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Abstract 

Continuous ultrasonic welding (CUW) is a manufacturing process used to join thermoplastic composite materials 

using high-frequency ultrasonic vibrations. Under pressure and vibration, the welding material heats up, melts and 

the welding partners are joined while they are cooling down. The development of CUW is getting raised attention 

over the last decade since the use of thermoplastic composites (TCs) in the production industry and especially the 

aerospace sector demands for economic and fast joining techniques. In order to establish this welding technique 

in the industry it is necessary to develop methods which enable to do quality assurance on the produced welding 

seams. In the experiments described in this paper the potential of thermal measurements for the quality assurance 

of the ultrasonic welding of TCs is investigated. Different thermal systems are evaluated and it is described how 

the data of the most promising technique is further processed and fed to an artificial intelligence (AI) algorithm. 

The here trained networks are created to predict lab-shear-strength values and reach mean absolute error scores of 

below 1 MPa. The described investigations hint that thermography seem to be a valuable resource to make more 

reliable quality assurance in the process of CUW of TCs and therefore might help to establish the use of this 

welding technology further in the industry. 

 

Keywords: Continuous Ultrasonic Welding, Artificial Intelligence, Deep Learning, Quality Assurance, Infrared 

Camera, Thermography 

 

1. Introduction 
 

1.1 Technique of Ultrasonic Welding 

 

Ultrasonic welding of TCs stands as a specialized technique applied to join composite materials. 

The technique is favored in industries where lightweight and robust composite materials, often 

reinforced with fibers like carbon or glass structures, are in widespread use. Especially in the 

aerospace and automotive industries it is getting raised attention [1]-[5] due to the fact that 

many components are supposed to be built out of TCs. 

Ultrasonic welding of TCs offers several noteworthy advantages which enhances the already 

raised attention on this technique. For example, it is known for its speed and efficiency [6] 

while having minimal energy consumption. In addition, it eliminates the need for adhesives or 

additional materials, thereby reducing the risk of contamination. The process is highly precise 

and leads to strong, dependable joints. Moreover, it can be easily automated, making it a 

suitable choice for various manufacturing processes. 

Ultrasonic welding relies on the application of high-frequency ultrasonic vibrations to start the 

bonding process. At its core, ultrasonic welding operates on the principle of converting 

electrical energy into mechanical vibrations and applying these vibrations to the welding 

specimens through a device known as sonotrode. The welding apparatus is composed of a 

converter, a booster and a sonotrode/ horn. While the converter transforms an electrical signal 

into mechanical oscillations [6]-[8], the booster provides the opportunity to amplify the created 

mechanical oscillation. The horn vibrates at the created ultrasonic frequencies, typically ranging 

from 15 to 50 kHz [8], [9], and transfers the oscillations in the welding parts [6], [7]. In the 
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joint area, where the bonding has to occur, these high-frequency mechanical vibrations generate 

heat through friction [9], [10] which leads to localized softening and melting of the material. 

As the horn continues to oscillate, the molten material from both components merges, creating 

a bond between the upper and the lower welding part. Once the ultrasonic energy is cut off, the 

material cools and solidifies under the application of pressure and is forming a robust welding 

seam. When the horn is hold steady at one place and is responsible for the heating of the material 

and for applying the pressure during the cooling, the process is called spot welding. If the horn 

is moved continuously over the welding specimen and an extra unit, called the heat sink, is lead 

behind the horn to apply the pressure in the cooling phase, then the process is called continuous 

ultrasonic welding. Ultrasonic welding of TCs is a sophisticated technique that leverages high-

frequency vibrations to bond composite materials effectively and fast. It offers numerous 

advantages, including speed, efficiency, precision, and the capability to create durable, 

lightweight joints and therefore making it a valuable asset in industries where composite 

materials play a significant role in the manufacturing process. 

 

1.2 Artificial Intelligence 

 

AI is a rapidly advancing field within the field of computer science and technology. Its primary 

focus lies on the development of computer systems with the capacity to perform tasks that 

usually demand human intelligence. These tasks encompass a wide array of activities, such as 

problem-solving, learning, reasoning, understanding natural language and even perceiving and 

interacting with the surrounding environment. The field of AI comprises a multitude of 

subtopics, including machine learning (ML), natural language processing, computer vision and 

robotics. [11] 

AI systems are engineered to emulate human cognitive functions, and they can be trained to 

identify patterns in data, make predictions, and adapt to new information by approximating 

complex systems mathematically [12]. AI technology finds applications across diverse 

industries and sectors, from healthcare [13] and finance [14] to manufacturing [15] and the 

development of autonomous vehicles [16]. Its transformative influence is steadily shaping the 

way humankind engage with technology and holds the potential to address intricate challenges 

while enriching our daily lives in innumerable ways. These potentials lead to the decision to 

use AI in the quality assurance process for the welding of TCs. 

 

1.3 Quality Assurance for Ultrasonic Welding 

 

When it comes to influencing the quality of produced welds of ultrasonically welded TCs, there 

is already done some research about the importance of different welding parameters. Most 

prominent seem the investigations of Villegas about sonotrode displacement and power data 

which were measured during the process of spot welding TCs samples [17]. In addition, another 

research team used a wave transmission model to make statements about achieved welding 

qualities [9]. As Görick, Schuster, Larsen, et al. already pointed out, the displacement 

measurement of the horn during a CUW process is not possible since the horn is steadily moving 

and the conditions below the horn do not change owed to the fact that the material below the 

horn is always in the status of melting [18]. This leads to the conclusion that the different 

welding stages, described by Villegas [17] or Li, Liu, Shen, et al. [9] are not stepped through 

while the horn is over one position of the welding sample and measuring displacement is not 

possible in case of CUW. Many of the other investigated parameters, which are reported to have 

an influence on the welding quality, are parameters which are set to induce the welding process 

and therefore are not able to show influence of defects in the welding zone or similar problems 



 

which might occur during the process of welding [18]. Nevertheless, some investigations were 

done about welding parameters which could be already recorded during a weld and their 

potential to be of use for an AI training was evaluated [19]. Since the investigated parameters 

looked suitable to be used for a bigger AI training experiment, more samples with an extended 

set of recording parameters were created and used in order to train an algorithm to predict the 

welding quality [20], [21]. Nevertheless, the trained algorithms reached accuracies in quality 

classification of slightly above 70 % [20], [21]. This result can be interpreted as a first step in 

the right direction, but the authors pointed out that further investigations with even bigger data 

sets have to be proceeded and that it may be possible that the recorded parameters do not carry 

enough information to give the algorithm the opportunity to approximate a connection of the 

data and the weld quality [20], [21]. 

Based on this statement, new input parameters, which correlate with the welding quality, were 

investigated [18]. In the mentioned study the parameters welding sound (measured sound 

signals while the welding takes place) and thermography images are described to be of use for 

the quality prediction of ultrasonically welded TCs. TCs-samples were spot welded together 

and a thermographic image was acquired a short time after the horn lifted from the welding 

sample. From each image the mean temperature is calculated and correlation coefficients 

between the mean temperatures and the lab-shear-strength (LSS) values of all samples were 

calculated. Medium correlation between mean temperature and LSS value was found for these 

described investigations [18]. In addition, the authors describe the use of the temperature data 

(alongside of sound- and welding time data) for the training of different ML algorithms to 

predict whether a welding is good or bad. Classification rates of over 90 % were archived with 

the trained networks. The article points out that the investigations were done with spot welded 

samples only and that there are challenges to overcome in order to apply quality assurance of 

ultrasonically welded TCs plates when it comes to CUW. Main reason for these challenges is 

the fact that in spot welding the whole system is static while in CUW the welding head moves 

over the sample and there are many images of one and the same area of the welding seam. Since 

thermal data seem to carry the potential to be of great support for the quality assurance in 

ultrasonic welding [18], the experiments in this paper make a generalized approach at the topic 

of thermal measurements in the process of CUW by investigating different measuring 

techniques and evaluating their use for quality prediction with AI. The most promising 

technique will be used to train an ML-algorithm to predict the LSS value of welded TCs. 

 

2. Principles and Methods 
 

2.1 Welding Setup 

 

For ultrasonic welding of TCs two or more welding partners have to be placed on an anvil with 

at least one area of overlapping structure. The overlapping structure usually builds the area 

where the connection of the welding specimen will take place and is called welding zone. 

Between the welding partners an energy director (ED) can be placed in order to provide an 

interface where the heat is generated [7]. Usually the ED is consisting of the same material as 

the matrix of the welding plates. Clamps are used to fixate the welding components on an anvil. 

At the German Aerospace Center (DLR) the welding apparatus is mounted to a KUKA robot 

(KR300 R2500 Ultra Robot) in order to be able to move the horn over a welding seam and 

apply the necessary welding forces. When the technique of CUW is used, the welding head has 

a compaction roller mounted in front of the horn and a heatsink mounted behind the horn. The 

compaction roller pre-compacts the welding samples and the heat sink is used for applying 

pressure on the welding seam while it is cooling down. The whole welding system and its 



 

sensors are connected to a Beckhoff bus system with communicates with TwinCat (Beckhoff, 

Germany). All parameters for welding are set within this system as well as most of the 

measurable parameters are recorded by the TwinCat system. The welding head originates in the 

work of Engelschall at DLR in 2018 [22], [23]. 

For the proceeded trials in this paper TCs plates made of carbon fibres (T700G) which are 

embedded in low-melt polyaryletherketone (LM-PAEK). The original plates had dimensions 

of 1200 mm x 1800 mm x 1.96 mm and a fibre layup of [45/90/135/0/45/135/0]s. The plates are 

water jet cut in welding plates with dimensions of 104.6 mm x 378.2 mm. Water jet cutting is 

the preferred cutting method for this processing step in order to keep the load on the plates as 

small as possible and to avoid fraying of the fibres. The welding plates are cut in a way that the 

fibres building the second layer (90°) are oriented in parallel to the welding direction. The 

dimensions of the welding zone are similar to the ASTM-D1002 norm which is why the welding 

zone width is 12.7 mm for all experiments. This dimension defines the overlapping zone of two 

welding plates. Two stripes of ED are placed in this overlapping area. The ED is fixated with 

small spot welds which were created manually with an ultrasonic welding head. Special 

attention is payed to the position of the fixation with the result that each sample, which is later 

cut from the welded plates, has one fixation spot in its centre. The ED has a width of 11.7 mm 

and is 0.1 mm thick. For the welding process a horn with a rectangle shape and dimensions of 

25 mm × 13 mm is used (horn has round edges with 1 mm radius to each side) and positioned 

with its longer side orthogonal to the welding direction in the middle of the welding zone. In 

order to create different welding qualities, the welding parameters are setup in different ranges. 

For more detailed information see table 1. For each welding trial the plates are placed on the 

anvil randomly to cover different fibre orientations of the 45° layer. Thermal measurements, 

which are described in the upcoming section more in detail, are performed during every weld 

(thermocouples and external thermography was not used in every welding process). Each 

welding experiment results in one welded plate which can be cut in 13 samples which results 

in 585 samples (45 welds). With orientation on the ASTM-D1002 norm the plates are water jet 

cut into 25.4 mm wide samples with a length of 190.5 mm. In the cutting process the first and 

the last 10 mm of the welded plate are cut off. LSS tests are performed with a Zwick/Roell 

(Retroline 1475, ZwickRoell GmbH & Co. KG, Germany, Ulm) testing machine with 20 kN 

clamps (ZwickRoell GmbH & Co. KG, Germany, Ulm) and a cross head speed of 1.3 mm min−1. 

 
Table 1. Different welding parameters and their ranges or fixed values for all proceeded experiments. 

Parameter Range Unit 

Amplitude 74-100 % 

Welding Horn 600 N 

Heatsink 5 bar 

Compaction Roll 300 N 

Welding Velocity 17 or 20 mm s-1 

 

2.2 Temperature Measurements 

 

2.2.1 Setup of Thermocouples 

 

With the use of thermocouples, it is investigated whether the temperature distribution and 

development during the welding process can be measured. A thermocouple is a sensor that 

consists of two wires of different materials connected at one end. This connection point is then 

mounted on a measuring point while the free ends are connected to a multimeter (for the here 

described trials two HIOKI LR 8400-20 are used). For different temperatures at the measuring 

point, differences in voltage will occur on the multimeter due to the thermoelectricity. This 



 

phenomenon is also known as the Seebeck effect [24], [25]. By specifying the thermocouple 

type in the multimeter, the temperature at the measuring point is calculated directly by the 

system. The thermocouples used were type K, with double insulated wires and assembled to 

one wire, coated with glass silk. In order to be able to measure temperatures in the interface 

between TCs plate and anvil (areas on which no infrared camera has direct view) a shim plate 

was manufactured and placed between anvil and TCs plate. This shim plate has cut-outs for the 

thicker glass silk insulated cables of the thermocouples to introduce as little geometry as 

possible into the interface (see figure 1 plate C and D). However, the wires of the thermocouple 

with the measuring point had to be placed directly in the interface between plate and anvil in 

order to be able to measure the temperatures at this point. Temperatures are measured at 60 

measuring points, 27 of which were on the shim plate in the interface, 28 on the surfaces of the 

TCs plates, 2 for ambient temperature measurement and one measuring point each on roller, 

sonotrode and heat sink. The measuring points on the TCs surfaces are directly above the 

measuring points on the shim plate. The positions of the measuring points on the TCs plates are 

shown in figure 1 (plates A and B) and in the interfaces on the shim plate in figure 1 (plates C 

and D). The distances between the measuring points in welding direction are approx. 39 mm. 

The distance to the joining zone centerline varies between approx. 0 mm (on the shim plate, 

directly under the joining zone), 10 mm (directly besides the welding zone on top of TCs), 30 

mm (a), 45 mm (b) and 95 mm (c). All thermocouples are fixed with Kapton tape in position. 

The temperatures are measured with a frequency of 10 Hz at every thermocouple. For more 

detailed description of the thermocouple measurement please read [26]. 

 

 
Fig. 1  Schematics of thermocouple measuring points on TCs plates. In red: Thermocouples. Left side 

       shows the welding plates while right side shows the plate below the welding samples. 

 

2.2.2 Setup External Infrared Camera 

 

To investigate the whole welding seam, a multi-camera setup consisting of a panchromatic 

stereo camera system and an Optris PI 640 long-wave infrared camera including an additional 

near infrared lighting is mounted at a distance of approx. 81 cm from the weld seam. When the 

camera is focused at 100 cm, a ground-resolved distance of approx. 2.1 mm can be expected at 

a working distance of 81 cm, as the study of Wischow, Dahlke, Meißner, et al. [27] shows. 

Depending on the application, the camera can operate in different temperature ranges. For the 

experiments a temperature range of 0-250 °C is chosen. The infrared camera works in the 

spectral range of 8-14 µm, has a horizontal field of view (FOV) of 90° and is aligned to the 

scene at an angle of approx. 30°. The raw data is read out as 640 times 480 pixel video stream 

at a frequency of 32 Hz using the manufacturer’s PIX Connect software [28] (Optris, Germany). 

2.2.3 Setup FLIR 



 

 

For a close investigation of the welding seam after the melting of the material took place, a 

FLIR A35 (Teledyne FLIR) thermography camera is mounted to the welding unit. The 

thermography camera has an approximate viewing angle of 45° and records the welding horn, 

the area behind the horn and the first section of the heatsink. Image acquisition is realized with 

TwinCat Vision (Beckhoff, Germany) which can be implemented in the controlling software of 

TwinCat which manages the general welding process. Every 500 µm change in x-position of 

the tool center point (TCP) the camera acquires a 16-bit monochrome tiff-image and stores it 

to the system. The TCP is located in the middle of the welding horn. Position coordinates of the 

TCP are also used to name the recorded image so a x-position can be connected to each image. 

Since it is expected that the melting temperatures do not completely reach the surface, 

HighGainMode is selected in the camera registry. This means that the camera has a finer 

temperature resolution but measures smaller temperature space for measurement [29]. 

 

2.3 AI Methods 

 

Processing of the data for AI training is done with Python 3. For different processing steps some 

of the most common data processing libraries are used. Namely these libraries are Matplotlib 

[30], NumPy [31], Pandas [32] and OpenCV [33] for Python. For creating artificial networks, 

the library Keras [34] with TensorFlow [35] is used while some of the statistic calculations are 

done by SciPy [36]. The documentation of different training approaches is recorded with 

MLflow [37] and hyperparameterization is done by Optuna [38]. 

 

2.4 Data Processing and Evaluation 

 

2.4.1 Thermocouples 

 

For the processing of the thermocouple data there is no specific image but in recordings of the 

FLIR camera some of the thermocouples can be seen (see figure 2, white circles). Welding 

direction in the image is from right to left. Some of the thermocouples are visible as bright specs 

when compared to their surrounding environment and it seems that the wires of the 

thermocouples are moving caused by the welding process and thereby generate heat. If this 

hypothesis is true it would mean that the thermal measurement is not reliable because heat is 

generated at the measuring system itself. During the experiments, it was observed that some of 

the thermocouple wires became detached from the TCs surface or that the connected wires 

became loose or even broke, so that they no longer formed a measuring structure and could not 

measure temperatures. The thermocouples which are used for measuring temperature under the 

welding zone were melted in the plate with which they had contact. A temperature recording 

by the thermocouples is shown in figure 3 where the welding took place at > 85 s and < 110 s. 

In these measurements some of the signals seem to be unrealistic high or low (> |1000| °C, see 

figure 3 graph on top). Some of the thermocouples had detached wires which leads to an infinite 

resistance which is why these sensors are supposed to be responsible for these extreme 

measurements. When excluding all measurements which had temperatures over 500 or below -

10 °C as seen in figure 3 (graph in the middle), there are some high and edgy temperature 

signals which reach over 200 °C, visible. These signals might come from internal friction at the 

thermocouple. Some of the lower temperature measurements get visible, if these values are also 

excluded from the plotting (see figure 3 graph at the bottom). 



 

 
Fig. 2  Heating of thermocouples during the welding process. Thermocouples are circled with white-dashed 

       lines. The temperature scale should only be considered relatively, not absolutely. (Figure inspired 

       by [26]). 

 

 
Fig. 3  Thermocouple measurement of welding No. 9. First plot shows the temperature measurement of all 

       thermocouples. Second plot shows all measurements which had maximal temperatures below 

       500 °C and minimal temperatures of above -10 °C. Plot three shows all measurements which had 

       maximal temperatures below 100 °C and minimal temperatures of above -10 °C. Notice that the 

       time scale in the last plot is different to the other plots. 

 

2.4.2 External Infrared Camera 

 

The raw data output from the external infrared (IR)-camera is a video sequence of about 20 

seconds, recorded from the static IR-camera placed next to the robot and welding table. The 

video stream is converted into individual images and time periods of interest are extracted. 

Figure 4 shows an example of two images of welding attempt No. 9 at different time steps, 

where the welding direction runs from right to left. In figure 4a the welding process is active, 

which means that roller, welding horn and heatsink have contact to the surface of the welding 

material. In addition to the temperature progression on the weld seam, thermal reflections on 

the material surface next to the actual weld can be seen, for example the reflection of the roller 

in the middle on the left side of figure 4a (white circle). In figure 4b the welding is already 

completed. The horn is retracted, roller and horn are no longer visible in the thermal image. 

Only the heat sink is still in contact with the material surface. Comparing the measured 

temperatures in both images, the rapid drop in maximum temperatures after the end of welding 

can be seen (max. temp.: > 200 °C in figure 4a, > 100 °C in figure 4b). Both images show that 



 

the acquired data provide a good overview of the welding seam and therefore make it possible 

to investigate the general warming and cooling behavior of the seam. 

 

  
            (a)                                 (b) 

Fig. 4  Thermal camera image of entire welding attempt No. 9: (a) Active welding where roller, horn and 

       heat sink are in contact with the surface with measured temperatures above 200 °C. White dashed 

       ellipse marks a weak reflection of the compaction roll in front of the sonotrode. (b) Finished welding 

       where roller and horn have no contact with the weld seam while heat sink is still in contact to the 

       surface. From (a) to (b) the maximum temperature dropped quickly. 

 

2.4.3 FLIR Data 

 

During the experiments the FLIR camera showed itself to deliver the most detailed data which 

also were good to match to an x-position on the welding plate due to the fact that the TCP is 

saved in each image name. This is why it was decided to develop a preprocessing code in order 

to transform the data to be able to make exploratory data analysis (eda) and AI-training. 

Images are recorded in a format of 320 times 256 pixels with the robot-TCP position stored in 

the name of each image. Each image is a 16-bit deep gray-scale image. In order to get the 

temperature values the first two bits have to be bit-masked off before equation 1 [39] is applied 

to each pixel value (see figure 5). Since the surface of the samples is observed, lower 

temperatures are expected and the camera is set to HighGainMode [29] which has a temperature 

range of -25 up to 135 °C. As displayed in figure 5 the calculated temperatures seem to exceed 

135 °C and the upper cutoff seem to be around 170 °C. This extended range may be possible 

since the camera sensor data are recorded not by the camera software provided by the 

manufacturer but with a custom program executed in TwinCat Vision. 

 

   𝑇[𝑘] =
𝐵

𝑙𝑛(
𝑅

𝑆−𝑂
+𝐹)

    (1) 

 

In equation 1 S represents a pixel value while the other letters are camera intern registry 

parameters. After the use of equation 1 the temperature values are in Kelvin so an additional 

shift is done to have the temperature values in °C. When these steps are done each image stores 

information about the measured temperature in °C. Notice that in the following paragraphs the 

term “image” is used to explain the preprocessing steps further. The images are only shown for 

explanatory purposes, the real data is stored in two dimensional tensors. Since the camera 

recordings show not only the welding zone but also the surrounding area, the region of interest 

(ROI) has to be cut from the original sized images. During this cutting process the distortion of 

the images is also eliminated by applying a transformation matrix (equation 2) which was 

calculated by OpenCV [33]: 

 



 

𝑡𝑟𝑎𝑛𝑠𝑚𝑎𝑡 = [
4.16603031 ×  10−2 1.99969455 −3.17034906 ×  102

−1.61185986 −2.64239321 ×  10−2 3.55454735 × 102

−2.23909242 × 10−3 −6.68095185 ×  10−5 1.00000000

](2) 

 

The whole process of how the ROI with the corresponding temperature data is extracted from 

the raw data is schematically shown in figure 5. After the thermal information are transformed, 

 

 
Fig. 5  Step 1 of data processing. Data of the raw thermographic images are bitmasked and the resulting 

       values are transformed with an equation to get temperature values. The ROI is then cut from the 

       thermographic images and are transformed in order to eliminate perspective distortion. 

 

the question arises how the data have to be processed further in order to retrieve condensed 

information for eda or AI training. At the moment the data for each welding seam is three 

dimensional. Two dimensions are defined by the pixel height and width and the third dimension 

is the temperature information dependency of the TCP position which itself has similarities 

with time. The goal of the next processing step is to reduce the dimensionality, to get one image 

of the welding zone which is representative for a temperature measurement at one point of time 

after the welding took place. This reduction can be done by extracting from each image the 

same column of pixels and then connect the extracted columns with their real position on the 

welding plate (see figure 6). 

 

 
Fig. 6  Step 2 of data processing. From each ROI image a pixel column is extracted and concatenated to  

       one thermographic panorama. panoramapos defines the extraction position in each image. 

 

In order to create the panorama image, the real position of an extracted column has to be 

calculated with the help of the TCP. Since the distance of the ROI to the horn can be measured 

in an image and the distance of the extraction column from the left edge of an image 

(panoramapos) is defined manually, x-position data of each column can be calculated and saved 

with the thermographic data. The scale for all calculations (used to calculate from pixels to mm 



 

to get the distance from horn to ROI in mm and to get panoramapos in pixels) is created on basis 

of one of the thermal images and the knowledge about the width of the horn. This method bares 

the danger of inaccuracy due to resolution and a small error calculation is proceeded:  

The TCP position of the starting point is saved by the system. Since the horn is placed on the 

welding plates in a way that its edge is congruent with the welding plate the real position of the 

beginning of the welding plate can be calculated by equation 3: 

 

𝑥𝑠𝑡𝑎𝑟𝑡𝑅𝑒𝑎𝑙 = 𝑇𝐶𝑃𝑠𝑡𝑎𝑟𝑡 −
𝐻𝑜𝑟𝑛𝑊𝑖𝑑𝑡ℎ

2
 [𝑚𝑚]   (3) 

 

To calculate now the error of the scale, a thermal image is taken where the edge of the plate is 

visible and a scale is created with the help of the horn width since that dimension is known. The 

scale can then be used to measure the distance from the right horn edge to the edge of the 

welding plate (Δ𝑋𝐻𝑜𝑟𝑛𝑇𝑜𝐸𝑑𝑔𝑒). With this value and the knowledge of the width of the horn the 

theoretical starting position (𝑥𝑠𝑡𝑎𝑟𝑡𝑇ℎ𝑒𝑟𝑚𝑜) can be calculated with equation 4: 

 

𝑥𝑠𝑡𝑎𝑟𝑡𝑇ℎ𝑒𝑟𝑚𝑜 = 𝑇𝐶𝑃 −
𝐻𝑜𝑟𝑛𝑊𝑖𝑑𝑡ℎ

2
− Δ𝑋𝐻𝑜𝑟𝑛𝑇𝑜𝐸𝑑𝑔𝑒 [𝑚𝑚] (4) 

 

By subtracting the starting position calculated with the thermal image from the real starting 

position an error of this method can be defined. For the measured data, the error is 

approximately 1.571 mm.  

The welded plates are water jet cut into LSS-samples with a width of 25.4 mm. According to 

the real cuts of a welding plate, the created thermographic panoramas have to be cut the same 

way. With respect to the cut off zone at the beginning and the end of a welded plate, the 

panorama image is cut in 13 smaller images which are each connected to a real LSS sample and 

therefore can be labeled with an LSS value (see figure 7). 

 

 
Fig. 7  Step 3 of data processing. The thermographic panorama is cut accordingly to the samples which 

       are cut from the welded plate. After cutting, each sample has a thermography image and a label 

       which can be stored in a matrix x and a value y. 

 

Every image is stored as a two-dimensional tensor in the system as a NumPy data tensor while 

its label is used to name the stored file. In a first step eda is performed with the created data. 

Weld experiments with No. 0, 5 and 20 are excluded from these investigations due to the fact 

that the recordings were faulty. In addition, some samples are excluded if the algorithm used 



 

for labeling the samples, did not find a stored LSS value for a sample. This leads to a total of 

543 samples for investigation. Goal of the eda is to investigate if there is a correlation between 

the measured temperature and the achieved welding quality/ LSS value. To simplify this 

investigation the image data is further reduced as described by Görick, Schuster, Larsen, et al. 

[18] by calculating the mean temperature of each image. Spearman- and Pearson correlation 

coefficients are then calculated for the whole set of data. In addition, the correlation coefficients 

are also calculated for a data set where the first and the last sample are eliminated from the set 

which lead to a set size of 460. In a final step all image data are stored randomly in a three-

dimensional tensor which then is used to train and test ML algorithms. Similarly, the labels are 

stored in a one-dimensional tensor at equivalent indexes. For the storing of image data, it has 

to be mentioned that not all images have the same size and are therefore augmented with zeros 

to their right side in order to have the same size as the largest image in the data set. The variation 

in size originates from the trigger mechanism in a way that not for each LSS sample the same 

number of images is recorded (discretization leads to non-equidistant camera triggering). 

 

2.4.4 AI Training with FLIR Data 

 

The correlation analyses for the data set without the data of the first and last LSS sample of 

each weld show larger correlation (see table 3) which is why this data set is used for the AI 

algorithm development. Before the generated data can be used for AI training, all values are 

normalized. Training is done with 300 samples while 100 samples are used for the validation 

process and 60 samples for final testing. The final input image size was 127 times 44 pixels, 

with zero values on the right side if the original image had less pixel columns. For the 

processing of data, a two-dimensional neural network (2D CNN) is used. The network is 

composed of three convolution layers with a max pooling layer between each convolution. 

Connected to the last convolution layer is a flatten layer to transform the data in an input shape 

which can be fed in a dense layer. Since a regression network is trained, the last layer is a dense 

layer with one neuron. Training was proceeded with the rmsprop optimizer and for optimization 

the mean square error (mse, see equation 5) is observed and minimized. 

 

𝑚𝑠𝑒 =
1

𝑛
∑ (𝑦𝑖 − �̂�𝑖)

2𝑛
𝑖=1    (5) 

 

For testing and as an optimization return value for the hyperparameterization with Optuna, the 

mean absolute error (mae, see equation 6) is used. 

 

𝑚𝑎𝑒 =
∑ (𝑦𝑖−�̂�𝑖)𝑛

𝑖=1

𝑛
    (6) 

 

Here n represents the number of sample while 𝑦𝑖 is the label of each sample and �̂�𝑖 stands 

for the value predicted by the network. To reduce the computational cost not all 

hyperparameters are fully optimized with Optuna. Before the full hyperparameterization took 

place the general importance of all hyperparameters is evaluated with the help of Optuna and 

only the parameters with an importance of equal or greater 3 % are set for optimization in the 

final training approach. All other parameters are set to the value which is supposed to be the 

best value during the importance study. Parameters for importance evaluation for a convolution 

layer are number of filters, filter size and activation function and for a dense layer number of 

neurons and activation function. The max pooling layers are excluded from this investigation 

but epoch number and batch size are also evaluated. For the evaluation of importance 100 trials 

are performed. The importance evaluation of the different parameters is listed in table 2. After 



 

the important hyperparameters are defined in the system, final training with 

hyperparameterization is performed in 500 training attempts. For this training an early stopping 

callback function is implemented to monitor the loss function. If the function value does not 

reduce by at least 0.001 for 10 epochs in a row, the training is stopped and the weights of the 

best training epoch (in this case 10 epoch in the past) are recovered and saved. This functionality 

starts observing the loss function at epoch No. 15. The best training result is found by looking 

for the smallest mae value of all 500 trained networks. 

 
Table 2. Importance of different hyperparameters of the trained neural network. Importance is rounded 

with decimal precision of 10-4. If no value is defined the parameter is set to be dynamic for the 

hyperparameterization in the final training attempts. 
Parameter Set Vale Rel. Importance 

filter_size_3 - 0.5986 

filter_size_2 - 0.1558 

activation_2 - 0.0578 

filter_size_1 - 0.0472 

activation_4 - 0.0386 

batch size - 0.0305 

activation_3 softmax 0.0147 

activation_1 softmax 0.0143 

number_filters_3 32 0.0122 

number_filters_2 30 0.0111 

epochs 95 0.001 

number_filters_1 59 0.0075 

neurons_dense_1 4 0.0026 

 

3. Results 
 

3.1 Thermocouples 

 

Some of the measured temperatures extend beyond temperatures of the welding process and 

indicate that the vibrations can permanently destroy the thermocouples. In addition, most of the 

thermal measurements seem to measure the friction of the thermocouples on the surface rather 

than measuring the temperatures which result from the actual welding process. Due to that, the 

method of temperature measurement with these thermocouples appears to be unsuitable for the 

ultrasonic welding processes. 

 

3.2 External Infrared Camera 

 

Thermal images are taken with a static IR-camera system at a greater distance from the weld 

seam and with a larger FOV compared to the FLIR camera, making it possible to monitor the 

entire welding seam. In this way, heating- and cooling processes in the material can be observed 

before and after the actual welding. This data can be helpful for evaluating the welding quality. 

However, a larger FOV also means an increased susceptibility to thermal reflections from 

different materials or other temporary heat sources. In order to obtain more plausible 

temperature information, the emissivity of the material in the scene to be observed has to be set 

in the software beforehand. This can be challenging due to different materials within the scene. 

Due to the limited resolution of the IR-camera and the associated ground-resolved distance, 

fine details in the temperature progression of the welding process are difficult to detect. The 

use of optics with a narrower FOV (e.g. 30°) at a closer distance to the weld seam could be 

investigated in order to reduce possible reflections and get a higher resolution thermal 

measurement. In addition, the data shape may have the potential to be reshaped in a way that 



 

the data can be fed into an AI algorithm and provide the algorithm described above with 

additional information about the cooling process. 

 

3.3 FLIR Data 

 

The in this paper introduced method for prepossessing the recorded thermal data of a continuous 

ultrasonic welding process seem to be accurate enough to be used for data analyses. Mean 

temperature values of each image plotted against the LSS value are shown in figure 8. For all 

visualized values there seem to be a trend that with a higher mean temperature the welded 

connection gets stronger. Nevertheless, the LSS value distribution of the points at higher 

temperatures gets larger (see figure 8a)). If the first and last welding sample of each weld 

experiment are eliminated (this data set is called reduced data set from here on) from the 

visualization, the LSS value distribution towards higher temperatures gets smaller and the trend 

that higher temperatures are connected to higher LSS values gets more prominent (see 

figure 8b)). 

 

  
  (a)                                    (b) 

Fig. 8  Mean temperature of each thermal image plotted against the LSS value. (a): All samples. (b): 

       Samples plotted without the first and the last sample of the welding plate (start and ending of the 

       welding process). 

 

These observed trends are also supported by the calculation of the Spearman- and the Pearson 

correlation coefficient (see table 3). In all tests medium correlations are calculated with p-values 

lower α = 0.05 which leads to rejection of H0 and real correlation can be assumed. Since the 

correlation value of the Spearman correlation for the reduced data set is larger than 0.8, the 

correlation is supposed to be large [40]. 

 
Table 3. Correlation coefficients of the mean temperature against the LSS values with (All Samples 

True) and without (All Samples False) the first and last sample of each plate. Values rounded to 10−4 

precision. 
Correlation Corr. Coefficient p-value All Samples 

Pearson 0.6879 2.5405 ×  10−77 True 

Pearson 0.7879 1.6961 ×  10−98 False 

Spearman 0.6988 9.3344 ×  10−81 True 

Spearman 0.8186 2.1934 ×  10−112 False 

 

In case of AI training the best trained network achieved a mae score of 0.06 which is equivalent 

to 0.979 MPa if the value is transformed back to the LSS value. A visualization of the networks 

prediction against the ground truth is shown in figure 9. The trained network seems to learn 



 

from the given data and the predictions and the ground truth lay in most cases relatively close 

together. 

 
Fig. 9  Predicted LSS values plotted against the ground truth. Red line indicates the optimal location of 

       each point where prediction and label are the same. 

 

4. Discussion 
 

It seems that thermography offers good opportunities to be used for the quality assessment of 

ultrasonic welded TCs. Nevertheless, there are a few thoughts to keep in mind. The here 

described use of thermocouples seem to be the only investigated technique which leads to non-

reliable data based on the fact that the thermocouples generate friction themselves and therefore 

do not measure the heat which is resulting from the welding process. It may still be possible to 

connect the thermocouples in another way to enable reliable measurement of the welding 

temperatures. 

The external IR-camera provides good overview of the whole welding sample but the data could 

not be used for AI training due to the fact that the x-position of camera and welding sample 

could not be matched in a detailed enough scale. If the matching can be done in a more detailed 

manner and a process for transforming the more complex data of the external IR-camera into 

an appropriate shape for an AI-algorithm is designed, the global cooling process of the welding 

samples might be of use for the generation of additional AI training data. 

The FLIR data is used for detailed quality assessment of the welding process. The camera is set 

up to a smaller measurable temperature range with a higher resolution since it was expected 

that the welding specimens surface reaches smaller temperatures. This leads to a temperature 

cut off and some of the thermal information could have gone lost or are measured inaccurately 

since the calibrated temperature range is exceeded during the experiments. For future 

measurements it might be advisable to use a different setup of the camera in order to measure 

temperature more accurately. Nevertheless, this point seems to be not of most importance since 

the algorithms learn from the data even if they have a cut off in temperature range and 

temperatures over 135 °C are measured less accurately. A more detailed temperature resolution 

could lead to an even better network. In addition, the processing of the thermal images is done 

to generate more understanding of causality but might not be necessary for the training of an 

AI algorithm. With larger sets of data, it may be possible to give the algorithm stacks of thermal 

images where the according welding sample is shown and let the algorithm learn which areas 

of the stacked images are of importance. To investigate this statement a much larger data set is 

necessary. 

The welding process itself was done with samples which had many hand-fixations of the ED. 

In the thermal data it is seen that these fixations cause heating areas while the areas next to 

these heating areas remain significant colder. Further investigations should be done without 

these fixations since they seem to influence the welding. Another point worth mentioning is 



 

that the archived LSS results are relatively low compared to the spot welds described by Görick, 

Schuster, Larsen, et al. in [18]. This limits the networks ability to recognize stronger welding 

connections. Since the algorithm in [18] is able to see differences between good and bad welds, 

where good welds are supposed to have an LSS value of equal to or over 37 MPa, it may also 

be possible to train an algorithm with the here proposed methods to differentiate in a larger 

range of qualities. The LSS values in general are relatively low which might be a result of the 

hand fixations in the welding zone and a weak generator but the here presented results 

strengthen the statement that quality assurance of CUW of TCs is possible. Further 

investigations with a larger data set and a larger difference in welding quality should be created 

in order to be able to make a more generalized statement but it seems that IR-camera images of 

the welding process help with the quality assurance of the CUW process. 

 

5. Conclusions 
 

In the here presented research different thermographic measurement methods are introduced to 

the process of CUW of TCs. The measurement of thermographic data with IR-cameras seem to 

have high potential to the quality assessment of produced welds. Most promising is the data 

recorded close to the welding zone which leads to the conclusion that this system will be further 

used to record data during the welding process. Some of the described processing steps generate 

good understanding of the recorded data set in general but might be reduced in complexity in 

further trials. In order to get a more reliable and safe AI algorithm, a larger data set with more 

diverse data should be created but the presented results already help to even the way for the 

establishment of the CUW of TCs in manufacturing. 
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