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Abstract—In the field of robotics, ensuring precise represen-
tation of spatial transformations is imperative for maintaining
reliable system performance. However, conventional approaches
often prove inadequate due to their failure to consider internal in-
accuracies in the robot and environmental factors. In the context
of robotic systems, deviations from nominal transformations arise
from various sources such as sensor decalibration, inaccuracies
in joint positions, deformations induced by mechanical stress,
and gravitational influences, among other contributing factors.
The same applies to environmental uncertainties, where the
registered poses of objects and landmarks suffer from limitations
in the perception methods. This paper advocates for a paradigm
shift by introducing a framework that incorporates uncertainty
into transformation trees, utilizing Lie Algebra for a consis-
tent computation. Our approach addresses the aforementioned
challenges, providing a realistic and robust representation of
transformations. We demonstrate the applicability and efficacy
of our framework through real-world examples.

Index Terms—robotics, transformation tree, uncertainty mod-
eling, Lie Algebra

I. INTRODUCTION

In the dynamic landscape of robotics, accurately repre-
senting spatial transformations is pivotal for reliable system
performance. Conventional methods, which treat provided
transformations as precise and deterministic, face difficul-
ties in coping with inherent inaccuracies within the system
and environmental complexities. This paper underscores the
critical need for inaccuracies-aware spatial representations in
robotics, often denoted as scene graphs. These representations
allow modeling not only the spatial relationships in a robot-
environment system but also our missing knowledge about it.

An illustrative instance can be found in the distinction
between a robotic arm’s repetition accuracy, which signifies its
capability to consistently reach the same point in a workspace,
and the robot’s absolute accuracy. There, the first can be
assumed to be ”exact” for conventional robotic systems. How-
ever, the error of the latter can be higher by several orders
of magnitude, motivating the modeling of the error. Position
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measurements constrained by both physical limitations and
environmental influences, frequently fall short of the requisite
precision. This constraint becomes especially critical in appli-
cations requiring high accuracy, such as surgical robotics.

An additional example is the process of registering a robot
with respect to its environment, a task achieved through
either an inaugural calibration procedure or by means of the
navigation implemented in mobile robotic systems.

Interestingly, various scholarly works have considered robot
uncertainty within specific domains, such as the kinematic
structure or autonomous navigation components.However,
there is limited progress in combining these several domains
into one single representation like a scene graph to have
a unified consideration of inaccuracy-aware spatial relations.
Conventional approaches that disregard uncertainty in scene
graphs fall short in capturing the intricacies of real-world
scenarios.

This paper advocates for a paradigm shift by introducing
a framework that incorporates uncertainty into scene graphs,
offering a more realistic and robust representation of transfor-
mations. By addressing challenges posed by both robot internal
inaccuracies and the uncertainty of the robot’s interaction with
the environment, our approach aims to enhance the reliability
and performance of robotic systems in practical applications.

We use the following terminology in this paper: Robotic
systems can be subject to errors that cause inaccurate pose
calculations, either within the system or with respect to its
environment. A common simplification is to model such
inaccuracies in a probabilistic way, thus subjecting nominal
relative poses to an additional uncertainty. For a multitude of
robotic applications, such uncertainty is modeled as a zero-
mean normal distribution, thus an uncertain pose consists
of a nominal pose and a covariance matrix. Generally, this
simplification trades the exact representation of robotic errors
for the availability of powerful mathematical tools and is thus
well established in the robotic community. We adopt this error
modeling as well, which allows us to immediately integrate the
probabilistic pose information from other software components
into our scene graph.

II. RELATED WORK

Accurately describing the spatial relationships of a robot
and its environment is a key aspect of robotics specifically



and mechanical mechanisms generally.
Commencing with the early explorations in formulating

a framework for kinematics in mechanical structures [1],
[2], the field witnessed significant strides with one of the
pivotal works by Denavit and Hartenberg [3]. In this ground-
breaking contribution, the authors devised a structured yet
elegant methodology to comprehensively describe the chain
of transformations associated with robotic arms. Subsequent
endeavors augmented the toolbox of robot kinematics rep-
resentation, for example by considering the underlying Lie-
Algebra of spacial transformations [4]. Our recent work [5]1

provides a kinematic robot description that allows to consider
the inaccuracies from joint position measurements, mechanical
stress-induced deformations, and gravitational influences in a
probabilistic manner.

In the field of robotic navigation, many approaches already
consider the uncertainty of relative transformations, especially
in the area of SLAM where e.g. [6] or [7] use the covariance
or information matrix, respectively, to weigh different spatial
transformations in a graph optimization.

The interaction of a robot with objects in its environment,
specifically the uncertainties inherent in the workspace, has
been investigated in [8]. Additionally, notable strides have
been made in recent research towards modeling the uncertainty
embedded within the perception process of classical [9] and
deep-learning-based [10]1 methods.

Finally, the hand-eye-calibration of a robot is nothing else
but an additional transformation between the real and the
nominal robot geometry, and can thus also be subject to
inaccuracies, as discussed by [11].

In the end, all these sub-fields of robotics provide a mul-
titude of different types of spatial transformations, where
potentially all of them are subjected to errors which are being
modeled as uncertainties.

Systematic approaches to order a multitude of intercon-
nected transformations, particularly within the realm of virtual
reality (VR) [12], [13], and robotic simulators [14], [15],
considered the utilization of a scene graph to represent rel-
ative spatial relationships. This scene graph, akin to a tree
structure, comprises multiple nodes arranged in a parent-child
manner. This innovative approach enhanced the representation
and simulation capabilities in both virtual reality and robotic
simulation domains. The current state of the art is tf [16], the
scene graph framework of ROS (robot operating system).

Interestingly, very little work has been published that con-
siders the uncertainty of spatial information by interconnecting
the different realms of robotics. Initial efforts have been
directed towards acknowledging uncertainty within the scene
graph, for example [17]. However, these early attempts typ-
ically fall short in correctly modeling the error propagation
using Lie Algebra. Alternatively, some implementations resort
to sampling-based approaches to represent the overall uncer-
tainty within the system, such as [18], which however comes
with computational costs.

1Now known as L. Burkhard, et al.

The Lie-Algebra allows to acknowledge the manifold char-
acter of spatial relationships and is a powerful tool to compute
and propagate uncertainty along chains of spatial transforma-
tions. An introduction to it together with the application to
robotic navigation is provided by [19]. Similarly, Lie-Algebra-
based concepts are provided for the error propagation within
robotic manipulators, either for single errors [20] or as our
comprehensive kinematic model [5].

Despite the widespread use of Lie Algebra in uncertainty
estimation, to the best of our knowledge, no existing approach
formulating a scene graph for robotics has integrated Lie
Algebra-based uncertainty propagation. In our ongoing work,
we aim to address this gap and demonstrate the efficacy of
incorporating Lie Algebra into a scene graph framework for
a more nuanced and accurate representation of uncertainty in
kinematic systems.

III. ROBOTIC AND ENVIRONMENTAL CONFIGURATION
STATE

Accurate assessment of the current configuration state in
robotic systems holds significant importance across various
applications. This is particularly pronounced in scenarios
involving non-static components equipped with perception
sensors. Registering cameras affixed to robotic manipulators
to the robot’s origin is imperative for seamlessly integrating
spatial information within the correct coordinate framework.
Knowledge of the system’s distance to the environment is
indispensable for collision avoidance, especially when navi-
gating confined spaces. To achieve this, it’s crucial to carefully
observe and organize the positions of joints into a trans-
formation tree. This tree helps illustrate how the coordinate
framework depends on a specified starting point known as
the root frame and obtaining an estimate of the robot’s
spatial volume. However, overlooking the inherent uncertainty
in these measurements and the subtle non-static character-
istics of certain links—attributable to mechanical stress and
gravitational forces—can lead to erroneous state estimations.
In the ensuing discussion, we elaborate on representing the
robotic and environmental configuration state (RECS) as a
transformation tree. Subsequently, we introduce Lie Algebra
as a robust solution for modeling uncertainty in this process.
Finally, we detail our implementation of a managed and
centralized approach for addressing the RECS problem within
an inter-process communication (IPC) framework.

A. Transformation Tree

Deriving the transformation between two coordinate frames
is a pivotal task in robotics. A widely employed approach
involves modeling the system as a hierarchical tree of frame
transformations, as seen in the example Figure 1. This facil-
itates information extraction from the CAD model, allowing
for the calculation of spatial offsets between structural points.

A key optimization involves consolidating static displace-
ments into a singular transformation, pruning the tree for
computational efficiency. Movable connections are represented
as rotations or translations centered around joints, contributing
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Fig. 1: An illustrated exampled of a robotic manipulator and
an external camera. The transformation from the camera to the
tool center point of the robot can be calculated concatenating
all individual frame transformations.

to a chain of static links and dynamic joints. This approach not
only streamlines computational complexity but also provides a
comprehensive understanding of a robotic system’s kinematic
properties, enhancing efficiency and reliability.

Following the comprehensive description of robot kine-
matics within the previously mentioned tree structure, the
process of retrieving the direct transformation between any
two arbitrary frames unfolds by traversing the path articulated
within this structured tree. This systematic approach ensures
a clear and methodical procedure for obtaining the specific
transformation information required for precise spatial rela-
tionships between frames within the robotic system.

B. Transformations and Uncertainty

Our treatment of uncertainties follows our previous work on
probabilistic robot kinematics [5], which in turn builds upon
the mathematical foundations provided by [19] and [21].

We briefly introduce the applied methods here, but refer
the interested reader to the related works for more thorough
insights. For a general introduction to Lie Algebra in the scope
of robotics, we recommend the excellent [22], who’s notation
we mostly follow.

A pose TAB ∈ SE(3) describes the position and orientation
of an object B with respect to a reference frame A. While
a pose quantity is generally an element of the manifold
SE(3), it can be described locally by its linear tangent space
representation ξ = [ρθ]T ∈ R6, related by the exponential
map [22]

T = Exp(ξ). (1)

There, ρ denotes the translational and θ the rotational com-
ponent of the tangent space element. Local tangent space
quantities can be mapped between two different local spaces
using the adjoint matrix Ad as

Aξ = Ad(TAB)
Bξ, (2)

with
Ad =

[
R [t]×R
0 R

]
∈ R6×6, (3)

where R being the rotation matrix of T an [t]× the skew-
symmetric matrix formed by the translation. The term [t]×R

illustrates, how local rotation errors create translation errors
further down a chain of transformations, with the magnitude
depending on the distance from the original error’s location.

Recall that we describe the error of a pose as local deviation
ξB,err of a nominal pose TAB , i.e., in the tangent space of
the pose’s reference frame B. The corresponding covariance
matrix ΣAB = E

[
ξB,err ξ

T
B,err

]
∈ R6x6 is therefore a locally

defined tangent space quantity.
The two mathematical operations on poses, which are

needed for the scene graph, are thus defined in these terms.
The concatenation is computed as

TAC = TAB ∗ TBC (4)

ΣAC = AdT−1
BC

ΣABAdT
T−1

BC
+ΣBC . (5)

Note that the two covariance matrices are transported into the
common reference frame C using the adjoint matrix, where
they can be added due to the linearity of the tangent space. The
covariance composition eq. (5) is a first order approximation
(called second order in some publications) and is discussed in
detail in [19].

Analogously, the inverse is computed as

TBA = T−1
AB (6)

ΣBA = AdTAB
ΣABAdT

TAB
, (7)

shifting the uncertainty from the tangent space of B in the
tangent space A. We omit the discussion on the specific mod-
eling of probabilistic rover kinematics here and refer the reader
to our previous publication [5]. Note that this representation
can implicitly also consider exact transformations, as zero-
covariances simply vanish in eq. (5) and eq. (7).

C. Implementation

The presented methodology has been implemented within a
C++ library, and the corresponding source code is accessible
online2. Further, a wrapper for the scripting language Python is
provided. Each coordinate frame is characterized by a node-
element. A frame is precisely defined by its pose matrix T
and an accompanying covariance matrix Σ which may be set
to zero for precisely known transformations. Distinctive iden-
tification of each frame is facilitated through the application
of a unique character string. Furthermore, the mathematical
operations of concatenation and inverse for each frame are
executed leveraging the computational capabilities provided
by the manif library [22] augmented by the uncertainty prop-
agation.

The hierarchical structure is implemented using the
Boost.Graph data structure.Each vertex encapsulates a frame
as its payload, and the edges define the direction of trans-
formations. To determine a path between two nodes within
the tree, a breadth-first search (BFS) routing algorithm is
employed. The cumulative transformation along the identified
path is computed based on the direction specified by the
graph’s edges, facilitating a comprehensive understanding of

2https://rmc.dlr.de/rm/en/staff/marco.sewtz/software
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Fig. 2: A schematic overview of the tree structure holding all
transformation information. The whole system is consisting
of separate trees that do not share any connection. Each tree
is constructed by child nodes that are added by directed
transformations to their parent node. Further, neighboring
nodes can be grouped to a cluster. A transformation between
non-neighboring nodes is described by a path.

the transformations between the starting and ending points of
the path.

The system allows for the addition of additional root
nodes, thereby declaring new trees that remain disconnected
from preceding ones. It is imperative to underscore that the
establishment of a path between nodes situated on distinct
trees within the forest is not feasible. Each root node initiates
an independent tree structure, and inter-tree connectivity is
explicitly precluded within the system’s framework.

The default operational paradigm involves centralized con-
trol over all trees, nodes, and computations via a central
server. A connected client possesses the capability to perform
operations such as creation, retrieval, updating, or deletion
of nodes. Additionally, the client can request the cumulative
transformation of a specific path. An added feature allows
the definition of a local cluster within a tree, enabling the
transfer of ownership from the server to a designated client.
Consequently, the client gains the ability to locally compute a
path within this cluster without necessitating network calls for
information retrieval, thereby enhancing computational speed
for that particular client. Other clients will be still able to
access this information however it must be routed through the
server. An illustration of this architecture is given in Figure 2.

IV. APPLICATION

To demonstrate the practical utility of the proposed frame-
work, two examples of application will be illustrated in the
following. An in-depth analysis of the applying Lie Algebra to
the configuration modeling problem has been presented in [5],
therefore we want to focus on the scene-graph implementation.
At first, the initial application showcases the integration on a
robotic arm affected by bending introduced by gravitational

Fig. 3: TINA arm bending due to gravitation. The computed
position, designated as T′, represents the theoretical location
without accounting for uncertainties.

pull of the Earth. The second instance will illustrate a map-
ping application on a system featuring an uncertain RECS,
formulated as a graph optimization problem.

A. Uncertain robotic and environmental configuration state

As an integral component of the European Space Agency
(ESA) project for a Sample Transfer Arm breadboard study,
the German Aerospace Center (DLR) developed the TINA
manipulator [23] as a compact, modular, and torque-controlled
robotic system designed to adhere to the requirements of the
Mars Sample Return mission. Figure 3 illustrates the robotic
arm in its initial position mounted on a lander. Upon closer
inspection, it becomes evident that the manipulator, even in
its initial configuration, experiences moderate deformations
attributable to its own weight and joint play, particularly in
the axial direction. As a result, the pose of the end effector
is subjected to several uncertainties, which can be modeled
with the proposed framework. By incorporating the expected
variance parameters into the transformation tree, the state
of the robot configuration can be predicted probabilistically,
and the position of the end effector is constrained to an
anticipated uncertainty region. Consequently, the consideration
of uncertainties provides a more realistic depiction of the arm’s
pose, acknowledging the impact of various factors, including
gravitational forces, and enhances the accuracy of the posi-
tional assessment, enabling more precise manipulations. The
selection of adequate probabilistic parameters heavily depends
on the associated system’s specific characteristics and requires
specialized technical knowledge. If necessary, an experimental
evaluation has to be conducted to validate and fine-tune these
parameters.

B. Environmental Mapping

To enable more intricate manipulations and interactions
between the robot and its environment, a significant challenge
lies in achieving precise registration of the robot relative to its
surroundings. This entails aligning various world representa-
tions generated for different types of tasks to ensure coherence
and accuracy in the robot’s perception of its environment.
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Fig. 4: Rollin’ Justin mapping a SPU in a Martian environment
(a) and the associated optimization graph is represented in
(b). The uncertainty-ridden transformation is summarized as
TRB HC from robot base (RB) to the head camera (HC), from
which fiducials associated to the SPU are registered.

As depicted in Figure 4a, Rollin’ Justin [24] is mapping
a Smart Payload Unit (SPU) in a Martian surroundings. In
addition to the unknown state of the environmental configura-
tion, a further challenge arises from within the robot. Although
the upper body assembly is rigidly connected to the base
platform, the wire rope construction in different parts of the
torso is inherently less precise than the rigid joints of the
arms, introducing uncertainties into the robot’s configuration
state. Effectively managing and mitigating this uncertainty is
crucial since information for navigation purposes is collected
from sensors in the base, while other higher-level tasks, e.g.,
object recognition and manipulation, rely on information from
the camera mounted in Justin’s head. Therefore, modeling
the spatial relations of the robot configuration state, includ-
ing uncertainties, is essential and can be addressed by the
proposed framework. It is further capable of simplifying the
handling of transformations and their associated uncertainties
by summarizing them into one single step.

In the context of environmental mapping, the transformation
from the robot base to the head camera becomes particularly
critical as it serves as the foundation for registering fiducials
linked to the SPU. Combined with the spatial relationship to
the registered fiducials and information regarding the global
reference provided by MROSLAM [25], an optimization graph
can be constructed, as illustrated in Figure 4b. The optimiza-
tion problem can be effectively addressed using GTSAM [26]
or comparable algorithms, leading to an optimized estimation
of the SPU’s pose. This comprehensive approach significantly
improves the reliability and quality of environmental mapping
outcomes in the robot’s operational context.

V. CONCLUSION

We present a Lie Algebra-based framework for uncertainty
estimation, realized as a transformation tree. Our work de-
velops a scene-graph-like structure and details the library
implementation. Real-world examples demonstrate practical
applicability, and comparative analysis highlights method su-

periority. This contribution enhances robotic transformations,
offering a versatile tool for improved reliability and perfor-
mance.

Future work includes temporal deviation modeling for
enhanced capabilities, enabling configuration retrieval from
previous timesteps. We aim to align the interface with ROS’s
tf implementation for seamless integration.
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