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Abstract 

The nondestructive inspection of components by means of guided waves is an emerging technology in fields like 

aerospace or pipeline construction and maintenance. The guided waves' capability of propagating many meters in 

a structure is utilized for swift inspection tasks as well as structural health monitoring. The German Aerospace 

Center uses Lamb waves for the quality assurance of large-scale aerospace vehicle components made from carbon 

composites. However, the use of guided waves in NDT requires knowledge of the dispersion curves. DISPERSE 

is the most renown software for the calculation of dispersion curves. This paper presents the open source 

Dispersion Calculator (DC). The MATLAB® -based DC is an interactive and fully validated software for the 

computation of dispersion curves and mode shapes of guided waves in isotropic plates and multilayered anisotropic 

composites. Damping caused by viscoelasticity and fluid-loading can be considered. DC features the capability of 

calculating laminates consisting of several hundreds of layers so that even the largest specimens, like rocket booster 

pressure vessels, can be calculated. This is made possible through the implementation of the stiffness matrix 

method. DC is also able to distinguish the different mode families, like symmetric, antisymmetric, and 

nonsymmetric Lamb, shear horizontal, and Scholte waves, depending on the symmetry and coupling properties of 

a given layup. Lastly, DC features a highly efficient and robust dispersion curve tracing algorithm. DC is available 

at GitHub, and it has gained many users world-wide since its initial release in 2018. 
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1. Introduction 
 

A high demand for carbon fiber reinforced polymers (CFRP) is evident in the manufacturing of 

high-performance components such as aircraft fuselages or rocket booster pressure vessels. The 

superior strength-to-weight ratio of CFRP compared to traditional steel or aluminum alloys 

allows the vehicles to operate more efficiently. Disadvantages of CFRP are the high cost of the 

raw material and the sophisticated production processes. It is therefore convenient to use 

nondestructive inspection methods (NDI) such as ultrasonic testing (UT) on such valuable 

components. As two-sided access to the component is often impossible, like in the case of 

pressure vessels or pipes, and because the inspection should go as fast as possible, guided waves 

offer a great opportunity to fulfil theses basic requirements. 

 

The first description of flaw detection in sheets and tubes immersed in water by means of 

Rayleigh and Lamb waves was presented by Viktorov in 1967 [1]. Luukkala et al. proposed a 

contactless test method for paper and metal plates based on Lamb waves [2], [3]. Many 

applications have been established since then, and with the advent of composite materials in 

automotive and aerospace industries in the early 1990s, the nondestructive testing and 

evaluation processes have gained significant complexity. The ability of guided waves to 

propagate many meters in a waveguide is utilized for pipe inspection [4], [5]. Another 

application is the inspection of bonding [6], [7]. Other relevant studies on NDI and structural 

health monitoring (SHM) on composite structures are given in Refs. [8]-[15]. The noncontact 

method of air-coupled ultrasonic testing (ACUT) by means of Lamb waves is particularly useful 
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in cases where a liquid coupling medium might inflict damage to the component to be inspected 

or if the inspection method shall be integrated as an inline quality assurance method, as the case 

at the German Aerospace Center (DLR) [16]. Castaings et al. have done significant work on 

the single-sided air-coupled ultrasonic testing of composites by means of Lamb waves [17]-

[20], whereas Solodov et al. have utilized them for transmissive inspection [21]-[23]. 

Mechanically induced fatigue on composites has been monitored by means of Lamb waves by 

Rheinfurth and Schmidt et al. [24], [25]. 

 

However, unlike bulk waves utilized in conventional UT-methods like in the normal 

transmission mode or in the pulse-echo mode, guided waves are dispersive, which means that 

their phase and group/energy velocities are frequency-dependent. It is therefore essential to 

have the specific dispersion diagram at hand to be able to perform an inspection at all. Such 

diagrams can be calculated, but the programming is a difficult task, in particular if one is 

interested in multilayered anisotropic composites. DISPERSE [26], [27] (Imperial College 

London, London, UK) is the most renown software for the calculation of dispersion curves. It 

has been developed since the early 1990s by Lowe and Pavlakovic, and with its versatility and 

speed of computation, it sets a high standard for any software to come up. However, DISPERSE 

cannot model laminates consisting of more than 60 layers, whereas modern rocket booster 

pressure vessels can have up to 360 layers in some areas. As the layups can be quite complicated, 

no grouping of layers is possible to reduce the computational expense. As no other software 

was available that could solve the problem, the author started in 2016 to develop the Dispersion 

Calculator (DC) in MATLAB®  (The MathWorks® , Natick, MA, USA). DC version 1.0 was 

released in 2018, and many more advanced versions have been released since then. DC can be 

downloaded on GitHub [28] as a stand-alone software as well as the MATLAB®  code. However, 

there are several free softwares for calculating guided wave dispersion diagrams. GUIGUW 

[29], [30] is a software package developed and released by Marzani and Bocchini in 2011. As 

it is based on the semi-analytical finite-element (SAFE) method, it is able to model waveguides 

of arbitrary cross sections. Another contender, the open source MATLAB®  toolbox 

ElasticMatrix [31], [32], was released by Ramasawmy et al. in 2020. It is able to compute 

dispersion curves for multilayered plates made of isotropic and transversely isotropic layers 

where the wave propagation occurs in a material plane of symmetry. However, this covers 

decoupled polarization only, so far excluding the majority of composites where we have 

arbitrary fiber orientations and wave propagation directions. Next, the Dispersion Box [33], [34] 

was released by Orta et al. in 2022. Up to six different methods can be used simultaneously to 

compute dispersion diagrams for viscoelastic composites with arbitrary layer stackings and 

propagation directions. In the same year, Kiefer published GEW dispersion script for 

MATLAB®  [35], which uses the spectral collocation method (SCM). Finally, as the third 

contender appearing in 2022, Liu et al. released SAFEDC [36]. This software has a similar 

layout as DC, but uses SAFE for the modeling of waveguides with arbitrary cross sections and 

general anisotropy. At the time of this paper, SAFEDC does not include damping, but its 

implementation is planned in the future, along with more features mentioned in a preprint cited 

on SourceForge [36]. 

 

To be able to calculate large numbers of layers, DC uses the stiffness matrix method (SMM), 

which belongs to the class of root-finding methods. SMM is a reformulation of the transfer 

matrix method (TMM) conducted by Rokhlin and Wang [37], [38]. SMM is also well-

documented in the highly recommended book by Rokhlin et al. [39]. Another particularly useful 

source for the implementation of SMM is the paper of Kamal and Giurgiutiu [40]. TMM for a 

layered medium was developed by Thomson [41], and Haskell corrected a small error in 



 

Thomson’s work [42]. Nayfeh extended TMM to generally anisotropic multilayered media [43], 

[44]. Although employing TMM, Nayfeh’s excellent book [45] served as the backbone for the 

programming of DC. However, TMM suffers from a numerical instability when the product of 

the layer thickness and frequency is large. Many attempts to overcome the problem failed 

subsequently. A different approach is the global matrix method (GMM), proposed by Knopoff 

[46]. Here, the equations of all layers are contained in a large single matrix. Schmidt and Tango 

showed that this method is numerically stable [47]. Mal [48] extended GMM to anisotropic 

multilayered media, and Kausel and Roesset [49] conducted a reformulation for isotropic cases. 

A well-organized and instructive discussion of TMM and GMM is provided by Lowe [50]. 

However, the drawback of GMM is that it becomes slow upon calculating many layers, owing 

to the large size of the global matrix. DISPERSE uses GMM, and this is the reason why, 

although very fast in general, it becomes cumbersome when several tens of layers are involved. 

The newer SMM is possibly the most powerful root-finding method for multilayered problems, 

in particular when there are several hundreds of layers. SMM is numerically unconditionally 

stable, and it retains the concise form and efficiency of TMM. Huber and Sause [51] and Huber 

[52], [53] implemented mode family specific dispersion equations into SMM to improve 

efficiency and robustness of the dispersion curve tracing. The authors demonstrated the separate 

tracing of symmetric, antisymmetric, and nonsymmetric Lamb and shear horizontal (SH) waves 

in composite layups containing up to 400 layers. The dispersion diagrams presented by Huber 

and Sause were obtained with DC. 

 

The main disadvantage of root-finding methods is that they are limited to flat and cylindrical 

waveguides. An alternative is therefore the discretizing SAFE method, made popular by Gavric 

[54]. The SAFE method discretizes the waveguide’s cross section into finite elements, allowing 

the modeling of guided waves in complex geometries. At the same time, the wave propagation 

direction is solved analytically, which makes this approach more efficient than the standard 

finite element method (FEM). The latest and possibly most powerful discretizing method is 

SCM, developed by Quintanilla et al. [55]. It is similar to the SAFE method in that it is using a 

one-dimensional mesh over the system’s thickness, but SCM possesses a higher accuracy and 

speed of computation. Instead of solving a differential equation directly, SCM uses a spectral 

approximation, which satisfies the differential equation and boundary conditions. The paper 

claims that SCM is easier to code than root-finding methods, that it is faster, and, most 

importantly, that it does not miss any modal solution. In 2017, the same authors developed a 

classification of multilayered anisotropic waveguides according to their symmetry and coupling 

properties [56]. All crystal classes and independent axes configurations can be assigned to one 

of only five different categories. A crucial benefit is that modal solutions can be separated into 

mode families for which dispersion curves do not cross. This helps avoid the well-known 

jumping mode problem. Furthermore, one can save time by computing only a single mode 

family if one is not interested in the others. More recently, SCM was used also to model leaky 

waves [57], [58]. 

 

Another class of computation methods are the approximative plate theories. Basically, the 

displacement field versus the plate thickness is represented by polynomial functions of a certain 

order. The first advanced plate theory (APT), also called first order shear deformation theory 

(1-SDT) was presented by Mindlin [59] in 1951. This theory gives accurate results for the 

lowest antisymmetric modes, but fails to model any higher order modes. By raising the order 

of the polynomial, the approximation error decreases, and the number of modes that can be 

calculated increases, at the cost of computational efficiency. Higher order plate theories have 

been developed by Withney and Sun [60] (2-SDT, 5 symmetric and 3 antisymmetric modes), 



 

by Wang and Yuan [61] (3-SDT, 5 symmetric and 6 antisymmetric modes), and an enhanced 

3-SDT by Zhao et al. [62]. Recently, Orta et al. [63] introduced a 5-SDT for multilayered 

composite plates allowing the calculation of 9 symmetric and 9 antisymmetric modes at high 

efficiency (less than a second on a standard laptop). 

 

As the main requisite imposed on DC was that it must be able to compute multilayered 

composites with several hundreds of layers, the author decided to employ SMM. And because 

DC should separate the various mode families, similar as it was demonstrated with SCM, the 

author implemented mode family-specific dispersion equations into SMM. The advantage of 

the discretizing methods that they can model waveguides with complex cross sections, whereas 

root-finding methods are limited to flat and cylindrical structures, does not help in the plate-

like laminates commonly present in aerospace. Fortunately, the solutions obtained with SMM 

for flat structures are valid in good approximation for curved structures with a radius 

significantly larger than the guided waves’ wavelength. This is often the case in aircraft 

fuselages or rocket booster pressure vessels. Alternatively, in most cases, there is one dimension 

for which the component is flat. Furthermore, SMM as a root-finding method allows to maintain 

the accuracy of the modal solutions throughout the dispersion diagram because bisections or 

Newton-Raphson’s method are performed until the desired accuracy is reached. In discretizing 

methods, accuracy depends on the number of through-thickness samples. Because the mode 

shapes become more complex with increasing frequency and mode order, accuracy decreases. 

Multiple computations must be performed to see if the solutions converge. Using approximative 

methods like the higher order plate theories in DC is not an option because the accuracy depends 

on case-dependent shear correction factors. The user would always question the accuracy of 

results, therefore requiring a reference calculation with an exact method. Even if the 

approximative methods are very fast, it is considered more important that the solutions are 

within tolerance and that the user can trust them. 

 

 

2. The Dispersion Calculator 
 

DC is an interactive and fully validated open source software for the computation of dispersion 

curves and mode shapes of guided waves in flat isotropic plates and multilayered anisotropic 

laminates such as composites. The specimens can be surrounded with different inviscid fluids 

in the upper and lower half-spaces, leading to damping through energy leakage. The user can 

edit available or add and remove custom materials. Viscoelastic damping is introduced through 

complex engineering constants and stiffnesses. DC comes with a user’s manual, which provides 

more detailed insight than this paper. 

 

2.1 Overview 

 

DC offers an easy-to-use graphical user interface (GUI) (see for example the “Anisotropic” tab 

in Fig. 1). Basically, it provides only the parameter setting interfaces like editable fields and 

buttons as well as some output windows displaying data and other information. All plots like 

dispersion diagrams or mode shapes are plotted in extra windows, which open when the user 

presses the corresponding button. This basic arrangement improves user-friendliness by 

avoiding options in multi-leveled sub menus where they are out of sight of the user initially. 

Instead, DC provides all options that are related to one task in just one tab. For example, in the 



 

“Isotropic” tab, the user can set up the specimen, define the computational parameters, calculate 

the dispersion curves, through thickness profiles, mode shapes, adjust the plot layout, and 

manage the export of data and plots. 

 

Fig. 1  The screenshot shows the “Anisotropic” tab for the calculation of dispersion diagrams and mode 

shapes of guided waves in multilayered composites. 

2.2 Functionality 

 

DC has eight tabs, of which six cover the main tasks, one allows to enter material parameters, 

and the last one contains advanced options. The tabs are listed in Table 1. 

 
Table 1. Overview of the functionality in DC. 

Tab Functionality 

  

Isotropic 
Calculation of dispersion diagrams and mode shapes for isotropic plates (very fast computation 

by using the Rayleigh-Lamb equations) 

Anisotropic 
Calculation of dispersion diagrams and mode shapes for multilayered anisotropic laminates 

(using SMM) 

Signal simulator Simulation of the signal of single and multiple guided wave modes 

Polar diagrams Calculation of polar dispersion diagrams for multilayered anisotropic laminates 

Bulk waves 
Calculation of the bulk waves’ phase and group velocities, slownesses, and polarization, 

propagating in anisotropic media as well as their scattering on solid-fluid interfaces 

Laminate stiffness Calculation of the homogenized stiffness tensor of laminates 

Material editor 
To enter engineering constants or stiffnesses of orthotropic, transversely isotropic, cubic, and 

isotropic materials as well as fluids 

Advanced Contains the advanced options for the dispersion curve tracing algorithm 

  



 

2.2.1 Dispersion diagrams 

Clearly, the main purpose of DC is calculating dispersion diagrams for isotropic plates and 

multilayered anisotropic laminates, which may contain layers with different materials and 

material classes (orthotropic, transversely isotropic, cubic, and isotropic). In the “Isotropic” tab, 

only single isotropic layers can be considered, but the dispersion diagrams are calculated 

particularly fast through the implementation of the Rayleigh-Lamb equations. In the 

“Anisotropic” tab, SMM is used. Dispersion diagrams can be expressed as phase velocity, 

energy velocity, propagation time, coincidence angle, wavelength, wavenumber, and 

attenuation versus frequency or frequency-thickness product. DC plots the energy velocity 

instead of the group velocity because the latter is not valid in attenuated cases. In nonattenuated 

cases, energy and group velocity are equivalent. In anisotropic specimens for wave propagation 

in an off-principal direction, the energy velocity vector does not point in the wave propagation 

direction, i.e., it is not aligned with the wave vector. In this case, DC plots the energy velocity 

vector components along and normal to the propagation direction, the energy velocity vector 

magnitude and the skew angle between the energy velocity vector and the wave propagation 

direction. Inside the dispersion diagrams, as in all kinds of plots, one can click on a curve to 

display values. A tool is available to read values at constant frequency, phase velocity, 

wavelength, etc. One can export the plots to several formats, and the dispersion curve raw data 

can be exported to MATLAB® , Excel, and Txt files. 

 

 
(a) 

 

 
(b) 

 
(c) 

Fig. 2  Dispersion diagrams for wave propagation along 0° in a 2 mm thick [0/90]4s T800/913 composite 

immersed in water. (a) Phase velocity (b) energy velocity (c) attenuation. 

 

Fig. 2 shows dispersion diagrams for wave propagation along 0° in a 2 mm thick [0/90]4s 

T800/913 composite immersed in water. Lamb waves, indicated by solid lines, are decoupled 



 

from SH modes, which are drawn as dashed lines. The Scholte modes propagating below the 

wave speed in water of 1500 m/s are drawn as dashed-dotted lines. As the laminate is symmetric, 

symmetric (red) and antisymmetric (blue) modes can be distinguished. Lamb waves are damped 

because energy radiates into the surrounding water. Therefore, they are often termed leaky 

waves. The amount of damping depends on the density ratio of the fluid with respect to the 

waveguide and on the out-of-plane displacement possessed by the various modes. As Fig. 2(c) 

shows, attenuation changes with frequency. A0 with its predominant out-of-plane displacement 

at low frequencies is damped much stronger than S0, which is dominated by in-plane 

displacement. Because SH waves are polarized exclusively in-plane (perpendicular to the 

propagation direction) and because the (inviscid) water does not support shear motion, SH 

waves do not couple to the water and therefore do not experience damping through energy 

leakage. The Scholte modes are not damped either because they propagate at or below the wave 

speed in the fluid. No material damping occurs in the considered waveguide because the 

material is assumed to be perfectly elastic. 

 

 
 (a) 

 

 
(b) 

 
(c) 

 

(d) 

Fig. 3  Through-thickness displacement profiles at 200 kHz for wave propagation along 0° in a 2 mm 

thick [0/90]4s T800/913 composite immersed in water. (a) A0 (b) S0 (c) A0
Scholte (d) S0

SH. 

 

  



 

2.2.2 Through thickness profiles and mode shapes 

For further investigation, one can select a mode and a frequency and plot the through-thickness 

displacement, stress, strain, energy density, and power flow density components. The profiles 

are helpful for finding out whether a mode is appropriate for detecting a certain type of flaw. 

The profiles are power-normalized similarly as in DISPERSE, i.e., the amplitudes are for 

guided waves carrying a power of 1 Watt in the propagation direction (neglecting the power 

flow in the fluid). All plots and the corresponding raw data can be exported. 

 

Fig. 3(a) shows the displacement components of the A0 Lamb wave at 200 kHz, based on the 

dispersion diagrams in Fig. 2. The composite is represented by the white area, while the upper 

and lower half-spaces are represented by the blue areas. The pure A0 Lamb wave has nonzero 

out-of-plane and in-plane displacements u3 and u1, while the shear horizontal displacement u2 is 

zero. Comparing Fig. 3(a) with S0 at the same frequency in Fig. 3(b) illustrates how A0 is 

vibrating predominantly in the out-of-plane direction whereas S0 is dominated in-plane. Fig. 

3(c) displays A0
Scholte. In contrast to the leaky Lamb waves, which grow exponentially in the 

fluid-filled half-spaces (it can be seen more clearly when plotting the half-spaces farther away 

from the composite), A0
Scholte decays in the fluid. Although Scholte modes are interfaces waves 

in general, A0
Scholte in the present case would be useful for NDT because most displacement is 

confined inside the composite. Fig. 3(d) illustrates S0
SH, possessing only nonzero shear 

horizontal displacement u2 inside the composite and no interaction with the fluid. 

 

A particularly useful representation for any researcher is the mode shape plot, such as that of 

A2 displayed in Fig. 4. The mode shape plot gives a realistic view of how a certain mode at a 

certain frequency looks like. Notice in particular the wave fronts in the fluid and how the mode 

is damped with propagated distance. The mode shapes can be animated and movies or single 

frames can be exported. 

 

 
 

Fig. 4  Mode shape of A2 at 2000 kHz for wave propagation along 0° in a 2 mm thick [0/90]4s T800/913 

composite immersed in water. 

 



 

2.2.3 Polar diagrams 

Often it is useful to calculate polar diagrams for anisotropic specimens such as phase velocity, 

energy velocity, propagation time, coincidence angle, wavelength, and wavenumber versus 

propagation direction, respectively, ray angle, at a certain frequency. Basically, this is a top 

view on the composite, visualizing the behavior of guided wave propagation in anisotropic 

specimens. As usual, plots and raw data can be exported. 

 

As an example, Fig. 5(a) displays the energy velocity vector magnitude |𝑐e|  of the 

fundamental modes A0, S0, and S1 at 200 kHz in a 1 mm thick layer T800/913 versus the ray 

angle Φr. This kind of plot is also referred to as wavecrest plot. Basically, it shows how the 

guided waves generated by a point source advance outward with time. Therefore, these plots 

are useful for scenarios like acoustic emission where an array of sensors is placed on a specimen 

to detect ultrasonic signals emitted from a point source. By contrast, Fig. 5(b) plots the energy 

velocity component in the propagation direction 𝑐e1 versus the propagation direction Φ. This 

is useful, for example, when guided waves are excited and propagated in a certain direction Φ 

and captured with a sensor at some distance, as for example in air-coupled ultrasonic inspection. 

Suppose we excite a wave to propagate in the fiber direction (wave vector 𝒌⃗⃗⃗). The (phase) 

propagation direction Φ is 0° in this case. Because this is a principal direction, the wave packet, 

respectively, the acoustic beam, propagates at the same 0° direction. However, if we were to 

excite the wave, say, at 10° with respect to the fibers, the acoustic beam skews at some angle γ 

towards the fibers because energy is transmitted more easily this way. Therefore, the acoustic 

beam propagates at the ray angle Φr, 

 

Φr = Φ− γ. 
 

So, the energy velocity vector 𝑐e points in Φr, while the energy velocity component in the 

propagation direction 𝑐e1 points in Φ, i.e., along the wave vector 𝒌⃗⃗⃗. Because in an air-coupled 

ultrasonic inspection setup, the sensor is located at some distance in the propagation direction, 

we are interested in the energy velocity component 𝑐e1 in this direction, not in |𝑐e|. The skew 

angle versus propagation direction is plotted in Fig. 5(c). Accordingly, γ is zero for wave 

propagation parallel and normal to the fibers (Φ = 0°, 90°), i.e., Φr= Φ and 𝑐e = 𝑐e1 (𝑐e2 =
0). For example, the skew angle of A0 for the phase propagation direction of 10° is 8.9° so that 

energy propagates at Φr= 1.1°. 

 

A few words should be said about the mode naming of S0. This mode is often called SH0 even 

in coupled cases in dispersion diagrams as well as in polar diagrams. However, this is physically 

incorrect and misleading as it implies that it is an SH mode with only shear horizontal 

displacement u2, while u1 and u3 vanish. However, S0 in Fig. 5 is polarized exclusively in the 

shear horizontal direction only for Φ = 0°, 90°; for all other propagation directions, shear 

horizontal motion and sagittal plane motion are coupled. DC uses the term “SH” only in 

decoupled cases where pure Lamb and SH modes exist. 

 



 

 
 

(a) 

 
 

(b) 

 

 
 

(c) 

 

Fig. 5  Polar energy velocity for the fundamental modes at 200 kHz in a 1 mm thick layer T800/913. (a) 

Energy velocity magnitude versus ray angle (b) energy velocity component in the propagation direction 

versus propagation direction (c) energy skew angle versus propagation direction. 
 

  



 

2.2.4 Signal simulator 

In any experimental setup involving guided waves, measured data are obtained as a signal of 

voltage versus time. The “Signal simulator” (see Fig. 6) predicts the temporal and frequency 

responses of single and multiple guided wave modes after propagating a certain distance in a 

specimen, based on the dispersion curves obtained in the “Isotropic” and “Anisotropic” tabs. 

Therefore, the tool is valuable to any individual performing NDI or SHM using guided waves. 

The dispersion diagrams calculated before help to excite the desired mode in a specimen. 

However, it is often difficult to excite only one particular mode, especially when the frequency-

thickness product is large. In situations where dispersion curves are close to each other in the 

dispersion diagram, it is very likely that multiple modes are excited. Then, the inspector has to 

deal with multiple wave packets appearing in the measured signal. The Signal simulator helps 

identify the modes in the signal. The tool is also useful to interpret signals obtained from 

acoustic emission experiments. Or suppose we want to perform long-range testing on an aircraft 

wing structure. The dispersive nature of guided waves leads to a spreading and reduction in 

amplitude of the wave packet with increasing propagation distance because the different 

frequency components propagate at different phase velocities. Therefore, we would want to 

excite a weakly dispersive Lamb wave, retaining the shape of its wave packet over long 

distances. Another effect that becomes evident in the signals is damping due to fluid-loading 

and/or viscoelasticity. We would prefer a mode that suffers minimal damping loss in the 

required frequency range. With the Signal simulator, we can simulate the wave packets to find 

an appropriate mode for the task. 

 

 
Fig. 6  The “Signal simulator” predicts the temporal and frequency responses of guided waves after 

propagating a certain distance in a specimen. 



 

Notice that no particular method of excitation and reception is considered here. The assumption 

is that guided waves are generated somehow at x = 0, with the excitation signal plotted on the 

left-hand side in the upper signal window in Fig. 6, starting at t = 0. The propagated signal is 

calculated based on the dispersion diagrams obtained in the “Isotropic” or “Anisotropic” tabs. 

Plane harmonic waves are superposed, having the phase velocities and attenuations given by 

the dispersion curve of the respective mode in the frequency range seen in the excitation 

spectrum in Fig. 6. Power normalization is performed on each contributing plane wave in the 

same way as done in the through-thickness profiles. The plotted amplitude can be chosen as the 

out-of-plane displacement (u3) for Lamb waves or the in-plane displacement (u1) for Lamb 

waves and u2 for SH waves. These displacements are calculated at the top of the plate where 

they are supposed to correlate most directly with the measured signal. The signal is simulated 

for ideal conditions, so experimentally measured signals will look more or less the same due to 

many influences present under real conditions. These are, for instance, the specific shape of the 

ultrasonic beam or a certain angle of incidence, whereas in the simulation, the “perfect" 

(coincidence) angle (for each contributing phase velocity in the spectrum) is assumed. 

Furthermore, waveguide imperfections are ignored such as surface roughness, layer debonding 

or other flaws. Calculating fully realistic signals requires a sophisticated model of the 

experimental setup, i.e., a detailed model of the sensors as well as of the waveguide to model 

the generated ultrasonic beam, the propagating wave field, and the received signal. This requires 

an FEM software such as COMSOL Multiphysics® . One can, however, choose to plot the in-

plane or the out-of-plane displacement, depending on what component the considered sensor is 

more sensitive to. Usually, in noncontact air-coupled ultrasonics, one would choose the out-of-

plane displacement, whereas in SHM where sensors are attached to the component, the in-plane 

displacement is more favored. In practice, the received signal maps a mixture of both 

components. The key point is that the Signal simulator calculates the displacement caused by 

the guided waves at the top surface, but the signal displayed on the measurement screen depends 

on how the sensor reacts to this displacement, and this is not included in the Signal simulator. 

 

As an example, the signals of the fundamental modes A0, S0, and S0
SH after propagating a 

distance of 200 mm in the 0° direction in a [0/90]4s T800/913 composite immersed in water is 

simulated in Fig. 6, based on the dispersion curves in Fig. 2. A 5 cycles, 200 kHz sinusoidal 

carrier wave multiplied with a Gaussian window function is used to simulate the excitation 

wave packet drawn in red between t = 0 and 25 µs in the upper signal window. The excitation 

spectrum shows the spectral weights of the contributing frequencies, ranging from 75 to 330 

kHz. The in-plane displacement is selected for the simulation. Two propagated wave packets 

appear in the upper signal window. The red one arriving at 28 µs is S0, and the green one 

incoming at 120 µs is S0
SH. A0 is damped severely due to its strong coupling to the surrounding 

water. This tells us that we do not need to search for it in the measurement. S0
SH has the 

advantage of not coupling to the water at all so that it does not suffer damping, while S0 

diminishes with propagated distance. This makes S0
SH a good choice for long range testing in 

heavily fluid-loaded cases. Also, because S0
SH is nondispersive, the wave packet remains 

compact, whereas a dispersive mode’s wave packet spreads, therefore loosing peak intensity 

and flaw localization resolution. The lower signal window shows the summation of all modes. 

In case of overlapping wave packets, it simulates the actual signal, while the upper window 

allows for identification of the contributions of the various modes. In the “Mode selection and 

magnification” panel, one can show or hide every mode and enter a magnification factor. 

Magnification is useful because the (displacement) amplitudes are calculated for a power flow 

of 1 Watt. However, in reality, each mode carries a different power flow because they are 



 

excited and detected with different efficiency. Finally, extra plots can be generated and exported, 

and the raw data can be exported as well. 
 

2.2.5 Material editor 

Although DC has an extensive library of standard materials, it is necessary that the user can add 

custom material parameters. In the “Material editor” tab shown in Fig. 7, one can view the 

default materials and add or remove materials. For isotropic materials, one can either enter the 

engineering constants, or the stiffness components, or the bulk wave speeds. For anisotropic 

materials, one can enter only engineering constants or stiffness components. For convenience, 

the user can select the material symmetry class (orthotropic, transversely isotropic, or cubic). 

When selecting the transversely isotropic or cubic class only 5 or 3 of the 9 parameters remain 

active. Each parameter has a real part and an imaginary part. While the real part describes the 

harmonic wave propagation in the usual way, the imaginary part represents the damping. 

Therefore, only if all imaginary parts are zero, the material is perfectly elastic, i.e., without 

material damping. DC uses the hysteretic damping model, corresponding to a linear increase of 

attenuation with frequency, i.e., a constant loss per wavelength. For convenience, all 

viscoelastic default materials carry the suffix “viscoelastic”. The material data can be exported 

and imported as txt-files via the “Materials” option in the menu bar. This is useful, for example, 

when the user wants to transfer custom materials to a new DC installation. 

 

 
Fig. 7  In the “Material editor”, one can edit, add, or remove isotropic, cubic, transversely isotropic, and 

orthotropic materials as well as fluids. 

  



 

2.3 Limitations and future work 

 

DC uses analytic dispersion equations, but such equations are available only for simple 

structures such as plates and cylinders. DC is currently limited to isotropic plates and 

multilayered anisotropic laminates such as composites, which can be viscoelastic and 

surrounded by fluids. However, dispersion curve computation for guided waves in isotropic 

rods and pipes including viscoelasticity and fluid-loading from inside and outside are on the 

way. Multilayered and anisotropic rods and pipes are scheduled later. There are no plans 

currently to implement a discretizing method such as SAFE or SCM to compute waveguides 

with arbitrary cross sections. 

 

2.4 Download and installation 

 

DC is available on GitHub [28]. One can download the stand-alone installer, for which no 

MATLAB®  is required, and one can download the MATLAB®  code. When running the stand-

alone installer, a MATLAB®  runtime will be downloaded and installed automatically. In case 

the MATLAB®  runtime is not downloaded and installed automatically, download it from 

https://www.mathworks.com/products/compiler/matlab-runtime.html and install it manually. 

The required runtime version number can be found in the change log file. For more information, 

see the README on GitHub [28]. 

 

 

3. Conclusions 
 

In this paper, the open source DC, available at GitHub [28], was presented. DC is capable of 

calculating dispersion diagrams and mode shapes of guided waves in composite laminates 

containing several hundreds of layers, therefore enabling the modeling of guided waves in the 

thickest specimens like modern rocket booster pressure vessels. Damping induced through 

viscoelasticity and fluid-loading can be considered. DC is able to distinguish the different mode 

families like symmetric, antisymmetric, and nonsymmetric Lamb, SH and Scholte waves. DC 

features a highly efficient and robust dispersion curve tracing algorithm. An easy-to-use 

graphical user interface enables even a beginner to obtain results fast. DC was released initially 

in 2018 and has gained many users in the community since then. 
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