System Architecture Optimization: An Example
Application to Space Mission Planning

0000—0002—5421—6419] 0000—0001—5404—2482]

Jasper H. Bussemaker!! and Thomas Firchau?!

! Institute of System Architectures in Aeronautics, DLR, Hamburg, Germany
2 Institute of Space Systems, DLR, Bremen, Germany

Abstract. Space mission planning involves coupled architecture decisions that non-triv-
ially influence system-level performance metrics such as weight, power usage, and scientific
value. We present an exemplary space mission planning problem solved using System Ar-
chitecture Optimization (SAO): a technique where numerical optimization algorithms are
used to explore the architecture design space and find a Pareto front of architectures.
The architecture design space is modeled based on functions using the Architecture De-
sign Space Graph (ADSG) implemented in the ADORE editing and optimization tool.
Evaluation code is implemented in Python and linked to the design space model using
class factories. The design space is explored using NSGA-II, a multi-objective evolution-
ary algorithm, resulting in a Pareto front trading-off system mass and total experiment
duration.

Keywords: System Architecture - MBSE - Missing Planning - Optimization

1 Introduction

Increasing system complexity and more stringent stakeholder needs in the space domain re-
quire a shift towards innovative model-based design space exploration approaches in early design
phases [14]. Such a shift would allow exploring more potential concepts, at a higher level of detail
and subject to less designer bias, earlier in the design phase [15]. In particular, design decisions
early in the design process include selecting payload such as scientific instruments, calculating
operational budgets such as operational time and data handling, and sizing support systems such
as power supply and thermal regulation systems. Space mission design is a non-trivial task due to
strong coupling of architecture decisions with respect to system-level performance metrics [11].

In this paper, we demonstrate the application of System Architecture Optimization (SAO)
techniques to space mission design. SAQO is an emerging field that applies numerical optimization
to exploring system architecture design space, thereby enabling exploring a larger number of
potential candidates earlier in the design process [5]. We continue with an overview of SAO in
Section 2. The space mission planning application case in described in Section 3. Results are
presented and discussed in Section 4 and Section 5 concludes the paper.

2 System Architecture Optimization

System Architecture Optimization (SAO) involves the application of numerical optimization al-
gorithms to designing system architectures. The architecture of a system is a central artifact in
systems engineering, and specifies what components a system consists of (the elements of form),
and how they collaborate to fulfill the system functions (i.e. what the system performs) [8]. Many
potential architectures may exist for a given design problem, making it infeasible to exhaustively



2 J.H. Bussemaker and T. Firchau

consider all architectures [13]. This warrants the application of optimization techniques to selec-
tively search the design space.

Implementing an architecting problem as an optimization problem requires the availability
of an architecture generator and an architecture evaluator. In this work, we use the Architecture
Design Space Graph (ADSG) [5] to model the architecture design space and enable architecture
generation. The ADSG is a directed graph modeling functions fulfillment choices, function in-
duction by components, component characterization choices, and component connection choices.
Nodes represent architecture elements such as functions, components, and component instances,
and edges represent derivation relationships. For a comparison to other architecture optimization
approaches, the interested reader is referred to [5].

The ADSG is implemented in ADORE, a Python tool developed by the DLR that includes
a web-based user interface for graphically modeling the architecture design space [4]. ADORE
additionally contains interfaces to various optimization algorithms and interfaces for connecting
to architecture evaluation code. Architecture evaluation code is problem specific and depending
on what tools are useful for a given architecting problem can be implemented using different
tools, environments, and/or programming languages. Generated architecture alternatives must
be translated to the domain-specific input needed for the evaluation code. ADORE provides
several different interfaces for this. For example, if evaluation is performed in Python code,
ADORE’s data model can be used to instantiate objects based on selected architecture elements.
If connection to an external environment is needed, generated architectures can be serialized to

JSON or XML.

3 Space Mission Planning Problem Implementation

This section presents the application of SAO to space mission planning. The mission planning
problem involves maximizing scientific value provided by a selected mission payload, subject
to weight and power budgets. This application case was developed as part of the MBSE-Ops
project [3], which had the goal of promoting MBSE adoption within the DLR.

Architecture generation is enabled by modeling the architecture design space as an ADORE
model, and using that model to formulate the optimization problem. Fig. 1 shows the system
view of the design space model, starting from the Do Science” top-level function. This function
represents the system-level goal and therefore also has the system-level performance parameters
associated to it: " System Mass” and ” Total Experiment Duration” act as optimization objectives,
to be minimized and maximized, respectively. ”Valid schedule” is a constraint that ensures the
experiment schedule is valid (no experiments are overlapping in time). The top level function
is fulfilled by the ”Experiment” component, of which the detailed view is shown in Fig. 2. The
Experiment can be instantiated between 1 and 5 times, and each instance has two continuous
design variables: ”Start Time” and ”Duration”. Instantiating the experiment and choosing values
for the two design variables is a good example of decision hierarchy, a common occurrence in SAO
problems, where an upstream decision (instantiation) determines whether downstream decisions
(start time and duration) are active or not [5].

The experiment needs the ”Gather Data” function, which is fulfilled by the ”Instrument”.
The instrument contains no additional specialization, however has two static inputs associated to
it: ”Mass” and ” Power Requirement”. Static inputs make assumptions and component properties
explicit, by moving their definition from the evaluation code to the system model. The Instrument
needs two further functions: ”Store Data”, fulfilled by the ” Onboard Computer”, and ”Provide
Power”, fulfilled by the ”Battery”. The onboard computer also needs data, showing that it is
possible for multiple components to need a function. The Battery, see Fig. 3 for the component
view, can be instantiated between 1 and 5 times. Each instance has three static inputs: ”Mass”,



SAQ: Space Mission Planning 3

QOI [CONJ: FUN: QOlI [OBJ]: QOlI [OBJ]:
Valid Schedule = 0.5 Do Science Total Experiment Duration 1 System Mass |
7
) SYS:
Space System
SYS:
Space Segment

FUN: COMP: FUN:
Gather Data Instrument Provide Power

FUN: COMP: COMP:
Store Data Onboard Computer Battery

Fig.1: ADORE design space model showing the system view.

FUN: COMP: FUN:
Do Science Experiment Gather Data

12345

COMP:
Experiment

QOI [DV]: QOI [DV]:

Start Time = [0, 3600] Duration = [60, 300]

Fig.2: ADORE design space model showing the ”Experiment” component.

"Maximum Power”, and ”Capacity”. On the component-level, the Battery has a ”Remaining
Energy” constraint that ensures that the battery is not depleted when running experiments.

FUN: COMP: QOI [CONJ:
Provide Power Battery Remaining Energy > 0.05
QOI [INP]:
Maximum Power = 3

QOlI [INP]: QOlI [INP]:
Mass = 0.15 Capacity = 0.2

¢

12345

Fig.3: ADORE design space model showing the ”Battery” component.

The optimization problem is a mixed-discrete, constrained, multi-objective problem. It is
defined by two discrete (instantiations) and ten continuous design variables (experiment start
time and duration). It contains two objectives (System Mass and Total Experiment Duration)
and two constraints (Valid Schedule and Remaining Energy).

Fig. 4 shows the data model used as input performance calculation: the SPACEMISSION object
contains the experiment schedule, represented by a list of OPERATION or EXPERIMENT classes,
and one SPACECRAFT class that contains a list of EQUIPMENT classes. Several types of equipment
are implemented, separated in POWERPROVIDER and POWERCONSUMER classes. Currently the
only power provider is a BATTERY, and consumers are comprised of ONBOARDCOMPUTER and
INSTRUMENT. This object-oriented structure of the data model enables separation of concern
and thereby independent development. Additionally, it eases multidisciplinary calculation of



4 J.H. Bussemaker and T. Firchau

SpaceMission
+ schedule: Operation[] ' Spacecraft ’ Equipment
+ end_time: float + equipment: Equipment[] + mass: float
+ space_segment: Spacecraft A
¢ |
Operation PowerProvider PowerConsumer
+ start_time: float + max_power: float + required_power: float
+ duration: float jk + always_on: bool = false
Experiment Battery OnBoardComputer Instrument
+ instruments: Instrument[] + capacity: float + always_on = true

| !

Fig. 4: Evaluation code data model.

performance metrics by using the principle of abstraction. The four performance metrics are
calculated by following disciplines:

— The "mass analysis” discipline calculates the System Mass by summing all equipment masses.
— The ”payload analysis” disciplines calculates the Total Experiment Duration by summing
the duration of all operations of type EXPERIMENT.

The ”operations analysis” discipline determines whether the schedule is valid (the Valid
Schedule flag) by checking if there are any overlapping operations.

The ”power analysis” discipline calculates the Remaining Energy by simulating power con-
sumption over the mission duration, based on BATTERY capacities and required power of
power consumers. Power consumers are either always on (e.g. the ONBOARDCOMPUTER) or
only consume power when used in an operation.

Fig. 5 shows power analysis output for an example mission containing two experiments.

To enable architecture evaluation using ADORE;, the architectures generated by ADORE have
to be translated to the data model presented in Fig. 4. This is done using class factories: rules
for instantiating Python classes based on architecture element occurrences. Class factories are
defined for all objects in the design space, such that the SPACEMISSION object can be populated.

In this section the architecture design space model, data model, and analysis disciplines are
presented sequentially, however it has to be noted that all these aspects are strongly dependent

—— Power Consumption [W] Battery Energy [Wh] = Experiment Run
1.5 4
-
1.0 4
0.5 1
0.0

0 500 1000 1500 2000 2500 3000 3500
Time [s]

Fig. 5: Power analysis example for a mission architecture containing two experiments.



SAQ: Space Mission Planning 5

« Feasible architectures & Pareto front
@
— 1000 A
E . 1
© 800 |
o
A
— 600 A I
g *
£ 400 - :
o
©
& 2001
Ea| ]
4’(_'3 ] .
ﬁ 0 L . T : T : T : T :
0.9 1.0 1.1 1.2 1.3 1.4

System Mass

Fig. 6: Architecture optimization results, showing feasible architectures and architectures in the
Pareto front.

on each other. The evaluation code is developed based on the elements and architectural choices
modeled in the architecture design space, however the design space can only include such ele-
ments and choices as to what is feasible to evaluate within a given project context. The data
model enables coupling of analysis disciplines and coupling of the architecture generator to the
evaluation code, and is usually developed over time by application in various projects [1].

4 Results

The architecture optimization problem defined in Section 3 is solved using NSGA-II [9], a multi-
objective evolutionary algorithm that is well suited for solving mixed-discrete problems. The
NSGA-IT implementation in pymoo [2] is used, accessed through SBArchOpt [6]. SBArchOpt
adds several interfaces on top of pymoo to aid solving architecture optimization problems. A
design problem defined in ADORE can be directly exposed as an SBArchOpt problem, so no
additional integration is needed from the user perspective. NSGA-II is executed with a population
size of 100 for 20 generations.

Fig. 6 presents results of the architecture optimization. A Pareto front can clearly be observed,
trading-off between system mass and experiment duration. The five (vertical) clusters are formed
by the selection of the number of batteries, as this is the only architecture choice influencing
mass in the application case. As expected, including more batteries increases mass, however also
increases energy availability and therefore allows more and/or longer experiments to be executed.

5 Conclusions

This work has demonstrated System Architecture Optimization (SAO) in the space domain
using a exemplary space mission planning problem. The goal was to maximize science time while
minimizing system mass. These two conflicting objectives resulted in a Pareto front of optimal
architectures after executing the optimization. The architecture design space was modeled using
ADORE, a tool for function-based architecture design space modeling and optimization problem
execution. Architecture evaluation was implemented using a custom data structure consisting of



6 J.H. Bussemaker and T. Firchau

Python classes, and four disciplines calculating four relevant performance metrics. Class factories
were used to instantiate classes based on architecture element selection. This structure allows
independent development of the architecture design space model, data model, and disciplinary
analysis code.

In future studies, SAO may be applied to more realistic space mission planning problems, in-
volving more engineering disciplines and higher fidelity analysis. It can be expected that the tool
landscape will become more heterogeneous if more disciplines are involved, potentially warrant-
ing a collaborative multidisciplinary optimization approach that is able to integrate distributed
analysis tools into a single analysis workflow [7]. The architecture design space can be expanded
to represent different types of experiments, different types of instruments, and more realistic inte-
gration among on-board subsystems. SAO should be integrated in established MBSE processes,
interfacing with standard formats such as SysML [12], Arcadia [16] or OPM [10].

References

1. Alder, M., Moerland, E., Jepsen, J., Nagel, B.: Recent advances in establishing a common language
for aircraft design with CPACS. In: Aerospace Europe Conference (2020)

2. Blank, J., Deb, K.: Pymoo: Multi-objective optimization in python. IEEE Access 8, 89497-89509
(2020). https://doi.org/10.1109/access.2020.2990567

3. Boggero, L., Chojnacki, A., Bussemaker, J., Bartels, J., Quantius, D., Nagel, B.: The MBSE com-
petence at the German Aerospace Center. INCOSE International Symposium 33(1), 910-924 (Jul
2023). https://doi.org/10.1002/iis2.13061

4. Bussemaker, J.H., Boggero, L., Ciampa, P.D.: From system architecting to system design and opti-
mization: A link between MBSE and MDAO. In: 32nd Annual INCOSE International Symposium.
Detroit, MI, USA (Jun 2022). https://doi.org/10.1002/1is2.12935

5. Bussemaker, J.H., Boggero, L., Nagel, B.: System architecture design space exploration: Integration
with computational environments and efficient optimization. In: ATAA AVIATION 2024 FORUM.
Las Vegas, NV, USA (Jul 2024)

6. Bussemaker, J.H.: SBArchOpt: Surrogate-based architecture optimization. Journal of Open Source
Software 8(89), 5564 (sep 2023). https://doi.org/10.21105/joss.05564

7. Ciampa, P.D., Nagel, B.: AGILE paradigm: The next generation of collaborative MDO for
the development of aeronautical systems. Progress in Aerospace Sciences 119 (Nov 2020).
https://doi.org/10.1016/j.paerosci.2020.100643

8. Crawley, E., Cameron, B., Selva, D.: System architecture: strategy and product development for
complex systems. Pearson Education, England (2015). https://doi.org/10.1007/978-1-4020-4399-4

9. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic
algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation 6(2), 182-197 (2002).
https://doi.org/10.1109/4235.996017

10. Dori, D.: Model-based systems engineering with OPM and SysML. Springer New York (2016).
https://doi.org/10.1007/978-1-4939-3295-5

11. Fortescue, P., Swinerd, G., Stark, J.: Spacecraft systems engineering. John Wiley & Sons (2011)

12. Friendenthal, S., Moore, A., Steiner, R.: A Practical Guide to SysML: The Systems Modeling Lan-
guage, vol. 38. Elsevier (2015). https://doi.org/10.1016/C2013-0-14457-1

13. Haberfellner, R., de Weck, O., Fricke, E., Vissner, S.: Systems Engineering. Springer International
Publishing, Cham (2019). https://doi.org/10.1007/978-3-030-13431-0

14. MB4SE: MBSE best practices. Tech. Rep. MB4SE-TN-002, ESA (2022)

15. McDermott, T., Folds, D., Hallo, L.: Addressing cognitive bias in systems engineer-
ing teams. In: 30th Annual INCOSE International Symposium. Virtual Event (Jul 2020).
https://doi.org/10.1002/j.2334-5837.2020.00721 x

16. Voirin, J. (ed.): Model-based system and architecture engineering with the arcadia method. ISTE
Press, London (2018)



