protocols used in the following sec-
tions for simulations of satellite cycling.
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4.1 Full Cell Model

4.1 Full Cell Model

For the simulation of the battery behavior, we couple the SEI model to the con-
tinuum model for Li-ion cells. We describe the full model for the P2D framework.

First, we consider the equation for the SEI flux, cf. eq. (2.16). We adapt this to
be able to control the influence of electron migration in the SEI. Therefore, we
insert the parameter ω, which serves as a multiplicative factor.

NSEI = De- · ce-
0

LSEI
· exp

(
− F

RT
ηSEI

)
·
(

1−ω · F

RT
USEI

)
. (4.1)

Setting ω = 0.5, we obtain the original equation as derived by von Kolzenberg et
al. [48] and described in sec. 2.2. Schmitt also uses the parameter ω in his theory
on SEI growth [89].

The consumption of free Li-ions by the SEI growth is considered in the model
in the Li-ion flux between electrode and electrolyte, where the amount of Li-ions
that reach the electrode is reduced by the SEI flux, see eq. (2.16). The resulting
current density is given by jLi+

res = Aspec · (jLi+ −F ·NSEI), cf. eq. (2.6).

In the Butler-Volmer equation, the coupling of the models becomes important.
The current density jLi+ , which is calculated with the Butler-Volmer equation,
cf. eq. (2.6), requires the potential drop USEI for the determination of the over-
potential. In the calculation of USEI the current density is in turn included, cf.
eq. (2.14). This shows that the system of equations can only be solved implicitly
and that battery performance and degradation cannot be treated decoupled.

Another effect that influences the battery behavior with progressing degradation
by the SEI growth is the increase of the internal resistance. This is considered
in the Butler-Volmer equation for the anode, cf. eq. (2.18). The increase in
the internal resistance is noticeable in the cell voltage and EoDV, which take on
smaller values during discharge.

The cell voltage is obtained from the model with the potentials of cathode and
anode via

Vsim = Φcathode −Φanode. (4.2)

The cell current density is obtained with

Isim = −Aspec,cathode

∫ x1

x0
jLi+
cathodedx, (4.3)
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which is evaluated numerically between the limits x0 and x1, which border the
domain of the anode between current collector and separator.

For the numerical simulation of the P2D model with finite difference method, in
this chapter, we choose the following discretization. The electrodes are discretized
with differences of about 2 µm, which results in 23 nodes for the anode and 37
nodes for the cathode. For the separator, we choose a coarser discretization of
10 nodes. The radii of the electrode particles are discretized with 10 nodes. The
nodes are equidistant in each domain.

When switching between constant currents during the cycling simulations, it is
necessary to use a smooth current ramp for the numerical solver to be stable. This
is also in accordance with the switching in reality. We choose a ramp-time of 5
seconds.

The parameters of the P2D model are listed in Table B.2 and those of the SEI
model in Table B.4.

4.2 Parameterization Methods

One important aspect in physics-based modeling is the determination of accu-
rate model parameters. There are several approaches to gain these parameters,
depending on the different kinds of parameters like for example transport param-
eters or morphological parameters, and depending on the experimental data that
is available.

4.2.1 Experimental Techniques

The parameters for the P2D model can be determined through different experi-
mental techniques. Chen et al. suggest an approach to identify the parameters
of the P2D model experimentally [23]. In Ref. [29], Ehrl et al. describe how to
determine the transport parameters of electrolytes.

For example, the OCV curves of the electrodes can be determined by galvanos-
tatic intermittent titration technique (GITT) measurements. Focused ion beam
scanning electron microscopy (FIB-SEM) can be used to determine parameters
that describe the electrode structure [23, 18].
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In the following, we describe the experimental techniques, that we use to extract
parameters from the cells of satellite REIMEI. These are limited to the micro
computed tomography (micro CT) data described in sec. 3.2.2.

Image Analysis

Morphological parameters like the porosity of materials or thickness of layers can
be extracted from image data. These data are obtained by imaging techniques
like micro CT or FIB-SEM. The latter can only be applied if the object that
is to be analyzed can be destroyed [23]. The major advantage of CT imaging
is that virtual three-dimensional (3D) representations of objects can be gained
without destroying the object. Ohser et al. give a comprehensive description of
the processing of 3D images for the analysis of materials [67]. In the following,
we will describe techniques to process 3D images in order to extract parameters
of the P2D model.

Computed Tomography (CT) Data. To generate a 3D CT image of an object,
X-rays irradiate the entire volume of the object and project it onto a plane, while
the object rotates. From the projection images, a three-dimensional gray value
image is reconstructed. The gray value represents the magnitude with which a
region absorbs the radiation. In Fig. 3.3, CT images of a Li-ion cell is shown. In
the images with higher resolution (a) and (b), several layers of different materials
can be seen. The light thin layer for example is a copper metal foil, which is
represented by high gray values.

Image Preprocessing. To take care of noise in the image data, it might be
necessary to preprocess the CT image. Therefore, every voxel of the gray value
image is processed. Usually, this is done by determining the average of gray values
in the neighborhood of a voxel. The neighborhood is a set of voxels surrounding
the currently considered voxel. This can be for example a cube with edge length
three or five. To compute the average of gray values, typically, the mean or median
is used.

Segmentation. One essential tool in analyzing CT images of material structures
is the segmentation of objects or areas in the structure. The gray valued image
is converted to an image where the value of a voxel classifies it as belonging to a

37



4 Parameterization and Simulation of Battery Models

specific object or to the background. One of the simplest approaches is to generate
a binary image by setting a threshold where voxels with a gray value larger than
the threshold are assigned the value one and the other voxels are set to zero.

Separation of Layers. In order to investigate different materials in homogeneous
areas of a layered structure, these layers have to be separated. With this separa-
tion, also the thickness of the individual layers can be determined.

As the layers of the structure might not be parallel to the voxel layers of the CT
image, first, they have to be tilted. To determine the orientation of the planes
separating the layers, a representative layer can be identified to determine its
orientation. This could be a layer of some homogeneous material that has a high
contrast in the gray value compared to its surrounding, like a metal. The layer
is segmented with a suitable threshold. Next, the point cloud of the segmented
voxels is fitted with linear regression to gain a plane of the form y = b1 ·x1 +b2 ·x2.

With this, the whole 3D image gets rotated so that the plane is parallel to the
voxel layers.

Next, a criterion is calculated to distinguish different layers in the structure. This
can be the median of gray values, which differs for different materials. Since the
layers shall get separated along the voxel layers, the median of the gray value
is determined for every voxel layer parallel to the structure layer. This results
in a one-dimensional (1D) array of gray values. Subsequently, this array can be
processed with signal processing methods to determine major changes in the gray
value, which indicates a transition from one layer to another.

Porosity. After separating layers of homogeneous material compositions, char-
acteristics of the material morphology like porosity and surface properties can be
studied.

The simplest approach to distinguish pore voxels from material voxels in a CT
image is the aforementioned threshold segmentation. A gray value is determined so
that voxels with a gray value smaller than the threshold are labeled as pore space
and those with a gray value larger than the threshold are labeled as belonging to
the material. To find a suitable threshold, the overall distribution of gray values is
identified with a histogram. This typically results in a bimodal distribution, where
a point between the two modes is chosen as the threshold. This approach has the
drawback that for some material compositions the modes of the distribution can
not be clearly separated as the gray values of different phases overlap. This might

38



4.2 Parameterization Methods

be due to the quality of the CT image or the kind of material in the structure. In
this case, a more complex method is required.

In Ref. [78], Prifling et al. propose a sophisticated method to segment CT images
of structures consisting of three phases. The basic idea of this method is to repro-
duce the distribution of gray values with the determined segmentation. Therefore,
first, the distribution of gray values of a representative section of the CT image
is identified. This distribution is approximated by a combination of three normal
distributions. These are a measure for the volume fractions of the three different
phases.

Next, after some intermediate processing steps, all voxels are classified into three
classes with k-means clustering. The classification of every voxel is performed
based on feature vectors, which are arrays of the gray values in the neighborhood
of the currently considered voxel [78].

After that, a post-processing step is undertaken, where small spots in the three
different regions are removed. The quality of the final segmentation can be vali-
dated by comparing the distributions of the gray values in the segmented regions
to the initially determined distributions [78].

Specific Surface Area. To compute the specific surface area of an object, which
is represented by a set of voxels, the easiest approach would be to count the exter-
nal surfaces of the voxels. However, this approach overestimates the surface area
of the object obviously. A more sophisticated approach is explained in Ref. [66],
where the surface is approximated by a grid that connects the vertices of the
voxels.

4.2.2 Optimization Techniques

Parameters of the cell model can also be determined by an optimization using
experimental data that can be simulated with the model. The optimization algo-
rithm then minimizes the deviation between experiment and simulation, given as
an objective function.

The optimization algorithm should find the global minimum and preferably it is
parallelizable as the evaluation of the time-evolution of our physics-based model
is time-consuming. There are several optimization algorithms suitable for the
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search of a global minimum, like particle swarm optimization, genetic algorithm,
or simulated annealing [31, 81].

Here, we describe the surrogate optimization, which is a stochastic optimization
algorithm. The benefits of this algorithm are that its convergence to the global
optimum is proven and that it can run in parallel [82].

Surrogate Optimization

We briefly outline the algorithm for surrogate optimization. For further details,
we refer to Refs. [82, 109]. In a first phase, the algorithm evaluates the objective
function for a given number of points, which are randomly chosen in the given
parameter space. These points get interpolated by radial basis functions to build
a surrogate function.

In the next phase, the point with the smallest value is found. Around this point,
multiple points are sampled and an additional merit function is evaluated at these
points. The merit function consists of the surrogate and a function that describes
the distance of sampled points to already evaluated points. This ensures that
the surrogate function is minimized while searching in new regions. At the point,
where the merit function has its minimal value, the objective function is evaluated
and the surrogate function is updated.

This procedure is repeated until a stopping criterion is reached. Subsequently, the
surrogate gets rejected and a new surrogate is created with new random points,
while the best fit of the previous surrogate is kept for comparison. This overall
procedure of generating new surrogate functions can be repeated until the global
optimum is found. Usually, the search for the optimum is stopped after a prede-
fined time.

4.3 Parameterization and Simulation of P2D Cell
Model

We simulate battery cycling with the volume-averaged P2D model. To simulate
the specific satellite batteries according to the cycling in space, we parameterized
the model with experimental data of the corresponding cells.

The parameterization of the P2D model is a challenging task, which can be ad-
dressed by optimization techniques, where the error between experiment and
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model simulation, depending on the parameters, is to be minimized. Different
approaches can be found in the literature. Forman et al. use a genetic algorithm
to identify the parameters of the P2D model [31]. Rahman et al. use a particle
swarm optimization algorithm [81].

Several battery parameters are to be determined. We extract the parameters
describing the microstructure morphologies from CT data. These are layer thick-
nesses, porosities, and specific surface areas. The concentration-dependent elec-
trolyte parameters are taken from Ref. [29]. The OCV curves of the electrodes
we fit to the measured curves in Ref. [20]. The remaining cell parameters, which
are the maximum Li concentrations, diffusion coefficients, and rate constants, we
determine with an optimization algorithm, where experimental data of a fresh cell
from Ref. [105] are used. All parameters can be found in Table B.1 and B.2.

Since we use the full cell model, where the P2D model and the degradation model
are coupled, we also have to take the degradation parameters into account.

4.3.1 Parameterization with Experimental Techniques

We determine some of the parameters with experimental techniques. In this spe-
cial use case of the batteries of satellite REIMEI, it is difficult to gain all parame-
ters experimentally, since the cell development and testing were done a long time
ago. Part of the available experimental data of the cells are micro CT measure-
ments (see sec. 3.2.2). From the CT images with 1 µm and 3.5 µm resolution,
we extract the thicknesses and porosities of anode, cathode, and separator and
the specific surface areas of the electrode particles with the methods described in
sec. 4.2.1. Since the cells were already aged, it may occur that certain determined
parameters differ a little from those of the fresh cell.

Furthermore, we fitted the OCV curves of the electrodes, which were measured
with GITT (see sec. 3).

Thickness of layers. The thickness of anode, cathode, and separator is deter-
mined by separating the layers of the micro CT image of the cell as described in
sec. 4.2.1. The 3D image gets tilted so that the layers of the cell are parallel to
the voxel layers. Then the median gray value is determined for every voxel layer.
The resulting 1D representation of the layers can be seen in Fig. 4.1 as the blue
line. The plateaus of the material layers can be distinguished by eye.
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Figure 4.1: Array of gray value medians for voxel layers in a layered structure.

To identify the exact interface between the layers, the second derivative of the 1D
vector of gray values is determined. This gives peaks at the points where there
is a change between the gray values. The large changes represent the interfaces.
Using a threshold the relevant peaks can be selected. These peaks are shown as
an orange curve in the figure. Since we have several layers of the same material in
one micro CT image, we determine the mean thickness of all layers of one kind.
In Fig. 4.2, we see the resulting separated layers.

Porosities. The porosities ϵ of the different electrodes are determined from a
representative section of the 1 µm resolution CT image. The histogram of gray
values within this volume is determined and approximated by the combination
three normal distributions.

In Fig. 4.3, we show exemplarily the histogram (blue curve) and the correspond-
ing distribution approximation (red curve) for the cathode. The integrals of the
distributions yield the volume fractions of the phases in the electrode, the pore
space (yellow curve), the active solid phase (purple curve), and the passive solid
phase (green curve), which consists of binder and conductive material. From the
distributions, we get a binarization of the electrode volume using k-means clus-
tering. We use a simplified version of the method described in Ref. [78]. Here, we
only want to classify the voxels as pore space or solid phase. The classification is
assumed sufficient, when the gray value distribution classes have the same integral
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Figure 4.2: Micro-CT of Li-ion cell with separated layers of current collectors,
electrodes, and separator.

as the approximated distributions.

For the separator we proceed in the same way as for the electrodes. However, here
the histogram of the gray values is approximated by only two normal distributions.
The porosity is then again obtained from the integral of the distributions.

Specific Surface Area. We use the binarization obtained in the determination
of the porosities to determine the specific surface area Aspec of the electrodes.
We do this with the software GeoDict [60], which uses the approach described in
Ref. [66].

Cell Area. In the experiments of Brown et al. [19, 20] and Uno et al. [105], the
cell current is sometimes given in A and sometimes in A m−2. The full cell area
Acell is required to convert into one or the other unit. To determine this value,
the width, length, and number of cell layers are needed. The length is taken from
the CT image with 140 µm resolution, which shows the whole cell. The width
and number of layers are taken from the CT image with 24 µm resolution, which
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Figure 4.3: Histogram of cathode gray values and corresponding distribution ap-
proximation. From Bolay et al. [15].

shows the upper part of the cell. We get Acell = 0.139 m2.

OCV Curves

Brown et al. measured charge and discharge curves of half cells for both electrodes
[20]. They performed the cycling with a current rate of C/10. With this slow
current, the hysteresis is quite small. We fit the OCV curves for anode and cathode
to the median of the cycling curves. The resulting curves are shown in Fig. 4.4
and 4.5, where the blue lines show the measurements and the red line shows the
fitted curve. The left side shows the entire measured area. The right side zooms
into a detailed area. The corresponding eq. (B.1) and eq. (B.2) can be found in
sec. B. In Fig. 4.5, we see that the OCV of the cathode is extended beyond the
measurements, which is necessary for the simulations being numerically stable.
This definition of the SOC is arbitrary and can be adapted by scaling.
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a) b)

Figure 4.4: Anode OCV. Measured curves of C/10 charge and discharge and fitted
OCV curve. a) Entire measured area. b) Zoom-in to detailed area.

4.3.2 Parameterization with Surrogate Optimization

The parameters of the cell model, that are not known from literature or measure-
ments, are determined with an optimization. The optimization algorithm searches
for the optimal parameters that minimize the deviation between experiment and
simulation, given as an objective function.

The remaining parameters determined this way, are the initial SOC of the anode
and, for both electrodes, the respective maximum concentration of Li-ions in the
active material cs,max, the diffusion coefficient of Li-ions in the active material Ds,
and the rate constant k. The cathode SOC can be set to a fixed initial value and
is adapted via the anode SOC.

We use the surrogate optimization because of the previously mentioned advan-
tages, cf. 4.2.2. To the best of our knowledge, this is the first time that the
surrogate optimization has been used to identify parameters of the P2D model.

The parameters of the battery cycling and those of the degradation are correlated.
Thus, the parameterization of both models needs to be linked to each other.
For that purpose, the degradation parameters are also taken into account in this
section.

To determine the parameters of the REIMEI battery cell, we simulate the cell
model with changing parameter settings and compare them to the experimental
data of Uno et al. [105] described in sec. 3.2.1. According to the experiments,
we simulate two full discharges with 1 A from 4.1 V to 3.0 V, which are used to
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a) b)

Figure 4.5: Cathode OCV. Measured curves of C/10 charge and discharge and
fitted OCV curve. a) Entire measured area. b) Zoom-in to detailed
area.

determine the cell capacity, followed by several cycles with the satellite protocol
P2 (see Table 4.1). We compare the second full discharge of our simulation to the
corresponding initial discharge curve of the experiment. The EoDV after several
cycles is compared to the value at the beginning of the EoDV measurements. The
EoDV error gets measured after a few cycles, since the cycling range has to level
off after full discharge in the experiment as well as in the simulation. Fig. 4.6
shows the cell voltage of the cycling. We set the beginning of the second discharge
to zero. This way the capacity can be read directly. The parts of the simulation
used to evaluate the error in the optimization are highlighted in red.

The objective function for the optimization is a weighted sum of the discharge
curve error errV and the EoDV error errEoDV. We define the function as fobjective =
1 ·errV +2 ·errEoDV. We choose the L1-Norm to measure the discharge curve error:

errV(θ) =
∫

T
|Vexp(t)−Vsim(t;θ)|dt, (4.4)

where Vexp is the experimental voltage and Vsim is the voltage output of the
simulation (cf. eq. (4.2)) over the discharge time T for a given parameter vector
θ. And errEoDV is the difference between the last EoDV value of the simulation
and the EoDV at the beginning of the long-term cycling experiment.

The parameters are optimized in a reasonable parameter space. The parameter
window for the maximum Li concentration is cC,max ∈ [28000,34000] mol m−3

for the anode and cLMO,max ∈ [21500,26000] mol m−3 for the cathode. For the
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Figure 4.6: Cell voltage of cycling protocol for the parameterization of cell model.
Two full cycles for determination of cell capacity followed by several
cycles with typical satellite protocol (cf. P2 in Table 4.1). Simulation
parts relevant for error evaluation are highlighted.

diffusion coefficients of Li in the electrodes DC ∈ [10−15,10−12] m2 s−1 for the
anode and DLMO ∈ [10−15,10−12] m2 s−1 for the cathode. For the rate constants
in the Butler-Volmer term kC ∈ [10−6.5,10−4.5] A m5/2 mol−3/2 for the anode and
kLMO ∈ [10−7,10−5] A m5/2 mol−3/2 for the cathode. And for the initial SOC of
the anode SOCC,0 ∈ [75,99.5] %.

The degradation parameters for the simulations are the initial SEI thickness
LSEI,0 = 10 nm, the diffusion coefficient of localized electrons in the SEI De- =
10−12 m2 s−1, the conductivity of Li-ions in the SEI κLi+

SEI = 10−5 S m−1, and
the migration factor ω = 0.5. The choice of the degradation parameters will be
explained in more detail in sec. 4.4.1.

With this setting the surrogate optimization is run in MATLAB on a computer
cluster, using the implemented surrogate optimization function. It is executed
with 16 parallel processes. The stopping criterion for the algorithm is a maxi-
mum time of about 48 hours. Another parameter of the algorithm, which can be
adapted, is the minimum number of initial random points in the parameter space
that are evaluated in every phase. We choose this number to be 21, which is three
times the number of parameters.

Fig. 4.7 shows parts of the optimization process. In a) and c) the value of the
objective function is depicted. It is plotted with a logarithmic axis to make the
minima of each phase distinguishable. To demonstrate the behavior of the pa-
rameter optimization, we pick one of the parameters exemplarily. Plots b) and d)
show the progress of the rate constant of the cathode kLMO. For this parameter,
we vary the exponent to base 10. The y-axis shows only the exponent. The whole
optimization process is depicted in a) and b), while c) and d) show a zoom-in to
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four phases.

The algorithm performed 84 phases in the time given before the maximum time
was reached. In a) we see that the individual phases have different durations and
that they find different minima.

At the beginning of each phase, random points at which the objective function is
evaluated are chosen in the parameter space. This can be seen especially in d),
where the random points are highlighted in color. Subsequently, the corresponding
surrogate function is minimized. This can be seen on the one hand in a) and c),
where the values converge to a local minimum, and on the other hand in b) and d),
where the value of the parameter also converges in each phase. It is remarkable,
as one can clearly see in b), that the value towards this parameter converges is
often in the same range around -6.3, apart from a few outliers that take on a high
value. Since the evaluation of individual points runs in parallel, the values do not
converge monotonically.

In c) and d), we see that a small minimum of the objective function corresponds
to those values of the parameter that lie in the favored range around -6.3. This
suggests that the optimal parameter can be found in that range. However, the
objective function also depends on the other parameters.

To analyze the distribution of the values to which the parameters converge during
the optimization phases, we visualize them in Fig. 4.8 with boxplots. These show
the medians, quartiles, minima, maxima, and outliers of the temporary optimal
parameters. The y-axis of the diffusion coefficients and the rate constants show
the exponents to base 10. For some parameters like kLMO and cC,max, the window
of the box is small, which means that the surrogate optimization finds 50 % of
the optimal parameters in this small range. For most of the parameters, the
maximum value reaches the upper limit of the search window. This suggests to
search for values above this maximum. But as the parameter windows were chosen
in a physically sensible range and the medians have enough distance to the limits,
these windows are assumed to be appropriate.

The analysis of the distribution of the temporary optimal parameters may give
a hint on the actual optimal parameter and the identifiability of the parameter.
Also, it can be used to change or narrow down the window in which parameters
are optimized. However, it is not possible to select the median value for each
parameter in order to define the optimal parameter set, because the parameters
may depend on each other.

To that end, it would be interesting to analyze the correlation between the param-
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a)

b)

c)

d)

Figure 4.7: Surrogate optimization for the determination of cell model parameters
with progress of one exemplarily model parameter. a) Progress of
objective function during optimization process. b) Progress of rate
constant of cathode during optimization process. c) Zoom-in to four
phases of the optimization. d) Corresponding phases of the parameter.

eters to be able to make further conclusions about the identifiability. In former
tests, we investigated the correlation between the initial SOCs of anode and cath-
ode. We found that they are linearly correlated, which is why only the SOC of
the anode is included in the study presented here.

Here we do not investigate the correlation of the parameters further, but choose
the parameter set that the algorithm has determined to be the optimal set based
on the minimum value of the objective function. The resulting discharge curve
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Figure 4.8: Boxplots of the output from surrogate optimization. The surrogate
algorithm provides an incumbent best fit of every parameter in each
surrogate phase.

of these optimal parameters is shown in Fig. 4.9. The experimental discharge
curve from Uno et al. is depicted in blue dots and the simulation curve in red.
The simulation matches the experiment very well. Especially, at the beginning
and at the end of the discharge they agree perfectly. This also means, that the
simulation matches the capacity of the cell, which is of further importance for the
degradation simulation.

The resulting optimal parameters can be found in Table B.2. As the algorithm
stopped due to a time stopping criterion, it is not guaranteed that the surrogate
optimization algorithm determined the global optimum. Also, it has not been
shown yet that the parameters of the P2D model are identifiable at all. Bizeray et
al. showed the identifiability for the single particle model in Ref. [13], which is a
reduced version of the P2D model. In Ref. [53], Li et al. analyzed the sensitivity
of the P2D model parameters. They showed that only part of the parameters is
identifiable. However, for our purposes, the result is sufficient to be used in the
next step, where we determine the parameters of the degradation model.
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Figure 4.9: Simulation of capacity measurement with optimal parameters deter-
mined with surrogate optimization. From Bolay et al. [15].

4.3.3 Simulation and Validation with In-flight Data

To validate the determined parameters, the satellite in-flight data are used. On
orbit, the cells get charged via the solar panels with a CC/CV profile. During the
eclipse period, they get discharged to power the cameras for the aurora observa-
tion. There are two different discharge profiles, depending on whether the aurora
of the north or the south pole is observed. The cycling protocols are described in
detail in Ref. [19].

In Fig. 4.10, the simulation of the in-flight data is depicted. The data were taken
from the early life of the battery in 2005. The cycling protocol, that has been used
during this period of satellite operation, was for north pole observation, where the
cells get charged with CC of 1.5 A followed by a CV of 4.1 V. For the discharge,
two different constant currents are used. The cells get discharged with 0.88 A for
15 minutes followed by 0.74 A for 19 minutes. This results in a total discharge
time of 34 minutes. The protocol can also be found in Table 4.1 (P1).

In the figure, we show the agreement between simulation and experiment over the
course of three cycles. The cell current, which is depicted in red, is met by the
simulation only during discharge, which is obvious, since the current is the input of
the simulation during discharge. During charge, the simulation does not fit the cell
current, since this was not part of the objective function of the parameterization.

51



4 Parameterization and Simulation of Battery Models

Figure 4.10: Three cycles of the satellite REIMEI battery. In-flight data and sim-
ulation corresponding to the satellite cycling protocol of north pole
observation. In-flight data from beginning of satellite lifetime. From
Bolay et al. [15].

For the voltage curve, it can be seen that it is in accordance with the simulation
during charge and discharge. During charge, the major part of the input of the
simulation is constant voltage. In the experimental data, it looks like there are
three different values for constant voltage. However, this is only due to a slight
drop in the constant voltage, which is represented as voltage steps due to the
measurement inaccuracy. The step in the voltage discharge curve caused by the
drop in the constant current is reliably reproduced by the simulation, which was
also the main focus of the parameterization. From this, we can conclude that the
determined parameters of the cell model are appropriate to describe the satellite
cell behavior also during flight.

4.4 Parameterization and Simulation of
Degradation Model

To gain insight into the aging of the cells, we use the degradation model and
perform long-term simulations in different resolution frameworks. To be able to
use the model, it first has to be parameterized. Subsequently, the parameterized
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model can be used for simulations.

Until recently, electrode level continuum models had not reproduced the exper-
imentally observed SEI heterogeneity [71, 104]. In his PhD thesis, Schmitt im-
plemented a preliminary version of the model of Ref. [48] in the software BEST
[43] and simulated the growth behavior in a 3D resolved microstructure. Thereby,
it was shown that the SEI is growing inhomogeneously [89]. This was the first
time that experimentally observed inhomogeneities in the SEI thickness could be
shown with a physics-based model. Considering reaction-limited growth, such
heterogeneous SEI growth has also been recently analyzed by Chouchane et al.
[24].

Here, we discuss how to parameterize and simulate the SEI growth in a pseudo-
two-dimensional (P2D) framework and in 3D. With this, we show inhomogeneous
long-term growth of the SEI.

To determine the parameters of the degradation model, long-term cycling is sim-
ulated with the full cell model in a P2D framework, cf. sec. 4.4.1. The simulation
output is compared to the long-term cycling experiments described in sec. 3.2.1.
Subsequently, 3D simulations are performed with the determined parameters. Dif-
ferent cycling protocols are used to examine the influence of charge and discharge
currents on the SEI growth in the microstructure (see sec. 4.4.2).

The parameterization of the degradation model is carried out with the P2D model
and not with the 3D model, which is much more expensive in terms of computation
time. As many simulations are required, the computation time is crucial here.

4.4.1 Parameterization with P2D model

We simulate the long-term cycling protocol according to the experiments of Uno
et al. [105]. They cycled the cells about 27,000 times. After around 24,000 cycles,
when the EoDV reaches 3.75 V, the charge voltage is changed from 4.1 V to 4.2 V.
At 12 different points in time, the cells are fully discharged to 3.0 V to measure
the remaining capacity. This can also be seen in Fig. 4.11. The cycling protocol
used here can be found in Table 4.1 (P2).

The degradation parameters, examined in this subsection, are the initial SEI thick-
ness LSEI,0, the diffusion coefficient De- of localized electrons in the SEI, the
conductivity κLi+

SEI of Li-ions in the SEI, and the migration factor ω. The other
parameters, like the mean partial molar volume of the SEI, contribute to the
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a) b)

Figure 4.11: Two simulations of degradation experiment with satellite cycling pro-
tocol. Both simulations with equal parameters, one with and the
other without electron migration flux. a) Capacity and b) end of dis-
charge voltage (EoDV) of simulation and experiment. From Bolay et
al. [15].

model as multiplicative factors and hence are not identifiable. Those parameters
are taken from literature. All parameters of the degradation model are given in
Table B.4.

The determination of the optimal parameter set is a multi-objective optimization
problem, where the capacity fading as well as the EoDV error have to be mini-
mized. As the simulation of around 27,000 cycles is quite expensive in terms of
computation time, a sophisticated optimization algorithm is inappropriate. For
that reason, a fixed parameter space is used, where the parameters are uniformly
distributed in a reasonable range. The cycling is then simulated for all combi-
nations of parameters simultaneously on the computer cluster. Since the optimal
parameters of the P2D model, which were determined with the surrogate optimiza-
tion, also depend on the chosen degradation parameters, we optimized the P2D
model parameters for each set of degradation parameters. When we simulate the
degradation for a particular set of degradation parameters, we use the correspond-
ing optimal parameters of the P2D model. Eventually, the optimal degradation
parameter set of the fixed parameter space, which minimizes the capacity error
and the EoDV error, is chosen.

In Fig. 4.11 a), the capacity fading over around 27,000 cycles is depicted. Fig. 4.11
b) shows the corresponding EoDV. At around 24,000 cycles, when the charge volt-
age is raised from 4.1 V to 4.2 V, the degradation accelerates. For the discussion
of the simulation results, we first consider the red lines. In both graphs, we see
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that the degradation gets overrated at the beginning of the cycling. This can
be explained by a not globally optimal choice of cell parameters. As we already
described in sec. 4.3, the optimization of the parameters is a difficult task due to
computation time and the identifiability of the parameters. After around 2,000
cycles, over a wide range of the cycling, the trend of the simulation corresponds
quite well to that of the experiment, especially in the EoDV. At the end, after
about 20,000 cycles, the simulation underrates the degradation of the experiment.
At this late period of cycling, there are probably additional degradation processes
taking place in the cell, that are not covered by the SEI growth model. This
could be for example the cracking of anode particles as described in Ref. [83] or Li
plating. These processes lead, among other things, to a sudden increase of anode
surface, which accelerates the SEI growth. Furthermore, Mendoza-Hernandez et
al. [63] observe indicators for plating in the satellite in-flight data. These occur
more frequently at a later stage of the cycling. Plating is responsible for or ac-
celerates a number of degradation processes. This may be another reason why
accelerated aging is observed that cannot be explained by SEI growth.

We compare the models for SEI growth of von Kolzenberg et al. [48] and of Single
et al. [94]. The difference between the extended model of von Kolzenberg et al.
and the model of Single et al. is the additional consideration of the Li-ion flux
through the SEI during charging. This causes the migration of electrons due to
an electric potential drop in addition to diffusion. To discuss the influence of the
electron migration flux on SEI growth, we perform simulations with ω = 0.5, as
established by von Kolzenberg et al., and with ω = 0. When setting ω to zero,
the term that describes the electron migration (zFκe-

SEI∇Φ = 0) in the equation
for the SEI flux eq. (2.11) vanishes. The simulation result of the model without
the migration rate is shown in Fig. 4.11 as yellow lines. It can be seen that
the degradation decreases significantly in that case already after a few thousand
cycles. Also, the trend of the simulation does not correspond to the experiments
in both graphs. This leads to the conclusion, that the migration component is
necessary to describe the degradation behavior reliably.

The parameterized degradation model in the P2D framework is used extensively
in sec. 5 for diverse long-term simulations of the battery degradation.

4.4.2 3D Microstructure-resolved Simulations

The microstructure-resolved SEI growth is simulated in 3D with the same degra-
dation parameters as determined before with the P2D model. The cell and degra-
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a)

b)

c)

d)

e)

f)

Figure 4.12: SEI thickness of anode particles connected to current collector for
two cycling protocols at three time points. Left column (a, b, and c)
shows cycling protocol P3, right column (d, e and f) shows P4 (cf.
Table 4.2). a) and d) 8 cycles. b) and e) 136 cycles. c) and f) 672
cycles. From Bolay et al. [15].
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Table 4.2: Cycling protocols used in 3D simulations.

Protocol Charge (CC-CV) Discharge (CC) Temperature

P3 1.5 A / 4.1 V 1.0 A 25°C

(3D) 65 min 35 min

P4 1.5 A / 4.1 V 2.0 A 25°C

(3D) 65 min 35 min

P5 3.0 A / 4.1 V 2.0 A 25°C

(3D) 65 min 35 min

dation parameters for the 3D simulations can be found in Table B.3 and B.4. For
the 3D simulations, we use three different cycling protocols. They differ in charge
and discharge currents to investigate how the current influences the SEI growth
behavior. The protocols (P3 - P5) can be found in Table 4.2. P3 is equivalent to
the cycling protocol used with the P2D model (P2). In P4, the discharge current
is doubled. This is based on the experiments in Ref. [19]. In P5, both the charge
current and the discharge current are twice as large as in P3. The time intervals
for charging and discharging are the same in all protocols and correspond to the
typical satellite battery cycling protocols.

The 3D simulations reveal an inhomogeneous growth of the SEI. In Fig. 4.12, the
results of the simulations with two different cycling protocols at three points in
time are shown. We see anode particles connected to a current collector. The
color represents the thickness of the SEI after a certain amount of cycles. In the
left column, the cell is cycled with protocol P3, the right one is cycled with P4.
Fig. 4.12 a) and d) show the SEI thickness after 8 cycles, Fig. 4.12 b) and e) after
136 cycles, and Fig. 4.12 c) and f) after 672 cycles.

For all states shown in Fig. 4.12, there are coexisting regions with a thicker SEI and
regions with a thinner SEI. In Fig. 4.12 a) and d) we see that, at the beginning
of the cycling, the particles near the separator have a thicker SEI than those
near the current collector. Yet the difference is very small and comprises only a
few nanometers. Fig. 4.12 b), c), e), and f) show that after several cycles, the
inhomogeneity spreads over the whole anode. When comparing Fig. 4.12 b) and
e) or Fig. 4.12 c) and f), we see that this happens sooner for the protocol with the
higher discharge current.
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a) b)

Figure 4.13: Variation of SEI thickness in 3D simulation for three different cycling
protocols (cf. Table 4.2). a) Stepwise growth behavior in each cycle.
b) SEI thickness and relative maximum deviation (dashed lines) over
a long cycling period. From Bolay et al. [15].

After many cycles, there are particular domains of the anode, where the SEI is
noticeably thicker. In Fig. 4.12 f), we observe that these are the thinner parts
of the anode. Especially the peak-like structures, such as the one in the top left
corner, have the thickest SEI.

The inhomogeneous growth is caused by the spatially varying SOCs through the
anode and varying overpotentials at the anode SEI interface. This accelerates
diffusion and thus SEI growth. At the beginning of the cycle, the SEI grows faster
near the separator, as the Li-ions in the electrolyte reach this area first when the
cell is charged. The SOC therefore increases there first. Only later do the Li-ions
pass through the porous structure and reach the area near the current collector,
causing the SOC to rise there too. After further cycling, the SEI is growing faster
at the thinner parts of the particles since these reach higher SOCs faster when
charging the cell. This is caused by the higher specific surface area at these thin
structures.

For a quantitative analysis of the growth and variation of SEI thickness, its mean,
minimum, and maximum, throughout the anode, at every computed time step, is
depicted in Fig. 4.13. We investigate here the three cycling protocols P3 - P5 at a
short period of 25 cycles, which corresponds to about two days, and a long period
of 400 - 800 cycles, which corresponds to approximately 1 - 2 months.

When regarding the SEI thickness at the short period, as shown in Fig. 4.13 a), we
observe a stepwise growth behavior. During charging of the cell or more precisely
during lithiation of the anode, the SEI is growing faster than during delithiation.
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These simulations reflect that the growth rate depends on the current density,
which has been observed experimentally in Ref. [5].

Furthermore, when comparing the cycling protocols in Fig. 4.13 a), we note dif-
ferences in SEI thickness and its inhomogeneity. This becomes even clearer in the
longer period in Fig. 4.13 b). The differences in the total length of the cycling
simulations are due to numerical instabilities, when using higher currents. When
comparing the mean SEI thickness of the different protocols, we observe that for
P3 and P4, which differ in the discharge current, there is no significant difference
in the thickness. In contrast, the SEI is growing faster for P5, which has a higher
charge current than the other two protocols. This is also in accordance with the
growth behavior observed in Ref. [5] and rationalized in Ref. [48].

The relative maximum deviation, i.e. the difference between minimum and maxi-
mum divided by the mean of the thickness, is shown as dashed lines in Fig. 4.13
b). The simulations with doubled discharging currents (P4 and P5) show a sig-
nificantly larger deviation, i.e. a more inhomogeneous SEI growth. We also see
that the deviation is already remarkable for the first few cycles and increases only
slightly thereafter. One reason for this could be that the SEI is very thin at the
beginning, which makes small differences more significant.

This analysis shows that the combination of the degradation model with the 3D
model is a useful tool to get a theoretical insight into the SEI growth behavior of
Li-ion cells under varying cycling conditions.

The inhomogeneous SEI growth can also be observed in the P2D framework.
There, the deviation only concerns the position in the anode. This is the distance
from the separator and the current collector. Several examples of the long-term
SEI growth and its inhomogeneity can be observed in sec. 5.
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5 State Estimation of Satellite
Batteries

In battery applications and especially when they are used in aerospace applica-
tions, it is essential to be able to predict the battery behavior and to estimate the
states of the battery. The states that are of major importance are the state of
charge (SOC) and the state of health (SOH). These states are hidden states of a
dynamical system. That means they can not be directly measured while the bat-
tery is in use. Especially in aerospace applications, the availability of information
about the battery is very limited. To conclude from the measurable quantities
of a dynamical system to the hidden states bears several difficulties. It is not
possible to prove the accuracy of the estimated states. Also, the measurements
contain errors. Furthermore, every model that describes physical processes of the
real world is only an approximation and can be too simple or miss processes that
influence the measurable quantities. There are sophisticated algorithms for the
state estimation of dynamical systems using physics-based models, which account
for the uncertainties both in the measurements and in the models. Among the
commonly used are Kalman filters and their variants. These were already often
used for the state estimation of Li-ion batteries. Other possible algorithms for
the state estimation are other filters, like the particle filter or the H-infinity fil-
ter, or state observers like the sliding-mode observer or the Luenberger observer
[47, 52, 53].

Plett was one of the first to use Kalman filters for the state estimation of Li-
ion batteries [72, 75]. In a series of papers, he applies different kinds of Kalman
filters like the extended Kalman filter (EKF) or the sigma point Kalman filter in
combination with an equivalent circuit model (ECM) to estimate the SOC. Also,
he describes a dual filter to additionally estimate parameters of the model which
account for the aging of the cell [74].

There are various battery models employed for the SOC estimation. The ECM is a
commonly used model, especially in battery management systems (BMS) of micro
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controllers, as they are computationally advantageous and easy to apply. They
are also often used in combination with filters as in Refs. [56, 3, 106, 115, 21, 111].
However, ECMs are only usable in a narrow range in which they are parameterized
and give little insight into the actual physical processes in the battery. To that end,
physics-based models like the pseudo-2D (P2D) model or the single particle model
(SPM) are more suitable to get a better understanding of the battery, although
they are computationally more expensive. Bizeray et al. [14] were one of the first
to use the P2D model combined with an EKF, which they modify based on [9] to
employ the filter on the differential algebraic equations (DAE) of the model. Due
to their accurate prediction of cell behavior, these models are also widely used in
combination with Kalman filters [106, 80, 101, 114, 102, 11, 55].

To account for the degradation of the cell and to be able to estimate the SOH,
there are different approaches depending on the cell model in use. First, it is
important to define which variable or parameter describes the SOH. Usually, the
remaining capacity of the cell is appropriate. For some applications, the power
fade or cell resistance are of primary interest. In the case of the ECM, the SOH can
be derived from the model parameters, which can then be adapted to model the
degradation of the cell [74]. In the case of physics-based models, there are different
approaches. Some use empirical models for the SOH evolution or determine the
cell model parameters for various aging conditions of the cell [80, 95]. To gain a
better understanding of the processes that occur during aging and to make reliable
predictions, it is useful to physically model SOH evolution as well [114, 11, 15].

Often only the SOC is estimated. In these cases, the reliability of the model
decreases over time as the cell degrades and the model parameters no longer
match the condition of the cell. Sometimes the SOH is the only state that is
estimated [11].

If both states, the SOC and SOH, get estimated, combinations of filters are re-
quired. But already for the choice of the filter for one of the states, there are several
possibilities. The original Kalman filter is only suitable for linear problems. In the
nonlinear case, there are variants like the EKF and the unscented Kalman filter.
Also, the particle filter is often used in this setting. In Refs. [75, 52, 106, 47, 21],
the different filters are compared. The combined estimation of SOC and SOH
is not trivial since these states evolve on different timescales. Hence, there are
various approaches for the combination. One simple approach is to use the ECM
with a joint or dual filter [74, 76, 3, 21, 110]. Here, the states and the parameters
get estimated in every time step either by combining them to one comprehensive
state vector or by using two filters, which update mutually in each step. This
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approach ignores the fact that the SOH is evolving much slower than the SOC.

Thus, more sophisticated algorithms use multi-timescale approaches. In Ref. [41],
Hu et al. developed a multiscale framework, where SOC and capacity estimation
are decoupled and compared it to a dual EKF. Their battery model is based on
Coulomb counting. Zou et al. use a multi-timescale approach, where they generate
a map for various SOC and input conditions, which can then be used online for
state estimation [114].

The data to validate the state estimation approaches can be synthetic or real
data. The advantage of synthetic data is, that the states, which are hidden in
real applications, are known here. With this it is possible to prove that the
algorithm is able to find the right values [80, 14, 101, 114, 102, 95]. To check
the applicability of the algorithm, it is also necessary to validate it with real
battery data [72, 75, 41, 3, 55, 6]. Usually, these are gained experimentally. Only
few use field data [56]. Often the application field is EVs. There are also a few
publications, which consider aerospace applications [45, 80, 6].

Another possibility to predict the performance and degradation of Li-ion batteries
are machine learning approaches. These are used a lot in literature to estimate the
battery states [90, 113, 2, 103, 57, 54]. For our work, we choose the approach of
combining physics-based models with Kalman filters as this allows to gain a deeper
understanding of the processes in the battery and to associate the estimated states
with physical variables in the cells.

Here, we design a novel algorithm to estimate the SOC and SOH of a Li-ion bat-
tery. The algorithm uses two extended Kalman filters for the states. It is based
on the full cell model described and parameterized in sec. 4. In this model, the
SOC and SOH evolution are coupled and calculated simultaneously. Since these
states evolve on different timescales, the algorithm needs to filter the states sep-
arately while taking into account that they are coupled by the model. Therefore,
we design a multi-timescale algorithm where the filter for the SOC is nested in
the filter for the SOH.

We test our filter with synthetic data, which are generated with the battery degra-
dation model, based on a satellite cycling protocol. Subsequently, we validate the
algorithm with the real in-flight data of satellite REIMEI. These data are particu-
larly appropriate to test the applicability of the algorithm to real-world problems.
They span a very long period, which is essential for reliable aging prediction. To
the best of our knowledge, this is the longest data period with which a state es-
timation algorithm was tested. Furthermore, the data is noisy and incomplete,
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which gives insight into how the filter behaves under imperfect conditions.

The algorithm can be used in different ways. Applied to a measured data set, it
can make the degradation of the cell more comprehensible. Additionally, when
continuing the simulation, the further aging can be predicted. The algorithm can
also be used to filter the battery cycling in real-time. The model might be too
computationally intensive for online filtering. However, the satellite application
has the advantage that the batteries can be controlled remotely. Another ap-
plication for the algorithm is the validation of the accuracy of the degradation
model.

In this chapter, we first summarize the theory of the Kalman filter and its variants.
Subsequently, we describe our multi-timescale algorithm and explain how it is used
to estimate the states of a battery. The functionality of the filter is demonstrated
with synthetic and in-flight data. Finally, we will use the filter to validate different
models and show how the filter can be used to gain further insight into the accuracy
of the chosen model.

5.1 Filter Theory

This section summarizes the theory of Kalman filters. Since the Kalman filter
can only be used for linear models and our battery model is nonlinear, we also
describe a variant called extended Kalman filter and explain how it is used for
differential algebraic equations.

5.1.1 State-Space Models and Dynamical Systems

A physical system is described by the inner states of the system that propagate in
time, which is governed by differential equations. The system can be represented
by a state-space model. This makes it easier to handle it in a mathematical
framework. The representation for linear models is given as

ẋ = Ax+Bu (5.1)
y = Cx (5.2)

and for nonlinear models
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ẋ = f(x,u) (5.3)
y = h(x) (5.4)

with the time dependent state vector x, the input vector u, and the output vector
y. In the linear case, A is the system matrix, B is the input matrix, and C is the
output matrix. In the nonlinear case, f and h are arbitrary functions [93].

5.1.2 Kalman Filter

The Kalman filter (KF) is a mathematical method to estimate the states of a
dynamical system, which can be described by a stochastic linear state-space model.
Sometimes, the inner states of a system can not be measured. The KF improves
the estimate of these unknown states by using observable measures of the system.
Also, it accounts for process noise and observation noise.

Under the assumption that the errors are normally distributed, it can be shown
that the Kalman filter is an optimal estimator for linear problems [93].

The discretized stochastic state-space model is given as

xk+1 = Akxk +Bkuk +wk (5.5)
yk = Ckxk +vk (5.6)

with the process noise wk and measurement noise vk. These noises are assumed
to be normally distributed with wk ∼ N (0, Q) and vk ∼ N (0, R), where Q and R

are the corresponding covariance matrices [93, 72, 14].

The Kalman filter describes how the mean x̂ and covariance P of the state evolve in
time. Therefore, the filtering process starts with estimates of mean and covariance
for k = 0. These are obtained with the statistical expectation, where

x̂0 = E[x0] (5.7)
P0 = E[(x0 − x̂0)(x0 − x̂0)T ]. (5.8)

The Kalman filter steps are given as follows. First, the state and covariance are
updated in time to get the a priori estimates x̂−

k and P −
k
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x̂−
k = Akx̂+

k−1 +Bkuk (5.9)
P −

k = AkP +
k−1AT

k +Q (5.10)

and the estimated output ŷk is computed from the a priori state estimate

ŷk = Ckx̂−
k . (5.11)

Then, the a posteriori estimates x̂+
k and P +

k are computed with the Kalman gain
Kk using the actual measurement yk

Kk = P −
k CT

k (CkP −
k CT

k +R)−1 (5.12)
x̂+

k = x̂−
k +Kk(yk − ŷk) (5.13)

P +
k = (I −KkCk)P −

k . (5.14)

Extended Kalman Filter

The major drawback of the Kalman filter is that it is only applicable to linear
problems. Yet, most problems are nonlinear as linear systems barely exist in
reality. For the filtering of nonlinear models, several variations of the Kalman
filter exist, one of which is the Extended Kalman filter (EKF). The approach of
the EKF is to linearize the system at each time step so that the Kalman filter can
be applied [93, 72].

The discretized nonlinear state-space model is given as

xk+1 = f(xk,uk)+wk (5.15)
yk = h(xk)+vk. (5.16)

The partial derivatives of the nonlinear model are computed as

Ak = ∂f(xk,uk)
∂xk

∣∣∣∣∣
xk=x̂+

k

Ck = ∂h(xk)
∂xk

∣∣∣∣∣
xk=x̂−

k

(5.17)
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Figure 5.1: Flowchart of (extended) Kalman filter.

The a priori state estimate is now obtained by the nonlinear model with

x̂−
k = f(x̂+

k−1,uk−1). (5.18)

The subsequent steps are analogous to the Kalman filter algorithm for the linear
case decribed in eqs. (5.10) to (5.14) using the derivatives of the model stated in
eq. (5.17). The procedure of the EKF for every time step tk is illustrated by the
flowchart in Fig. 5.1.

Extended Kalman Filter for Differential Algebraic Equations

In the case, where differential-algebraic equations describe the nonlinear model,
the EKF gets more complex. In Ref. [9], Beccera et al. describe how the filter is
modified to take the algebraic equations into account. Bizeray et al. describe in
Ref. [14] how this version of the EKF is used for a battery model. We summarize
the procedure here. A detailed explanation of the modification steps can be found
in Ref. [9, 14].
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The state-space representation of a DAE system is given as

ẋd = g(xd,xa,u) (5.19)
0 = γ(xd,xa) (5.20)

with the differential equations in (5.19) and the algebraic equation in (5.20). The
state vector x is split up in the differential state vector xd and the algebraic
state vector xa. Again, the nonlinear functions g and γ need to be linearized.
By rearrangements, the algebraic terms can be expressed by the differential state
vector. This way, the system can be transformed into a stochastic linear state-
space model

ẋd = Ax(t)+Bu(t)+w(t) (5.21)

with the linearised matrices A and B.

By integrating eq. (5.21) as described in [9, 14] the state matrix Ak = eAkT is
obtained, where T is the sampling period. With this, the EKF can be applied as
described in sec. 5.1.2.

5.2 Estimation of Battery States on Different
Timescales

For the filtering of states evolving on different timescales, an algorithm is needed
that filters the states separately, while considering the nested nature of the models
to determine the states and their interdependence. Therefore, we develop a novel
algorithm, where the filter for SOC estimation is nested in the filter for SOH
estimation.

5.2.1 Multi-Timescale Algorithm with Nested Filters

In this section, our algorithm is explained for a general system with states that
evolve on different timescales. The application of the algorithm to battery data
is described in sec. 5.2.2.

When considering a complex system with processes evolving on different time
scales, the corresponding states must be filtered separately. Otherwise, the state,
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Figure 5.2: Flowchart of multi-timescale algorithm applied to battery states.

which is evolving slowly in time, will be corrected too much. For this reason,
we developed a nested multi-timescale (MTS) filter algorithm that combines two
EKFs, where the filter for the fast evolving state is nested in the filter for the slow
one.
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If we describe the measurement update of the fast state by a function ζ, with
ζ(x−

k ) = x+
k , we can combine the time update of the fast state, which is expressed

by the function f , and the measurement update to ζ ◦f . With this, we define an
operator

Γτ(l) = (ζ ◦f)τ(l) (5.22)

that calculates τ(l) iterations of this operation, so that Γτ(l)(x+
l−1) = x−

l . This
is the model that is used for the outer filter. The function τ is a function that
describes the necessary number of time steps tk to get from one defined point of
time tl, where the slow state gets filtered, to the next one tl+1. The index k counts
the filter steps of the fast state, while l counts those of the slow state. To use the
model for the EKF, this model needs to be linearized corresponding to eq. (5.17).
The Jacobian of the outer model is approximated numerically with

∂Γτ(l+1)(xl)
∂xi,l

=
Γτ(l+1)(xl)−Γτ(l)(xl−1)

xi,l −xi,l−1
(5.23)

where xi,l are the components of the state vector at time tl. This way, the EKF
can be applied as described in sec. 5.1.2.

The scheme for the MTS filter algorithm and its application to battery states is
depicted in Fig. 5.2 as a flowchart. It will be further described in the next section.

5.2.2 Application of the MTS Algorithm to Battery Data

The MTS algorithm can be applied to estimate the SOC and the SOH of batteries.
The SOC is a fast evolving state as it can cover its whole value range during a single
cycle. The SOH evolves slowly in time throughout the lifetime of the battery.

The model for the battery behavior and degradation has been described in sec. 2.
This model is used in the inner loop of the nested algorithm to compute the time
update of the states in every time step.

It is necessary that the filtering runs fast, since it should be usable in real time and
needs to simulate several thousand cycles for the test procedures. To that end, we
chose a coarse discretization for the P2D model. We described the discretization
in sec. 4.1. Here, the anode is discretized with three nodes, the cathode with
four, and the particles with three discretization points. This results in a state
vector xd = (xSOC,xSOH) with 21 entries for the SOC and three for the SOH.
The dimensions of the state covariance matrices P SOC and P SOH and the noise
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covariance matrices QSOC and QSOH of the filters are chosen accordingly.

Definition of SOC and SOH. Before describing how the algorithm is used to
estimate the battery states, we give a definition of SOC and SOH. For both, there
exists no universal definition in literature. Instead, the definition also depends on
the use case. We use the variables of our model to define the states. From this
general form, they can be transformed according to specific requirements.

The state of charge (SOC) is given for every discretization point in the electrodes
as the ratio of the Li concentration in the solid and the maximum Li concentration
of the respective electrode:

SOC = cs
cs,max

·100%.

The state of health (SOH) shall give information about the remaining lifetime
of the battery. It is often defined as the remaining capacity of the cell. In this
application, the satellite mission requires a minimum voltage to operate the loads.
The EoDV is therefore one feature of the SOH of the satellite cells. Since we
describe the degradation of the cell by the growth of the SEI, we define this
variable as a further feature of the SOH. The capacity of the cell can be directly
related to the SEI thickness, since SEI growth consumes Li-ions that can no longer
be cycled. In this way, one can directly convert the thickness of the SEI into
irreversible capacity loss, as described in eq. (2.9). However, the measured cell
capacity is not only determined by the remaining Li-ions but also by the internal
resistance of the cell, which also depends on the thickness of the SEI.

We do not have any capacity measurements in our data, so we will not give the
cell capacity based on our simulations but only the thickness of the SEI. If this
algorithm is applied to data that also contains capacity measurements, it is easy
to simulate these measurements and thereby obtain a value for the remaining
capacity.

Filter Parameters. The parameters of the filters are the measurement covariance
matrix R, the process covariance matrix Q, and the initial covariance matrix of
the states P0. These exist for the SOC filter and for the SOH filter respectively.

Here, our measurements are the cell current and voltage. These values are one-
dimensional, which is why R is a scalar. The parameter can be determined from
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the distribution of the measurements. Assuming that the measurements are nor-
mally distributed, the standard deviation can be determined in the sections where
the values are constant. This applies to the voltage during charging and to the
current during discharging. For the in-flight data of the satellite batteries, we
obtain the standard deviations σI = 0.08 A and σV = 0.005 V. From these, we get
the variances RI = σ2

I = 6.4 ·10−3 and RV = σ2
V = 2.5 ·10−5.

The process covariance matrix Q is used in eq. (5.10) to calculate the time update
of the state covariance matrix. It can be chosen to prevent this matrix from
getting too small. The process and measurement covariance matrices can be used
to control the stability and convergence of the filter [9, 41].

The covariance matrix P represents the uncertainty of the states. There are several
ways to determine the initial matrix P0. It can be estimated from samples of the
initial state estimate according to eq. (5.8). A simpler method is to initialize P0
with a matrix where all entries are identical. The size of the entries represents the
uncertainty at the beginning [9, 14, 72].

All covariance matrices need to be determined for both the SOC filter and the SOH
filter. We determine them by studying their influence on the filtering behavior as
described in sec. 5.2.4.

Filtering SOC and SOH with the MTS Algorithm

With this, the MTS algorithm can be applied to filter the battery states. Several
aspects must be considered when filtering the SOC and the SOH. The details will
be described in the following.

The SOC is basically filtered in every time step that is available from the data.
This is depicted by the left inner loop in Fig. 5.2, where the time update is
calculated with the battery model f and the measurement update with the filter
function ζ.

However, the SOC is only filtered during charging or discharging. The measure-
ment uncertainty influences, among others, the evolution of the state covariance
matrix. Since the measurement uncertainty corresponds to the measurement error
of the current during charging and to that of the voltage during discharging, the
evolution of the state covariance matrix is too strongly influenced by this switching
if filtering is done continuously.

Both, filtering during charge and filtering during discharge is possible. We decided
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to filter the SOC only during charge with the current as corresponding measure-
ment, since the voltage is already used for the SOH filtering with the EoDV. This
results in the measurement covariance matrices being RSOC = RI and RSOH = RV .
It is also possible to filter the SOC during charge and during discharge. To that
end, the filter would require two independent covariance matrices of the SOC.
Here, this is not necessary, as the filter provides sufficiently good results when
filtering only during charging or during discharging.

So, at time step k, the input for the battery model f is the constant cell voltage of
the cycling protocol uf

k = Vk and the output, which is used for the measurement
update of the SOC filter, is the measured cell current ySOC

k = Ik. The SOH is also
updated in time by the battery model f at every time step, as is depicted by the
right inner loop in Fig. 5.2, but not filtered.

For the SOC filtering, it turned out to be unstable to start the filter at the be-
ginning of the simulation. So, for a robust filtering of battery cycling, it is rec-
ommendable to let the SOC simulation stabilize for the first few cycles. We have
found it to be sufficient if the first three to four cycles are simulated before starting
the filtering of the SOC. In Fig. 5.14 a) on the left-hand side, one can see that the
filter starts in the fourth cycle.

Further, the filter gets unstable, when the constant current is switched from one
value to another. Therefore, filtering is suspended during switching. However,
this is only relevant for filtering during discharge. Another case in which the filter
becomes unstable is when the cells get charged with a higher constant voltage.
In the data under consideration, this is only the case within short time intervals.
Thus, filtering can also be suspended here to make it perform more stably.

The SOH is filtered periodically after every Nth cycles at the time steps tl. In
Fig. 5.2, this is the outer loop. The light green box represents the time update
model Γ used in the SOH filter, cf. eq. (5.22). The input for this model is the
constant current of the cycling protocol uΓ

l = Il. The output is the measured
EoDV ySOH

l = Vl.

Since the measurement points have a mean distance of 32 seconds and one cycle
has an approximate duration of 100 minutes, the SOH filter time steps tl comprises
around N ·185 time steps tk. The exact determination of the filtering points, which
correspond to the function τ in eq. (5.22), differs for the synthetic data and the
in-flight data. The SOH is always filtered at the end of discharge, since this is the
point at which the EoDV is measured. For the synthetic data, which is in perfect
regularity, without gaps, it is always possible to filter after N cycles. However,
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for the in-flight data, the Nth cycle may coincide with a data gap, where no
measurements are available for the cycles. In this case, the filter point of time is
shifted to the next cycle block, where measurement points are available.

The numerical calculation of the Jacobian of the function Γ for each time step tl

comprises the evaluation of Γτ(l) for every component of the SOH state vector,
cf. eq. (5.23). Here, this means that it is evaluated three times. This is a further
reason to choose a coarse discretization.

To determine the frequency of the SOH filter, there are several aspects to consider.
On the one hand, it is not possible to filter more frequently than once per cycle,
since the EoDV is the determining factor. Also, since the SOH evolves slowly in
time, it does not make sense to filter too frequently. Considering that in a space
application the state estimation may be performed remotely, the contact to the
satellite is also relevant. If we assume that the satellite is operated once per day,
this corresponds to 15 cycles. Thus, it may make sense to choose the frequency
in this order of magnitude.

The frequency of SOH filtering can be treated as an additional filter parameter.
The influence of the frequency on the filtering behavior will also be studied in
sec. 5.2.4.

5.2.3 State Estimation with Synthetic Data

Filters are generally used to estimate states of a system that can not be measured.
When developing a new algorithm to estimate hidden states, the procedure has
to be tested to make sure that it is able to find the actual true values. This
can not be ensured with real data. Instead, the algorithm must be tested with
synthetic data that behave like the real data for which the algorithm is to be used,
but where the true states are known at the same time. Therefore, we generate
synthetic data, based on our degradation model and use these to develop and test
the MTS algorithm.

Using synthetic data to develop and evaluate state estimation algorithms is a
common procedure [80, 14, 101]. But only some additionally validate the algorithm
with real data [41, 53].

We have also described the generation of synthetic data in Ref. [15] and give it
again here.
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Generation of Synthetic Data

We generate the synthetic data by simulating a typical LEO cycling with degra-
dation. To reproduce the uncertainty in the measured data, we add noise to the
corresponding quantities of the simulation. These synthetic data imitate the satel-
lites in-flight data with the crucial difference that both the inner states as well as
the model including its parameters are known.

The cycling protocol used to simulate the synthetic data is based on the laboratory
cycling tests of Uno et al. in Ref. [105]. At a temperature of 25 °C, the cells get
discharged with a constant current of 1.0 A (C/3) for 35 minutes and get charged
with a constant current-constant voltage profile with 1.5 A (C/2) to 4.1 V for 65
minutes. The parameters of the model can be found in the tables in sec. B. We
simulated several thousand cycles with this cycling protocol. The data points are
equidistant with a distance of 32 seconds.

The output of the simulation is either current or voltage. To these, we add white
noise corresponding to the distribution of the measured in-flight data. We assume
a normal distribution with zero mean. For the voltage we determined a standard
deviation of 0.005 V and for the current it is 0.08 A.

The synthetic data are depicted in Fig. 5.3. a) and b) show the simulated exact
and noisy cell voltage and current. The true simulated states, which are the SOC
of anode and cathode and the SEI thickness, are depicted in c).

5.2.4 Calibration of Algorithm

To calibrate the algorithm, we perform multiple tests under various conditions.
The tests are conducted with synthetic and in-flight data. The advantage of the
synthetic data is, that we can prove if the algorithm actually estimates the true
values, before checking whether the filter also works reliably with real data.

The calibration of the algorithm is done in two steps. On the one hand, the
influence of the initial states on the filtering behavior needs to be investigated.
On the other, the filter parameters must be tuned to ensure that the algorithm
is robust, that it minimizes the errors or converges fast, and that the calculated
states are physically appropriate. Accuracy, robustness, and convergence of an
SOC filter are investigated by Li et al. [52]. In Ref. [64], Mößle et al. also
investigated the filter parameters of a Kalman filter for the estimation of the
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a)

b)

c)

Figure 5.3: Synthetic data generated with battery degradation model based on
LEO cycling profile. 5 cycles with true simulated data and added white
noise. a) Cell voltage. b) Cell current. c) SOC and SEI thickness.

battery SOC based on an ECM. They developed an algorithm which tunes the
filter parameters automatically regarding these requirements.

Our calibrated algorithm can be used to estimate the SOC and SOH and to
investigate the filtering behavior for various models.

Investigation of Initial States

Kalman filters are used to find the true states from initial estimates. So it is not
necessary to know the initial true state. Independently from the chosen initial

76



5.2 Estimation of Battery States on Different Timescales

a)

b)

Figure 5.4: SEI growth behavior dependent on different initial values. a) In-flight
data. b) Synthetic data.

state, the filter should come to the same result after several time steps. Yet, the
filter might find a local minimum or it might be unstable under certain starting
conditions. To that end, we investigate the filter behavior for a test set of several
start values.

We test SOCanode,0 for the values {80,85,90,95} %, SOCcathode,0 for the values
{15,20,25,30} %, and for LSEI,0 we test {1,10,100} nm. This yields a test set of
48 starting conditions. This test set is used for the synthetic as well as for the
in-flight data. For the synthetic data, the true initial states are known. These are
SOCanode,0 = 95 %, SOCcathode,0 = 22 %, and LSEI,0 = 10 nm.

In Fig. 5.4, we compare the SEI growth behavior for synthetic (a) and in-flight
(b) data, depending on different initial values. In the figure we show the curves
for an initial anode SOC of 80 % and an initial cathode SOC of 15 %. The results
for other initial SOC values are almost identical. In both data cases, the curves
deviate at the beginning, but converge after a few hundred cycles. From this we
can already conclude that the initial SEI thickness has no substantial influence on
the filter behavior when varied in the tested range.
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a)

b)

Figure 5.5: SOC trend of filtered synthetic data for different initial states. True
SOC is shown in black. Filtered curves for 16 different start values are
shown in color. a) First ten cycles. b) Whole period.

In Fig. 5.5, the results of the SOC behavior for the synthetic data can be seen.
We only show the results for LSEI,0 = 1 nm and the 16 combinations of initial
SOCs. For the different SOCs, we see in Fig. 5.5 a) that in the first three cycles
the variance of the curves increases. After the filter sets in in the fourth cycle,
the variance of the curves decreases and they converge to the same curve, which
is, what we expect from the filter. In 5.5 b) the trend of the SOCs is depicted
for the whole cycling period, where the upper bar represents the SOC range for
the anode and the lower bar represents that for the cathode. After a few hundred
cycles, the states converge to the true values.

The same test as for the synthetic data was performed on the in-flight data. Again,
as the initial SEI thickness has no influence on the filtering, the results for the 16
combinations of initial SOCs are compared. These are shown in Fig. 5.6. As can
be seen, in this case not all starting conditions lead to the same result. There are
two ranges to which the SOCs converge, when the filter sets in in the fourth cycle.
In Fig. 5.6 a) we see that the curves drift apart very quickly. In one case both the
SOC of the anode and that of the cathode are corrected by the filter to low values.
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a)

b)

Figure 5.6: SOC trend of filtered in-flight data for different initial states. Filtered
curves for 16 different start values are shown in color. a) First 10
cycles. b) First 450 cycles.

This occurs for the initial SOC pairs {(80,15),(80,20),(85,15),(85,20),(90,15)}.
For the remaining 11 pairs the SOCs stay in the range from before the filtering
starts and increase slowly. They continue to rise until the simulation aborts after
about 300 cycles, as can be seen in Fig. 5.6 b). Therefore, the initial SOCs have
to be chosen in the range of the stated pairs, where the SOCs are corrected to low
values, when in-flight data are filtered.

Tuning of Filter Parameters

There are several filter parameters that can be tuned to improve the filtering. The
criteria for the parameter choice are that they reduce the error of the measurable
quantities and, in case of the synthetic data, the error of the states. Also, the filter
should run stably and the estimated states should be physically reasonable. With
inappropriate parameters, it could occur, for example, that the filter corrects the
states too much, so that the SOC takes on values above 100 % or that the SEI
thickness gets negative.
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The parameters that can be adapted to control the filtering behavior are the
measurement covariance matrix R, the process covariance matrix Q, the initial
covariance matrix of the states P0, and the frequency N of SOH filtering. The
covariance matrices can be adapted for both the SOC filter and the SOH filter.

In the following, we describe how to determine reasonable parameters by testing
their behavior with synthetic and in-flight data. We will not determine the best
parameter only with synthetic data since the filtering is sometimes less robust
when applied to the in-flight data. So, we choose for every filter parameter the
setting that provides more significant results.

The tests are a simple parameter study where we test fixed parameter sets. As in
sec. 4.4.1, the simulation of several thousand cycles per parameter is too expensive
in time to use an optimization algorithm. Moreover, it is difficult to define an
objective function. On the one hand, the target properties are difficult to quantify.
On the other hand, it is a multi-objective optimization problem where several
target properties have to be optimized simultaneously.

SOH Filter Frequency N . In order to decide with which frequency N the SOH
needs to be filtered, we compare results of frequent and rare SOH filtering. We
choose N = 20 for the frequent filtering and N = 100 for the rare one. We do
not want the SOH filtered too frequently, e.g. with one filter step at each cycle
(N = 1) to avoid overfitting. The filter parameters of the SOC filter used here
are the covariance matrices P SOC

0 = 10−25 · Jn, RSOC
I = 1, and QSOC = 10−29 · In.

Here, Jn is a n × n matrix of ones and In is the identity matrix of size n, where
n is the size of the states vector. The covariance matrices for the SOH filter are
P SOH

0 = 10−20 ·Jn, RSOH
V = 2.5 ·10−5, and QSOH = 10−16 ·In. The initial states are

SOCanode,0 = 80 %, SOCcathode,0 = 20 %, and LSEI,0 = 10 nm.

In Fig. 5.7, we compare the two filtering results. We choose the results of the
in-flight data since these show a significant difference in the filtering behavior for
the two frequencies. In a) and c) the error of the cell voltage and the EoDV is
depicted. Both show that the error is significantly smaller in case of the frequent
filtering. The error of the cell current in b) is almost identical in both cases. The
same applies to the SOC trends in d). This can be explained by the fact, that
these quantities are controlled by the SOC filter. In e) the SEI thickness of the
three anode discretization points is depicted. The trend is similar for both filter
frequencies. Only the trends of the single discretization points deviate more in
case of the frequent filtering. An explanation could be that by simply having
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more chances to change, the trends can deviate more. Also, the error of the
voltage values can be reduced faster this way. As the filter appears to be stable in
both frequency cases, we decide for the parameter which reduces the errors better,
which is the filter with N = 20.

Measurement Covariance Matrix R. For the choice of the measurement covari-
ance matrix R there are two possibilities. Either one determines the variance of
the corresponding measurement or several values can be tested with regard to the
filter behavior. In case of the SOH filter, which uses the voltage measurement, we
determined the variance of the measurements, which results in RSOH

V = 2.5 ·10−5,
cf. sec. 5.2.2. For the SOC filter, which uses the current measurements, we tested
RSOC

I ∈ {1,10−1,10−2,10−3,10−4,10−5}. The covariance RI could also be obtained
from the variance of the measurement. Here, we determine this parameter by test-
ing, as this is an additional possibility to make the filter more stable.

The other filter parameters of the SOC filter used for the test are the covariance
matrices P SOC

0 = 10−25 · Jn and QSOC = 10−29 · In. The covariance matrices for
the SOH filter are P SOH

0 = 10−15 · Jn and QSOH = 5 · 10−17 · In. The frequency of
the SOH filter is N = 20. The initial states are SOCanode,0 = 95 %, SOCcathode,0 =
22 %, and LSEI,0 = 10 nm.

Fig. 5.8 shows the results of the test for the synthetic data. In a) and c) we see
that the error of the cell voltage and the EoDV are the smallest for RSOC

I = 10−1

and RSOC
I = 1. The error of the cell current in b) is almost identical for all values

except for RSOC
I = 10−3, which produces a larger error than the other values. The

trends of the states in d) and e) are almost identical for all values. So, for the
measurement covariance matrix of the SOC filter, both RSOC

I = 10−1 and RSOC
I = 1

are suitable.

Process Covariance Matrix Q. The process covariance matrix Q accounts for
the uncertainty in the model. It is another parameter that can be used to control
the filter behavior. If not equal to zero, it prevents the state covariance matrix,
cf. eq. (5.10), from becoming too small, which would result in a decrease in the
filter corrections. However, it can also lead to a filter that corrects too much. To
determine the matrix, which leads to an accurate correction, we test again several
values. We only test diagonal matrices with identical entries, and state in the
following the factor with which the matrix In is multiplied.

Here, we describe the results for the process covariance matrix of the SOH filter
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a)

b)

c)

d)

e)

Figure 5.7: Filtering behavior for different SOH filter frequencies for in-flight data.
Comparison between filtering every 20 cycles to every 100 cycles. a)
Error of cell voltage. b) Error of cell current. c) Error of EoDV. d)
Trend of SOC of anode and cathode. e) Trend of SEI thickness.
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a)

b)

c)

d)

e)

Figure 5.8: Comparison of filtering behavior for different measurement covariance
matrix values for synthetic data. a) Error of cell voltage. b) Error of
cell current. c) Error of EoDV. d) Trend of SOC of anode and cathode.
e) Trend of SEI thickness.
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tested with in-flight data. The values tested are 5 · 10−17,10−16,5 · 10−16, and
5 · 10−15. The filter parameters of the SOC filter are the covariance matrices
P SOC

0 = 10−25 · Jn, RSOC
I = 1, and QSOC = 10−29 · In. The other parameters for

the SOH filter are the covariance matrices P SOH
0 = 10−20 ·Jn and RSOH

V = 2.5 ·10−5.
The frequency of the SOH filter is N = 20. The initial states are SOCanode,0 = 80 %,
SOCcathode,0 = 22 %, and LSEI,0 = 50 nm.

The results are shown in Fig. 5.9. The first thing to notice is that the simulation
aborts for 5 · 10−15. Although this factor produces the smallest error of the volt-
ages, it is not applicable as the filter needs to be stable. The other factors lead
to a stable filter behavior. All factors lead to a similar error of the cell current
and also to a similar trend of the SOCs as shown in b) and d). Differences can
be observed in the error of the cell voltage and the EoDV in a) and c), where the
factor 5 ·10−16 leads to the smallest error, followed by 10−16. When observing the
growth of the SEI in e), we see that all factors that lead to a stable filter behavior
have a similar trend. For the factor 5 · 10−16, we see that the state fluctuates a
lot. The fluctuation decreases with a decreasing value of the matrix factor, which
is to be expected since a higher value of matrix entries adds more uncertainty to
the state covariance matrix. For 5 ·10−17 the SEI thickness values of the different
discretization points deviate stronger than for the other factors. The factor 10−16

produces a physically sensible trend.

Since the choice of the right filter parameter is a multi-objective optimization
problem, there might not exist an optimal parameter. Increasing the matrix factor
of the process covariance matrix improves the error convergence of the voltage.
While at the same time, smaller values seem to lead to a more stable filter behavior
and physically sensible trends of the estimated states. The parameter needs to be
chosen according to the specific requirements.

The results for the process covariance matrix of the SOC filter and tests with the
synthetic data can be found in sec. C.

Initial Covariance Matrix of States P0. The state covariance matrix Pk rep-
resents the uncertainty of the states. In contrast to the other filter parameters,
it is not constant but evolves in time in every filter step. So, only the initial
state covariance matrix P SOC

0 and P SOH
0 for the SOC and the SOH filter needs to

be determined. As described before, there are several possibilities to determine
these filter parameters. Again, we test different matrices with identical entries.
But in this case we choose a matrix type with no zero elements. One could also
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a)

b)

c)

d)

e)

Figure 5.9: Comparison of filtering behavior for different process covariance ma-
trices QSOH for inflight data. a) Error of cell voltage. b) Error of cell
current. c) Error of EoDV. d) Trend of SOC of anode and cathode. e)
Trend of SEI thickness.
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use diagonal matrices, but these turned out to lead to unstable filter behavior in
preliminary tests. In the following, we only state the factor multiplied with the
matrix Jn.

Here, we only show exemplarily the results of the SOC filter state covariance
matrix for synthetic data. Results for in-flight data and for the SOH filter state
covariance matrix can be found in sec. C.

We test the factors 10−15,10−20,10−25, and 10−30. The other filter parameters
of the SOC filter used here are the covariance matrices RSOC

I = 0.1 and QSOC =
10−29 · In. The covariance matrices for the SOH filter are P SOH

0 = 10−15 · Jn,
RSOH

V = 2.5 · 10−5, and QSOH = 5 · 10−17 · In. The frequency of the SOH filter is
N = 100. The initial states are SOCanode,0 = 95 %, SOCcathode,0 = 22 %, and
LSEI,0 = 10 nm.

Fig. 5.10 shows the results of the test of different matrices. As for the previous
parameters, we show the errors of the measurable quantities and the trends of
the states. In this case, we do not show the error of the cell current, since it is
identical for all matrix factors. The error of the cell voltage and the EoDV in a)
and b) show only little differences. The factor 10−25 seems to have the smallest
error, but with only a very small advantage over the other factors. In c) we show
the SEI growth and in d) the trend of the SOCs. In both cases, the different
matrices produce almost identical results. Only when zoomed in to the first few
cycles, as shown in e), a difference can be detected. Namely, the correction in the
fourth cycle, when the SOC filter sets in, is stronger for the factors greater than
10−30.

Altogether, the choice of the initial state covariance matrix does not seem to have
much influence on the filter result. The value 10−25 seems to give the best result
with a small advantage. This value also leads to the most stable result when
tested with in-flight data, as can be seen in Fig. C.3.

5.2.5 Results of MTS Algorithm

After testing the influence of the initial states and determining appropriate filter
parameters, we demonstrate the overall performance of the MTS algorithm, both
for synthetic and for in-flight data.

In both cases, almost the same setting for the algorithm is chosen. Only the initial
states differ. The SOC filtering is started in the fourth cycle and it gets filtered
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a)

b)

c)

d)

e)

Figure 5.10: Comparison of filtering behavior for different initial covariance ma-
trices of states P SOC

0 for synthetic data. a) Error of cell voltage. b)
Error of EoDV. c) Trend of SEI thickness. d) Trend of SOC of anode
and cathode. e) Zoom-in of initial 20 cycles of trend of SOC of anode
and cathode.
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during charging. The SOH is filtered every 20 cycles. The filter parameters of
the SOC filter used here are the covariance matrices P SOC

0 = 10−25 ·Jn, RSOC
I = 1,

and QSOC = 10−29 · In. Here, Jn is a n × n matrix of ones and In is the identity
matrix of size n, where n is the size of the states vector. The covariance matrices
for the SOH filter are P SOH

0 = 10−20 ·Jn, RSOH
V = 2.5 ·10−5, and QSOH = 10−16 ·In.

The battery model used here for the simulation is the one described in sec. 2 with
the parameters obtained in sec. 4.

Results for Synthetic Data

We show the results of filtering synthetic data with the MTS algorithm in Fig. 5.11
and Fig. 5.12. The initial states of the filter are SOCanode,0 = 80 %, SOCcathode,0 =
20 %, and LSEI,0 = 1µm. The true initial states of the synthetic data are
SOCanode,0 = 98 %, SOCcathode,0 = 25 %, and LSEI,0 = 10 nm as stated in Table B.2
and B.4. We choose these large errors to test the efficiency of the algorithm.

Fig. 5.11 comprises the results for the outputs and measurements and Fig. 5.12
shows the estimated states compared to the true states, which are known in case
of the synthetic data. We show the long-term behavior of around 4,000 simulated
and filtered cycles and zoom-ins at two different positions to demonstrate how
the filter results evolve in time. In Fig. 5.11 b) and d) we depict the cell voltage
and cell current of the whole simulated period. The figures include the cycling
protocol for the simulation of the synthetic data, the filter output, and the error
between synthetic and filtered data. a) and c) show zoom-ins of the first ten cycles
and of the ten cycles after the 1,500th cycle. In e) we see the synthetic data, the
filter output, and the error of the EoDV.

Fig. 5.12 shows the corresponding states. The SOC of anode and cathode is
depicted in b) with zoom-ins corresponding to Fig. 5.11 in a). The result for the
SEI thickness is shown in c). We show the true states, the states estimated by the
filter, and the error between true and estimated states.

The zoom-ins in both figures do not include the errors, as the extent of the agree-
ment is obvious.

We observe in Fig. 5.11 a), b), and e) that the discrepancy between cell voltage
and EoDV from the synthetic data is very large at the beginning. This is to be
expected since the SEI thickness has a large initial error. The error is efficiently
reduced in the first few hundred cycles and stays close to zero afterwards. In the

88



5.2 Estimation of Battery States on Different Timescales

a)

b)

c)

d)

e)

Figure 5.11: Results of filtering synthetic data with MTS algorithm. Synthetic
measurement points and simulation output are displayed for the
whole period of 4,000 cycles and zoom-ins of ten cycles at beginning
and after 1,500 cycles. a) Zoom-ins of cell voltage. b) Cell voltage
with error. c) Zoom-ins of cell current. d) Cell current with error.
e) EoDV with error.
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a)

b)

c)

Figure 5.12: Results of filtering synthetic data with MTS algorithm. Filtered
states are displayed for the whole period of 4,000 cycles and zoom-
ins of ten cycles at beginning and after 1,500 cycles. a) Zoom-ins of
anode and cathode SOC. b) SOCs with errors. c) SEI thickness with
error.

zoom-in after 1,500 cycles, we observe a good accordance between synthetic and
filtered data.

In case of the cell current in c) and d) the discrepancy is less than for the voltage.
But still, the accordance between filtered and synthetic data gets better, as can
be seen in c) in the zoom-ins.

Observing the estimated states in Fig. 5.12 shows the same behavior. The error
of the states is very large at the beginning, especially for the anode SOC and the
SEI thickness, but converges efficiently to zero after a few hundred cycles, as can
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be seen in b) and c). When observing the zoom-in in a), we also see how the
match between true and filtered SOC gets better and that they are in very good
accordance in the second zoom-in.

The zoom-in of the first ten cycles shows that the deviation between the true
anode SOC and the estimated state gets worse when the SOC filter sets in. This
can be explained by the fact that there are several SOC ranges that reduce the
output error. This could be due to the plateaus of the OCV curve for the anode.
But despite the initial increase of the error, the true value is reliably found later.

This test of filtering synthetic data demonstrates, that our MTS algorithm works
very reliably for this kind of data even when the states have a huge initial error.
The true states are estimated correctly both for the SOCs and for the SOH after
a few hundred cycles. This proves that the algorithm performs as intended when
the model is known.

Results for In-flight Data

Fig. 5.13 and Fig. 5.14 show the results of filtering the in-flight data of satellite
REIMEI with the MTS algorithm. The data comprise the first 34,000 cycles,
which is the period between August 2005 and December 2011. Fig. 5.13 shows
the results of the measurements and outputs and Fig. 5.14 shows the results of
the estimated states. Both the entire period that was simulated and filtered is
displayed, as well as zoom-ins of the first ten cycles and the first 500 cycles. Here,
the initial states are SOCanode,0 = 80 %, SOCcathode,0 = 20 %, and LSEI,0 = 10 nm.

In Fig. 5.13 a) and b), we see the cell voltage, including the CV cycling protocol,
the in-flight measurements, and the filtered voltage. The corresponding error
between the measured and the filtered voltage, which is shown in b) for the whole
period, was smoothed with a Gaussian filter. a) shows the zoom-ins. The same
structure is used for the cell current in c) and d) and for the EoDV in e) without
the zoom-ins.

We see in b), d) and e), that the error is reduced quickly and stays relatively
small over the whole period. In d) it seems as if the filtered current does not
cover the whole range of measured values. When examining the behavior in the
zoom-in in c) on the left-hand side, we see that only the first few points of each
charging period are not hit. This might be due to the fact that in the simulation
the period of CC charging before switching to CV charging is too short to be
depicted. Furthermore, we see that the simulation matches the measurements
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a)

b)

c)

d)

e)

Figure 5.13: Results of filtering in-flight data with MTS algorithm. Measurement
points and simulation output are displayed for the whole period of
34,000 cycles and zoom-ins of first ten and first 500 cycles. a) Zoom-
ins of cell voltage. b) Cell voltage with error. c) Zoom-ins of cell
current. d) Cell current with error. e) EoDV with error.
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a)

b)

Figure 5.14: Results of filtering in-flight data with MTS algorithm. Filtered states
are displayed for the whole period of 34,000 cycles and zoom-ins of
first ten and first 500 cycles. a) Zoom-ins of SOC and SEI thickness.
b) SOC and SEI thickness of whole period.

very accurately during charging, after the SOC filtering is started in the fourth
cycle. Also in the case of voltage in a), the simulation agrees better with the
measurements after the fourth cycle.

In Fig. 5.14, the filtered states are depicted. In case of the SOC, we show only one
entry of the state vector for anode and cathode respectively, since they all have a
very similar trend. In the case of SEI thickness, the state vector consists of three
entries for the discretization points of the anode. These can have very different
trends under certain filter conditions. Also, the SEI grows inhomogeneously as
has been described in [15] and in sec. 4.4, which is why it is sensible to examine
the growth behavior at different discretization points.

In a) in the zoom-in on the left-hand side, the onset of SOC filtering is clearly
seen when the SOC of the anode and cathode are strongly corrected by the filter.
When observing the filtered states of the whole period in b), we see that the states
have a physically sensible trend. The SEI is growing with a square root of time
behavior at the beginning and then it changes into a linear growth behavior. This
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is what we expect, as this aging behavior can be seen in experiments [51, 33, 46].
Furthermore, we see in a) on the right-hand plot and in b) that the SEI is growing
inhomogeneously, which is also consistent with experimental studies [16, 42, 79,
70].

a)

b)

c)

Figure 5.15: Comparison of filtering in-flight data with MTS algorithm and fil-
tering only SOC. a) Trend of SEI thickness. b) Trend of simulated
EoDV compared to measured data. c) Error of EoDV.

To prove the necessity of the MTS algorithm, we examine whether it is necessary to
estimate the SOH in addition to the SOC. For this purpose, we estimate the entire
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period of in-flight data using only the SOC filter and compare the results with
those of the MTS algorithm. All parameters and initial states remain unchanged.
Fig. 5.15 shows this comparison. In a) we see the trends of the SEI thickness. In
b) the EoDV trends are compared to the measured data. And c) shows the Error
of EoDV. We see that the error is much larger when only the SOC is filtered and
that it is not possible to obtain the right EoDV if not also the SOH is filtered.
From this we can conclude, that it is indispensable for the reliability to estimate
both the SOC and SOH.

5.3 Investigation of Models with Kalman Gain

The Kalman filter is used to compensate for the uncertainty in the measured
data. In addition, the filter takes uncertainties in the model into account and can
counteract them. In case of the in-flight data, unlike the synthetic data, we have
the additional uncertainty that we do not know the true model.

Up to this point, the degradation model that was determined by the parameter
study in sec. 4 was used for the state determination. This was parameterized with
the satellite battery data, so it can be assumed that it already fits well. Now,
the filter can give further hints on the goodness of the model. On the one hand,
this allows the parameters chosen for the model to be evaluated, and on the other
hand, the model itself can be evaluated, meaning whether the model represents the
processes that are mainly responsible for the degradation with reliable accuracy.

The degree to which the filter corrects the prior estimate of the time update of the
model can be read from the value Kk(yk − ŷk) from eq. (5.13). We call this value
Kalman gain correction. If the true model is known and used for the simulation,
the filter will correct the state only at the beginning of the simulation until the
output error is small enough. Afterwards, there will only be small corrections and
the value of the Kalman gain correction will be close to zero. Assuming that the
model is inaccurate or represents the processes insufficiently, the filter will have
to correct the states the whole time to reduce the output error. This would be
the case if e.g. the chosen model results in a SEI growth, which is faster than in
reality. Then the filter would need to reduce dSEI during the whole period and
the Kalman gain correction of the SOH would be negative. So, a Kalman gain
correction value close to zero is an indicator for the accuracy of the model.

Furthermore, it is necessary that the EoDV error is minimized and that the SEI
thickness shows a reasonable evolution, meaning that it grows in an expectable
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Table 5.1: Scaling factors of degradation model parameters for model studies with
Kalman gain correction.

Model 1 4 5 6 9 13 14 18 19 22 23 25 26 27

diffusion coefficient De- 0.1 0.1 1 10 10 0.1 1 10 0.1 0.1 1 0.1 1 10

conductivity κLi+
SEI 0.1 1 1 1 10 1 1 10 0.1 1 1 10 10 10

migration factor ω 0.1 0.1 0.1 0.1 0.1 1 1 1 10 10 10 10 10 10

order of magnitude and neither the growth rate nor the thickness itself becomes
negative. Especially, if the model respectively the states are known, which is the
case for synthetic data, the time evolution of the SEI thickness is also given.

Here, we will only study the Kalman gain correction of the SOH in dependence on
the degradation model. First, we investigate the filter behavior when the model
is altered from the true model, which we know in case of the synthetic data.
Afterwards, we will apply the filter to the in-flight data to learn more about the
accuracy of our model in case of an actually unknown model.

To investigate the filter behavior for different models, we vary the three parameters
of the degradation model, to be exact the diffusion coefficient De- , the conductivity
κLi+

SEI, and the migration factor ω, by orders of magnitude and multiplied them
with the scaling factors 0.1, 1, and 10. This results in a test set of 27 different
degradation models. The filter parameters are chosen as described in sec. 5.2.4
and are the same as in sec. 5.2.5. The initial states are SOCanode,0 = 80 %,
SOCcathode,0 = 20 %, and LSEI,0 = 10 nm. We also tested the same set with initial
SEI thickness LSEI,0 = 1µm, which produced the same results.

To evaluate the models of the study, we analyze the SEI growth, the error of the
EoDV, and the Kalman gain correction. The models which have a small error of
the SEI thickness or the EoDV or have a small Kalman gain correction, regarding
either synthetic or in-flight data, are candidates for being accurate models. A
selection of such candidates is listed in Table 5.1. In Fig. 5.16 and 5.17, we show
the results for these models for synthetic and in-flight data.
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5.3.1 Results for Synthetic Data

In Fig. 5.16, we compare the filtering of synthetic data with ten different models.
On the left-hand side, the quantities to evaluate the models are depicted for the
whole range of values. On the right-hand side, zoom-ins show the relevant section
or smaller values. We see that with models 14, 5, 22, 4, 23, and 6 the algorithm
estimates the SEI growth very or at least reasonably accurately. The error of
the EoDV is very small for models 14, 5, 22, 4, and 1, and still relatively small
for models 23 and 19. Models 14, 5, 22, 4, 18, and 27 have small Kalman gain
correction.

For model 14, which is the true model, we see the best fit of the SEI thickness, a
very small EoDV error, and the smallest Kalman gain correction. Model 5, which
differs from model 14 only in the migration factor, has similar good values in the
evaluation.

If we would only consider the error of the EoDV and ignore the Kalman gain
correction, model 1 could also be accurate. But both the unexpectable trend of
the SEI and the significantly negative value of the Kalman gain correction lead
to the conclusion that this model is inaccurate. Also, with models 1 and 19,
the SEI thickness is significantly too small. A possible explanation for the small
EoDV error with model 1 could be found in the model parameters. The main
difference to the models that give good results is that the conductivity is an order
of magnitude smaller. This parameter influences not only the growth rate of the
SEI, but also the cell internal resistance via the Butler-Volmer equation. This in
turn affects the voltage curve, since a larger internal resistance leads to a larger
hysteresis. As a result, with the help of a large correction by the filter, the error
of the EoDV can be reduced.

If we do not know the true SEI thickness, we need the EoDV error and the
Kalman gain correction to decide which model is accurate. Models 23 and 19
have a relatively small EoDV error but a large Kalman gain correction, from
which we can conclude that the models are incorrect. Model 6 has a plausible
trend of the SEI thickness, but since both the error of the EoDV and the Kalman
gain correction are large, this model can also be ruled out. Models 18 and 27 have
a relatively small Kalman gain correction but a large EoDV error and also the
trend of the SEI is not reasonable.

From this, we can conclude that in the case of synthetic data, where the model
covers all processes of the degradation and only the model parameters are un-
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known, the EoDV error and the Kalman gain correction are reliable indicators for
the accuracy of the model.

a)

b)

c)

Figure 5.16: Study of degradation model parameters with the help of the Kalman
gain correction. Comparison of filtering synthetic data with ten dif-
ferent models. Whole range on the left-hand side and zoom-ins on
the right-hand side. a) SEI thickness. b) Error of EoDV. c) Kalman
gain correction (KGC) for the SOH.
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5.3.2 Results for In-flight Data

We will use these indicators to validate the accuracy of models used to estimate
the real in-flight data. In Fig. 5.17, we compare the results of the MTS algorithm
applied to the in-flight data for eleven different models. We choose these models,
as they fulfill the criterion of a small EoDV or a small Kalman gain correction
and demonstrate the variety of possible outcomes of this procedure.

Just as with the synthetic data, we look at the relevant quantities in their entire
range on the left-hand side. On the right-hand side, we show zoom-ins to distin-
guish smaller values. In a) we see the trends of the SEI thickness, in b) the error
of the EoDV, and in c) the Kalman gain correction of the SOH filter.

The models, which produce a small EoDV error are models 1, 4, 5, 13, 14, and 22.
Models 4, 5, 9, 13, 14, 18, 22, 25, 26, and 27 have a small Kalman gain correction.
The models 4, 5, 13, 14, and 22, which have both, a small EoDV error and a
small Kalman gain correction, all have a similar trend of the SEI growth. This
growth behavior fits our expectation, that the degradation follows a linear trend
beginning from a later point of the lifetime. These models are all candidates for
being accurate models for the degradation of the satellite batteries.

Again, as in case of the synthetic data, model 1 has a small EoDV error, but a
large Kalman gain correction, which leads to the conclusion, that this model is no
appropriate candidate.

Models 4, 13, and 22 have the smallest EoDV error. These models all have the
same diffusion coefficient De- and conductivity κLi+

SEI. Only the migration factor
ω differs. The error for model 22 is slightly larger than for model 4 and 13.
From this, we can conclude that the migration factor has a small influence on
the simulation and filtering behavior combined with this setting of values for De-

and κLi+
SEI. This changes for larger values of De- and κLi+

SEI as can be observed
from models 9, 18, and 27. These models also only differ in the migration factor
but have larger factors for the diffusion coefficient and conductivity. They all
have a small Kalman gain correction but a large EoDV error. Here the difference
between the models becomes more apparent. This can best be seen in the SEI
growth, where the SEI grows the most for the model with the largest migration
factor.

Model 14, which is the “original” one, meaning that the model parameters were
fitted to the satellite batteries in sec. 4.4.1, shows a small EoDV error, a reason-
able SEI growth, and a small Kalman gain correction. However, according to this

99



5 State Estimation of Satellite Batteries

evaluation procedure, model 4 even shows a slightly more accurate agreement.
The difference between these models is that De- and ω are an order of magnitude
smaller in model 4, cf. Table 5.1. From this procedure, we can conclude when
comparing the best model candidates, that the conductivity κLi+

SEI is already de-
termined appropriately in model 14. The diffusion coefficient De- and migration
factor ω might be smaller down to one order of magnitude, keeping in mind that
these two parameters influence each other.

In summary, the MTS algorithm can reliably estimate the hidden model states and
it can even compensate for uncertainties in the model. Moreover, the algorithm
can be used to evaluate the accuracy of the model.
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a)

b)

c)

Figure 5.17: Study of degradation model parameters with the help of the Kalman
gain correction. Comparison of filtering in-flight data with eleven
different models. Whole range on the left-hand side and zoom-ins on
the right-hand side. a) SEI thickness. b) Error of EoDV. c) Kalman
gain correction (KGC) for the SOH.
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6 Conclusion and Outlook

This thesis investigates the degradation of Li-ion batteries in satellites. For this
purpose, we have been provided with data from JAXA (Japan Aerospace Explo-
ration Agency). They developed the small scientific satellite REIMEI and sent it
into orbit 18 years ago to investigate new technologies and take pictures of the au-
rora. Part of the mission was to investigate the use of commercial Li-ion batteries
in aerospace applications. Over the years, the cells were charged and discharged
several thousand times with a cycling profile typical for the low Earth orbit. This
leads to a uniform aging of the cells. This recorded data on cell aging is a unique
basis for studying the long-term degradation of Li-ion batteries.

In order to gain insights into the cells orbiting on a low Earth orbit, which cannot
be accessed directly, physical-based models are used that describe the processes
in the battery and can be compared with the measured battery data using simu-
lations. To this end, we first outline two models that describe the processes in the
cell during cycling and aging and that, when coupled, provide a complete model
to simulate the long-term aging of satellite cells. For aging, the process that is
the main reason for capacity fade in Li-ion batteries was considered. This is the
continuous growth of the solid-electrolyte interphase.

The models need to be calibrated using experimental data. For this purpose,
both the in-flight data from the satellite REIMEI batteries are available, as well
as various additional data from terrestrial experiments carried out simultaneously
with the satellite mission using the same cells as in the satellite. We have described
the experiments in order to be able to use them for calibration of the models.

We then analyzed the in-flight data. These are important - among other things -
for evaluating the models. These data are only available as raw data and metadata
such as cycling protocols are missing, so they could not be used directly. We pro-
cessed the data extensively, taking into account various irregularities such as data
gaps, and extracted protocols from the data that can be used for the simulations.

Not only the satellite data but also CT data from the satellite batteries were pro-
cessed in order to obtain parameters of the pouch cells. We used these parameters
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together with a surrogate optimization to fully parameterize the cell model. The
degradation parameters were determined using a basic method due to the long
simulation time of long-term cycling. Therefore, a parameter test space was de-
termined in which the parameters are distributed equidistantly and from this space
the parameter set that best replicates the experimental data was determined.

The parameterized models were used to simulate different scenarios in order to
investigate the degradation of the cells depending on the charging and discharging
currents. The models were simulated in a pseudo-2D as well as in a 3D framework.
In both cases, it can be observed that the growth of the SEI depends on the current
and is different at different points of the anode, meaning it grows inhomogeneously.

The parameterized models are a good basis for a more sophisticated approach to
estimate the states of the battery. Knowledge of variables such as the SOC and
SOH of a battery is of great interest for the battery management and for planning
further steps in the use of the cell.

Since the inner states cannot be measured and both the measurements and the
models are uncertain, filters are required for estimation. We have developed a
multi-timescale algorithm based on Kalman filters that estimates the states de-
pending on the measured quantities. This involves coupling two filters in order to
be able to simultaneously estimate the states, namely SOC and SOH, that evolve
on different timescales and influence each other. The algorithm was developed
with synthetic data of which the states are known and subsequently validated
with the in-flight data. We then applied the algorithm to evaluate different degra-
dation models. We used the state correction of the algorithm together with the
error between simulation and measured values as an indicator for the correctness
of the model. The mutli-timescale algorithm is able to reliably estimate both the
SOC and the SOH. It is a helpful tool to validate the models.

There are several possible adaptations for the approach developed here. When
considering the model for a comprehensive simulation of battery behavior and
aging, it would be interesting to include other degradation mechanisms, such as
particle cracking. The coupling of these is described, for example, in Ref. [68].
This could better describe the accelerated aging that is observed at later points
in the battery life. In addition, features were discovered in the satellite data that
indicate plating [63]. These also occurred at a later point in time and could be
verified by including for example the plating model of Hein et al. [38]. Moreover,
the estimation of the SOH could be extended based on this.

In order to model a larger range of aging, the in-flight data could be processed over
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an even longer period of time. However, this would require more complex data
analysis and more background information on the cycling of the satellite batteries.

There are also several approaches for state estimation that could be investigated
further. In this work, the Extended Kalman Filter (EKF) was used. Other filters,
such as the Particle Filter or Unscented Kalman Filter, can also be used for
nonlinear systems. It would be interesting to compare their performance with
that of the EKF and investigate whether they deliver even better results, cf.
Refs. [75, 106, 47].

In sec. 5.3, we described how the Kalman gain correction can be used to evaluate
the accuracy of the degradation model. Here, it would be conceivable on the one
hand to extend the model used, in particular the degradation model, in order to
achieve greater reliability. It would also be interesting to use this method to check
the cell model and its parameters. Furthermore, one could investigate how the
Kalman gain correction of the SOC filter behaves and whether information on the
cell model can be obtained from this.

Finally, the methods and algorithms were developed based on satellite applica-
tions. It would be a valuable addition to validate the methods using other battery
data. In particular, other cycling protocols than those for LEO satellites could
provide interesting insights. With that, the methods and algorithms can easily be
applied to other applications, such as electric vehicles or any devices that require
sophisticated battery management.
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A REIMEI Batteries

Table A.1: Specifications of Li-ion pouch cell used in satellite REIMEI, cf. [19,
105].

Cell Chemistry

Positive active material LixMn2O4-based

Positive current collector material Al

Negative active material Graphite-based

Negative current collector material Cu

Electrolyte 1 M LiPF6 EC/DEC (3:7 by
wt%)+additives

Cell Dimensions

Rated capacity 3 Ah

Weight 75 g

Dimension 145 mm x 80 mm x 4 mm

Specific energy 158 Wh kg-1

Energy density 340 Wh L-1

Voltage Range

Charge voltage 4.1 V (4.2 V)

Lower voltage limit 3.0 V
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A REIMEI Batteries

Table A.2: Specifications of Li-ion batteries used in satellite REIMEI, cf. [19, 105].
Configuration 14 Cells (7 series, 2 parallel)

Potting material Epoxy resin

Case material Al

Dimension 168 mm x 102 mm x 99 mm

Weight 2.42 kg

Specific energy 70 Wh kg-1

Table A.3: Solar eclipses between 2005 and 2011. From Ref. [1].
Date Total Solar Eclipse Partial Solar Eclipse Visibility in Data

2005-10-03 x no

2006-03-29 x yes

2006-09-22 x yes

2007-03-19 x yes

2007-09-11 x no

2008-02-07 x yes

2008-08-01 x no

2009-01-26 x no

2009-07-21/22 x no*

2010-01-15 x no*

2010-07-11 x no*

2011-01-04 x no*

2011-06-01 x no*

2011-07-01 x no

2011-11-25 x no*
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B Model Parameter

OCV Curves. The OCV curves are fitted to the half cell measurements of Brown
et al. [20] and are also stated in Ref. [15]. They are SOC dependent with SOC =
cs/cs,max. For the anode we get

U0,anode = 254.5443−0.02525 ·SOC (B.1)
−254.273365 · tanh((SOC+0.0097) ·319.5)
−0.3086345 · tanh((SOC−0.0199) ·47.0)
−0.025 · tanh((SOC−0.1414) ·27.52)
−0.015 · tanh((SOC−0.2275) ·18.36)
−0.1978 · tanh((SOC−1.0444) ·14.43)
−0.0155 · tanh((SOC−0.56616) ·12.625).

For the cathode we get

U0,cathode = 289.99−336.28 ·SOC (B.2)
−164.73 · tanh((SOC+0.5302) ·6.824)
−0.0768 · tanh((SOC−0.442) ·7.617)
−0.171 · tanh((SOC−0.9051) ·13.16)
−0.3126 · tanh((SOC−0.9908) ·96.14)
+3896.375 · tanh((SOC−0.36182) ·0.08632).

For the simulations in chapter 5, the OCV curve of the anode was slightly adapted
to ensure a robust filtering behavior. It is given as
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B Model Parameter

U0,anode = 53.562−0.025 ·SOC (B.3)
−254.273365 · tanh((SOC+0.0097) ·319.5)
−0.3086345 · tanh((SOC−0.0199) ·47.0)
−0.025 · tanh((SOC−0.1414) ·27.52)
−0.015 · tanh((SOC−0.2275) ·18.36)
−0.18 · tanh((SOC−1.1) ·6.67)
−0.0155 · tanh((SOC−0.57) ·12.5)
−201 · tanh((SOC−1.07) ·100).

Table B.1: Electrolyte parameters from [29]. Parameters are concentration de-
pendent with concentration ce given in units of mol/L. From Bolay et
al. [15].

Parameter Description Value Unit

De Binary diffusion coefficient 2.84 · 10−10 · exp(−0.45 ·
ce)

m2s−1

t+ Transference number 0.4+0.2 · ce −0.125 · c2
e 1

κ Conductivity (3.4 · ce − 4.7 · c
3
2e + 2 ·

c2
e) · (1 + 0.2 · c4

e)−1
Sm−1
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Table B.2: Parameters of P2D model. From Bolay et al. [15].

Parameter Description Anode Cathode Sep. Unit Source

L Thickness 45.5 74.5 30 10−6 m CT data

ε Porosity 0.4 0.4 0.5 1 CT data

τ Tortuosity 2.6 2.6 2.6 1 assumed

Aspec Specific surface
area of electrode
particle

3.03 2.14 105 m2m−3 CT data

cs,max Maximum Li con-
centration

3.161 2.6 104 mol m−3 fit

Ds Diffusion coef-
ficient of Li in
electrode

10 1.13 10−13 m2s−1 fit

k Rate constant
in Butler-Volmer
term

59.2 4.48 10−7·
A m5/2 mol−3/2

fit

SOCC,0 Initial SOC of an-
ode

98 % fit

SOCLMO,0 Initial SOC of
cathode

25 % assumed
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B Model Parameter

Table B.3: Parameters of 3D simulations. From Bolay et al. [15].

Parameter Description Anode Cathode Unit

L Thickness 50 58 10−6 m

ε Porosity 0.4883 0.3658 1

Aspec Specific surface
area of electrode
particle

2.5 2.19 105 m2m−3

cs,max Maximum Li con-
centration

3.375 3.16 104 mol m−3

Ds Diffusion coefficient
of Li in electrode

10 1.13 10−13 m2s−1

k Rate constant
in Butler-Volmer
term

59.2 4.48 10−7·
A m5/2 mol−3/2

SOC0 Initial SOC 95 22 %

Table B.4: Parameters of degradation model. From Bolay et al. [15].

Parameter Description Value Unit Source

VSEI Mean partial molar volume of the SEI 95.86 ·10−6 m3mol−1 [94]

ce-
0 Interstitial concentration 1.5 ·10−2 mol m−3 [94]

sSEI Stoichiometric coefficient 2 1 [94]

LSEI,0 Initial SEI thickness 10 ·10−9 m fit

De- Diffusion coefficient of Li-interstitials 1.6 ·10−12 m2s−1 fit

κLi+
SEI Conductivity of Li-ions in SEI 1 ·10−5 S m−1 fit
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C MTS Algorithm Test Results

In this chapter, we show additional results of the MTS algorithm, which we tested
with in-flight and synthetic data to calibrate the filter parameters.
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C MTS Algorithm Test Results

a)

b)

c)

d)

e)

Figure C.1: Comparison of filtering behavior for different process covariance ma-
trices QSOC for synthetic data. a) Error of cell voltage. b) Error of
cell current. c) Error of EoDV. d) Trend of SOC of anode and cath-
ode. e) Trend of SEI thickness.
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a)

b)

c)

d)

e)

Figure C.2: Comparison of filtering behavior for different process covariance ma-
trices QSOC for inflight data. a) Error of cell voltage. b) Error of cell
current. c) Error of EoDV. d) Trend of SOC of anode and cathode.
e) Trend of SEI thickness.
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C MTS Algorithm Test Results

a)

b)

c)

d)

e)

Figure C.3: Comparison of filtering behavior for different process covariance ma-
trices P SOC

0 for inflight data. a) Error of cell voltage. b) Error of cell
current. c) Error of EoDV. d) Trend of SOC of anode and cathode.
e) Trend of SEI thickness.
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a)

b)

c)

d)

e)

Figure C.4: Comparison of filtering behavior for different process covariance ma-
trices QSOH for synthetic data. a) Error of cell voltage. b) Error of
cell current. c) Error of EoDV. d) Trend of SOC of anode and cath-
ode. e) Trend of SEI thickness.
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C MTS Algorithm Test Results

a)

b)

c)

d)

e)

Figure C.5: Comparison of filtering behavior for different process covariance ma-
trices P SOH

0 for synthetic data. a) Error of cell voltage. b) Error of
cell current. c) Error of EoDV. d) Trend of SOC of anode and cath-
ode. e) Trend of SEI thickness.
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a)

b)

c)

d)

e)

Figure C.6: Comparison of filtering behavior for different process covariance ma-
trices P SOH

0 for inflight data. a) Error of cell voltage. b) Error of cell
current. c) Error of EoDV. d) Trend of SOC of anode and cathode.
e) Trend of SEI thickness.
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