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Abstract 

Neurophysiological measurements seem a powerful tool for investigating pilots’ cognitive states. Such 

measurements need to be reliable and valid in order to gain interpretable and robust results. Recent research, 

however, suggests that this may not be as easy as it seems. In this paper, we give a short overview of commonly 

used neurophysiological measurements, and problems that need to be overcome to make these measurements the 

valid, reliable source of information we wish for. 

Introduction: Aviation, Automation, Adaptation 

The history of aviation is one of rapid increases in technological advances and ever higher levels of automation 

[8]. These developments go hand in hand with decreasing numbers of crew in the cockpit, following the 

assumption that higher levels of automation result in tasks that can be achieved by fewer human pilots [1]. 

Historically, the task allocation between human and machine has followed simple guidelines based on the 

capabilities of the actors [12], resulting in a static allocation. Later on, dynamic allocations arose in the form of 

adaptable automation which the human can changes based on their current needs, or adaptive automation in which 

the task allocation is changed by the machine, triggered by pre-defined situational, environmental or task-related 

factors [26, 31]. With the emergence of more sophisticated machine learning algorithms, the aviation industry and 

research alike now hope to develop concepts of adaptive automation that are tailored to the pilots and their current 

needs, and are thus more flexible and more supportive than traditional systems [8]. In order to do so, however, the 

system needs information about the pilots, their current state and needs. In their quest for detailed information 

about the human operator, researchers have turned to physiological measurements [2, 3]. Peripheral measurements 

like electrocardiography or electrodermal activity are often used to indicate stress or high arousal [2]. 

Neurophysiological measurements like electroencephalography (EEG) are used to gain more detailed insights into 

the humans’ brain activity and cognitive concepts like mental workload or mental fatigue [2]. With the emergence 

of wearable functional near-infrared spectroscopy (fNIRS) devices, this interest in neurophysiological 

measurements has peaked again, indicated by a growing body of research in the last years [35]. EEG and fNIRS 

are promising measurements for the use in the cockpit because of their low intrusiveness, possibility to gain data 

continuously, and of course their objectivity. Thus, they have huge advantages compared to self-report or 

performance data. 

Yet, there is one question that needs to be answered before sophisticated adaptive assistance systems should be 

fed with (neuro-) physiological data: How precise are the information we can gain from said measurements? 

Mental Workload and the Validity of EEG Measures 

To give an example and highlight the problems with valid neurophysiological measurements, in this paper we will 

focus on one concept: Mental workload. Mental workload is one of the most frequently researched concepts in 

aviation, despite controversies about its definition and conceptualisation [10, 27]. Generally, mental workload is 

defined as the part of one’s cognitive resources needed to accomplish a task [25]. The more difficult the task, the 

more cognitive resources one needs to allocate to its accomplishment. If one has no spare resources left, task 

performance will decline and errors will occur. In aviation, it is generally believed that a medium level of mental 

workload is ideal [22]: Too low mental workload can border on boredom and can prompt disengagement from the 
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task, causing loss of attention and out-of-the-loop phenomena when the pilot is suddenly asked to actively engage 

again. On the other hand, too high mental workload can lead to declined performance and errors that could lead 

to catastrophic outcomes. In sum, it would be ideal to keep the pilots’ mental workload at a comfortable medium 

level to ensure optimal performance. Future adaptive assistance systems could help with this, if the pilots’ current 

mental workload level could be assessed.  

There is a large and growing body of research on mental workload assessment using EEG. Researchers usually 

focus on frequency band analyses for this, i.e. the decomposition of the EEG signal into its frequency bands. 

Changes in the composition of the signal are used to assess changes in cognitive states, e.g. between an easy and 

a difficult task. This way, data can be collected continuously and without the need to insert additional stimuli into 

the cockpit environment to elicit responses (as is done in analyses of event-related potentials). Indeed, the 

literature suggests a classical, “tell-tale” pattern of changing signal compositions for mental workload: Increasing 

mental workload is usually indicated by an increase in frontal theta activity, accompanied by a decrease in parietal 

alpha activity [9, 11, 16]. Yet, upon closer inspection, this “tell-tale” pattern cannot be found in every publication. 

While this is to be expected in research, the reasons for failing to detect the expected patterns should concern us.  

For example, there are other concepts that elicit very similar cognitive activity, such as mental fatigue. Mental 

fatigue is described as a sense of weariness usually induced by long monotonous, yet demanding tasks [6, 15]. 

Not unlike mental workload, it is also based on the idea of resource depletion. The longer one needs to focus on 

a task, the more cognitive resources one spends until these resources are used up. If the individual does not or 

cannot take a break to replenish their cognitive resources, they will experience a subjective feeling of fatigue and 

a general unwillingness to spend further effort [15]. In EEG measurements, mental fatigue usually manifests in 

increasing frontal theta activity, accompanied by increasing parietal alpha activity [33, 34, 36], the same regions 

involved in mental workload. This is not just inconvenient when one wants to differentiate the concepts. There is 

research indicating that confounding mental workload and mental fatigue (when a strenuous task is performed 

over a long period of time) decreases the accuracy of mental workload classification [30]. Why? Because 

decreasing alpha activity with mental workload and increasing alpha activity with mental fatigue may cancel each 

other out and result in no detectable changes [30]. And mental fatigue is not the only concept that can interfere 

with a mental workload assessment. Frequent task switching, for example between navigation and communication 

tasks, also affects the alpha frequency band [29] and could be responsible for “missing” changes in parietal alpha 

activity [18]. On top of that, emotional responses, especially negative ones, impact frontal theta activity [16] and 

have the potential to interfere with the assessment as well.  

These examples highlight why valid mental workload assessment may be achievable in the laboratory, but 

becomes rather difficult rather fast then turning towards realistic tasks. An algorithm trained to spot the typical, 

“tell-tale” mental workload pattern from laboratory studies can be confused easily when another factor comes into 

play in real-world settings. And yet, very few studies consider these problems and explicitly control for 

confounding factors or discuss limitations of their findings in this regard [4, 17]. It seems that an EEG-based 

system alone lacks validity. Maybe adding another data source could solve the problem?  

Combining EEG and fNIRS 

Combining fNIRS and EEG measurements has certain advantages. The higher temporal resolution of EEG and 

the higher spatial resolution of fNIRS measurements complement each other and can lead to more accurate results 

of when and where exactly changes happen, if analysed accordingly. And there is also the possibility to analyse 

convergent validity: If both measurements point towards the same result, it is more likely that the finding is true 

and not influenced by a confounding factor. 

fNIRS measures the cortical activation based on changing oxygen concentrations in the cortical blood flow. 

Overly simplified, increasing brain activity increases the consumption of oxygen and thus the flow of oxygenated 

blood in the activated region, while the levels of deoxygenated blood in said region decrease simultaneously. 

Because of the different optical properties of oxygenated and deoxygenated blood, fNIRS can make this process 

visible and give an indication of the changes in cortical activation (for a more thorough explanation see [17]). The 
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majority of studies indicate increasing (pre-) frontal cortical oxygenation (more oxygenated, less deoxygenated 

blood) with increasing mental workload [5, 13, 14]. There is one problem, however. The literature also points 

towards increasing (pre-) frontal cortical activation with increasing mental fatigue [7, 23, 24]. This could indicate 

that frontal cortical activation, as captured by fNIRS, is an indication of general demand, but rather unspecific. 

Unfortunately, most studies are performed on frontal and prefrontal regions, so there are only few published 

findings on parietal activation to this date [19]. In sum, while fNIRS is an interesting addition to EEG, the results 

gained from the measurement cannot differentiate mental workload from other types and sources of demand. This 

is highly problematic for the development of assistance systems based on neurophysiology. Assistance for a 

fatigued pilot could look very different from assistance for an overloaded pilot, and a system unable to tell the 

difference may adapt in the wrong direction. Moreover, if both effects indeed cancel each other out, an overloaded 

and fatigued pilot may not be offered any assistance because the system could no longer detect “unwanted” 

patterns of activation. 

Our Systematic Approach to Achieving Validity 

What can we as researchers do to overcome this problem of validity? The simple answer: Be aware of the 

limitations of the methods we apply, and investigate their limits systematically. In order to find valid 

neurophysiological measures of mental workload, we did a series of studies, systematically focusing on mental 

workload [18] and mental fatigue [19] while controlling for the influence of the respective other. In the following, 

we detail our approach. The described experiments were approved by the ethics commission of the German 

Psychological Society (DGPs) and conducted in accordance with the declaration of Helsinki. 

 

Internal Validity: Inducing a Concept while Controlling for Confounds 

 

If one wants to disentangle the neurophysiological correlates of mental workload from those of other concepts, 

one needs to make sure to induce only mental workload and control for other influences. In our recent research 

[18], we took great care to induce mental workload in four levels by means of increasing the difficulty of an 

adapted n-back task that was tailored to the flight context. We controlled for influences of mental fatigue by 

keeping the duration of the task to approx. 45 minutes, by randomizing the difficulty levels and by means of 

statistical analyses. Moreover, we used self-report and performance measures to ensure we actually did induce 

four distinct levels of mental workload. 

Convergent Validity: Combining and Comparing Measurement Methods 

 

We performed simultaneous fNIRS and EEG measurements to investigate the convergent validity between the 

measurements. In order to do so, we used compatible devices and chose a montage in which EEG electrodes and 

fNIRS optodes covered the same areas. There is software available for such purposes, like the fNIRS Optodes’ 

Location Decider fOLD [37], and we highly recommend making use of such tools as well as documenting the 

exact measurement locations in order to foster replicability. 

Sensitivity and Specificity: Testing Measures on Different Concepts 

 

In order to see which neurophysiological changes were unique to mental workload and could not be mistaken for 

mental fatigue, we also needed to research mental fatigue. Thus, we conducted a subsequent experiment in which 

we induced mental fatigue and controlled for confounding with mental workload [19]. By comparing the results 

of both studies, we would be able to see which neurophysiological measures were sensitive to mental workload, 

i.e. would vary with increasing mental workload, and specific to it, i.e. would not vary with increasing mental 

fatigue. In order to make the results comparable we designed the second experiment to be as similar as possible 

to the first. we used the same measurement equipment and montage, the same laboratory and flight simulator and 

the same cognitive task. We induced mental fatigue by increasing time on task (90 minutes) and kept mental 

workload constant by applying only one moderate difficulty level derived from our first study (details on our 

methods can be found in [18, 19]). We also chose the same measures, and data processing and analysis steps we 

had used in our first study. 
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Our Results: As Valid as Can Be? 

 

As our current aim is to highlight the methods rather than the results, we will only briefly discuss our results here 

and refer the interested reader to the individual publications [18–20] as well as a comparative in-depth discussion 

in [17]. In short, we analysed and compared the fNIRS data (oxygenated blood HbO, deoxygenated blood HbR) 

and EEG frequency bands (frontal theta, and parietal alpha and beta), as well as two commonly used mental 

workload indices (Task Load Index TLI [32]; Engagement Index EI [28]) [20] between both experiments. 

An overview of our findings is shown in Figure 3. We found that frontal measures (i.e. cortical oxygenation, theta 

band power and TLI) were sensitive to changes in mental workload, and that by combining EEG and fNIRS data, 

we could differentiate all four induced levels of mental workload, more than with the separate measurements. 

However, the frontal EEG measures proved sensitive to increasing mental fatigue as well, thus lacking specificity 

to mental workload. fNIRS may prove a viable option to differentiate the concepts, but our results were somewhat 

inconclusive (for a discussion see [17]). Parietal activity (i.e. alpha and beta band power and EI) lacked sensitivity 

to changing mental workload altogether.  

 

 

Figure 3. Schematic comparison of the results of our previous studies for mental workload and mental fatigue [18–20]. Red 

indicates frontal cortical areas, blue indicates parietal areas. Significant increases are marked ; significant decreases are 

marked ; no significant changes are marked – ; brackets indicate significant overall effect but no significant post-hoc tests. 

Figure taken from Hamann, 2023, p. 55 [17]. 

 

Conclusion 

Even though we took great care to control for confounding, and could thus compare “pure” effects of mental 

workload and mental fatigue, it was quite difficult to tell the concepts apart. What is evident is that increasing 

frontal cortical activation indicates increasing demand, but cannot be used to explain its cause exactly, even under 

laboratory conditions. Unfortunately, in the cockpit it is unlikely to find pure mental workload. During long-haul 

flights, mental fatigue may well arise. Rostering and long shifts can lead to sleepiness on top of mental workload. 

And frequent task switching is inherent to piloting an aircraft. Thus, neurophysiological measurements may not 

be ideal for measuring mental workload “in the wild” and for differentiating cognitive concepts. We may be able 

to capture increasing or decreasing demand in a pilot, but not where exactly this demand originates from.  

This may sound a little disappointing, but does not mean we should abandon neurophysiological measurements 

altogether. The fact alone that we can gain insights into a pilot’s current cognitive demand and monitor changes 

should be impressive enough. And maybe this ability is already sufficient for our purposes. In an aircraft, there is 

an abundance of other sources of information readily available. Covariates like the duration of the mission, 
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weather, aircraft system health indications and even the pilots’ inputs into the system could bridge the gap between 

cognitive demand and its origin [21]. Increasing frontal activation in combination with system failure messages 

may be a good indication of mental workload, while the same pattern of frontal activation after multiple uneventful 

hours of flight is likely due to mental fatigue. Such a multimodal approach and combination of the overall state 

of both pilot (via neurophysiology) and aircraft (via covariates) could help to achieve the vision of an adaptive 

assistance system that is tailored to the current needs of the pilot without relying too much on the power of one 

measurement. In the end, the important part is to be aware of the capabilities and limitations of our methods 

instead of just assuming validity, and to apply them carefully where they are suitable and useful.  
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