
FuLeakage: Breaking FuLeeca
by Learning Attacks

Felicitas Hörmann1,2 and Wessel van Woerden3

1 Institute of Communications and Navigation, German Aerospace Center (DLR),
Oberpfaffenhofen–Wessling, Germany

felicitas.hoermann@dlr.de
2 School of Computer Science, University of St.Gallen, St.Gallen, Switzerland

3 Univ. Bordeaux, CNRS, Inria, Bordeaux INP, IMB, Talence, France
wessel.van-woerden@math.u-bordeaux.fr

Abstract. FuLeeca is a signature scheme submitted to the recent NIST
call for additional signatures. It is an efficient hash-and-sign scheme
based on quasi-cyclic codes in the Lee metric and resembles the lattice-
based signature Falcon. FuLeeca proposes a so-called concentration step
within the signing procedure to avoid leakage of secret-key information
from the signatures. However, FuLeeca is still vulnerable to learning at-
tacks, which were first observed for lattice-based schemes. We present
three full key-recovery attacks by exploiting the proximity of the code-
based FuLeeca scheme to lattice-based primitives.
More precisely, we use a few signatures to extract an n/2-dimensional
circulant sublattice from the given length-n code, that still contains the
exceptionally short secret-key vector. This significantly reduces the clas-
sical attack cost and, in addition, leads to a full key recovery in quantum-
polynomial time. Furthermore, we exploit a bias in the concentration
procedure to classically recover the full key for any security level with at
most 175,000 signatures in less than an hour.

1 Introduction

Most of today’s asymmetric cryptosystems are based on discrete-logarithm prob-
lems or integer factorization and will not withstand powerful quantum comput-
ers. Thus, the U.S. National Institute of Standards and Technology (NIST) cur-
rently aims to standardize cryptographic schemes that resist conventional as well
as quantum attacks. The project started with the first call for post-quantum al-
gorithms in 2016 and now arrived at the fourth and last round [25]. Since many
of the remaining signature schemes share similar underlying security primitives,
NIST opened up a call for additional signatures in 2023 [26] to foster diversity.

One of the new proposals is FuLeeca [32,33], which is the first scheme relying
on coding-theoretical problems in the Lee metric. FuLeeca adopts a hash-and-
sign approach and thus generates signatures as codewords that are close to the
hashed message. Then, any basis of the code allows the recipient to verify the
signature, whereas the signer needs access to the secret key, i.e., a good basis for
decoding the signature from the target hash.

https://orcid.org/0000-0003-2217-9753
https://orcid.org/0000-0002-5565-4015

The hash-and-sign paradigm is the basis for code-based schemes such as
CFS [11] and Wave [5], but it is also well-known in lattice-based cryptography.
Unfortunately, the first lattice proposals adopting this strategy, namely GGH [19]
and NTRUSign [20], were fully broken by learning attacks [18, 27]. In particu-
lar, already a few hundred NTRUSign signatures leak enough information to
recover the secret key, as their generation heavily depends on the secret lattice
basis. Several heuristic approaches tried to prevent leakage [21, 22, 28, 35] but
failed in the end [14, 23, 37]. In contrast, signatures generated with the GPV
framework [17] provably do not leak any information about the secret key and
thus resist learning-type attacks. Instantiations of the GPV framework are e.g.
the code-based scheme Wave [5] and the lattice-based signature Falcon [31],
and NIST selected the latter for standardization [25].

FuLeeca does not adopt the GPV framework and provides no proof of non-
leakage. Instead, a heuristic concentration step is added to the signing algorithm
to prevent leakage. Unfortunately, this countermeasure is not enough.

Table 1: Overview of the presented attacks against FuLeeca.

few signatures many signatures
(≪ 100) (≤ 175,000)

classical attack
leaked-sublattice attack learning attack

(reduced security) (full break)
→ section 4 → section 6

quantum attack
ideal-structure attack

(full break) ← see this attack
→ section 5

Contributions. We present three types of attacks against the signature scheme
FuLeeca, which all profit from the proximity of FuLeeca to known lattice-based
constructions. This showcases once more the close connection between code-
and lattice-based cryptography. Table 1 classifies the three attacks and provides
pointers to the corresponding sections. In the following, we give a short summary
of each approach:

Firstly, we present a leaked-sublattice attack. The idea of applying basis reduc-
tion to the construction-A lattice obtained from the public key was already con-
sidered in the FuLeeca specification but did not influence the parameter choices
as it is less efficient than other combinatorial attacks. We observe however that
all signatures are part of a lower-dimensional sublattice generated by the short
secret vectors. Moving to this lower-dimensional sublattice, for which a basis
can be computed from a small sample of signatures, gives a drastic speedup.
The attack reduces the security level of the FuLeeca-I, FuLeeca-III, and FuLeeca-
V parameter sets from 160, 224, and 288 bits to only 111, 155, and 199 bits,
respectively.

Secondly, we perform an ideal-structure attack by realizing that the first half
of the secret vector is an unusually short element in a circulant lattice. Again,

2

a basis for this circulant lattice can be computed from a few signatures. This
enables a polynomial-time quantum attack in the FuLeeca setting, thus giving a
full quantum key recovery for all three security levels.

Thirdly, we set up a learning attack which yields a full key recovery when
enough signature vectors are known. The attack exploits a bias in the signing
procedure, which lets every signature leak information about the secret key. In
practice, we recover the full secret key of FuLeeca-I, FuLeeca-III, and FuLeeca-V
instances with only 90,000, 175,000, and 175,000 signatures, respectively. The
observed success rate is shown in Figure 1 and is indeed higher for the supposedly
more secure FuLeeca-V instances than for the FuLeeca-III samples.

0 50000 100000 150000 200000
Number of signatures

0.0

0.2

0.4

0.6

0.8

1.0

S
u

cc
es

s
ra

te

FuLeeca-I

FuLeeca-III

FuLeeca-V

Fig. 1: Success rate of the learning attack with respect to the number of available
signatures. Averaged over 50 instantiations for each parameter set.

In summary, we can perform a full key recovery in polynomial time if a
reasonable amount of signatures was collected, and in quantum-polynomial time
for a small sample of signatures. This is a full break of FuLeeca for all proposed
parameter sets, regardless of the availability of quantum computers.

2 Preliminaries

We aim at making this paper accessible for readers from both the lattice com-
munity and the coding community. Thus, we give rather detailed preliminaries
to provide a mostly self-contained presentation of our results.

Generic notation. Let p be an odd prime and denote the finite field of order
p by Fp

∼= Z/pZ. Note that FuLeeca, and thus this work, fixes p = 65,521 in
all parameter sets. Vectors are considered as row vectors and are denoted in
lower-case bold, as e.g. a, while matrices are denoted in upper-case bold, as e.g.
A. We identify Fp with

{
−p−1

2 , . . . , p−1
2

}
and implicitly lift vectors and matrices

over Fp to the corresponding objects over Z.

3

For a real number x ∈ R, we write ⌊x⌋ for the largest integer n ≤ x, ⌈x⌉
for the smallest integer n ≥ x, and ⌊x⌉ ∈ Z for the unique integer such that
x − ⌊x⌉ ∈

[
− 1

2 ,
1
2

)
holds. We use trunc(x) to denote the rounding of x towards

0, i.e., trunc(x) = ⌊x⌋ if x ≥ 0, and trunc(x) = ⌈x⌉ otherwise. The sign of x is
denoted by sgn(x) ∈ {−1, 0, 1}, and defined as sgn(x) = 1 if x > 0, sgn(x) = −1
if x < 0, and sgn(0) = 0. For a vector a or a matrix A with coefficients in a set
S, we write f(a) or f(A) to apply a function f : S → S coefficient-wise.

Circulant matrices. Let F be any field. We define the circular shift of a vector
a = (a1, . . . , ak) ∈ Fk as shift(a) := (ak, a1, . . . , ak−1) ∈ Fk. For i ∈ N, the i-
fold shift of a is obtained by applying the shift-operator i times and denoted by
shifti(a). We further construct a matrix Shift(a) ∈ Fk×k by using all possible
shifts of a given vector a ∈ Fk as its rows. Namely,

Shift(a) :=

a

shift(a)
...

shiftk−1(a)

 =

a1 a2 . . . ak
ak a1 . . . ak−1

...
...
. . .

...
a2 a3 . . . a1

 .

The matrix Shift(a) is called circulant and the identity shift(a) · Shift(b) =
shift(b) · Shift(a) holds for any a, b ∈ Fk.

2.1 Codes

A linear code C of length n and dimension k is a k-dimensional subspace of Fn
p . We

usually represent it as the row space of a matrix and call any full-rank matrix
G ∈ Fk×n

p with C = ⟨G⟩Fp
a generator matrix of C. We can apply Gaussian

elimination to transform a generator matrix, up to column permutations, into

its systematic form (Ik | T), where T ∈ Fk×(n−k)
p and Ik ∈ Fk×k

p is the identity
matrix. The classical weight that is considered for linear codes is the Hamming
weight. It counts the number of nonzero entries of a vector, i.e.,

wtH(x) := |{i ∈ {1, . . . , n} : xi ̸= 0}| for any x = (x1, . . . , xn) ∈ Fn
p .

Quasi-cyclic codes. A k-dimensional quasi-cyclic code of length n = 2k has
a generator matrix G = (A | B) ∈ Fk×n

p consisting of two circulant blocks

A = Shift(a) ∈ Fk×k
p and B = Shift(b) ∈ Fk×k

p . If A is invertible over Fp, the
matrix T = A−1B in the systematic form (Ik | T) of G is also circulant.

Lee metric. The Lee weight of an element x ∈ Fp is defined as wtL(x) := |x|,
where we use the symmetric field representation Fp =

{
−p−1

2 , . . . , p−1
2

}
. The

Lee weight can be extended to vectors additively, i.e.,

wtL(x) =
∑n

i=1
wtL(xi) for any x = (x1, . . . , xn) ∈ Fn

p .

The metric induced by this weight, that is, dL(x,y) := wtL(x−y) for x,y ∈ Fn
p ,

is called the Lee metric on Fn
p .

4

Typical Lee vectors. Suppose one wants to sample a vector x ∈ Fn
p uniformly

at random from the Lee sphere

SL(t, n) := {v ∈ Fn
p : wtL(v) = t}

of vectors having a fixed Lee weight t. This is not as straightforward as e.g. for
the Hamming metric, where sampling t uniform nonzero values and a random
permutation suffices. A vector of Lee weight t can be obtained by first choosing
a weight partition t = t1 + . . . + tn with integers 0 ≤ ti ≤ p−1

2 and then
returning a signed permutation of the vector t = (t1, . . . , tn). Uniform sampling
over SL(t, n) is possible by properly randomizing the chosen partition and the
signed permutation [6].

However, randomizing the partition correctly is costly and therefore FuLeeca
fixes a precomputed typical partition or typical Lee vector t for the used length
n, modulus p, and Lee weight t, and only randomizes by applying a signed
permutation to it. In other words, FuLeeca samples uniformly from the set

T (t) := {π(t) : π is a signed permutation}.

2.2 Lattices

A lattice L ⊂ Rn is a discrete subgroup of the vector space Rn. A prominent
example is the integer lattice Zn ⊂ Rn. More generally, let B ∈ Rk×n be the
matrix whose rows are the R-linearly independent vectors b1, . . . , bk ∈ Rn. Then
we define the lattice L(B) with basis B by

L(B) := Zk ·B :=

{∑k

i=1
xibi : xi ∈ Z ∀i

}
.

We call k the rank or dimension of the lattice, and L(B) has full rank if k = n.

For lattices L ⊂ Rn, we usually consider the standard Euclidean metric in
Rn. The Euclidean inner product ⟨x,y⟩ for two vectors x,y ∈ Rn is given by
⟨x,y⟩ := ∑n

i=1 xiyi. It induces the Euclidean (or ℓ2) norm by

∥x∥2 :=
√
⟨x,x⟩ for any x ∈ Rn.

Alternatively, and related to the Lee metric, one can consider the metric induced
by the ℓ1 norm ∥x∥1 :=

∑n
i=1 |xi|.

A lattice has a volume vol(L) :=
√

det(BB⊤), where B is an arbitrary basis
of L. Note that the volume is independent of the considered basis despite the
given definition because every basis B̃ has the form B̃ = UB for a unimodular
matrix U ∈ GLk(Z) with determinant det(U) = ±1.

The length of any shortest nonzero lattice vector is denoted by

λ1(L) := min
v∈L,v ̸=0

∥v∥2

5

and called the first minimum of L. Note that λ1(L) is a positive real because
of the discrete nature of lattices. For a random lattice of rank k,4 the first
minimum λ1(L) is concentrated around gh(L) := gh(k) · vol(L)1/k with high
probability, where gh(k) := vol(Bk1)−1/k ≈

√
k/(2πe) is the Gaussian heuristic

and Bk1 denotes the unit ball of dimension k. The Gaussian heuristic can be seen
as the lattice analog of the Gilbert–Varshamov (GV) bound for codes.

Computing short lattice vectors. The shortest-vector problem (SVP) takes
a lattice basis B as input and asks to compute a shortest lattice vector, i.e., a
v ∈ L(B) with ∥v∥2 = λ1(L(B)). Finding a shortest vector of a high-dimensional
lattice is in general a hard problem. State-of-the-art heuristic algorithms for
SVP take both exponential time 20.292k+o(k) and memory 20.208k+o(k) for a k-
dimensional lattice. However, finding a short-enough vector might suffice to break
cryptographic schemes. Lattice-reduction algorithms such as BKZ [34] find such
short-enough vectors with a trade-off between the vector length and the compu-
tational cost. BKZ requires an oracle that solves SVP exactly in β-dimensional
lattices for β < k and runs in time 20.292β+o(k). We say that BKZ runs with
blocksize β and a higher blocksize heuristically recovers shorter vectors.

Heuristic Claim 1 (BKZ approximation [2]) For a k-dimensional lattice
L, BKZ with blocksize 2 ≤ β ≤ k heuristically recovers a lattice vector v ∈ L of
length

∥v∥2 ≤ gh(β)
k−1
β−1 · vol(L)1/k ≈

(
β

2πe

) k−1
2(β−1) · vol(L)1/k

in time 20.292β+o(k).

The special cases of the BKZ algorithm are β = 2, for which BKZ runs in
polynomial time but gives an exponentially large approximation radius, and
β = k, for which it runs in exponential time but recovers a shortest lattice
vector. If the given lattice is not random, BKZ might be faster. For example, if
the lattice contains an unusually short vector, i.e., a vector shorter than what
the Gaussian heuristic predicts, BKZ can recover it with a blocksize β ≪ k.

Heuristic Claim 2 (BKZ unusual SVP [2]) Let L be a lattice of dimension
k and let v ∈ L be an unusually short vector with ∥v∥2 ≪ gh(L). Then, BKZ
with blocksize β heuristically recovers v if√

β
k · ∥v∥2 < gh(β)

2β−k−1
β−1 · vol(L)1/k.

For example, if ∥v∥2 = gh(L)/Θ(
√
k), then BKZ recovers the unusually short

vector with blocksize β = k
2 + o(k) and thus in time 2

0.292k
2 +o(k) instead of

20.292k+o(k). The above estimate can be refined further, leading to accurate con-
crete predictions of the precise blocksize β that is needed to recover an unusually
short lattice vector [4, 13,29]. See [3] for a survey on these results.

4 The meaning of a random lattice is a bit more complex than for codes, but can be
made rigorous by considering the unique normalized Haar measure on the space of
lattices.

6

2.3 Ideal and log-unit lattices

Recall that an ideal I of a ring R is an additive subgroup of R satisfying R·I = I.
Any ideal is already equipped with the additive properties of a lattice, but there
is no a-priori notion of a distance. We now discuss two constructions of ideal
lattices, their relation, and the log-unit lattice.

Coefficient embedding. Firstly, consider polynomial quotient rings of the
formR := Z[x]/(h) for a monic polynomial h ∈ Z[x] of degree d. We define the co-

efficient embedding cf : R→ Zd, which maps any element f(x) =
∑d

i=1 fix
i−1 ∈

R to its coefficient vector cf(f) := (f1, . . . , fd) ∈ Zd. Since Zd ⊂ Rd is equipped
with the Euclidean norm ∥·∥2, this mapping induces a metric on R by setting
∥f∥ := ∥cf(f)∥2 for any f ∈ R. Thus, we call the image cf(I) ⊂ Rd of any ideal
I ⊂ R an ideal lattice. We will encounter an example of this construction in
the following, where we consider the case h(x) := xk − 1 leading to the quotient
ring R = Z[x]/(xk − 1). In this setting, the lattice cf(I) constructed from any

principal ideal I = (a) in R with generator a =
∑k−1

i=0 aix
i (mod xk − 1) has a

circulant basis. This derives from the fact that a, xa, . . . , xk−1a is a Z-basis of
I and multiplication with xi in R coincides with the i-fold shift of the image
vector in cf(I). More precisely, cf(xia) = shifti(cf(a)) holds for i = 0, . . . , k − 1
and thus we obtain cf(I) = L(Shift(a)) with a := cf(a).

Canonical embedding. Secondly, we choose R as the ring of integers OK of a
number fieldK := Q[x]/(h) with h ∈ Q[x] being an irreducible monic polynomial
of degree d. Note that K is naturally equipped with d field homomorphisms
σi : K → C with i = 1, . . . , d that map x to distinct roots of h in C. We call
σ : K → Cd with f 7→ (σ1(f), . . . , σd(f)) for any f ∈ K the canonical embedding
of K into Cd ≃ R2d. We use it to transfer the Euclidean metric from R2d to
K, similar as we did with the coefficient embedding cf in the first construction.
Namely, we set ∥f∥ := ∥σ(f)∥2 for any f ∈ K, where σ(f) on the right-hand
side is implicitly understood as an element of R2d ≃ Cd. Since σ preserves the
additive and discrete structure of any nonzero ideal I ⊂ R, we call the rank-d
image σ(I) ⊂ Cd an ideal lattice. One particular example of this construction,
which we will come across later, is the case of cyclotomic fields. For any odd
prime k, we consider the monic cyclotomic polynomial

Ψk(x) := (xk − 1)/(x− 1) = 1 + x+ . . .+ xk−1 ∈ Z[x]

which is irreducible over Q and has degree d = k − 1. We obtain d-dimensional
ideal lattices by applying the canonical embedding to nonzero ideals in the ring
of integers Ok := Z[x]/(Ψk) of the cyclotomic number field K := Q[x]/(Ψk).

Circulant and cyclotomic ideals. The two examples we considered are in
fact closely related. Namely, for a prime k, the quotient ring Z[x]/(xk− 1) splits
into

Z[x]/(xk − 1) ∼= Z[x]/(Ψk)× Z[x]/(x− 1)

7

by means of the isomorphism f 7→ (f (mod Ψk), f (mod x− 1)). As a result,
we can map any circulant ideal I ⊂ Z[x]/(xk − 1) of rank k onto a cyclotomic
ideal I (mod Ψk) ⊂ Z[x]/(Ψk) of rank k− 1, and onto an ideal I (mod x− 1) ⊂
Z[x]/(x−1) ∼= Z of rank 1. An important property of the first part of the mapping
is that the geometry of the ideal lattice cf(I) via the coefficient embedding is,
up to scaling, very close to the ideal lattice σ(I (mod Ψk)) via the canonical
embedding [8]. So we can easily move from our circulant lattice to an ideal
lattice over a cyclotomic number ring. This will become useful later because
some generally hard lattice problems can be solved in quantum-polynomial time
for principal ideal lattices over cyclotomic number rings.

Log-unit lattice. We recall one last embedding that is useful for the multi-
plicative structure of units. Consider again a number ring OK of a number field
K of degree d with canonical embedding σ given by σ1, . . . , σd. We define the
logarithmic embedding Log : K× → Rd by

f 7→ (log(|σ1(f)|, . . . , log(|σd(f)|)) ∈ Rd.

Note that multiplication in K× = K \ {0} corresponds to addition after the
logarithmic embedding, i.e.,

Log(u · v) = Log(u) + Log(v) for all u, v ∈ K×.

Now consider the subgroup of units O×
K of OK . By Dirichlet’s unit theorem

the logarithmic embedding Log(O×
K) is a lattice of a certain rank, named the

log-unit lattice. Going back to our example, the log-unit lattice Log(O×
k) of the

cyclotomic number field K := Q[x]/(Ψk) has rank (k − 3)/2 for all odd primes

k. Because |N(u)| := ∏d
i=1 |σi(u)| = 1 holds for all units u ∈ O×

K , we obtain
that the coefficients of Log(u) sum up to 0. In other words, Log(O×

K) lies in the
subspace orthogonal to (1, . . . , 1). Furthermore, any root of unity ξ ∈ K satisfies
|σi(ξ)| = 1 for all i = 1, . . . , d and thus Log(ξ) = 0, i.e., ξ is contained in the
kernel of Log. In particular, Log maps any product ξ · u of a unit u ∈ K× and a
root of unity ξ ∈ K× to Log(u), which means that u can only be recovered from
its image Log(u) up to a root of unity.

3 FuLeeca and lattice-based cryptography

FuLeeca is a hash-and-sign signature scheme based on codes in the Lee metric.
The hash-and-sign paradigm is a well-known technique to design digital signa-
tures and has been used for constructions involving both lattices and codes. The
main idea is to interpret the hash of the given message as a target point in
an ambient space in which a certain selected code or lattice is defined. As the
signer knows a suitable good basis of the code or the lattice, they can easily find
a codeword or a lattice point that is close to the target with respect to the cor-
responding metric and use it as the signature. Note that even a publicly known

8

bad basis, which fully hides the structure of the chosen lattice or code, allows
the verifier to efficiently validate the signature by checking if the signature is a
lattice point or a codeword and if it is close to the hash of the signed message.
The obstacle for an adversary trying to forge a signature is however the hard-
ness of finding a close codeword or lattice point without having access to a good
basis. These problems are known as the syndrome-decoding problem (SDP) and
the closest-vector problem (CVP), respectively.

Hash-and-sign-based examples from code-based cryptography start with the
CFS scheme [11] and include the current NIST proposal Wave [5]. In terms of
lattices, the most prominent examples of hash-and-sign signatures are GGH [19],
NTRUSign [20], and Falcon [31].

Since the Lee metric is closely related to the Euclidean ∥.∥2-norm, not only
the overall hash-and-sign structure of FuLeeca coincides with known lattice pro-
posals, but also the underlying notion of distance is similar. We use the remain-
der of this section to recall the design principles of FuLeeca and describe how it
can be interpreted in the context of lattice-based cryptography. This allows us
to identify similarities and differences with respect to GGH, NTRUSign, and
Falcon. Our observations will enable us to apply lattice techniques to attack
FuLeeca later in this paper.

3.1 FuLeeca

The NIST submission of the FuLeeca signature scheme [32] is based on the publi-
cation [33]. It comes with three sets of parameters that can be found in Table 2.
As the chosen parameter sets correspond to the NIST security levels I, III, and
V, we refer to them as FuLeeca-I, FuLeeca-III, and FuLeeca-V, respectively.

Key generation. Both FuLeeca keys
are generator matrices of the same
quasi-cyclic code C ⊂ Fn

p of dimension
k and length n = 2k. The secret key
Gsec = (A | B) ∈ Fk×n

p consists of
two circulant blocks A ∈ GL(k,Fp) and
B ∈ Fk×k

p , and thus captures the quasi-
cyclic structure of C. In contrast, the
public key Gpub =

(
Ik | A−1B

)
is the

systematic form of Gsec and hides the
secret key.
As depicted in Algorithm 1, the secret
key Gsec is chosen by picking two ran-
dom signed permutations a and b of a
typical Lee vector t ∈ Fk

p of Lee weight
wkey and setting A := Shift(a) and
B := Shift(b). The sampling of a is re-
peated until A is invertible to ensure
that the systematic form of Gsec, that
is, Gpub, can be computed.

Algorithm 1: FuLeeca key
generation [32].

Input : FuLeeca parameter set,
typical Lee vector t.

Output: Public key Gpub,
secret key Gsec.

1 do

2 a
$←− T (t)

3 A = Shift(a)

4 while A /∈ GL(k,Fp)

5 b
$←− T (t)

6 B = Shift(b)

7 Gsec = (A | B)
8 Gpub = (Ik | A−1B)

9 return Gpub, Gsec

9

Table 2: Proposed FuLeeca parameter sets [32].

Parameter Set p n wkey wsig/n s ncon

FuLeeca-I 65,521 1,318 31,102 982.8 3/64 100
FuLeeca-III 65,521 1,982 46,552 982.8 9/256 90
FuLeeca-V 65,521 2,638 61,918 982.8 3/128 178

Signature generation. The signer has access to the secret key Gsec and wishes
to sign a message m. The signing procedure of FuLeeca is illustrated in Algo-
rithm 2 and starts with applying hash functions and adding randomness to
m, i.e., with the hash part of the hash-and-sign design paradigm. We write
Hash(m, salt) to denote the adopted two-stage hashing process, that outputs a
vector c ∈ {±1}n and is described in detail in the FuLeeca specification [32].

Now the sign part takes place. It consists of two steps, as is highlighted by
the usage of the functions simpleSign and concentrate in Algorithm 2. These
are followed by final checks to decide whether the signature is accepted or the
whole process is repeated.

Algorithm 2: FuLeeca signature generation [32].5

Input : FuLeeca parameter set, secret key Gsec ∈ Fk×n
p , message m.

Output: Signature v ∈ Fn
p , salt salt.

1 Repeat

2 salt
$←− F256

2

3 c = Hash(m, salt) ∈ {±1}n

4 v = simpleSign(c, Gsec)

5 v = concentrate(c, v, Gsec)

6 if wsig − 2wkey < wtL(v) ≤ wsig

7 and LMP(v, c) ≥ λ+ 64 then
8 return salt,v
9 end

10 simpleSign(c, Gsec):
11 for i = 1, . . . , k do
12 xi = trunc(s · ipm(gi, c))
13 end
14 x = (x1, . . . , xk)
15 v = xGsec

16 return v

17 concentrate(c, v, Gsec):
18 A = {±1, . . . ,±k}, lf = 1
19 for j = 1, . . . , ncon do
20 v′ = 0
21 for i = 1,−1, . . . , k,−k do
22 v′′ = v + sgn(i) · g|i|
23 if |LMP(v′′, c)− (λ+ 65)| ≤

|LMP(v′, c)− (λ+ 65)| and
(i ∈ A or lf = 0) then

24 v′ = v′′, i′ = i
25 end

26 end
27 v = v′, A = A \ {−i′}
28 if wtL(v) > wsig − wkey then
29 lf = 0
30 else
31 lf = 1
32 end

33 end
34 return v

5 There are significant differences between the specification and the reference imple-
mentation of FuLeeca. In particular, the order of the loop on line 21 within the
concentration procedure is important for our attack but not properly defined in the
specification. Whenever specification and reference implementation differ, we follow
the implementation.

10

Define the number of sign matches of two vectors x = (x1, . . . , xn) ∈ Fn
p and

y = (y1, . . . , yn) ∈ Fn
p as

mt(x,y) := |{i ∈ {1, . . . , n} : sgn(xi) = sgn(yi) and xi, yi ̸= 0}| .

Moreover, the elementwise star product of x and y is x⋆y := (x1y1, . . . , xnyn) ∈
Fn
p and we define

ipm(x,y) := mt(x,y)− wtH(x ⋆ y)

2
.

Note that 2 · ipm(x,y) = ⟨sgn(x), sgn(y)⟩ applies, where ⟨·, ·⟩ denotes the Eu-
clidean scalar product. Therefore, we call ipm(x,y) the scaled number of inner-
product matches of x and y.

The first signing step is simple signing which maps the hash output c ∈
{±1}n to a suitable vector x ∈ Fk

p depending on the inner-product matches
between c and the rows ofGsec, i.e., xi = trunc(s·ipm(gi, c)) for some parameter
s and i = 1, . . . , k. Then, it generates a signature v = xGsec by interpreting the
obtained x as coordinates with respect to the secret basis g1, . . . , gk of the code
C = ⟨Gsec⟩Fp

. Interestingly, the simple-signing procedure can be expressed as

v = trunc
(
s
2 · c · sgn

(
G⊤

sec

))
·Gsec.

The second signing step is concentrating and aims at shifting the Lee weight
of the simple signature v and the number of sign matches mt(c,v) to prescribed
intervals. This is achieved by a trial-and-error-like process that successively adds
or subtracts rows of the secret generator matrixGsec and then checks if the result
was improved. Note that doing this for the i-th row gi corresponds to adapting
the coefficient xi to xi± 1 (mod p) for i = 1, . . . , k. The quality of the signature
is measured by its Lee weight and the logarithmic matching probability (LMP),
which is defined for two fixed vectors v ∈ Fn

p and c ∈ {±1}n as

LMP(v, c) := − log2 (P [mt(v,y) = mt(v, c)]) .

Here, y ∈ {±1}n is chosen uniformly at random and P [mt(v,y) = mt(v, c)]
denotes the probability that v has as many sign matches with y as with c.
Note that a large value of LMP(v, c) indicates that that number of sign matches
mt(v, c) is unusual, i.e., that the number of sign matches is significantly lower or
higher than its expectation wtH(v⋆c)/2 for random c. The behavior of ipm(c,v)
is similar, and ipm(c,v) has a large absolute value in this case as well.

The concentration process is repeated ncon times, where ncon is a preset
parameter. Afterward, the obtained signature is accepted if its Lee weight is
within the desired interval (wsig − 2wkey, wsig] and the LMP between v and c is
at least the bit-security level λ plus a security margin of 64 bits.

Signature verification. The verification procedure checks that the signature
v is part of the code and has small Lee weight wtL(v) ≤ wsig. Moreover, the
signs of v have to match sufficiently with c, i.e., satisfy LMP(v, c) ≥ λ+ 64.

11

3.2 Interpreting FuLeeca as a lattice-based scheme

We can port the coding-theoretic ideas used in FuLeeca to the lattice setting by
applying construction A [10, p. 137] to the considered code C = ⟨Gsec⟩Fp

⊂ Fn
p

of length n and dimension k. Namely, we consider the lattice

L1 := C + pZn = {v ∈ Zn : v (mod p) ∈ C} ⊂ Rn. (1)

Recall that we identify Fp with
{
−p−1

2 , . . . , p−1
2

}
and that we implicitly lift

the entries of vectors and matrices from Fp to Z. The public generator matrix
Gpub =

(
Ik | A−1B

)
of C, whose right side A−1B is computed modulo p, gives

a public basis Bpub of L1. Namely,

Bpub =

(
Ik A−1B
0 p In−k

)
and this shows that L1 has full rank n and volume vol(L1) = det(Bpub) = pn−k.
The normalized volume vol(L1)

1/n = p1−r of the lattice is thus determined by
the modulus p and the code rate r := k

n , whereas the rank of L1 equals the
length of the code C, as pZn ⊂ L1 applies by construction. Since we will make
use of different lattices throughout the paper, Figure 2 contains an overview of
them, visualizes their connections, and indicates how to obtain suitable bases.

L1 = ZkGpub + pZn

construction-A lattice
→ section 3, section 4

public key

L2 = Zk(A | B)

secret-key lattice
→ section 4, section 6

signatures

L3 = ZkA

circulant lattice
→ section 5

I = (a)

I′ = (a mod ψk)

cyclotomic lattice
→ section 5

Z[x]/(ψk)

Z[x]/(xk − 1)

Rk

Rn

ambient space

first half

coefficient
embedding

modψk

Fig. 2: Schematic overview of the lattices used in this paper and their connections.

Observe that the Lee metric on C is closely related to the ℓ1 metric on L1.
In particular, lifting a vector x ∈ C with wtL(x) = w implicitly to x ∈ L1 yields
∥x∥1 = w. The ℓ1 norm is in fact close to the Euclidean ℓ2 metric, to which most
lattice algorithms are tailored. More precisely,

∥y∥2 ≤ ∥y∥1 ≤
√
n · ∥y∥2

holds for all y ∈ Rn and we expect ∥y∥1 ∼ ∥y∥2 for very sparse vectors and
∥y∥1 ∼

√
n · ∥y∥2 for dense and balanced vectors. Short or close codewords of C

in the Lee metric are therefore directly related to short or close lattice vectors
of L1 in the Euclidean metric.

12

In particular, we know that the short rows of the generator matrix Gsec

of C correspond to k short vectors g1, . . . , gk in L1. As each gi has the form(
shifti(a) | shifti(b)

)
and a and b are signed permutations of a precomputed

typical vector t, we know that ∥gi∥2 = ∥g∥2 =
√
2 · ∥t∥2 applies for g := (a | b)

and all i = 1, . . . , k. As can be seen in Table 3, this is close to the Gaussian
heuristic of L1, i.e., the expected first minimum of the lattice. The good generator
matrix Gsec thus gives a good basis of the sublattice L(Gsec) ⊂ L1.

FuLeeca uses this good basis to compute a signature v that is short in
the ℓ1 norm and has a large absolute inner-product matching | ipm(v, c)| =
1
2 |⟨sgn(v), sgn(c)⟩| with the hash c ∈ {±1}n. Note that for a balanced vector
v = (±v, . . . ,±v) the inner-product matching correlates perfectly with the ac-
tual Euclidean inner product, i.e.,

⟨v, c⟩ = v · ⟨sgn(v), sgn(c)⟩ = 2v · ipm(v, c).

More generally, we expect ⟨v, c⟩ ∼ 2∥v∥2√
n
· ipm(v, c) for reasonably balanced

vectors v. The large absolute inner-product matching for a FuLeeca signature
thus roughly corresponds to a large absolute Euclidean inner product between
the signature v and c, i.e., v and c have a small angle. Furthermore, this is

equivalent to saying that v or −v is a close vector to ∥v∥2

∥c∥2
· c. So in terms of the

Euclidean metric, a FuLeeca signature v is valid when it is simultaneously small
and close to the target obtained from the message.

Table 3: Lengths of the short secret-key vectors relative to the Gaussian heuristic.

Parameter Set wtL(g) ∥g∥2 ∥g∥2/ gh(L1) ∥g∥2/ gh(L2)

FuLeeca-I 62,204 2,385.06 1.061 0.184
FuLeeca-III 93,104 2,976.61 1.079 0.150
FuLeeca-V 123,836 3,478.06 1.093 0.130

3.3 Comparing FuLeeca with known lattice-based schemes

We first compare FuLeeca to early lattice-based hash-and-sign signature schemes
such as GGH [19] and NTRUSign [20]. GGH and NTRUSign both sign by
hashing the message to a target in the space, and then using a good secret basis
to compute a nearby lattice point. Recall from subsection 3.2 that a FuLeeca sig-
nature can also be interpreted as a lattice point close to some target hash. For
FuLeeca however, the signature vector is also short, similar as in the recent
lattice-based signature scheme HAWK [9, 15].

NTRUSign relies on structured NTRU lattices over the circulant quotient
ring Z[x]/(xk − 1), which correspond precisely to the lattice L1 in FuLeeca up
to the choice of parameters. So both schemes use the same structure to achieve
efficiency. Where FuLeeca uses a good basis Gsec of the sublattice L(Gsec) ⊂ L1

to compute a nearby lattice point,NTRUSign and also Falcon [31] extendGsec

to a full good basis Bsec of the lattice L1 and use Bsec for signature generation.

13

Unfortunately, both GGH and NTRUSign were broken by learning attacks,
as each signature leaked some information about the secret key. For example, in
the NTRUSign scheme the error e between the target and the signature lattice
vector is uniform over the parallelepiped

[
− 1

2 ,
1
2

]n ·Bsec of the secret basis Bsec.
Given enough signatures, it is possible to learn the parallelepiped, i.e., to recover
the basis Bsec [27]. For example, the computation E

[
e⊤e

]
= 1

12BsecB
⊤
sec shows

that the signatures leak the Gram matrix of the secret basis Bsec. The full basis
can be recovered by looking at higher moments.

Later variants of NTRUSign tried to mitigate learning attacks in various
ways, for example by adding some extra noise to the decoding procedure. Unfor-
tunately, these variants generally fell victim to similar learning attacks [14, 37],
as the signatures still somehow depend directly on the secret information. Even
recent hash-and-sign schemes, such as the submission Peregrine [35] in the
Korean post-quantum-cryptography competition, are vulnerable to learning at-
tacks [23]. In section 6, we show that FuLeeca has similar vulnerabilities.

An important breakthrough in hash-and-sign signature schemes was the GPV
framework [17], that cleverly samples the nearby lattice point from a discrete
Gaussian distribution around the target, using the secret basis. Because this dis-
tribution only depends on the lattice, they proved that the signatures do not leak
any information about the secret basis, therefore mitigating any learning attack.
Falcon [31], the lattice-based signature scheme that will be standardized by
NIST [25], combines the hash-and-sign technique of NTRUSign and the GPV
framework to prevent learning attacks. Similarly, the code-based hash-and-sign
scheme Wave follows the GPV framework with ternary codes in the Hamming
metric and uses appropriate rejection sampling to obtain a signature distribution
that is independent of the secret code structure. In contrast, FuLeeca does not
follow the GPV framework, and generally it remains an open question how to
adapt the GPV framework to the Lee metric.

4 A leaked-sublattice attack

Recall that construction A allows to set up the lattice L1 = C+pZn from the code
C spanned by the rows of the public generator matrix Gpub ∈ Fk×n

p as described
in equation (1). As we explained in subsection 3.2, the rows g1, . . . , gk of the
secret generator matrix Gsec are short in terms of the ∥.∥2-norm in the rank-n
lattice L1, i.e., they are between 1.06 and 1.1 times longer than the expected
first minimum of L1. Following Heuristic Claim 1, the BKZ lattice-reduction
algorithm heuristically finds vectors of similar ∥.∥2-norm in time 20.292β+o(n) for
β ≥ 0.95n. Since the FuLeeca parameters are chosen such that the secret vectors
g1, . . . , gk are not unusually short in L1, we cannot apply Heuristic Claim 2 to
speed up the recovery.

The described approach is the only lattice-based attack that was considered
in the FuLeeca specification and the security level was mainly determined by
the cost of more efficient information-set-decoding (ISD) attacks [32, section 6].
In the following, we show that the transition to a suitable lower-dimensional

14

sublattice of L1 allows to achieve better attack complexities for lattice-reduction
attacks. They outperform ISD attacks and lower the security for all parameter
sets significantly.

4.1 Constructing a sublattice with unusually short vectors

The goal of this subsection is to describe a lower-dimensional sublattice L2 of L1

that still contains the secret vector g := (a | b) and its quasi-circular shifts. This
will lower the cost of recovering short vectors using BKZ. Moreover, we will see
that the Euclidean norms of g1, . . . , gk are unusually small for L2, which makes
the vectors even easier to recover.

Recall that each FuLeeca signature is given by a vector v = xGsec (mod p)
of low Lee weight. However, we observe experimentally that during the signature
generation the coefficients stay small enough to not be reduced modulo p. This
means that the equality v = xGsec actually also holds over Z, that is, if we
interpret v,x ∈

{
−p−1

2 , . . . , p−1
2

}n ⊂ Zn as integer vectors. Thus, all signature
vectors belong to the lattice

L2 :=

{
k∑

i=1

zigi : zi ∈ Z ∀i
}
⊂ Rn (2)

that is spanned by the rows of Gsec.
We generated 5 million signatures per parameter set, which were split evenly

over 50 FuLeeca key pairs in every case. All signature vectors belonged to L2,
which experimentally confirms the above observation. Furthermore, the largest
observed coefficient size was 7,356, 8,564, and 7,616 for FuLeeca-I, FuLeeca-III,
and FuLeeca-V instances, respectively. This is significantly smaller than p−1

2 =
32,760. The described behavior of non-wrapping coefficients is explained by the
fact that the simple-signing procedure creates an initial signature vector that is
a small combination of the vectors g1, . . . , gk, which have small coefficients. As
a result, no reduction modulo p takes place in simple signing. The concentration
phase that follows adds vectors ±gi for i = 1, . . . , k to the simple signature but
furthermore tries to keep its Lee weight and thus its coefficients small, again
leading to not wrapping the coefficients modulo p.

It is initially not clear that an attacker has access to a basis of L2 because
Gsec is secret and the knowledge of Gpub only allows to recover a basis of L1

as described in subsection 3.2. However, a small sample of FuLeeca signatures is
enough to recover a basis of L2, which will be explained in subsection 4.2. Let
us for now assume that we know a basis of L2 and describe how to recover the
secret vector g or one of its quasi-circular shifts under this assumption.

The lattice L2 has only rank k = n/2 and still contains the short vectors
g1, . . . , gk. We can thus focus on the rank-k lattice L2 for the recovery of a
secret vector. Compared to the rank-n lattice L1, finding a shortest vector in L2

gives a reduced complexity of 20.292k+o(k).
Additionally, the vector g is in fact an unusually short vector in L2. Namely,

g is about a factor Θ(
√
n) shorter than any vector one would expect in a lattice of

15

this rank and volume. This can be seen from the ratio of ∥g∥2 and the Gaussian
heuristic gh(L2) of L2 in Table 3. As a result, a quasi-circular shift of g can be
recovered by the BKZ algorithm with β = k

2 +o(k) =
n
4 +o(n), leading to a time

complexity of about 2
0.292n

4 +o(n). In other words, we obtain a quartic speedup
over the lattice attack considered in the FuLeeca specification [32]. A more precise
value of β can be computed with concrete estimation scripts,6 leading to β = 291,
β = 448, and β = 603 for the FuLeeca-I, FuLeeca-III, and FuLeeca-V parameters,
respectively. This significantly reduces the claimed security levels of the selected
parameter sets as shown in Table 4.

Table 4: Estimated security levels of the proposed FuLeeca parameter sets, claims
according to [32, Table 1]. The new cost is based on the new blocksize estimate
combined with the state-of-the-art cost model of [24] as implemented in the
lattice estimator of [4].

Parameter Set
Claimed Security Level New Security Level Blocksize
(in bits) (in bits) (β)

FuLeeca-I 160 111 291
FuLeeca-III 224 155 448
FuLeeca-V 288 199 603

4.2 Extracting the sublattice from FuLeeca signatures

The previous subsection showed that it is substantially cheaper to attack the
sublattice L2 instead of L1. But as the attacker does not have access to Gsec, it
is not trivial to get a basis of L2. We now explain in more detail how to recover
the lattice L2 from a few signatures.

Assuming signatures are not reduced modulo p, any signature vector v =
(w | y) defines a generating matrix V := (Shift(w) | Shift(y)) of the sublattice
Lv := L(V) ⊂ L2. Now, for r signatures v1, . . . ,vr, these generating matrices
V1, . . . ,Vr generate the sublattice

Lv1,...,vr := Lv1 + . . .+ Lvr :=

{
r∑

i=1

ui : ui ∈ Lvi ∀i
}
⊂ L2,

and for large enough r we can expect that in fact the equality Lv1,...,vr = L2

holds. The Hermite normal form (HNF) is the analog of the echelon form for
matrices with integer coefficients and can be used to efficiently extract a basis
Br of Lv1,...,vr

from all its generating vectors. More precisely, one has Br =
HNF((V1; . . . ;Vr)), where the zero rows of the HNF are removed and the ma-
trices Vi are stacked vertically. To speed this process up in practice, it can be
helpful to compute the HNF incrementally by adding V1, . . . ,Vr step by step.

6 See the file estimates/estimate_reduction.sage available at https://github.

com/WvanWoerden/FuLeakage/.

16

estimates/estimate_reduction.sage
https://github.com/WvanWoerden/FuLeakage/
https://github.com/WvanWoerden/FuLeakage/

The remaining question is how large r has to be to guarantee the equality
Lv1,...,vr

= L2 with overwhelming probability. Note that L2 is a rank-k lattice
in a 2k-dimensional space, and that the rank remains the same if we restrict
ourselves to the first k coefficients of each vector. In other words, we do not
consider L2 generated by the quasi-circular shifts of g anymore, but the lattice
generated by Shift(a). Recall from the preliminaries that this is in fact an ideal

lattice I = (a) ⊂ Z[x]/(xk − 1) with generator a =
∑k

i=1 aix
i−1 corresponding

to the secret vector a = (a1, . . . , ak). The question then becomes how many
random elements we need to sample from I such that they generate the full
ideal.

1 2 3 4 5 6 7 8 9 10 11
Number of signatures

0.0

0.2

0.4

0.6

0.8

1.0

G
en

er
at

in
g

p
ro

b
ab

ili
ty Experiments

Heuristic estimate

Fig. 3: Number of signatures needed to fully generate the lattice L2, leaving out
signatures whose coefficients sum up to 0 (about 2.5% of the total).

This question has already been explored for an ideal over a number ringOK ⊂
K and decent random distributions for sampling. In this scenario, the probability
that r random elements fully generate the ideal is heuristically roughly ζK(r)−1,
where ζK is the Dedekind zeta function of the number field K. See [16, Lemma
2.7] for a provable lower bound of (4ζK(r))−1. We have seen that Z[x]/(xk − 1)
splits into two number rings, a cyclotomic number ring R1 := Z[x]/(Ψk) of degree
k−1, and a number ring R2 := Z[x]/(x−1) ∼= Z of degree 1. In order to generate
an ideal I ⊂ Z[x]/(xk−1), we need to generate its images I1 := I (mod Ψk) and
I2 := I (mod x−1) in R1 and R2, respectively. Thus, we expect a probability of
roughly ζR1

(r)−1 · ζR2
(r)−1. For prime cyclotomic number fields of large degree

k, ζR1(2) is close to 1 already and converges quickly for growing r. Concretely,
we observe ζR1(2) ≤ 1.0024 for primes 100 < k < 300 and we obtain the upper

bound ζR1
(r) ≤ exp(O(p

3
2−r)) following the proof of [1, Lemma 1]. Thus, the

probability is mostly dominated by ζR2
(r) = ζZ(r), which is the Riemann zeta

function ζ(r). Given that ζR2(r) ≤ 1 + 3 · 2−r for r ≥ 2, we can simply pick,
say, r ≥ 100 elements to guarantee that we generate the full ideal with all but
negligible probability. We exclude the signatures that are 0 ∈ R2, i.e., those that
have coefficients summing up to 0, as they can never help generating the ideal in
R2, and such elements should be ignored for the Dedekind zeta estimate to hold.

17

In Figure 3, we verify the derived estimate experimentally over 1,000 trials. All
ideals were successfully generated by at most 11 signatures.

To conclude, a few dozen signatures are enough to recover a basis for the
lattice L2 containing the unusually short secret vectors g1, . . . , gk. Then, by the
BKZ lattice-reduction algorithm, we can recover any such gi in time 2

0.292k
2 +o(k),

pushing the attack cost significantly below the claimed security levels as shown
in Table 4.

This attack could be mitigated by adopting the basis-extension strategy from
e.g. NTRUSign [20] and Falcon [31]. Namely, their signature generation does
not only use the secret good basis Gsec but its extension Bsec that generates
L1. This makes sure that the generated signatures are distributed in the whole
lattice L1 and do not only lie in the sublattice L2.

5 A polynomial-time quantum attack

In this section, we present a polynomial-time quantum attack on all security lev-
els of FuLeeca, hence breaking the post-quantum claims of the scheme. We show
that the leaked lattice L2 from the previous section can be transformed into a
related principal-ideal lattice over the cyclotomics with an unusually short gener-
ator linked to the secret key. For this family of ideals, there exists a polynomial-
time quantum algorithm to recover the unusually short generator [7, 12]. Thus,
we can recover the secret key in quantum-polynomial time.

5.1 Constructing a circulant ideal lattice

Recall that the lattice L2 defined in equation (2) is generated by the rows of
Gsec = (A | B) and that the blocks A = Shift(a) and B = Shift(b) are circulant
matrices. Let us consider the lattice

L3 :=

{
k∑

i=1

ziai : zi ∈ Z ∀i
}
⊂ Rk

that is spanned by the rows ai = shifti−1(a) of A. We can recover a basis of
L3 from any basis of L2 simply by considering only the first half of each basis
vector. Since this lattice is circulant, it can be represented by an ideal I in the
quotient ring Z[x]/(xk − 1) with k = n/2. More precisely, we can identify any

vector (f1, . . . , fk) ∈ L3 with the element f(x) =
∑k

i=1 fix
i−1 ∈ Z[x]/(xk−1) by

means of the coefficient embedding discussed in subsection 2.3. Recall that the
circular shift of a lattice vector coincides precisely with the multiplication of its
polynomial representation by x modulo xk−1. Further, L3 corresponds precisely
to the principal ideal (a) ⊂ Z[x]/(xk − 1) generated by a(x) =

∑k
i=1 aix

i−1,
where a = (a1, . . . , ak) is the secret vector. As I is closed under multiplication
with x, note that in fact every xia for i = 0, . . . , k − 1 generates I and shares
its short Euclidean norm with a. Thus, it is enough to recover one of these short
generators to find a shift of the secret vector a.

18

We will use a quantum algorithm to recover a short generator of a principal
ideal in a cyclotomic number ring, but so far we are working over the quotient
Z[x]/(xk − 1). Therefore, we switch to the image of I in a suitable, slightly
smaller, cyclotomic number ring. Namely, choose the cyclotomic polynomial

ψk(x) := (xk − 1)/(x− 1) = 1 + x+ . . .+ xk−1

and consider the cyclotomic number ring Ok := Z[x]/(ψk) ⊂ Q[x]/(ψk), as
discussed in subsection 2.3. Any element f of Z[x]/(xk−1) can be transferred to
Ok by the ring homomorphism f (mod xk − 1) 7→ f (mod ψk). This mapping
preserves the ideal structure of I ⊂ Z[x]/(xk − 1) and its image in Ok is the
principal ideal I ′ := I (mod ψk) that is generated by a (mod ψk), or, more
generally, by any xia (mod ψk) for i = 0, . . . , k − 1. In the case of cyclotomic
rings, this transformation only changes the geometry slightly, i.e., polynomials
with small coefficients in I are generally still small in the ideal lattice I ′ under
the canonical embedding [8].

5.2 Quantumly recovering the secret key from the ideal lattice

We now exploit the leaked lattice L3 to fully recover the secret key in quantum-
polynomial time. In particular, we make use of a quantum algorithm which can
recover a shortest generator of any principal ideal within a cyclotomic number
ring that has an exceptionally short generator [7, 12].

As we have seen in the previous subsection, we can identify L3 with a prin-
cipal ideal I in Z[x]/(xk − 1) and any short generator xia of I corresponds to
a shift of the secret vector a. Furthermore, we can easily map I to a principal
ideal I ′ in the cyclotomic number ring Ok = Z[x]/(ψk). The strategy to recover
a suitable short generator xia of I, and thus a shift of the secret vector a, is
to firstly find a principal generator c of I ′, secondly transform it into a short
generator a′ of I ′, and thirdly lift it back to a generator of I in the quotient ring
Z[x]/(xk − 1). Figure 2 visualizes the relations between the involved lattices.

Recovering a principal generator of I′. Since we can obtain a basis of
L3 from any basis of L2 and the latter can be computed from a small sample
of FuLeeca signatures as described in subsection 4.2, we have access to a set of
generators c1, . . . , cs of I. Their images c1 (mod ψk), . . . , cs (mod ψk) then span
I ′ ⊂ Ok. Recovering a principal generator of I ′ from these generators classically
takes sub-exponential time, but there is a quantum algorithm achieving that in
only polynomial quantum time [7]. We can thus efficiently obtain a generator
c ∈ I ′ with I ′ = (c).

Shortening the principal generator of I′. Next, we transform c into a short
generator a′ of I ′. Since any two generators of I ′ differ by multiplication with a
unit in Ok, there is a unit u ∈ O×

k satisfying c = u · a′. This equality reads as

Log(c) = Log(u) + Log(a′)

19

in terms of the logarithmic embedding, which was discussed in subsection 2.3.
Note that Log(u) lies in the log-unit lattice Log(O×

k) by definition, while Log(c)
and Log(a′) are contained in the larger set Log(K×) but in general not in
Log(O×

k). In fact, Log(c) and Log(a′) do not even need to lie in the real span of
the log-unit lattice, which is contained in the subspace orthogonal to the all-one
vector 1 = (1, . . . , 1) ∈ Rk−1. This originates from Log(O×

k) not being full-rank
in Log(K×).7

As we want to make use of decoding properties of the log-unit lattice, we
consider the orthogonal projection π : Rk−1 → span

(
Log(O×

k)
)
onto the log-

unit lattice and transform the above equality into

π (Log(c)) = Log(u) + π (Log(a′)) . (3)

As illustrated in Figure 4, this can now be interpreted as a decoding problem
in the log-unit lattice, where π (Log(c)) is the target, Log(u) the desired lattice
element, and π (Log(a′)) the error. If we solve this decoding problem and recover
Log(u), we can also compute the unit u ∈ Ok and thus get a short generator
a′ = c/u of I ′, as desired.

0

+Log(u)

Log(c)=Log(u)+Log(a′)

span (Log(K×))

⊂ Rk−1

1⊥
π

Log(c)

π(Log(c))

π

Log(a′)

π(Log(a′))

1

Log(O×
k)

Log(u)

Fig. 4: Visualization of the decoding problem π (Log(c)) = Log(u) + π (Log(a′))
after projecting onto the log-unit lattice.

Decoding in the log-unit lattice. Let us now explain why equation (3) in-
deed gives us a decoding problem in the log-unit lattice Log(O×

k) that we can

7 Log(K×) is not full-rank in Rk−1 either, as the complex embeddings come in con-
jugate pairs. However, we are only concerned with the fact that Log(O×

k) is not
full-rank in Log(K×).

20

decode efficiently to the unique solution Log(u). We will also provide experimen-
tal evidence that this is indeed the case for the FuLeeca setting at the end of
the section. For uniqueness, and later for efficient decoding, we need the error
∥π (Log(a′))∥2 to be small. Then the target π (Log(c)) lies exceptionally close
to the log-unit lattice vector Log(u), and far away from the rest of the log-unit
lattice.

We argue intuitively why the error ∥π (Log(a′))∥2 is indeed small. Note first

that the algebraic norm N(a′) :=
∏k−1

i=1 |σi(a′)| coincides for any principal gen-
erator of I ′, as every unit u satisfies N(u) = 1 and the norm is multiplicative.
But at the same time, we assume that

∥a′∥22 =

k−1∑
i=1

|σi(a′)|2

is exceptionally small in the canonical embedding because a′ is a short generator
of I ′. Thus, the summands |σi(a′)|2 for i = 1, . . . , k − 1 need to be roughly bal-
anced in terms of absolute size. But this holds true also for the logarithm of their
square roots, and thus the sizes of the coefficients of Log(a′) are approximately
equal.

Recall that the log-unit lattice Log(O×
k) lies in the hyperplane orthogonal to

the vector 1 = (1, . . . , 1) ∈ Rk−1. Because we expect the logarithmic embedding
Log(a′) to have approximately equal coefficients, the projection π (Log(a′)) is
expected to be short. I.e., we expect π (Log(c)) to lie exceptionally close to the
log-unit lattice, and the recovery of Log(u) from π (Log(c)) is a unique decoding
problem in the log-unit lattice.

For efficient decoding in the log-unit lattice, we make use of a good basis
B of Log(Ok) and its pseudo-inverse B†. In particular, we choose B as in [12],
i.e., consisting of the units (xj − 1)/(x − 1) for j = 2, . . . , (k − 1)/2.8 We can
write π (Log(c)) = yB for some non-integer vector y ∈ R(k−3)/2, and thus
y = π (Log(c)) · B† in terms of the pseudo-inverse B†. Now because B is a
good basis and π (Log(c)) lies exceptionally close to the lattice, we can round
the coefficients of y to obtain the nearby lattice point

Log(u) = ⌊y⌉B =
⌊
π (Log(c)) ·B†⌉B.

The precise condition for the above to be true is that

π (Log(c))− Log(u) = π (Log(a′)) ∈
(
− 1

2 ,
1
2

)(k−3)/2
B,

or, equivalently, that all coefficients of π (Log(a′)) ·B† lie in the interval
(
− 1

2 ,
1
2

)
,

which is the case if π (Log(a′)) is small enough.

8 As discussed in [12], B does not necessarily generate the full log-unit lattice but only
a sublattice thereof. To still decode efficiently in the full lattice, we only need the
index of the sublattice to be small, and that seems to be the case under reasonable
heuristics. In particular, the index is less than 11 for all primes k ≤ 241. If desired, a
full basis for the log-unit lattice can efficiently be computed by a quantum algorithm.

21

The decoding process could be further improved by considering Babai’s
nearest-plane decoding instead of simple coefficient rounding. However, this is
not needed in our case.

Lifting the result and recovering the key. From Log(u) we obtain the unit
u up to some root of unity x−i and therefore a short generator c/(x−iu) = xia′

of I ′. Recall that the quotient ring R = Z[x]/(xk − 1) splits into a product
of number rings R1 = Z[x]/(ψk) and R2 = Z[x]/(x − 1). So to lift a′ = xia
(mod ψk) ∈ R1 to xia ∈ R we furthermore need to know the value of xia
(mod x − 1) = a (mod x − 1) ∈ R2. Note that a (mod x − 1) = a(1). One can
either guess this small value, or use that for any set c1, . . . , cs of generators for
I we have a(1) = gcd(c1(1), . . . , cs(1)).

To conclude, we obtain xia, and thus a shift shifti(a) of the secret vector a.
Using the public key, or alternatively a basis of L2, we then receive a shift of b,
and thus have achieved a full key recovery.

−0.2 0.0 0.2
Coefficient value

Coefficient values of error in Log-unit lattice

Coefficient values of Log(a(modψk)) ·B†

I III V
Security Category

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

Boxplot of coefficient values

Fig. 5: On the left, distribution of the coefficients of Log(a (mod ψk)) · B† for
FuLeeca-I obtained from 1,000 samples. On the right, a boxplot of the same
values for all parameter sets showing the standard deviation as well as minimum
and maximum values.

Experimental confirmation. We have yet to verify that π (Log(a′)) is indeed
small enough such that Log(u) is efficiently recovered by the rounding procedure.
To show that this is the case, we generated 1,000 secret-key instances for each
security level of FuLeeca. For each instance, we confirmed that the coefficients
of π (Log(a′)) ·B† are indeed all well within the range of

(
− 1

2 ,
1
2

)
. In fact, the

k−3
2 · 1,000 coefficients of the 1,000 signature samples for the parameter sets

FuLeeca-I, FuLeeca-III, and FuLeeca-V are centered around zero with a standard
deviation of 0.0617, 0.0503, and 0.0435, and with a maximal absolute value of at

22

most 0.3206, 0.2335, and 0.2176, respectively. Figure 5 shows a full histogram of
the distribution for FuLeeca-I and boxplots for all security levels.

Remark 1. For certain nice distributions of the unexpectedly short generator a′,
one can prove analytically that the decoding in the log-unit lattice will succeed
with high probability [12]. For FuLeeca however, the distribution seems too ad-
hoc to easily prove a similar statement. From the perspective of an attacker, the
numerical validation of this step is sufficient.

6 A full learning attack

In this section, we present a learning attack on FuLeeca that recovers the full
secret key for all parameter sets FuLeeca-I, FuLeeca-III, and FuLeeca-V with
only 90,000, 175,000, and 175,000 signatures, respectively. The attack exploits
a bias introduced by the concentration procedure within the signing algorithm.
Furthermore, we show a simple way to remove the bias and thus prevent this
attack.

6.1 Observing and precomputing the bias

Recall that the signing procedure consists of a simple-signing step and a con-
centration step, which are depicted in Algorithm 2. The output is a signature
v that is the product v = xGsec of a suitable vector x ∈ Fk

p and the secret

key Gsec ∈ Fk×n
p . Essentially, the concentration step tries to concentrate the

Lee weight of v and the logarithmic matching probability LMP(c,v) around
prescribed values, where c ∈ {±1}n is the message hash. Recall that the value
of LMP(c,v) is directly determined by mt(c,v). This number of sign matches
mt(c,v) of c and v is concentrated by successively adding or subtracting the
rows g1, . . . , gk of the secret key Gsec. The procedure is similar to the iterative
slicing algorithm for finding close lattice vectors [36].

The algorithm proceeds by trying to improve the number of sign matches
first by adding or subtracting g1, then g2, all the way up to gk. However, the
order in which this is done introduces a significant bias. More precisely, the first
vector g1 is considered first every time and thus has a higher probability to be
added or subtracted in contrast to, say, the last vector gk. This is visualized
in Figure 6b for two dimensions, where the distribution of the signatures rather
creates an elliptic shape than a circle and thus clearly deviates from the expected
outcome in a non-biased case.

Recall that adding ±gi to a signature v = xGsec corresponds to increasing
or decreasing the i-th coordinate xi of x for i = 1, . . . , k. Indeed, we observe
for the signatures generated by the reference implementation of FuLeeca that
the first coefficients of x are smaller than the latter ones. More concretely, we
observe that the average values Avg

[
x21

]
, . . . ,Avg

[
x2k

]
are increasing, as shown

in Figure 6a. We use an approximation of these biased average values for the
learning attack. Therefore, we precomputed a single key and 2,500,000 signatures

23

for each parameter setting, and saved the average values as d̃ = (d̃1, . . . , d̃k) :=(
Avg

[
x21

]
, . . . ,Avg

[
x2k

])
. Figure 6a shows that not all keys have exactly the

same bias, but their individual values turn out to be sufficiently close to the
precomputed data to permit our attack.

(a) Experimental observations of Avg
[
x2i

]
.

g1

g2

(b) Visualization of signa-
ture bias in dimension two.

Fig. 6: Observed bias for FuLeeca signatures v = xGsec. On the left, experimental
observations of the average values Avg

[
x2i

]
for i = 1, . . . , k for all parameter

sets. The curves depict the results for 2,500,000 signatures from one key, i.e.,
the precomputed values d̃1, . . . , d̃k used in the learning attack. The fog around
the curves corresponds to 100,000 signatures generated for each of 50 random
keys. The data points around the dashed lines show the result from one key and
100,000 signatures after properly randomizing the ordering in the concentration
procedure. On the right, a two-dimensional visualization of the signature bias
that clearly deviates from a circle.

To confirm that the fixed ordering of the concentration procedure is the
cause of this bias, we adapted the reference implementation of FuLeeca to prop-
erly randomize the order in each iteration of the concentration procedure, and
depicted the outcome in Figure 6a. Indeed, the previously biased average values
Avg

[
x21

]
, . . . ,Avg

[
x2k

]
are roughly constant after this adaptation. This simple

solution prevents the learning attack that follows. However, as long as there is no
proof of non-leakage we do not expect this solution to hold against other learn-
ing attacks. In other schemes like Falcon [31] and Wave [5] this is achieved by
following the GPV framework [17]. How to adapt these methods and proofs to
the Lee metric is a non-trivial question, but one we think is necessary to answer
in order to prevent other learning attacks on FuLeeca.

Remark 2. The learning attack on NTRUSign [27] uses the quasi-cyclic struc-
ture to turn a single signature sample into k distinct signatures by considering

24

all quasi-circular shifts. Thereby, the number of needed signature vectors for the
attack is severely reduced to a few hundred. This is not possible in our set-
ting because the observed bias depends precisely on the fact that the signature
distribution is not invariant under quasi-circular shifts.

6.2 Approximating the secret key from the bias

We now exploit the observed bias to recover an approximation of the secret
vector g = (a | b). In fact, we will first retrieve its first half ±a up to sign
and from this recover ±b as well. Note that −a and −b work just as well for
generating signatures and can be considered as an alternative secret key. The
attack only uses the first half w ∈ Zk of each signature vector v = xGsec ∈ Zn

and the bias that we obtain therein. We call w a partial signature for simplicity
and remark that it can be expressed as w = xA because of the block structure
of Gsec = (A | B) with A = Shift(a) and B = Shift(b).

Remark 3. The attack can easily be generalized to use the full signatures, and
as such directly recover a and b. However, this does not seem to significantly
improve the performance. In certain cases, it even decreases the success rate,
while leading to higher computational costs because of the larger vectors.

Learning from expectations. Assume that N partial signatures w1, . . . ,wN

are available. We can compute the average outer product

Avg
[
w⊤w

]
:=

1

N

N∑
i=1

w⊤
i wi ≈ E

[
w⊤w

]
to approximate the expectation of the outer product w⊤w ∈ Rk×k. Clearly, the
quality of this estimate depends on the number N of given signature vectors.
We will use this quantity to recover an approximation of the secret vector ±a.

Formally, we can rewrite the expected value of w⊤w for w = xA in terms
of the expected value of x⊤x as

E
[
w⊤w

]
= E

[
A⊤x⊤xA

]
= A⊤ · E

[
x⊤x

]
·A = A⊤DA+A⊤RA,

where the last step decomposes the expectation E
[
x⊤x

]
into its diagonal part

D = diag (d1, . . . , dk) with di = E
[
x2i

]
, and the remainder R = E

[
x⊤x

]
−D

with zero diagonal. We write

Avg
[
w⊤w

]
= A⊤DA+E with D = diag (d1, . . . , dk) , (4)

where E is an error matrix that includes A⊤RA and the error introduced by
the approximation Avg

[
w⊤w

]
≈ E

[
w⊤w

]
. We discuss in the following how ±a

can be recovered if no error E is present and then generalize the approach to
the erroneous scenario.

25

Recovering ±a when E = 0. Let us for simplicity start with the error-free
case, that is, with E = 0 and thus Avg

[
w⊤w

]
= A⊤DA. The following lemma

shows that we can fully recover ±a as soon as we know D or, equivalently, its
diagonal entries d1, . . . , dk.

Lemma 1. Let d = (d1, . . . , dk) ∈ Rk be a vector for which the matrix Shift(d)
is invertible. Write D = diag(d) and let A = Shift(a) be circulant for a vector
a ∈ Rk. Then, ±a can be efficiently recovered from d and A⊤DA.

Proof. Note that the i-th row of the matrix DA is given by di · shifti−1(a) for
i = 1, . . . , k. Therefore, we can express A⊤DA as

A⊤DA =

k∑
i=1

di ·
(
shifti−1(a)

)⊤
shifti−1(a),

i.e., as a weighted sum of outer products. Now fix some j = 1, . . . , k and consider
the j-th diagonal of the above matrix equation. Since shifting a vector and taking
the j-th diagonal of its outer product commute, we obtain

diagj
(
A⊤DA

)
=

k∑
i=1

di · diagj
((

shifti−1(a)
)⊤

shifti−1(a)
)

=

k∑
i=1

di · shifti−1
(
diagj

(
a⊤a

))
= d · Shift

(
diagj(a

⊤a)
)
.

Recall that x · Shift(y) = y · Shift(x) holds for all x,y ∈ Rk to get

diagj
(
A⊤DA

)
= d · Shift

(
diagj

(
a⊤a

))
= diagj

(
a⊤a

)
· Shift(d).

Because Shift(d) is invertible, we can solve the obtained linear system to recover
diagj(a

⊤a). After repeating the above for all diagonals j = 1, . . . , k, we thus

recover the outer product a⊤a, from which ±a is easily computed. ⊓⊔
Note that we can apply Lemma 1 to recover ±a in the error-free FuLeeca setting,
because the observed bias makes the vector d strictly increasing and therefore
the matrix Shift(d) invertible. For a constant vector d, the matrix Shift(d) would
only have rank 1 and the above recovery strategy would fail.

Approximating ±a when E ̸= 0. Let us now consider the more general
case in which d is unknown and E ̸= 0 applies. We will use our precomputed
approximation d̃ of d from subsection 6.1 to obtain an approximation ã of ±a
using the same steps as in Lemma 1.

In the proof of Lemma 1, the entries of a⊤a get computed from a linear
system with coefficient matrix Shift(d). The same computation with the ap-

proximation Shift(d̃) therefore leads to an approximation

Y = a⊤a+Ed

26

of a⊤a, where Ed is an error matrix that depends on the quality of the estimate
d̃ of d. Because our approximation d̃ of d is good as shown in Figure 6a, we
expect Ed to be quite small.

In contrast to the setting of Lemma 1, we only know the erroneous version
of A⊤DA displayed in equation (4). Thus, we now focus on the error matrix
E that is the sum of A⊤RA and the error introduced by the approximation
Avg

[
w⊤w

]
≈ E

[
w⊤w

]
. As we expect the approximation error to be small for

a large enough number of signatures, E is eventually dominated by A⊤RA.
Recall that for simple signing we have x = trunc(s/2 · c · sgn(G⊤

sec)), and by the
quasi-circulant structure of Gsec the expectations E

[
x⊤x

]
and E

[
A⊤x⊤xA

]
are

circulant, i.e. they have constant diagonals. After the concentration procedure,
experiments show that all diagonals ofE are still roughly constant, i.e., thatE ≈
Shift(e) applies for some error vector e = (e1, . . . , ek) ∈ Rk. For j = 1, . . . , k, we
thus get

diagj
(
Avg

[
w⊤w

])
≈ diagj

(
A⊤DA+ Shift(e)

)
= diagj

(
a⊤a

)
· Shift(d) + (ej , . . . , ej)

and, since (1, . . . , 1) is an eigenvector of the circulant matrix Shift(d),

diagj(Avg
[
w⊤w

]
) · Shift(d)−1 ≈ diagj(a

⊤a) + 1
λ · (ej , . . . , ej) (5)

with λ ∈ R being the corresponding eigenvalue. Because the entries di = E
[
x2i

]
of

d are positive and thus also Shift(d) only contains positive entries, the eigenvalue

λ =
∑k

i=1 di is very large compared to the other eigenvalues. Experimentally, λ
is between 9 and 18 times larger than the second biggest eigenvalue, and between
200 and 600 times larger than the average eigenvalue.

As a result, the error e′j := ej/λ is reduced a lot and becomes relatively

small, while in contrast diagj(a
⊤a) does not get scaled down as much because

it is expected to have a somewhat random direction. Overall, we thus obtain
an approximation Y ≈ a⊤a + Shift(e′) of a⊤a from equation (5), where e′ :=
(e′1, . . . , e

′
k) is relatively small.

To conclude, we note that Y is approximately a sum of a rank-1 matrix
a⊤a and a circulant error matrix Shift(e′) with relatively small entries. We can
thus hope to recover an approximation ã of ±a by computing an optimal rank-1
approximation of Y . The latter is given by ã =

√
σ1u1, where σ1 and u1 are

obtained from the singular-value decomposition

Y =

k∑
i=1

σiu
⊤
i ui

with u1, . . . ,uk ∈ Rk and the singular values σ1, . . . , σk ∈ R. Note that σ1 ≥
. . . ≥ σk holds and that the decomposition can be computed efficiently. For a
low number of signatures, the error contribution can still be large and thus one
might want to consider ã =

√
σiui for some small i. In the full attack, we simply

27

Algorithm 3: Approximate secret-key recovery.

Input : Partial FuLeeca signatures w1, . . . ,wN ,
approximation d̃ of d =

(
E
[
x21

]
, . . . ,E

[
x2k

])
.

Output : Approximation ã of ±a.

1 W = 1
N

∑N
i=1 w

⊤
i wi

2 Y = 0 ∈ Rk×k

3 for j = 1, . . . , k do

4 diagj(Y) = diagj(W) · Shift(d̃)−1

5 end

6 return argminã∈Rk

(
Y − ã⊤ã

)
// best rank-1 approximation

start with i = 1 and continue with larger values until the secret key is recovered
or we abort. Algorithm 3 summarizes the resulting procedure.

Figure 7 shows that the distance between ã and ±a is indeed small and
decreases when the number of signatures increases, i.e., when the approximation
Avg

[
w⊤w

]
≈ E

[
w⊤w

]
improves. For a large number of signatures, the distance

stays roughly the same, reflecting the fixed errors Ed and Shift(e′) which are
independent of the number of signatures.

20000 40000 60000 80000 100000
Number of signatures

0.0

0.5

1.0

D
is

ta
n

ce
(‖
a
−
ã
‖ 2
/‖
a
‖ 2

)

‖a− ã‖2/‖a‖2 after Algorithm 3

‖a− ã‖2/‖a‖2 after averaging

0.0

0.2

0.4

0.6

0.8

1.0
S

u
cc

es
s

ra
te

Success after Algorithm 3

Success after averaging

Fig. 7: Relative distance of approximate solution ã to ±a after Algorithm 3 and
after one averaging iteration, respectively. Further, success rates for recovering
±a by the exact solving procedure from subsection 6.3 with the approximations
obtained after no or one averaging step, respectively.

28

6.3 Recovering the secret key from its approximation

Given an approximation ã of the secret vector ±a, we now try to recover the
exact solution. As ã already determines whether we recover a or −a and both
options are valid alternative secret keys, we stick to a for brevity. We start with
the general idea and then discuss further improvements that generally increase
the success rate and therefore require less signatures to succeed.

General idea. The general idea is to use the short partial signature vectorsw =
xA and the approximation Ã = Shift(ã) of A = Shift(a), that was obtained as

described in subsection 6.2. Given w and Ã, we can compute an approximation
x̃ = Ã−1 · w of x. More concretely, if Ã−1 = A−1 + E′ holds for some small
error matrix E′, we obtain

x̃− x =
(
A−1w +E′w

)
− x = (x− x) +E′w = E′w.

Because both E′ and w are small, x̃ is close to x. Additionally, we know that
x is an integral vector. We can thus recover x = ⌊x̃⌉ by rounding the individual
coefficients if ∥x−x̃∥∞ < 1

2 applies. Once the correct x is recovered, the equation
w = xA allows to derive the circulant matrix A and thus the secret vector a.
To increase the success rate, we can try the above for every available partial
signature vector w until we correctly recover a.

We can detect whether or not we have successfully recovered the secret key a
as follows: If our guess of x is correct, then we obtain the correct integer vector
a from the equation w = xA. If our guess of x was not correct, we would not
expect the solution to be close-to-integral and have typical norm ∥a∥2, and we
use this to efficiently reject the failed trials. In practice, this approach perfectly
distinguishes the correct from the incorrect cases.

For the cases that do pass the mentioned checks, we have several options to
provably verify their correctness. One option is to compute a basis for the lattice
L3 = L(A) generated by A from the available signatures as in section 5. We can
then check if our recovered vector belongs to this lattice and is short enough in
the Euclidean metric. Another option is to compute b = aA−1B (mod p) using
the public key Gpub = (Ik | A−1B) and to verify that a and b are short enough
in the Lee metric.

Making the vector typical. Due to the use of a typical vector in the key
generation, we already know a up to a signed permutation. We can thus try to
round our approximation ã to the closest typical vector. We do this by sorting
the coefficients of ã and of the typical vector by absolute value, respectively,
and matching the results up. For example, the largest absolute value x of ã
gets transformed into sgn(x) · y, where y is the largest absolute value in the
typical vector. The operation is efficient and we have observed that this generally
improves the distance ∥a− ã∥2 compared to simply rounding ã.

29

Iterative solving and averaging over guesses. Instead of directly recovering
the exact secret key a, we can try to improve the approximation iteratively until
the approximation is good enough to recover the secret key exactly. One approach
to achieve this is averaging over the approximated solutions we obtain for a, in
the hope of balancing out the errors. More precisely, we obtain an approximate
solution ⌊x̃⌉ of x for any signature w = xA from the general method presented
above, and thus we get an approximation a′ of a for every signature. Averaging
over all these solutions a′ yields a new approximate solution ã which is hopefully
better than our initial approximation.

We can iteratively continue the process until the approximation is good
enough to directly recover the secret key. The iterative improvements are show-
cased in Figure 8a. Because the same signature equations are used continuously,
we observed that rounding or making ã typical after each iteration is important
to not get stuck in a fixed point.

−200 −100 0 100 200
Secret values ai

−100

0

100

A
p

p
ro

xi
m

at
e

va
lu

es
ã
i

After Algorithm 3

After 1 iteration

After 2 iterations

(a) Approximation ã vs secret key a.

0 5 10 15
Number of averaging iterations

0.0

0.2

0.4

0.6

D
is

ta
n

ce
(‖
a
−
ã
‖ 2
/‖
a
‖ 2

)

‖a− ã‖2/‖a‖2

0.0

0.2

0.4

0.6

0.8

1.0

S
u

cc
es

s
ra

te

Success rate

(b) Distance ∥a− ã∥2 vs averaging iterations.

Fig. 8: Demonstration of first approximation guess and further improvements
by iterative solving and averaging. The data has been collected using 40,000
signatures for each of 50 random FuLeeca-I keys.

Selecting near-integer entries. In the initial method, we try to recover a
exactly from a single signature w = xA, hoping that all coefficients of x̃ round
correctly to those of x. Note however, that coefficients of x̃ that are already close
to being integral have a higher chance of rounding correctly than those close to
1
2 +Z. Additionally, each correctly rounded coefficient gives a linear equation on
a. We can thus consider multiple signatures and only select k coefficients that
are exceptionally close-to-integral already, and then recover a from the resulting
linear system. This method is similar to the threshold rounding in [23, 30]. For
simplicity, we did not use this idea for the final attack script, as it only seemed to

30

improve the required number of averaging iterations but not the overall success
rate.

6.4 Running the learning attack

To demonstrate the attack, we generated 50 random keys and 100,000, 200,000,
and 200,000 signatures for FuLeeca-I, FuLeeca-III, and FuLeeca-V parameters,
respectively. We then ran the attack using the first N signatures for different
values ofN . The overall success rate of the attack versus the number of signatures
is demonstrated in Figure 1. All keys get recovered with only 90,000, 175,000,
and 175,000 signatures for the different security levels, respectively. More than
80% of the keys get recovered with only 40,000, 125,000, and 100,000 signatures,
respectively. Note in particular that FuLeeca-V requires less signatures to break
than FuLeeca-III. A possible explanation for this is that the values Avg

[
x2i

]
seem

to have less variance between distinct keys for FuLeeca-V and are thus closer to
the precomputed values, leading to a smaller error in the computation.

Figure 7 shows that the averaging strategy to improve the approximation
ã of a is highly effective and increases the success rate of recovering the exact
secret key significantly. In Figure 8b, we consider the regime with a relatively
low number of signatures. The multiple averaging iterations combined with mak-
ing the approximation typical can still recover the full secret even if the initial
approximation was not so good.

The average of the best running time for each key, using the optimal num-
ber of signatures, is about 2, 12, and 14 minutes on a single core, respectively.
The fastest successful attack took only 56 seconds, while the longest successful
attack took a total of 98 minutes. All running times were a small fraction of the
time needed to generate the signatures. To conclude, we can efficiently break all
FuLeeca parameter sets given less than 175,000 signatures.

Running the attack scripts. The source code of our learning attack is avail-
able and open-source.9 The main attack script is attack/full_attack.py. We
provide pre-generated FuLeeca signatures for one fixed key per FuLeeca param-
eter set and a convenient shell script to run the three corresponding attack
instances. First, execute attack/1_download_sigs.sh to download the signa-
ture samples. Then, run attack/2_run_attack.sh to start the learning attack
and see how instances of all FuLeeca parameter sets are broken in real time.

Acknowledgments. Experiments presented in this paper were carried out us-
ing the PlaFRIM experimental testbed, supported by Inria, CNRS (LABRI and
IMB), Université de Bordeaux, Bordeaux INP and Conseil Régional d’Aquitaine.
W. van Woerden was supported by the CHARM ANR-NSF grant (ANR-21-
CE94-0003).

9 See https://github.com/WvanWoerden/FuLeakage/ for the code and instructions.

31

https://github.com/WvanWoerden/FuLeakage/

References

1. Albrecht, M., Bai, S., Ducas, L.: A subfield lattice attack on overstretched NTRU
assumptions: Cryptanalysis of some FHE and graded encoding schemes. Cryptol-
ogy ePrint Archive, Report 2016/127 (2016), https://eprint.iacr.org/2016/127

2. Albrecht, M., Ducas, L.: Lattice attacks on ntru and lwe: a history of refinements.
Cryptology ePrint Archive (2021)

3. Albrecht, M., Ducas, L.: Lattice attacks on NTRU and LWE: A history of re-
finements. Cryptology ePrint Archive, Report 2021/799 (2021), https://eprint.
iacr.org/2021/799

4. Albrecht, M.R., Player, R., Scott, S.: On the concrete hardness of learning with
errors. Journal of Mathematical Cryptology 9(3), 169–203 (2015). https://doi.
org/10.1515/jmc-2015-0016

5. Banegas, G., Carrier, K., Chailloux, A., Couvreur, A., Debris-Alazard,
T., Gaborit, P., Karpman, P., Loyer, J., Niederhagen, R., Sendrier, N.,
Smith, B., Tillich, J.P.: Wave. Tech. rep., National Institute of Stan-
dards and Technology (2023), https://csrc.nist.gov/csrc/media/Projects/

pqc-dig-sig/documents/round-1/spec-files/wave-spec-web.pdf

6. Bariffi, J., Bartz, H., Liva, G., Rosenthal, J.: On the properties of error patterns
in the constant Lee weight channel. In: International Zurich Seminar on Informa-
tion and Communication (IZS 2022). Proceedings. pp. 44–48. ETH Zurich (2022).
https://doi.org/10.3929/ETHZ-B-000535277

7. Biasse, J.F., Song, F.: Efficient quantum algorithms for computing class groups
and solving the principal ideal problem in arbitrary degree number fields. In:
Krauthgamer, R. (ed.) 27th SODA. pp. 893–902. ACM-SIAM, Arlington, VA, USA
(Jan 10–12, 2016). https://doi.org/10.1137/1.9781611974331.ch64

8. Blanco-Chacón, I.: On the RLWE/PLWE equivalence for cyclotomic number fields.
Applicable Algebra in Engineering, Communication and Computing 33(1), 53–71
(2022). https://doi.org/10.1007/S00200-020-00433-Z

9. Bos, J.W., Bronchain, O., Ducas, L., Fehr, S., Huang, Y., Pornin, T., Postlethwaite,
E.W., Prest, T., Pulles, L.N., van Woerden, W.: HAWK. Tech. rep., National Insti-
tute of Standards and Technology (2023), https://csrc.nist.gov/csrc/media/
Projects/pqc-dig-sig/documents/round-1/spec-files/hawk-spec-web.pdf

10. Conway, J.H., Sloane, N.J.A.: Sphere packings, lattices and groups, vol. 290.
Springer Science & Business Media (2013)

11. Courtois, N., Finiasz, M., Sendrier, N.: How to achieve a McEliece-based digital
signature scheme. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp.
157–174. Springer, Heidelberg, Germany, Gold Coast, Australia (Dec 9–13, 2001).
https://doi.org/10.1007/3-540-45682-1_10

12. Cramer, R., Ducas, L., Peikert, C., Regev, O.: Recovering short generators of
principal ideals in cyclotomic rings. In: Fischlin, M., Coron, J.S. (eds.) EU-
ROCRYPT 2016, Part II. LNCS, vol. 9666, pp. 559–585. Springer, Heidel-
berg, Germany, Vienna, Austria (May 8–12, 2016). https://doi.org/10.1007/
978-3-662-49896-5_20

13. Dachman-Soled, D., Ducas, L., Gong, H., Rossi, M.: LWE with side information:
Attacks and concrete security estimation. In: Micciancio, D., Ristenpart, T. (eds.)
CRYPTO 2020, Part II. LNCS, vol. 12171, pp. 329–358. Springer, Heidelberg, Ger-
many, Santa Barbara, CA, USA (Aug 17–21, 2020). https://doi.org/10.1007/
978-3-030-56880-1_12

32

https://eprint.iacr.org/2016/127
https://eprint.iacr.org/2021/799
https://eprint.iacr.org/2021/799
https://doi.org/10.1515/jmc-2015-0016
https://doi.org/10.1515/jmc-2015-0016
https://doi.org/10.1515/jmc-2015-0016
https://doi.org/10.1515/jmc-2015-0016
https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/round-1/spec-files/wave-spec-web.pdf
https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/round-1/spec-files/wave-spec-web.pdf
https://doi.org/10.3929/ETHZ-B-000535277
https://doi.org/10.3929/ETHZ-B-000535277
https://doi.org/10.1137/1.9781611974331.ch64
https://doi.org/10.1137/1.9781611974331.ch64
https://doi.org/10.1007/S00200-020-00433-Z
https://doi.org/10.1007/S00200-020-00433-Z
https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/round-1/spec-files/hawk-spec-web.pdf
https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/round-1/spec-files/hawk-spec-web.pdf
https://doi.org/10.1007/3-540-45682-1_10
https://doi.org/10.1007/3-540-45682-1_10
https://doi.org/10.1007/978-3-662-49896-5_20
https://doi.org/10.1007/978-3-662-49896-5_20
https://doi.org/10.1007/978-3-662-49896-5_20
https://doi.org/10.1007/978-3-662-49896-5_20
https://doi.org/10.1007/978-3-030-56880-1_12
https://doi.org/10.1007/978-3-030-56880-1_12
https://doi.org/10.1007/978-3-030-56880-1_12
https://doi.org/10.1007/978-3-030-56880-1_12

14. Ducas, L., Nguyen, P.Q.: Learning a zonotope and more: Cryptanalysis of
NTRUSign countermeasures. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012.
LNCS, vol. 7658, pp. 433–450. Springer, Heidelberg, Germany, Beijing, China
(Dec 2–6, 2012). https://doi.org/10.1007/978-3-642-34961-4_27

15. Ducas, L., Postlethwaite, E.W., Pulles, L.N., van Woerden, W.P.J.: Hawk: Module
LIP makes lattice signatures fast, compact and simple. In: Agrawal, S., Lin, D.
(eds.) ASIACRYPT 2022, Part IV. LNCS, vol. 13794, pp. 65–94. Springer, Hei-
delberg, Germany, Taipei, Taiwan (Dec 5–9, 2022). https://doi.org/10.1007/
978-3-031-22972-5_3

16. Felderhoff, J., Pellet-Mary, A., Stehlé, D.: On module unique-SVP and NTRU. In:
Agrawal, S., Lin, D. (eds.) ASIACRYPT 2022, Part III. LNCS, vol. 13793, pp.
709–740. Springer, Heidelberg, Germany, Taipei, Taiwan (Dec 5–9, 2022). https:
//doi.org/10.1007/978-3-031-22969-5_24

17. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new
cryptographic constructions. In: Ladner, R.E., Dwork, C. (eds.) 40th ACM STOC.
pp. 197–206. ACM Press, Victoria, BC, Canada (May 17–20, 2008). https://doi.
org/10.1145/1374376.1374407

18. Gentry, C., Szydlo, M.: Cryptanalysis of the revised NTRU signature scheme. In:
Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 299–320. Springer,
Heidelberg, Germany, Amsterdam, The Netherlands (Apr 28 – May 2, 2002).
https://doi.org/10.1007/3-540-46035-7_20

19. Goldreich, O., Goldwasser, S., Halevi, S.: Public-key cryptosystems from lattice
reduction problems. In: Kaliski Jr., B.S. (ed.) CRYPTO’97. LNCS, vol. 1294, pp.
112–131. Springer, Heidelberg, Germany, Santa Barbara, CA, USA (Aug 17–21,
1997). https://doi.org/10.1007/BFb0052231

20. Hoffstein, J., Howgrave-Graham, N., Pipher, J., Silverman, J.H., Whyte, W.:
NTRUSign: Digital signatures using the NTRU lattice. In: Joye, M. (ed.)
CT-RSA 2003. LNCS, vol. 2612, pp. 122–140. Springer, Heidelberg, Ger-
many, San Francisco, CA, USA (Apr 13–17, 2003). https://doi.org/10.1007/
3-540-36563-X_9

21. Hoffstein, J., Howgrave-Graham, N., Pipher, J., Whyte, W.: Practical lattice-based
cryptography: NTRUEncrypt and NTRUSign. pp. 349–390. ISC, Springer, Heidel-
berg, Germany (2010). https://doi.org/10.1007/978-3-642-02295-1

22. Hu, Y., Wang, B., He, W.: NTRUSign with a new perturbation. IEEE Transactions
on Information Theory 54(7), 3216–3221 (2008). https://doi.org/10.1109/TIT.
2008.924662

23. Lin, X., Suzuki, M., Zhang, S., Espitau, T., Yu, Y., Tibouchi, M., Abe, M.: Crypt-
analysis of the Peregrine lattice-based signature scheme. IACR Cryptology ePrint
Archive p. 1628 (2023), https://eprint.iacr.org/2023/1628

24. MATZOV: Report on the security of LWE: Improved dual lattice attack (2022),
https://doi.org/10.5281/zenodo.6412487

25. National Institute of Standards and Technology: NIST post-quantum cryp-
tography standardization process (2016), https://csrc.nist.gov/Projects/

post-quantum-cryptography/round-4-submissions
26. National Institute of Standards and Technology: NIST post-quantum cryptography

standardization process: Additional signatures (2023), https://csrc.nist.gov/
Projects/pqc-dig-sig/round-1-additional-signatures

27. Nguyen, P.Q., Regev, O.: Learning a parallelepiped: Cryptanalysis of GGH and
NTRU signatures. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004,
pp. 271–288. Springer, Heidelberg, Germany, St. Petersburg, Russia (May 28 –
Jun 1, 2006). https://doi.org/10.1007/11761679_17

33

https://doi.org/10.1007/978-3-642-34961-4_27
https://doi.org/10.1007/978-3-642-34961-4_27
https://doi.org/10.1007/978-3-031-22972-5_3
https://doi.org/10.1007/978-3-031-22972-5_3
https://doi.org/10.1007/978-3-031-22972-5_3
https://doi.org/10.1007/978-3-031-22972-5_3
https://doi.org/10.1007/978-3-031-22969-5_24
https://doi.org/10.1007/978-3-031-22969-5_24
https://doi.org/10.1007/978-3-031-22969-5_24
https://doi.org/10.1007/978-3-031-22969-5_24
https://doi.org/10.1145/1374376.1374407
https://doi.org/10.1145/1374376.1374407
https://doi.org/10.1145/1374376.1374407
https://doi.org/10.1145/1374376.1374407
https://doi.org/10.1007/3-540-46035-7_20
https://doi.org/10.1007/3-540-46035-7_20
https://doi.org/10.1007/BFb0052231
https://doi.org/10.1007/BFb0052231
https://doi.org/10.1007/3-540-36563-X_9
https://doi.org/10.1007/3-540-36563-X_9
https://doi.org/10.1007/3-540-36563-X_9
https://doi.org/10.1007/3-540-36563-X_9
https://doi.org/10.1007/978-3-642-02295-1
https://doi.org/10.1007/978-3-642-02295-1
https://doi.org/10.1109/TIT.2008.924662
https://doi.org/10.1109/TIT.2008.924662
https://doi.org/10.1109/TIT.2008.924662
https://doi.org/10.1109/TIT.2008.924662
https://eprint.iacr.org/2023/1628
https://doi.org/10.5281/zenodo.6412487
https://csrc.nist.gov/Projects/post-quantum-cryptography/round-4-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/round-4-submissions
https://csrc.nist.gov/Projects/pqc-dig-sig/round-1-additional-signatures
https://csrc.nist.gov/Projects/pqc-dig-sig/round-1-additional-signatures
https://doi.org/10.1007/11761679_17
https://doi.org/10.1007/11761679_17

28. Plantard, T., Sipasseuth, A., Dumondelle, C., Susilo, W.: DRS. Tech.
rep., National Institute of Standards and Technology (2017), avail-
able at https://csrc.nist.gov/projects/post-quantum-cryptography/

post-quantum-cryptography-standardization/round-1-submissions

29. Postlethwaite, E.W., Virdia, F.: On the success probability of solving unique SVP
via BKZ. In: Garay, J. (ed.) PKC 2021, Part I. LNCS, vol. 12710, pp. 68–98.
Springer, Heidelberg, Germany, Virtual Event (May 10–13, 2021). https://doi.
org/10.1007/978-3-030-75245-3_4

30. Prest, T.: A key-recovery attack against Mitaka in the t-probing model. In:
Boldyreva, A., Kolesnikov, V. (eds.) PKC 2023, Part I. LNCS, vol. 13940, pp.
205–220. Springer, Heidelberg, Germany, Atlanta, GA, USA (May 7–10, 2023).
https://doi.org/10.1007/978-3-031-31368-4_8

31. Prest, T., Fouque, P.A., Hoffstein, J., Kirchner, P., Lyubashevsky, V., Pornin, T.,
Ricosset, T., Seiler, G., Whyte, W., Zhang, Z.: FALCON. Tech. rep., National
Institute of Standards and Technology (2022), available at https://csrc.nist.

gov/Projects/post-quantum-cryptography/selected-algorithms-2022

32. Ritterhoff, S., Maringer, G., Bitzer, S., Weger, V., Karl, P., Schamberger, T.,
Schupp, J., Wachter-Zeh, A.: FuLeeca. Tech. rep., National Institute of Stan-
dards and Technology (2023), https://csrc.nist.gov/csrc/media/Projects/

pqc-dig-sig/documents/round-1/spec-files/FuLeeca-spec-web.pdf

33. Ritterhoff, S., Maringer, G., Bitzer, S., Weger, V., Karl, P., Schamberger, T.,
Schupp, J., Wachter-Zeh, A.: FuLeeca: A Lee-based signature scheme. In: Esser,
A., Santini, P. (eds.) Code-Based Cryptography - 11th International Workshop,
CBCrypto 2023, Lyon, France, April 22-23, 2023, Revised Selected Papers. Lec-
ture Notes in Computer Science, vol. 14311, pp. 56–83. Springer (2023). https:
//doi.org/10.1007/978-3-031-46495-9_4

34. Schnorr, C., Euchner, M.: Lattice basis reduction: Improved practical algorithms
and solving subset sum problems. Mathematical programming 66, 181–199 (1994).
https://doi.org/10.1007/BF01581144

35. Seo, E.Y., Kim, Y.S., Lee, J.W., No, J.S.: Peregrine: Toward fastest FALCON
based on GPV framework. Cryptology ePrint Archive, Report 2022/1495 (2022),
https://eprint.iacr.org/2022/1495

36. Sommer, N., Feder, M., Shalvi, O.: Finding the closest lattice point by iterative
slicing. SIAM Journal on Discrete Mathematics 23(2), 715–731 (2009). https:
//doi.org/10.1137/060676362

37. Yu, Y., Ducas, L.: Learning strikes again: The case of the DRS signature scheme. In:
Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018, Part II. LNCS, vol. 11273, pp.
525–543. Springer, Heidelberg, Germany, Brisbane, Queensland, Australia (Dec 2–
6, 2018). https://doi.org/10.1007/978-3-030-03329-3_18

34

https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-1-submissions
https://doi.org/10.1007/978-3-030-75245-3_4
https://doi.org/10.1007/978-3-030-75245-3_4
https://doi.org/10.1007/978-3-030-75245-3_4
https://doi.org/10.1007/978-3-030-75245-3_4
https://doi.org/10.1007/978-3-031-31368-4_8
https://doi.org/10.1007/978-3-031-31368-4_8
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/round-1/spec-files/FuLeeca-spec-web.pdf
https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/round-1/spec-files/FuLeeca-spec-web.pdf
https://doi.org/10.1007/978-3-031-46495-9_4
https://doi.org/10.1007/978-3-031-46495-9_4
https://doi.org/10.1007/978-3-031-46495-9_4
https://doi.org/10.1007/978-3-031-46495-9_4
https://doi.org/10.1007/BF01581144
https://doi.org/10.1007/BF01581144
https://eprint.iacr.org/2022/1495
https://doi.org/10.1137/060676362
https://doi.org/10.1137/060676362
https://doi.org/10.1137/060676362
https://doi.org/10.1137/060676362
https://doi.org/10.1007/978-3-030-03329-3_18
https://doi.org/10.1007/978-3-030-03329-3_18

	FuLeakage: Breaking FuLeeca by Learning Attacks

