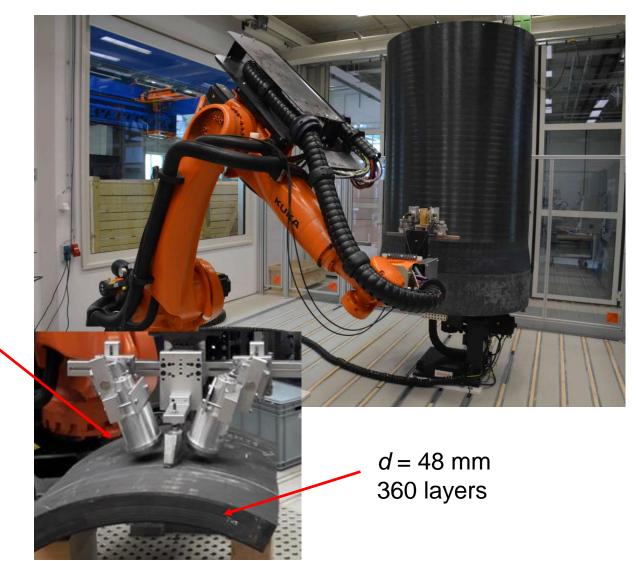
The Dispersion Calculator: a free software for calculating dispersion curves of guided waves

Dr. Armin Huber German Aerospace Center (DLR) Exclusive Sponsor

20th WCNDT

20th World Conference on Non-Destructive Testing

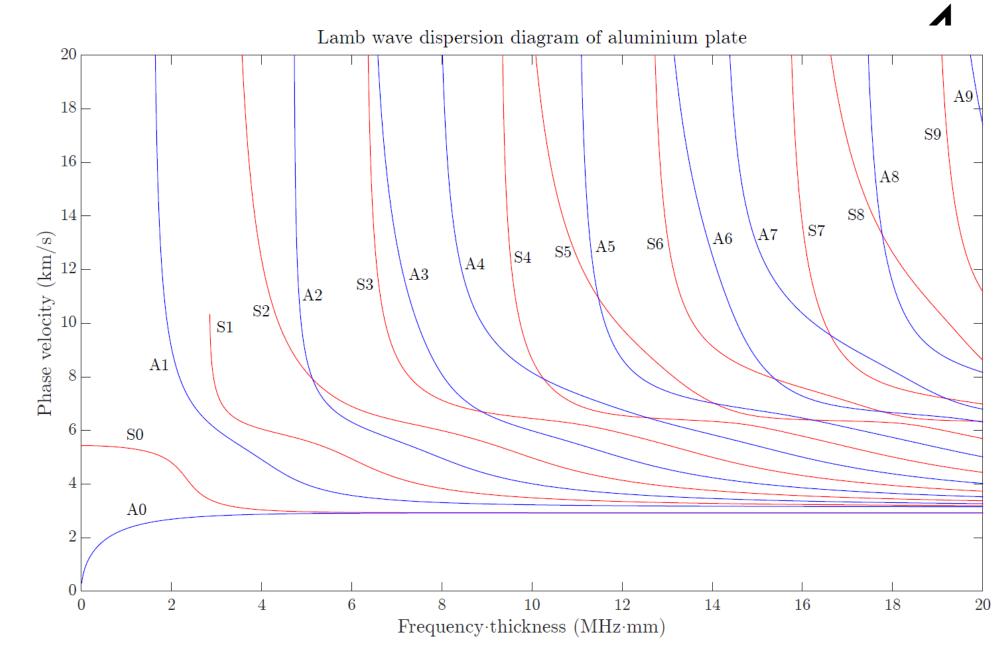
Songdo Convensia, Incheon, Korea 27-31 May 2024



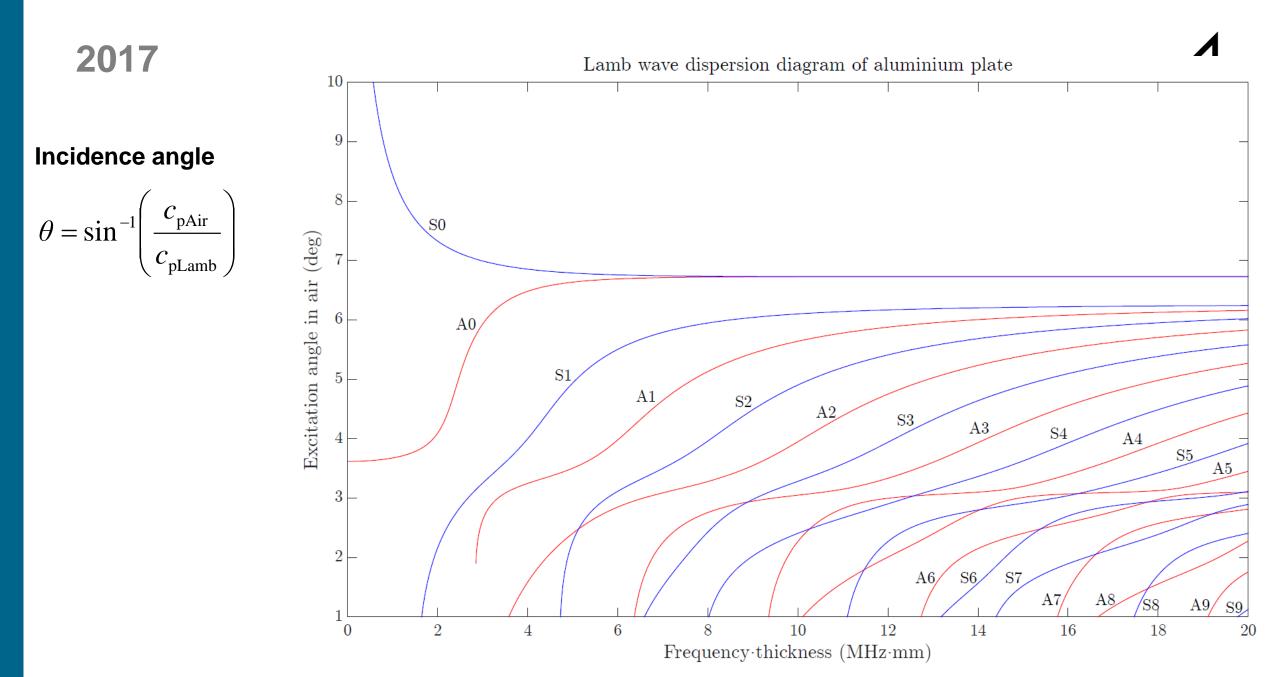
Why developing the Dispersion Calculator (DC)?

- Air-coupled ultrasonic inspection of <u>composite</u> rocket booster pressure vessels
- Excitation of Lamb waves by slanted incidence
- Lamb waves are dispersive →
 Incidence angle is too
- No free software for calculating dispersion diagrams available (except GUIGUW) → Purchase DISPERSE

Why developing the Dispersion Calculator (DC)?


- DISPERSE cannot handle so many layers
- Starting with small MATLAB scripts:
 - Rayleigh-Lamb equations for isotropic single layers
 - Transfer Matrix Method (TMM) for isotropic and anisotropic multilayers
 - \rightarrow encountering the numerical instability in TMM
 - Came across the Stiffness Matrix Method (SMM)
 - \rightarrow numerically stable and perfectly suited for many layers

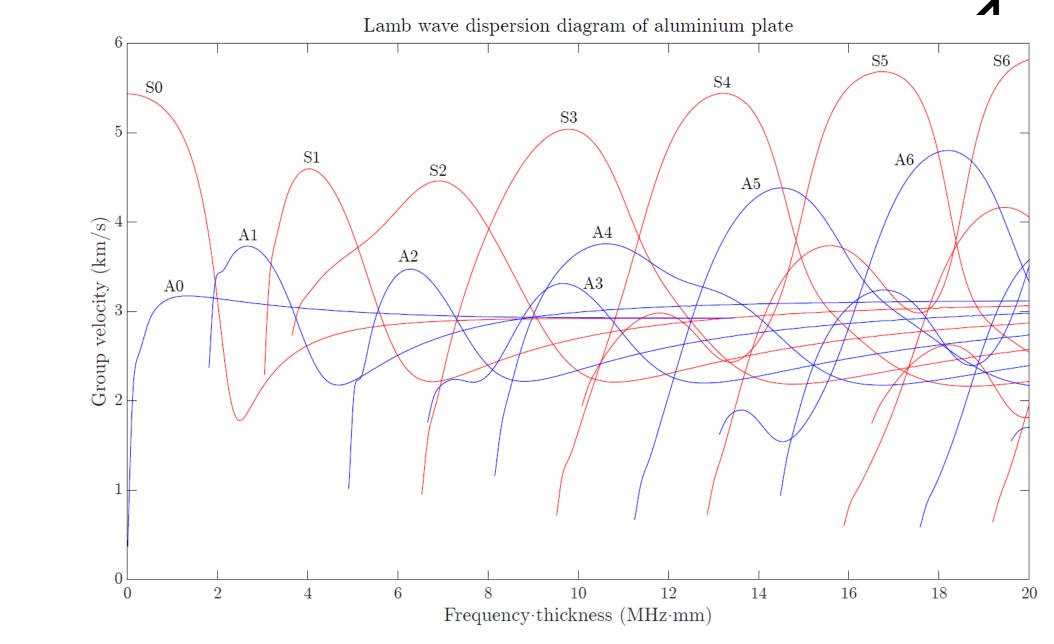
2017

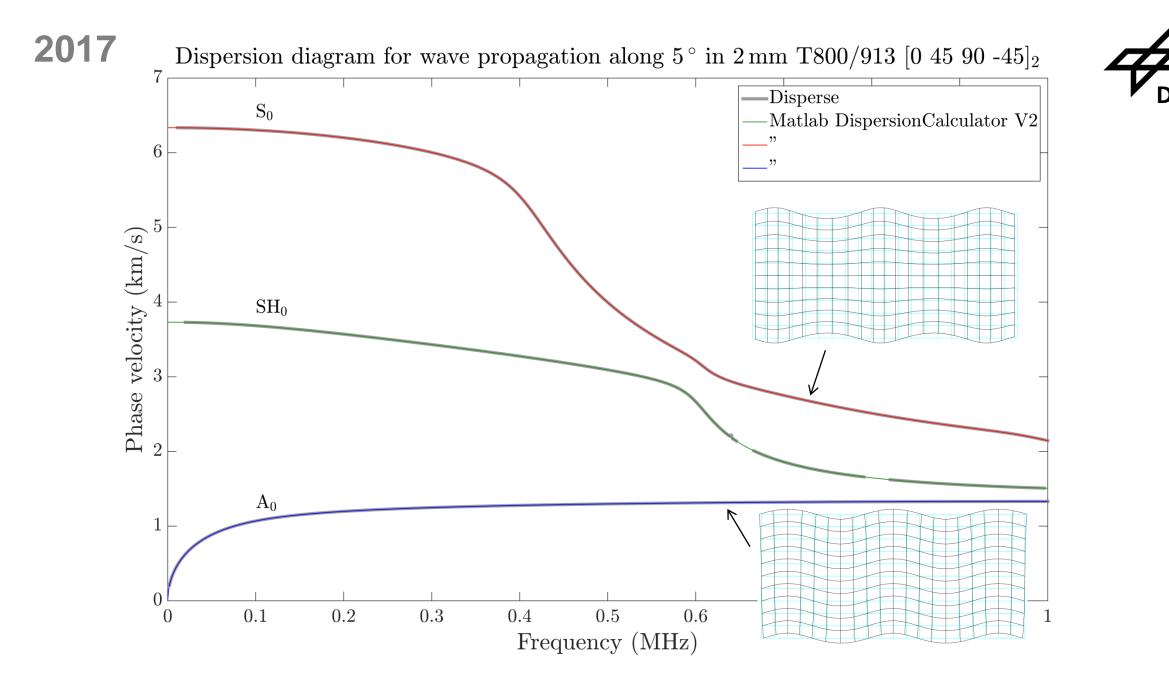


 $c_{\rm p} = \frac{\omega}{k}$

- $\boldsymbol{\omega}$ angular frequency
- k wavenumber

4


2017


Group velocity

 $d\omega$

dk

 C_{g}

Armin Huber - Dispersion Calculator - 27 May 2024

2018 - 2023

- Early 2018: Decision to create a software \rightarrow work on GUI
- November 2018: DC v1.0
 - Dispersion diagrams and mode shapes for Lamb and SH waves in isotropic and multilayered anisotropic plates
 - Versions 1.0 through 1.11
- April 2022: DC v2.0
 - Damping through fluid-loading (leaky waves) and viscoelasticity
 - Current version is 2.4

Most important tools currently available

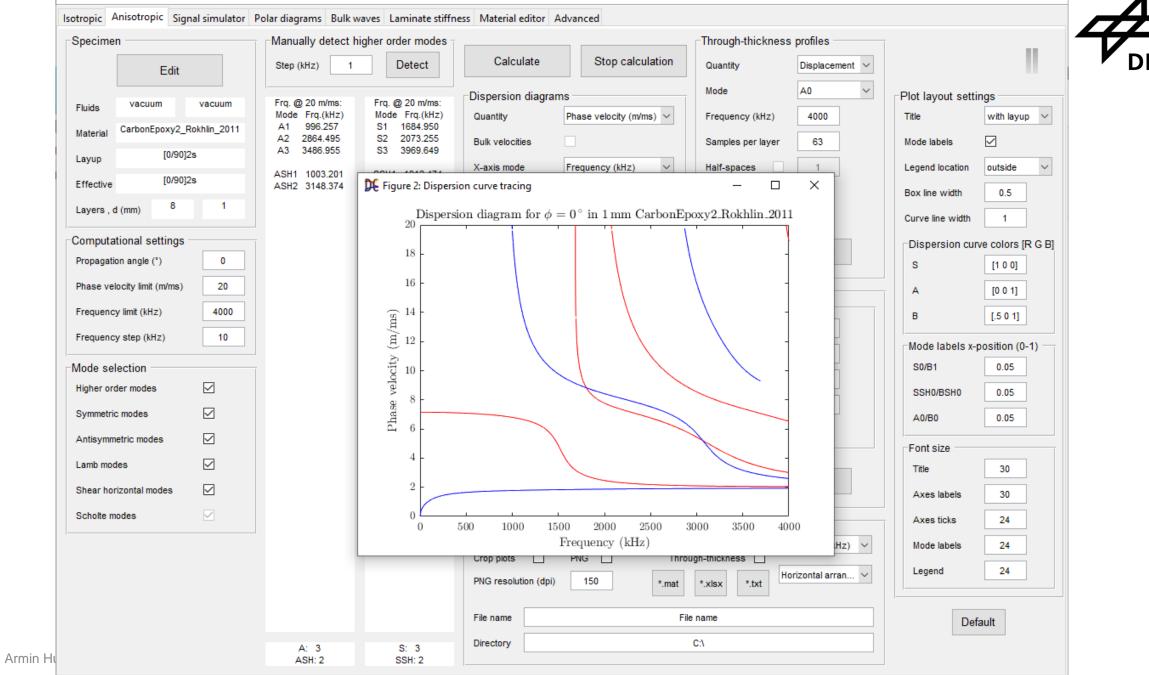
ΤοοΙ	Authors	Initial release	Computation method	GUI	Free
DISPERSE	Lowe, Pavlakovic	Early 1990s	Global Matrix Method (currently upgraded to Spectral Collocation Method)	Yes	No
GUIGUW	Marzani, Bocchini	2011	Semi-analytical Finite Element Method	Yes	Yes
DC	Huber	2018	Stiffness Matrix Method	Yes	Yes
ElasticMatrix	Ramasawmy et al.	2020	Global Matrix Method	No	Yes
Dispersion Box	Orta et al.	2022	GMM, SMM, HCSMM, SAFE, LPM, 5-SDT	Yes	Yes
SAFEDC	Liu et al.	2022	Semi-analytical Finite Element Method	Yes	Yes
GEWtool	Kiefer	2023	Spectral Element Method	No	Yes

otropic Anisotropic Signal simulator Polar diagrams B	uik waves Laminate stiffness	wateria	Action Ac	vanced							
Isotropic materials	Anis	sotropic	materials -								
Material AluminumAlloy1100	Class	ISS	[Orthotropic ~			\sim				?
Mass density (kg/m3) 2710	Mate	terial	[CarbonEpoxy	2_Rokhlin_2	011	\sim				
Real part Imaginary part Real pa	mponents (GPa) rt Imaginary part Eng		constants	1610			nponents (GP	a)			
		r	Real part	lmaginary p	bart	Real part			0	0	0
v 0.33 0 C66 25.93		(GPa)	150.912	0		162	10.6	13	•		0
Bulk waves	E2 ((GPa)	11.5473	0			15.3	8.2	0	0	0
Longitudinal velocity (m/s) 6142.03	E3 ((GPa)	13.9589	0				18.7	U	0	0
Shear velocity (m/s) 3093.85	G12	2 (GPa)	7.2	0					4.4	0	0
Attenuation unit Np/λ ~	G13	3 (GPa)	8.8	0						8.8	0
Longitudinal attenuation (Np/λ) 0	G23	23 (GPa)	4.4	0		Imaginary part					7.2
Shear attenuation (Np/λ) 0	v12	2	0.418605	0			0	0	0	0	0
At frequency (kHz) 1000	v13	3	0.511628	0			0	0	0	0	0
	v23	3	0.416235	0				0	0	0	0
New material's name AluminumAlloy1100									0	0	0
Save material Delete ma	aterial									0	0
		lk wave ve	elocities (m	/s) ₁	2	3					0
luids	Long	ngitudinal v	elocity	10031	3082.71	3408.06					
Fluid air	~ Fast	st shear ve	locity	2337.91	2114.72	2337.91					
Mass density (kg/m3) 1.2	Slov	w shear v	elocity	2114.72	1653.15	1653.15					
Velocity (m/s) 343											
New fluid's name air	New	w material	s name	CarbonE	poxy2_Rokt	lin 2011					

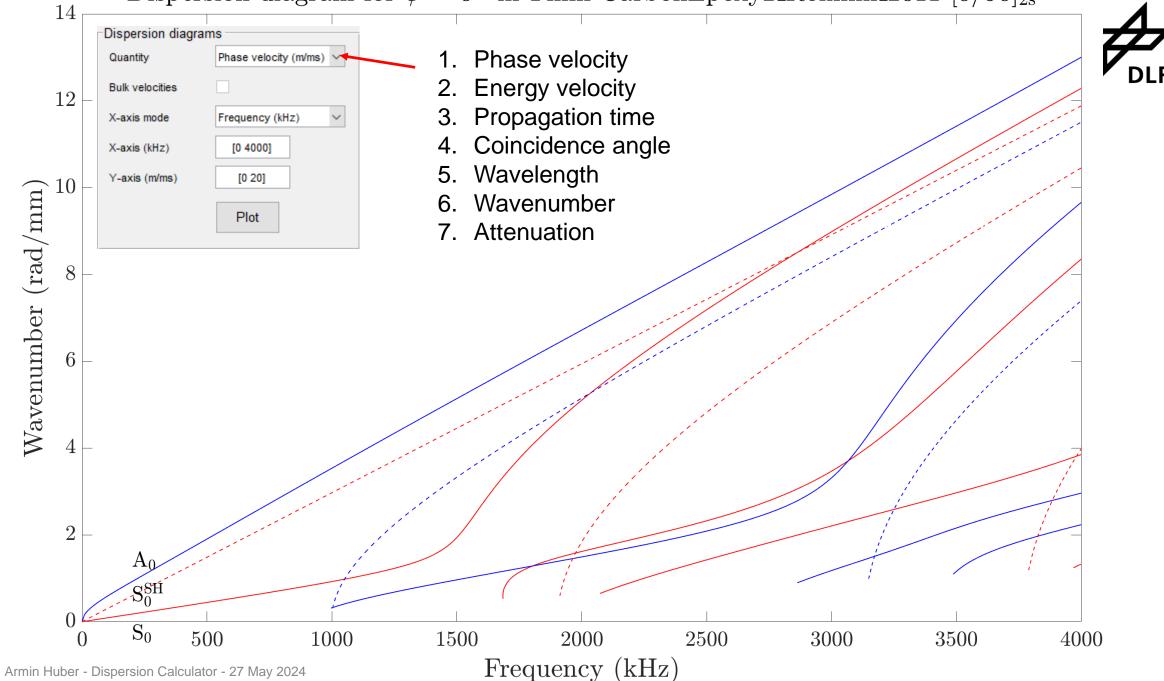
Dispersion Calculator v2.4

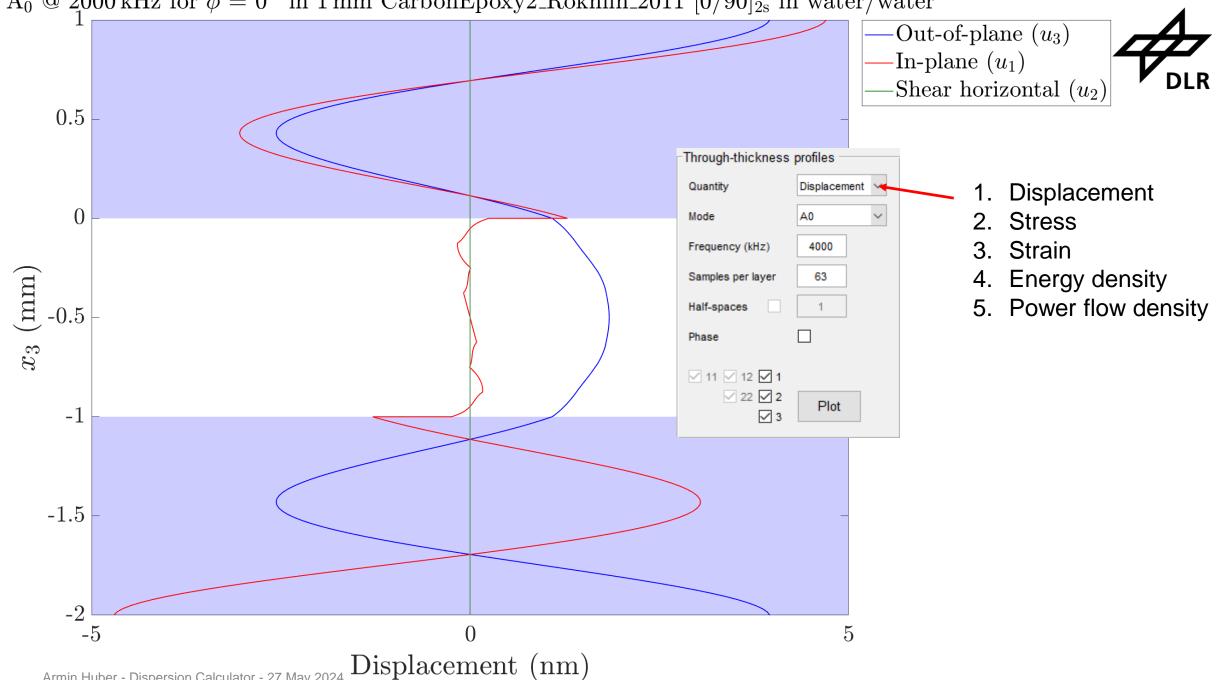
File Materials Multicore Help About

Specimen —		Manually detect h	igher order modes -			Through-thickness	s profiles		
	Edit	Step (kHz) 1	Detect	Calculate	Stop calculation	Quantity	Displacement ~		
Fluids vacu	m vacuum	Frq. @ 20 m/ms:	Frq. @ 20 m/ms:	Dispersion diagra	ams	Mode	A0 ~	Plot layout sett	ings
Cashaal	poxy2_Rokhlin_2011	Mode Frq.(kHz) A1 996.257	Mode Frq.(kHz) S1 1684.950	Quantity	Phase velocity (m/ms) $ \smallsetminus $	Frequency (kHz)	4000	Title	with layup 🗸
laterial Carbon		A2 2864.495 A3 3486.955	S2 2073.255 S3 3969.649	Bulk velocities		Samples per layer	63	Mode labels	
ayup	[0/90]2s	ASH1 1003.201	SSH1 1912.474	X-axis mode	Frequency (kHz) V	Half-spaces	1	Legend location	outside 🗸
ffective	[0/90]2s	ASH2 3148.374	SSH2 3788.795	X-axis (kHz)	[0 4000]	Phase		Box line width	0.5
ayers , d (mm)	8 1			Y-axis (m/ms)	[0 20]			Curve line width	1
omputational s	ettings	_				✓ 11 ✓ 12 ✓ 1 ✓ 22 ✓ 2		-Dispersion cu	rve colors [R G B]
Propagation angle	•) 0				Plot	3	Plot	S	[1 0 0]
Phase velocity limi	(m/ms) 20			Mode shape					[0 0 1]
Frequency limit (kl	z) 4000			Mode	A0 ~	Animation settings		В	[.5 0 1]
Frequency step (k	iz) 10			Frequency (kHz)	4000	Cycles	1		
Andre andre Care		_		Wavelengths	2.5	Cycle duration (s)	1.5	Mode labels x-	position (0-1)
Node selection Higher order mode	s 🔽			Samples x1	80	Frame rate (Hz)	30		
2	, c 			Samples per layer	5	Movie quality (0-100) 75	SSH0/BSH0	0.05
Symmetric modes						Animate		A0/B0	0.05
Antisymmetric moo				Scale				-Font size	
Lamb modes				Grid line	2 Half-spaces	1	Plot	Title	30
Shear horizontal m	_			Undistorted				Axes labels	30
Scholte modes				Export settings				Axes ticks	24
		_		Export plots			requency (kHz) 🗸	Mode labels	24
				Crop plots		ugh-thickness	orizontal arran 🗸	Legend	24
				PNG resolution (dpi	i) 150 *.mat	*.xlsx *.txt			
				File name	File	e name		De	fault
						C:\			


– 🗆 🗙

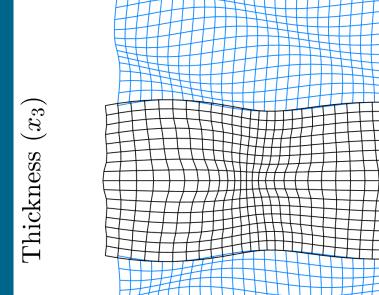
🔀 Specimen	_Anisotropic								_		\times
Open	Save		Re	eset]						
Upper fluid	water	~	Unit cel								
Lower fluid	water	~		Phi (°)	d (mm)	Orthotropic	Trans. iso.	Cubic	Isotropic	Delete	
Lower huid	✓ Water		1	0	0.5000	~	~	~	AluminumAlloy6l \sim		^
Hybrid	\checkmark		2	25	0.2500	~	TVR380M12R_G \smile	~	~		
			3	-25	0.2500	~	TVR380M12R_G \smile	~	~		
Class	Transversely isotropic	\sim	4	25	0.2500	~	TVR380M12R_G 🗸	~	~		
Material	T800M913	~	5	-25	0.2500	~	TVR380M12R_G 🗸	~	~		_
			-	25	0.2500	~	TVR380M12R_G ~	~	~		_
Uniform layer	r thickness	-	7	0	0.2500	~	~	~	AluminumAlloy61~		_
Tatal this lase		-	8			~	~	~	~		-
Total thicknes	ss (mm) 4	-	9			~	~	~	~		-
Unit cell repe	titions 1	-	10			~	~	~	~		-
		-	11			~	~	~	~		- 1
Symmetric sy	ystem 🗸	-	12			~	~	~	~		-
			13			~	~	~	~		_
ОК	Cancel		14			~	~	~	~		-
511			15			~	~	~	~		¥

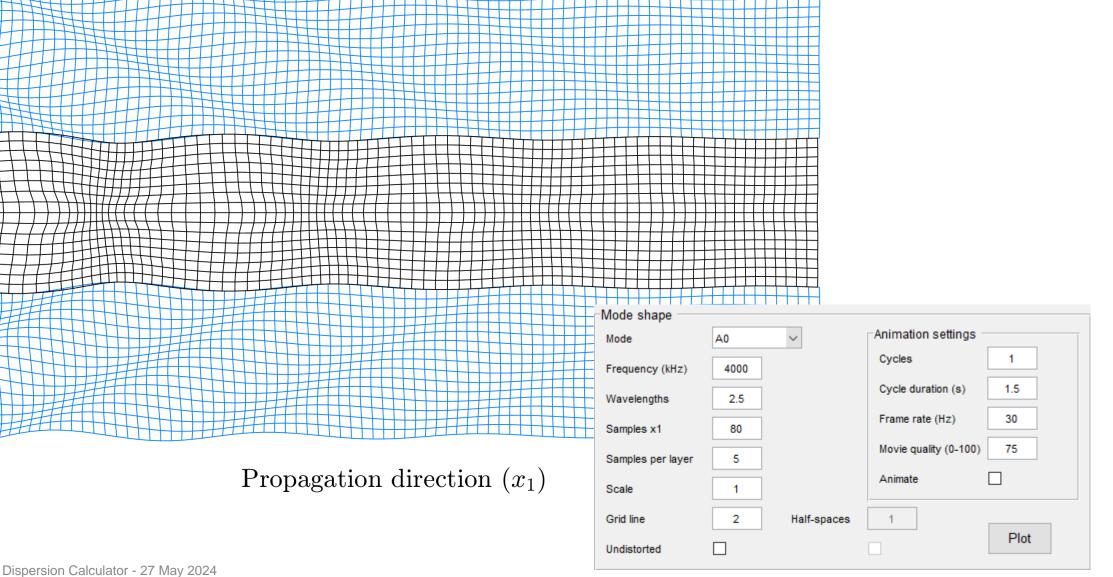

Dispersion Calculator v2.4


File Materials Multicore Help About

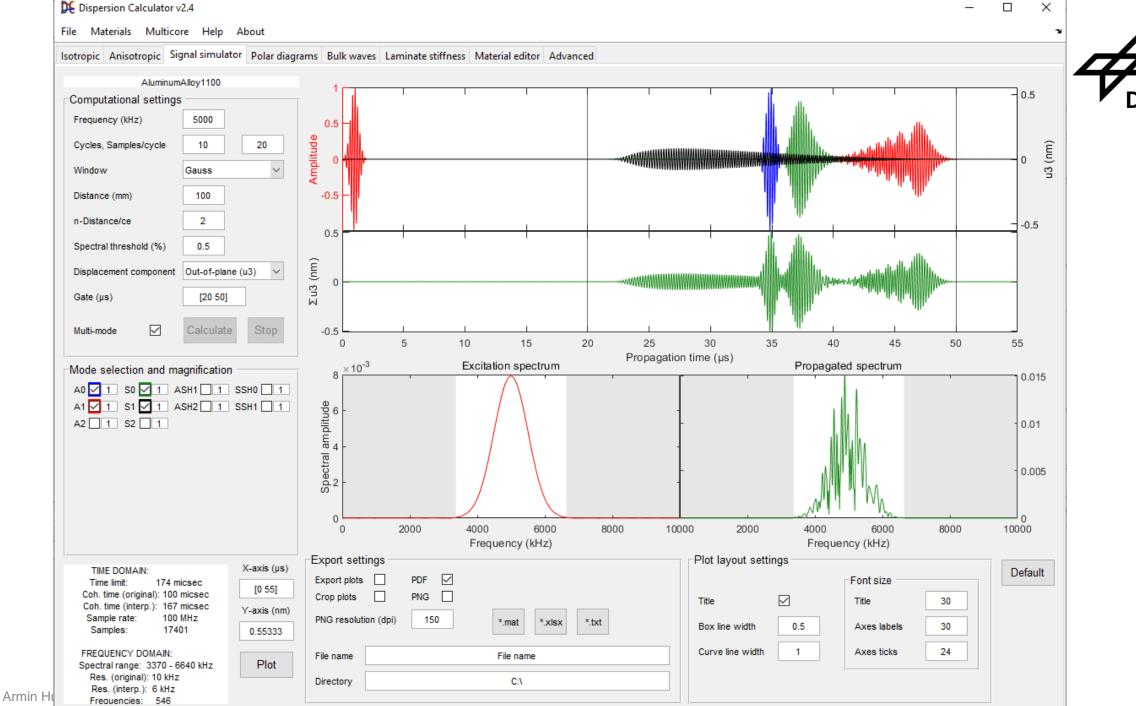
 \times

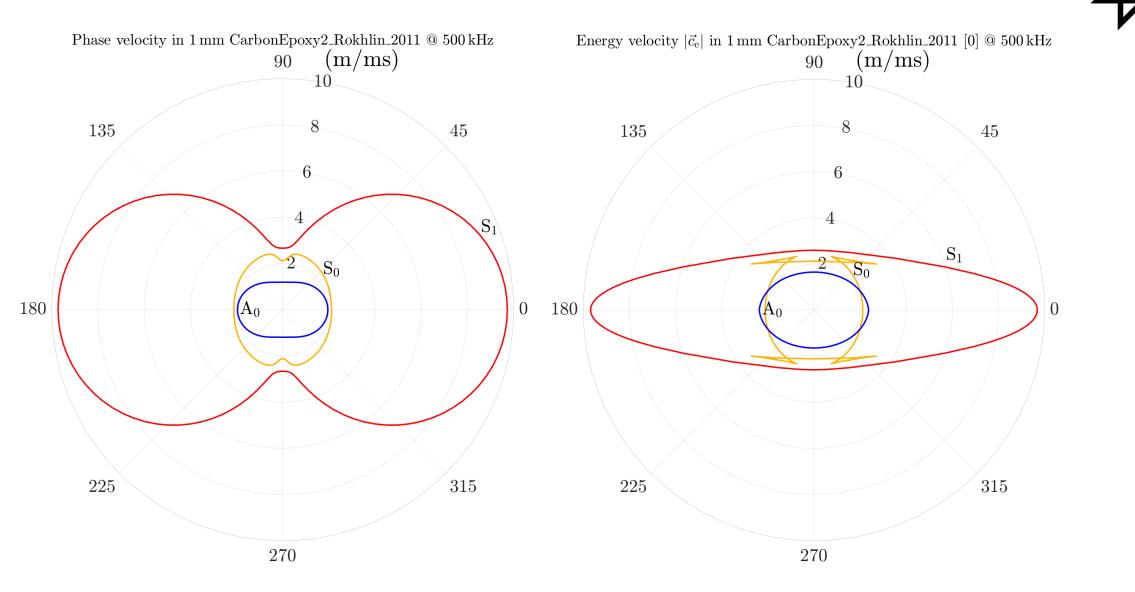
Dispersion diagram for $\phi = 0^{\circ}$ in 1 mm CarbonEpoxy2_Rokhlin_2011 $[0/90]_{2s}$




A₀ @ 2000 kHz for $\phi = 0^{\circ}$ in 1 mm CarbonEpoxy2_Rokhlin_2011 [0/90]_{2s} in water/water

Armin Huber - Dispersion Calculator - 27 May 2024


 $S_0 @ 2000 \text{ kHz}$ for $\phi = 0^{\circ}$ in 1 mm CarbonEpoxy2_Rokhlin_2011 $[0/90]_{2s}$ in water/water



16

Polar dispersion diagrams

- Export options
 - Plots
 - Mode shape animation movies
 - Raw data
 - Dispersion curves
 - Through-thickness profiles

Export settings			
Export plots	PDF 🗹 PNG 🗌	Dispersion curves 🗹	Frequency (kHz) 🗸
PNG resolution (dpi)	150	*.mat *.xlsx *.txt	Horizontal arran 🗸
File name		File name	
Directory		C:\	

Current and future work

- 2025: DC v3.0
 - Guided waves in isotropic rods and pipes including fluid-loading
- DC v3.x

- ? Guided waves in multilayered anisotropic rods and pipes
- Piezoelectric effects
- ? Backpropagating modes (c_p and c_e point in opposite directions
 - → *negative* damping)

Dispersion Calculator

Thank you!

Dr. Armin Huber German Aerospace Center (DLR) armin.huber@dlr.de

