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Abstract

Deutsch

Das Lösen nichtlinear algebraischer Gleichungssysteme mittels numerischer Ver-
fahren stellt in der chemischen Verfahrenstechnik häufig eine zeitintensive Auf-
gabe dar, insbesondere wenn Systeme schlecht konditioniert sind und / oder
keine gut geschätzten Startwerte für den numerischen Löser vorhanden sind. In
dieser Arbeit wird ein Hybridverfahren entwickelt, um solche Systeme unabh-
gängig von einer aufwendigen Schätzung der Startwerte lösen zu können. Das
Hybridverfahren macht sich Methoden aus der Intervallarithmetik zu Nutze, um
nicht realisierbare Wertebereiche der gesuchten Variablen auszuschließen und im
übrigen Bereich Lösungen effizient über Newton-basierte Methoden zu lokalisie-
ren. Der Anwender muss lediglich vorab Wertebereiche der gesuchten Variablen
definieren. Zur Gewährleistung der Unabhängigkeit des Verfahrens von einer
bestimmten Newton-basierten Methode, werden verschiedenste dieser Art einge-
setzt, nämlich: ein selbstimplementiertes Newton-Verfahren, Scipys SLSQP und
Fsolve sowie Ipopt. Das Hybridverfahren wird in Python implementiert und an
verfahrenstechnischen Beispielen getestet. Diese Systeme sind allesamt komplex,
unterscheiden sich aber in ihrer Dimension, Kondition und Nichtlinearität. Es
wird für alle Beispiele mindestens eine physikalisch realisierbare Lösung in we-
nigen Minuten gefunden. Für einige Systeme können sogar alle Lösungen im
unbeschränkten Variablenraum ausfindig gemacht werden. Die Intervallarithme-
tik bietet hier die Möglichkeit mathematisch zu beweisen, dass es keine weiteren
Lösungen geben kann. Dies ist theoretisch auch für alle anderen Testbeispiele
möglich, allerdings benötigt in den größeren Systemen die Intervallarithmetik-
basierte Reduktion des Lösungsraumes zu viele Reduktionsschritte, um in die
Nähe der reellen Lösung(en) zu kommen. Die Effektivität der Reduktion von



Variablengrenzen ist besonders stark von der Initialisierung dieser und der For-
mulierung der Gleichungen abhängig. Im Rahmen der Arbeit wurden verschie-
dene Initialisierungen und Formulierungen der Gleichungen untersucht und die
wichtigsten Erkenntnisse in Leitfäden zusammengefasst. Außerdem wurde ein
erste Kategorisierung der untersuchten Gleichungssysteme gemessen an deren
Komplexität vorgenommen. Auf dieser Basis kann abgeschätzt werden, welche
der drei Lösungsstrategien (intervallarithmetisches Verfahren, Newton-basiertes
Verfahren oder Hybridverfahren) im individuellen Fall am geeignetsten ist. Die
problemunabhängige Anwendbarkeit des Hybridverfahrens sollte an weiteren
großen, komplexen, nichtlinear algebraischen Prozessmodellen überprüft werden.
Viele Schritte innerhalb des Verfahrens bieten die Möglichkeit parallel durchge-
führt zu werden und könnten erheblich zu dessen Beschleunigung beitragen.
Somit könnte der Ansatz auch zum Lösen von Optimierungsproblemen oder dis-
kretisierten, differential algebraischen Systemen interessant werden.

Schlüsselwörter: Initialisierung nichtlinear algebraischer Gleichungssysteme; Hybrid-
verfahren; Intervalarithmetik; Newton-basierte Verfahren; Reformulierung von Gleichun-
gen; numerische Lösungsverfahren; Komplexität von Prozessmodellen; Konvergenz

English

Solving nonlinear algebraic systems of equations by numerical methods is often a
time-consuming challenge in chemical engineering, especially when systems are
ill-conditioned and/or no well estimated initial values for the numerical solver
are available. In this work, a hybrid method is developed to solve such systems
independently of an insufficient initialization. The hybrid method makes use of
methods from interval arithmetic to exclude infeasible ranges of values of the
unkown variables and to efficiently locate solutions in the remaining feasible
region by Newton-based methods. The user only has to set the bounds of the
unknown variables in advance. To ensure the independence of the approach from
Newton-based methods, several of these are applied, namely: A self implemented
Newton method, Scipy’s SLSQP and Fsolve as well as Ipopt. The hybrid method
is implemented in Python and tested on process engineering examples. These
systems are all complex, but differ in dimension, condition, and nonlinearity. For



all systems at least one physically feasible solution is found in a few minutes.
All solutions in the unrestricted variable space can even be found for some sys-
tems. The interval arithmetic offers here the possibility to prove mathematically
that there can be no further solutions. This is theoretically possible for all other
test examples as well, but in the larger systems the interval arithmetic based re-
duction requires too many box reduction steps to get close to the real-valued
solution(s). The effectiveness of the reduction of variable bounds is particularly
dependent on the initialization of these and the formulation of the equations. As
part of this work, a wide variety of initializations and formulations of the equa-
tions were examined and the most important findings were collected in the form
of guidelines. Furthermore, a first classification of the investigated systems of
equations was carried out, measured by their complexity. Based on this, it can
be estimated which of the three solution strategies (interval arithmetic method,
Newton-based method or hybrid approach) is most suitable in the individual
case. The problem-independent applicability of the hybrid approach should be
verified on further large, complex, nonlinear algebraic process models. Many
steps within the procedure offer the possibility to be performed in parallel and
could contribute significantly to its acceleration. Thus, the approach could also
become interesting for solving optimization problems or discretized, differential
algebraic equation systems.

Keywords: Initialization of Nonlinear Algebraic Equation Systems; Hybrid Approach;
Interval Arithmetic; Newton based Solvers; Reformulation of Equations; Numeric Solvers;
Complexity of Process Models; Convergence
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1 Introduction

“The important thing about a problem is not the solution, but the strength we
gain in finding a solution.” — Seneca

1.1 Motivation

Chemical processes are expected to operate safely, economically and, to an in-
creasing extent, ecologically, taking into account the growing challenges posed by
resource shortages and climate change. In order to achieve these goals efficiently,
computer-aided Modeling, Simulation, and Optimization (MSO) of processes have
become an indispensable part of plant design and are steadily gaining importance
in the operation of existing processes (Bortz and Asprion, 2022), (Bröcker et al.,
2021), (Martin et al., 2022). The fields of application of MSO referring to Biegler
(2014) can be subdivided into

– Process and model development: Transfer from experimental data to pro-
cess model by experimental design, parameter estimation, comparison of
different modeling approaches

– Process synthesis and design: Determination of optimal process structure
and conditions as well as equipment design

– Process operation: Optimal control of fluctuating process conditions, plan-
ning and scheduling of process operations

But how is MSO carried out? The flow chart by Asprion & Bortz (2018) shown
in Fig. 1.1 illustrates quite well the connection between the three disciplines.
For basic research, modeling and simulation are of particular importance. Here,
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1 Introduction

Fig. 1.1: Connection between process modeling, simulation and optimization according
to Asprion & Bortz (2018).

the emphasis is on representing the real problem as accurately as necessary in a
mathematical model. This usually cannot be solved analytically and so process
simulation comes into play, which is primarily reliant on the use of numerical
solution methods. By means of an existing model and a converging simulation,
different process conditions can be tested, which form the basis for, e.g., new
process concepts. The simulation results of a process model can be evaluated
to define objective functions with respect to sustainability and/or economic effi-
ciency under consideration of certain operating conditions and/or safety aspects.
In optimization, these objective functions are then minimized or maximized with
subject to the constraints. Possible objectives can be, e.g., the minimization of
energy and resource demand, the reduction of waste streams, or to find the total
cost minimum considering fixed and operational costs under variable process
conditions according to a multi criteria optimization. It is not always the case that
a process simulation and thus also the process optimization depending on it can
find the desired solution for the process model. Frequently process models are
solved by equation-based algorithms such as fixed-point iteration, root-finding
methods or an optimization algorithm that relies on the latter. They often fail due
to

– Infeasible regions or points of variables where a function from the mathe-
matical system of interest is not defined, e.g. 1/x has no solution at x = 0. If
x does not represent only one, but many variables, it is difficult to react to
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the infeasible combination of variables within the iteration process. Further
critical expressions can be found in Amarger et al. (1992).

– Ill-conditioning in the linear system that is supposed to be solved in the
iteration step of a derivative-based numerical method. Huge differences in
the Jacobian’s nonzero entries result in the matrix to become singular or
almost singular. Such a system either has no or infinitely many solutions
causing the solver to abort or to take an inaccurate iteration step (Dennis
and Schnabel, 1996, pp. 52).

– Multiple solutions may exists to the mathematical system. Locally con-
vergent solvers only converge to one solution. There is no easily verifiable
condition under which it can be guaranteed that the solver converges exactly
to the desired physically feasible solution(s) (Mazumder, 2016, pp. 417-418).

Challenging are process models, in which waste streams are decreased through
recycling or the heat duty can be saved through heat integration. Both lead to
strongly coupled equations that can no longer be solved independently of each
other. The more variables in these equations, the larger the possible solution
space and the chance for infeasible points to occur if critical function expressions
are present. In addition, variables of different orders of magnitude are very likely
to occur in process models, e.g., mass transfer related quantities such as particle
diameter and film thickness with a scale around 1 µm compared to quantities
related to the process unit itself such as its diameter, height or length in the
range of 1 m (Grossmann and Westerberg, 2000). This can cause ill-conditioned
systems. Through preconditioning methods, as explained in section 2.4, the
condition of a system often improves, but it may remain bad, especially in large,
strongly coupled equation systems. An Non Linear Equation system (NLE) can have
numerous solutions, e.g., in case complex reaction kinetics or multicomponent
phase equilibria are part of the process model. Convergence of the associated
simulation to a solution is often only achieved, when the numerical solver starts
from an initial point in the solution’s immediate vicinity. Such a point is difficult
to find especially in large NLEs. To overcome these issues, some successful
strategies and alternative numerical methods to fixed-point and root-finding based
algorithms have already been developed.
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Continuation methods attempt to find a sufficiently close initial point for fixed-
point or root-finding based algorithms. First, a simplified problem is solved.
The original system is extended by a homotopy parameter h, which is decreased
step-wise from the simplified model (h = 1) to the original one (h = 0). The
solution from the current step is the initial point for the next step. More details
on homotopy methods are given in Guddat et al. (1990). In the pseudo-transient
continuation approach an NLE is solved by first converting it into a Differential
Algebraic Equation system (DAE) and then searching for the stationary point in
pseudo-time, which corresponds to the solution of the original problem (Pattison
and Baldea, 2014). In Seo et al. (2020) it could already be shown that this method-
ology increases the solution’s region of attraction for solvers designed to solve
root-finding problems so that they also converge from further distanced initial
points. Nevertheless, there is no guarantee for homotopy and pseudo continu-
ation methods to converge at all and to the expected solution (Neumaier et al.,
2005, p. 291-292).

Constraint-propagation methods in combination with bisectioning algorithms
can guarantee to find all solutions in initial variable bounds (Schnepper and
Stadtherr, 1996). They make use of the Interval Arithmetic (IA) and successively re-
move all infeasible variable domains. However, since there can be many infeasible
regions, especially in large NLEs, there are many possible solution spaces left in
between. All of them must be checked individually for solutions, which results in
slow to intractable convergence speeds. Nonetheless, the potential of such meth-
ods is great, since the examination of solution spaces can be parallelized very
well. If the computers of tomorrow have significantly more cores available, the
efficiency of constraint propagation methods can also be substantially increased
(Hansen and Walster, 2003, p. 13).

Sequential modular approach and tearing algorithms use the downstream struc-
ture of a process flowsheet (Biegler et al., 1999, pp. 271-285) or decompose the
entire equation system of a process model into a sequence of subsystems that are
successively solved (Duff et al., 2017a, pp. 108-136). The output of the former
subsystem is the input of the next. Due to recycle streams or strongly-coupled
equations, the subsystem at the beginning of the sequence also depends on the
output at the end of the sequence. This results in an outer iteration, in which
the linking variables, also called tearing variables, are reduced. The algorithm
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then alternates between inner and outer iteration. As long as very good estimates
for the tearing variables are initially available, this procedure converges in a few
steps and the computational time can be well reduced (Bublitz et al., 2017a). How-
ever, such algorithms are also very sensitive to the choice of the tearing variables’
initial values and tend to behave in an unstable manner in ill-conditioned systems
(Baharev, 2016).

Problem specific algorithms make use of the mathematical structure of a partic-
ular process unit. A prominent example is the general model of a column with
equilibrium trays, which is often used in distillation, absorption and extraction
processes. The cascade of separation trays is exploited in the Thomas algorithm,
an algorithm developed specifically for its mathematical structure (Thomas, 1949),
and combined with a tearing method. Thus, only initial values for the tearing vari-
ables have to be given, which are the trays’ temperatures and internal streams of
the light phase. The output of the Thomas algorithm are the trays’ mole fractions
of the heavy phase. This data is the input to the general phase equilibrium model
and the trays’ total material and heat balances, which then update the tearing
variables and the procedure continues until the values of the tearing variable do
not change anymore, i.e., the system is solved. For phase equilibrium models, spe-
cific solution strategies exist as well. The bubble point and sum rate method are
used for narrow- and wide-boiling mixtures respectively (Friday and Smith, 1964)
and have been extended by Tsuboka & Katayamak (1976) for isotherm extraction.
A schematic representation of the bubble point method is shown in Appendix
A.1. Another column algorithm is the inside-out method, introduced by Boston &
Sullivan (1974). This algorithm is particularly suitable for solving systems with
complex thermodynamics, due to its speed and robustness in this case. The inside-
out method creates a simplified model from the complex thermodynamics in an
outer loop at constant flow rates, mole fractions and temperatures. The inner loop
iterates the latter variables by using this simplified thermodynamic model. As
it requires much less computational operations, the simplified model makes the
inner iteration very fast. Only when simplified and complex thermodynamics
deviate strongly from each other, the simplified model is updated according to
the latest iteration variables from the inner loop. Wang et al. (2020) have recently
extended the inside-out method for reactive distillation. The presented methods
are faster and more robust than simply trying to solve the entire equation system
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by a fixed-point or root-finding algorithm. However, no generalization for other
process units has been found and it takes a lot of effort to identify the individual
structure of a new process unit and to develop an appropriate solution strategy.

The author believes that

– the number of nonlinear terms in equations,

– the differences in the scales within a model,

– the number of coupled equations, and

– the dimensions of the equation systems

will increase in rigorous process models in future, to simulate and optimize
even more complex relations in processes or even larger NLEs resulting from
discretized processes in time and/or space, in order to cope with the growing de-
mands on chemical production in line with the requirements of the environment
and market forces (Biegler et al., 2022, p. 33). In the author’s opinion, a generally
valid approach for initialization and solving such systems is currently missing.
Ideally, it should create a connection between process model and numerical itera-
tion method independent of the problem itself.

1.2 Research Goal

Presently, there is no problem-independent method for initializing NLEs that
attempts to ensure a robust numerical iteration by root-finding based algorithms.
In this work, such a method is to be developed. The idea is to combine Interval
Arithmetic (IA)-based methods with state-of-the-art root-finding based algorithms.
The former theoretically guarantee to find all solutions, while the latter show
much higher convergence speeds. The combination of both is relatively promising
and has been tested before for example in van Iwaarden & Lodwick (1996, pp. 54-
69), Figueiredo et al. (1997) and Baharev et al. (2011). While the latter focused on
solving problems globally, the aim of this work is to locate one or a few solution(s)
quickly. Therefore, the so-called hybrid approach should take the following points
into account:
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– Filtering infesaible points or regions within the initial variable domain by
IA

– Efficient reduction of the initial variable domain by IA

– Recurrent local searches by root-finding based algorithms, started from
promising points in IA-reduced variable domain.

The application range of such a hybrid approach shall be further investigated by
computational experiments. The following questions will be addressed:

RQ1. How well does the hybrid approach perform in locating a desired solution compared
to state-of-the-art root-finding algorithms?

RQ2. How well does the hybrid approach perform to solve an NLE globally compared to a
pure IA-based solver?

To ensure the independence of problems, the hybrid approach needs to be applied
to several process models. Complex problems are of particular interest here,
which can otherwise only be solved by existing numerical methods after a costly
initialization. However, in this matter, there are a few unresolved points that will
be investigated in this work:

RQ3. How can the complexity of an NLE be measured?

RQ4. Which equation formulations are useful to ensure an efficient numerical iteration?

RQ5. Can structural properties of an NLE be used to conclude, which method is the
appropriate to solve it?

Finally, during the development of the hybrid approach, attention will be paid
to create features or tools that assist in debugging failed numerical iterations,
especially whether the failure is caused by a structural error in the model or a
numerical error of the method.

7



1 Introduction

Fig. 1.2: Outline of this work.

1.3 Outline of Work

Figure 1.2 sketches the key points of each chapter. First, the theoretical back-
ground is given to subsequently introduce the novel hybrid approach. The de-
veloped process models are presented in chapter four and tested in chapter five.
Finally the application area with regard to the set research goals and questions
are discussed, and an outlook for further method development is given.
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2 Theoretical Background

This chapter contains state-of-the-art real arithmetic and IA-based methods, which
are relevant for the development of the novel hybrid approach. It also introduces
the standard form of the NLE, which the hybrid approach will be designed for.

2.1 Notation

The mathematical notation introduced now is used throughout this thesis. The
novel hybrid approach aims to find numerical solutions to well-determined prob-
lems of the type

f (x) = 0 x ∈ Rn , (2.1)

for the real-valued functions

f : Rn → Rn .

A set of nj solutions x∗
j , which solve such a problem, is denoted as

{x∗} := {x∗
j ∈ Rn | j = 1, . . . , nj; f (x∗

j ) = 0}
= {x∗

j=1, . . . ,x∗
j=nj} .

Bold letters are used for multi-dimensional functions and vectors, while regular
letters denote scalar quantities. Real-valued matrices will be presented by bold
capital letters.

9



2 Theoretical Background

The hybrid approach searches for one or multiple solutions to problem 2.1 within
the user-defined variables space x that is defined as

x :={x ∈ Rn | ∀xi ∈ R : xi ≤ xi ≤ xi; xi, xi ∈ R;

i = 1, . . . , n}

=

⎛⎜⎜⎝
xi=1

...
xi=n

⎞⎟⎟⎠ .

Such a variable space is also called a box, as it is spanned by n closed variable
intervals xi. A real-valued interval x is defined as the closed set of all numbers
x within the range of a real-valued lower bound x to a real-valued upper bound
x

x := {x ∈ R | x ≤ x ≤ x; x, x ∈ R} .

Width w, midpoint m and absolute value |·| of an interval x are defined as

w(x) := x − x

m(x) :=
x + x

2
|x| := max {|x|,|x|} .

These quantities can also be calculated for a box x

w(x) := (w(xi=1), . . . , w(xi=n))

m(x) := (m(xi=1), . . . , m(xi=n))

|x| := max {|xi=1|, . . . ,|xi=n|} .

An interval is termed degenerate, when it contains only one real point. A box is
degenerate when it only consists of degenerate intervals. Lowest and highest real

10



2 .1 Notation

point of a box x are denoted as

x :=

⎛⎜⎜⎝
xi=1

...
xi=n

⎞⎟⎟⎠ x :=

⎛⎜⎜⎝
xi=1

...
xi=n

⎞⎟⎟⎠ x, x ∈ Rn

During the reduction of an initial box, infeasible regions in the interior of intervals
might be removed that cannot contain any solution(s) to Eq. 2.1. A convex,
infeasible region within an interval is called a gap. By discarding gaps, the initial
box splits up into subboxes of feasible variable domains. A set of subboxes {x}
has the form

{x} :={xb=1, . . . ,xb=nb} .

The exact image set related to a scalar function applied on a certain box x is

f
∗
(x) = f

∗
(xi=1, . . . ,xi=n) := { f (xi=1, . . . ,xi=n) ∈ R |xi=1 ∈ xi=1, . . . ,xi=n ∈ xi=n}.

A one-dimensional example is the following

f (x) = 2 · x − x, x ∈ [0, 1] =⇒ f
∗
([0, 1]) = [0, 1] (2.2)

For non-monotonic function expressions with multiple variable dependencies the
calculation of f

∗
(x) becomes computationally expensive. An alternative way is

to overestimate the range of a real function’s values by its interval extension. The
interval extension f (x) of a scalar function f is denoted as

f (x) :={y ∈ R |
y = min f (x) ≤ y ≤ y = max f (x);

y, y ∈ R} .

The result differs from problem 2.2 as the interval x is directly processed in the
function instead of its real-valued elements.

f (x) = 2 · x − x, x = [0, 1] =⇒ f ([0, 1]) = [−1, 2] (2.3)

11



2 Theoretical Background

Images and interval extensions can be also formulated for systems with several
functions. The image set of a system consisting of m functions and n variables
is

f
∗
(x) = f

∗
(xi=1, . . . ,xi=n) := {f (xi=1, . . . ,xi=n) ∈ Rm |xi=1 ∈ xi=1, . . . ,xi=n ∈ xi=n}

and the interval extended version f is

f (x) :={y ∈ Rm | ∀yi ∈ R :

y
i
= min fi(x) ≤ yi ≤ yi = max fi(x);

y
i
, yi ∈ R; i = 1, . . . , n} .

It should be noted that an image set is always tighter or as tight as the enclosure
given by the interval extension. An m × n interval matrix A has interval entries
so that

A :=

⎡⎢⎢⎣
aj=1,i=1 . . . aj=1,i=n

...
. . .

...
aj=m,i=1 . . . aj=m,i=n

⎤⎥⎥⎦ .

Hence, an interval matrix A contains the set of all real-valued matrices A within
the given ranges. An interval matrix is regular if it does not contain any real-
valued matrix that is singular, otherwise it is termed irregular (Hansen and Wal-
ster, 2003, p. 84). The vectors of the j-th row or i-th column of a real-valued matrix
A are given in abbreviated form as

aj,: := (aj,i=1 . . . aj,i=n) a:,i :=

⎛⎜⎜⎝
aj=1,i

...
aj=m,i

⎞⎟⎟⎠ .

2.2 Nonlinear Equation Systems

In general, all mathematical models associated to chemical engineering processes
can be formulated as an optimization problem. Common use cases arise from
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2 .2 Nonlinear Equation Systems

Op�miza�on 
Problems

Con�nuous

Differen�able

Convex

Fig. 2.1: Classification of optimization problems.

model development, process design, process operation, process control, and real-
time optimization (Biegler, 2010, p. 1). In order to make numerical methods
easily applicable to solve the equation systems of such problems, a standard
mathematical formulation has been established:

min
x,y

f (x,y) (2.4)

s.t. hj(x,y) = 0, j := 1, . . . ,m

gk(x,y) ≤ 0, k := 1, . . . ,p

x ∈ Rn, y ∈ Zt ,

with the scalar objective function f (x,y), m equality constraints h(x,y) = 0,
p inequality constraints g(x,y) ≤ 0, n continuous variables x and t discrete
variables y with a finite number of integer values. Every optimization problem
can be easily formulated in form of Eq. 2.4. For example a maximized objective
function maxx,y f (x,y), is equivalent to minx,y − f (x,y), similarly an inequality
constraint gk(x,y) ≥ 0 is equivalent to −gk(x,y) ≤ 0. Eq. 2.4 can be simplified
if certain conditions hold. The classification relevant for the nonlinear equation
systems investigated in this work is shown in figure 2.1. In case no discrete
variables are present, Eq. 2.4 reduces to a continuous Non Linear Problem (NLP)
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of the form

min
x

f (x) (2.5)

s.t. hj(x) = 0, j := 1, . . . ,m

gk(x) ≤ 0, k := 1, . . . ,p

x ∈ Rn .

The suggested hybrid approach is designed for this group of problems. Al-
though it should be mentioned that discrete optimization problems, so-called
Mixed Integer Non Linear Problems (MINLPs), are frequently relaxed to NLPs for
example in branch and bound algorithms and therefore rely on NLP formula-
tions and solvers as well (Schewe and Schmidt, 2019, pp. 159-171). If all function
derivatives of f (x), h(x) and g(x) exist, the problem is termed differentiable. In
numerical iterations of chemical engineering related models this is not always the
case. A simple example is the logarithmic temperature difference ∆Tln frequently
used for heat transfer calculations in heat exchangers

∆Tln =
∆Tl − ∆Tr

ln
(︂

∆Tl
∆Tr

)︂ . (2.6)

This equation and also its derivatives with respect to ∆Tl and ∆Tr are not defined
at ∆Tl = ∆Tr. A derivative based iteration method would abort at this point. In the
suggested hybrid approach such points shall be filtered out by IA so that ideally
only variable domains with differentiable functions remain. For differentiable
NLPs fast numerical solvers exist that can then be efficiently applied. For the
sake of completeness the subgroup of convex, differentiable NLPs shall be shortly
discussed. A problem from this group consists of a convex variable domain and
convex functions f (x), h(x) and g(x). When both conditions hold, a locally
found solution is always the global solution, if no better solution is available in
its vicinity (Biegler, 2010, p. 4). In this work only well-determined, continuous
NLPs are treated. This means the degrees of freedom of such a problem are
zero and it owns as many unkowns, so-called iteration variables, as linearly
independent equations. Well-determined, algebraic NLPs shall be denoted as
NLEs in the following to emphasize their additional properties. In order to solve
NLEs numerically, they can be formulated as root-finding, fixed-iteration or as
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scalar minimization problems all originating from Eq. 2.5. In the first case the
NLE is set up as

h(x) = 0 (2.7)

g(x) ≤ 0 ,

which is equivalent to Eq. 2.5 without an objective function to minimize. The in-
equality constraints are not mandatory but can restrict the ranges of the iteration
variables x further so that a numerical solver focuses on this feasible region. Es-
pecially in chemical engineering problems non-physical solutions can be avoided
this way. In case an iteration variable’s range of validity is x and can be restricted
by a lower bound x and an upper bound x this can be formulated in terms of two
inequality constraints by

x − x ≤ 0 (2.8)

x − x ≤ 0 , (2.9)

to meet the structure of Eq. 2.7. Highly related to Eq. 2.7 is the formulation as a
fixed-point problem given by

h∗(x) = x (2.10)

g(x) ≤ 0 ,

whereas the equality constraints from Eq. 2.7 can be easily transformed to Eq.
2.10 by direction substitution shown in Eq. 2.11.

h∗ := h(x) + x = x (2.11)

The third way to formulate and solve an NLE is as an optimization problem
without equality constraints

min
x

f (x) (2.12)

s.t. g(x) ≤ 0 .
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When additionally no inequality constraints are present Eq. 2.12 becomes an
unconstrained optimization problem. The equality constraints of Eq. 2.5 are
indirectly used in the objective function. A common formulation is the so-called
least-squares minimization problem with

f (x) := 0.5 ·
m

∑
j=1

hj(x)
2 . (2.13)

The advantage is that Eq. 2.13 is a convex function in the vicinity of its roots and
is bounded below by zero. Nevertheless, a solution to the least-squares problem
is not necessarily a root of Eq. 2.7, because methods might stop at local minima of
2.13, which are non-zero. The next section presents methods to solve these three
types of problems.

2.3 Numerical Solvers

Iterative methods aim to find a sequence of points x(k) for k = 1,2, . . . , ∞ converg-
ing to a solution x∗ of an NLE of interest. The converging sequence is

lim
k→∞

∥x(k) − x∗∥p = 0 , (2.14)

with ∥ · ∥p being any of the p-vector norms. Typical norms are listed in table
2.1. The speed an iterative method converges with is usually estimated by the
inequality

∥x(k+1) − x∗∥p ≤ c · ∥x(k) − x∗∥q
p c > 0, q ≥ 1 , (2.15)

with c and q denoted as rate and order of convergence. The rate of convergence
is defined as

c := lim
k→∞

∥x(k+1) − x∗∥p

∥x(k) − x∗∥q
p

. (2.16)

An iterative method only converges for c < 1. The lower the value of c is, the
higher the speed of convergence. Methods with an order of convergence q =

1 are said to converge linearly, those with 1 < q < 2 converge superlinearly
and the ones with q = 2 converge quadratically. Hence, low convergence rates
and high orders of convergence are desired to achieve fast converging processes.
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2 .3 Numerical Solvers

Nevertheless, iterative methods with orders higher than q = 2 are rarely in use in
large NLEs as the additional effort to compute their respective iteration step does
not pay off for the obtained increase in convergence speed. Fixed-point iteration
methods seek for a so-called fixed point x∗ that solves

x = h∗(x) , (2.17)

by the calculation specification

x(k+1) := h∗(x(k)) . (2.18)

The advantage of this approach is that this computation is relatively cheap as
each iteration point can be directly calculated by one evaluation of the equation
system at the last iterate. The disadvantage is that it only converges when

max
j

|λj(J(x
∗))| < 1 , (2.19)

where maxj|λj(J(x
∗))| is the maximum absolute eigenvalue of the Jacobian ma-

trix J(x) of h∗(x) at the fixed point (Heath, 2002, p. 238). The method converges
mostly linearly with a convergence rate maxj |λj(J(x

∗))|. Hence, the lower the
value of maxj |λj(J(x

∗))| the faster the method converges. On the other hand,
if this value is close to one, the method becomes very slow. Some relaxation
methods such as Wegstein (1958), Orbach & Crowe (1971), Steffensen (1933) and
Anderson (1965) exist to accelerate the convergence. However, to achieve the
goals of this work, fixed-point iteration methods are not applied as their linear
convergence rate and their initialization with points from rather coarse variable
domains are expected to result in slow numerical iteration processes, especially
for large NLEs.

Root-finding algorithms are better suited for this use case. They all have in
common that they use some approximation of the functions’ slopes at the iterated
points. The probably best known root-finding algorithm is Newton’s method. It
applies the first order Taylor approximation on the iterate x(k)

m(x) := h(x(k)) + J(x(k)) · (x− x(k)) , (2.20)
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to obtain a linear model m(x) of a root-finding problem referring to Eq. 2.7
with J(x(k)) being the Jacobian matrix of the root functions h(x) evaluated at x(k)

(Dennis and Schnabel, 1996, pp. 69-77). The root x(k+1), where m(x(k+1)) = 0,
can be analytically determined by

x(k+1) = x(k) − J−1(x(k)) · h(x(k)) . (2.21)

Newton’s method can solve linear root-finding problems in one iteration step
because they are equivalent to m(x). According to Dahmen & Reusken (2008,
p. 193) the method converges quadratically to a certain root if

– the iteration starts in a convex, Lipschitz-continuous vicinity of the root,

– the Jacobian matrix is Lipschitz-continuous in the vicinity of the root and,

– the inverse of the Jacobian matrix is not singular or almost singular in the
vicinity of the root.

The drawbacks of the Newton method are that the determination of J(x(k)) is
rather expensive and no convergence is guaranteed whenever these conditions do
not hold (Dennis and Schnabel, 1996, pp. 86-89). In practice, this often means that
an initial guess close to the root must be already known, before Newton’s method
is started, but if the method converges, it does so quite quickly. Alternatively to
Newton’s method, the Quasi-Newton procedures avoid the costly computation
of J(x(k))−1. A popular representative is Broyden’s method (Broyden, 1965). The
Jacobian matrix is replaced by an approximation matrix B(k), which results from
the multidimensional secant method under the condition that the change of B(k)

from one iteration step to the next is kept minimal in the Frobenius norm. The
linear system solved equals

d(k) := B−1(k) · f (k) (2.22)

x(k+1) := x(k) + d(k) , (2.23)
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whereas B(0) is initialized by either the actual Jacobian matrix, an approximation
by finite differences or simply the unity matrix. It is then iteratively updated by

y(k) := f (k+1) − f (k) (2.24)

B(k+1) := B(k) +
(y(k) −B(k) · d(k)) · dT(k)

∥d(k)∥2
. (2.25)

Broyden’s method has been further developed for the approximation of the inverse
Jacobian matrix. This method is denoted as Broyden rank 1. The associated update
formula becomes

B−1(k+1) := B−1(k) +
(d(k) −B−1(k)) · y(k)

dT(k) ·B−1(k) · y(k)
. (2.26)

Hence, Eq. 2.26 can be directly inserted into Eq. 2.22 and avoids the costly
inversion

d(k+1) :=

(︄
B−1(k) +

(d(k) −B−1(k)) · y(k)

dT(k) ·B−1(k) · y(k)

)︄
· f (k+1) . (2.27)

Both methods, Broyden and Broyden rank 1, converge superlinearly and thus
slower than Newton’s. In turn, each iteration step is less computationally expen-
sive. (Quasi-)Newton methods are also used to solve optimization problems of
the form Eq. 2.5. A minimum x∗ has been found, when the problem fulfills the
required constraints as well as the first and second order optimality conditions

∇x f (x) = 0 (2.28)

yT ·
H(x)⏟ ⏞⏞ ⏟

∇xx f (x) ·y ≥ 0 ∀y ∈ Rn . (2.29)

In case an NLE is formulated as a least-squares problem, the objective function
is zero at the roots of the NLE and x∗ should be in the variable bounds x. The
latter can be considered through additional inequality constraints as shown in
Eq. 2.8 and 2.9. If an iterate sits on one or multiple variable bounds the as-
sociated inequality constraint(s) are termed active, otherwise inactive. Such a
general, constrained optimization problem can be replaced by a minimization of
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the Lagrangian function L(x,λ,µ)

min
x,λ,µ

L(x,λ,µ) = f (x) + λT · h(x) +µT · g(x) x ∈ Rn (2.30)

s.t. h(x) = 0 h,λ ∈ Rm

g(x) ≤ 0 g,µ ∈ Rp

µ ≥ 0 .

The Karush-Kuhn-Tucker conditions generalize the first order optimality condi-
tions for Eq. 2.30. Hence, the associated root-finding problem needs to be solved
to fulfill Eq. 2.28

∇x f (x) +
m

∑
j=1

λj · ∇xhj +
p

∑
k=1

µk · ∇xgk = 0 (2.31)

h(x) = 0

µT · g(x) = 0

µ ≥ 0 .

The value of µk equals zero for any inactive inequality constraints gk. Thus, only
active inequality constraints have an influence on the minimum. The equations
in Eq. 2.31 can be solved with a (Quasi-)Newton method. To ensure that the
respective Hessian matrix H(x) is positive definite according to the second order
optimality condition (Eq. 2.29) and does not become singular, several modifica-
tions exist. The modified Hessian matrix shall be denoted as B(x). One strategy
is the Levenberg-Marquardt correction based on the work from Levenberg (1944)
and Marquardt (1963), which ensures positive definiteness of B(x) by forcing
it to have positive eigenvalues only. The method determines the eigenvalues of
H(x) via a singular value decomposition and revises them if necessary to values
that are greater than or equal to a minimum positive threshold

B(k) =

H(x(k))⏟ ⏞⏞ ⏟
V (k) · Λ(k) · V T(k) +

E(k)⏟ ⏞⏞ ⏟
V (k) · σ · I · V T(k) . (2.32)

Here V(k) is a matrix containing the eigenvectors, Λ(k) is a diagonal matrix that
consists of the respective eigenvalues and E(k) is a diagonal matrix with σ being
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the correcting value that is zero for a positive definite H(x) and greater equal the
positive threshold otherwise. Another method is called steepest-descent, which
uses the well-conditioned, positive definite identity matrix I in the Newton step

B(k) := I . (2.33)

This method converges quite fast far away from the minimum but rather slow
in its vicinity and can easily diverge without any additional step-size control
mechanism. A third method by Broyden, Fletcher, Goldfarb, and Shanno (BFGS)
determines the inverse Hessian matrix iteratively through

B−1(k+1) := B−1(k) +
(dT(k) · y(k) + yT(k) · B−1(k) · y(k)) · d(k) · dT,(k)

(dT(k) · y(k))2
(2.34)

− B−1(k) · y(k) · dT(k) + d(k) · yT(k) ·B−1(k)

dT(k) · y(k)
.

This formulation is highly related to the already introduced Broyden rank 1

method but additionally ensures the positive definiteness of B(k)(x). To avoid
slow convergence in (Quasi-)Newton methods, because of amplified oscillations
(alternating iteration sequence in one search direction around root (Dennis and
Schnabel, 1996, p. 24)) and zigzagging (alternating iteration sequence in two or-
thogonal search directions towards root (Nocedal and Wright, 2005, p. 148)), line
search and trust region algorithms are often used. The former try to find a suit-
able step-size in the direction of the calculated iteration step with a sufficiently
large reduction in the objective function value. An optimal step-size results from
the minimization problem

min
α(k)

f (x(k) + α(k) · d(k)) (2.35)

s.t. α(k) ≥ 0 .

To lower computational costs, the exact problem from Eq. 2.35 is usually not
solved directly. Instead α(k) is initially chosen very large in an iteration step and
gradually reduced until certain conditions such as the ones from Armijo and
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Goldstein are met,

f (x(k) + α(k) · d(k)) ≤ f (x(k)) + ω · α(k) · ∇x f (x(k))T · d(k) (2.36)

f (x(k) + α(k) · d(k)) ≥ f (x(k)) + (1 − ω) · α(k) · ∇x f (x(k))T · d(k) , (2.37)

with 0 < ω ≤ 0.5. These conditions guarantee a sufficient descent in f (x) but also
an adequately large step-size. The detailed deviation is explained in Armijo (1966).
With increasing number of iterations the initial value of each α(k) is reduced so
that the influence of the line search method vanishes during the process.

In contrast to line search methods, the search direction can also change in trust
region methods, which leads to more flexibility and higher convergence speeds
of the algorithm. At the same time, computational costs of one iteration step
increase compared to line search methods. Trust region methods solve minimiza-
tion problems of the form Eq. 2.5 by seeking for the optimal iteration step d∗

minimizing the change in their objective ∆ f (d) := f (x(k) +d)− f (x(k)) in a given
trust region. ∆ f (d) is modeled by a second order Taylor approximation m(d)

min
d

m(d)⏟ ⏞⏞ ⏟
∇x f (x(k)) · d+

1
2
· dT ·H(x(k)) · d (2.38)

s.t. ∥d∥ ≤ ∆ . (2.39)

H(x(k)) is the Hessian matrix of the scalar objective or any Quasi-Newton ap-
proximation of it. Inequality constraint 2.39 forces the iteration step length ∥d∥
commonly expressed in the Euclidian norm to stay within the current trust re-
gion’s radius ∆. Several trust region algorithms exist that differ in the way the
optimal iteration step is determined. A detailed overview and description of trust
region methods is given in Conn et al. (2000). In Powell’s trust-region-dogleg
implementation (Powell, 1970) each iteration step equals a convex combination of
the Cauchy step dC and the Newton step dnwt

d := ω · dnwt + (1 − ω) · dC , (2.40)
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with ω being the largest value in [0, 1] so that condition 2.39 is fulfilled. Newton
step and Cauchy step are given by

dnwt := − f (x(k))

∇x f (x(k))
(2.41)

dC := −α · ∇x f T(x(k)) · f (x(k)) . (2.42)

The iteration step dC equals the optimal choice in the direction of the steepest
descent for Eq. 2.38 bounded upwards by ∆. The scalar α adjusts the respective
step size of dC. Three cases for ω and the related step d are possible:

1) If ∆ ≥ ∥dnwt∥ =⇒ the Newton step is trustful and can be taken (ω = 1)

2) Else If ∆ = ∥dC∥ =⇒ the minimum of Eq. 2.38 in the steepest descent
direction with subject to ∥d∥ ≤ ∆ lies at the trust region’s bound and is fully
taken (ω = 0)

3) Else (∆ > ∥dC∥ ∧ ∆ < ∥dnwt∥) =⇒ the convex combination referring to
Eq. 2.40 adjusts ω in the interior of [0,1] so that ∥d(ω)∥ = ∆

Hence, except for the first case, the next iterate sits always on the trust region’s
bound. If

∆ f (d)
m(d)

< ε , (2.43)

the deviation between m(x) and f (x) in the current trust region is inacceptable
and ∆ needs to be decreased. A common choice is

∆ := ε · ∥d∥ . (2.44)

Whenever ∆ needs to be decreased by Eq. 2.44 the iteration step d is rejected and
its calculation is restarted from the last iterate. If on the other hand

∆ f (d)
m(d)

> ε , (2.45)

the approximation m(x) is able to predict the change of f (x) very accurately.
Hence, ∆ can be increased to accelerate the procedure. Typically, ∆ is doubled
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until reaching a preset maximum value for ∆ denoted as ∆:

∆ := min{2 · ∆, ∆} . (2.46)

Similar to trust region algorithms, Sequential Quadratic Programming (SQP) meth-
ods minimize the second order Taylor approximation m(d) of the change in the
original objective function ∆ f (d) according to Eq. 2.38. Advantageous is the
convex form of m(x) for any type of f (x). Variable limits are taken into account
via inequality constraints in the way shown in condition 2.8 and 2.9. The whole
so-called quadratic sub-problem becomes

min
d

∇x f (x(k)) · d+
1
2
· dT ·H(x(k)) · d (2.47)

s.t. h(x(k) + d) = 0

g(x(k) + d) ≥ 0 .

Note that inequalities are only greater than or equal to zero in Eq. 2.47. The
inequality constraints are divided into active constraints gA(x) where the current
iteration point x(k) sits on their boundary, i.e., a constraint gj fulfills

gj(x
(k)) = 0 , (2.48)

and inactive constraints g IA(x) where the constraint does not affect the current
iterate of the sub-problem. Solving a root-finding problem by least-squares min-
imization in a given variable domain is a special case of Eq. 2.47, in which only
already linear inequalities occur given by the variable bounds. They become ac-
tive whenever the iterate hits their associated variable bounds. No step into their
direction dA is taken in the upcoming iteration steps until their activity status
changes again. Hence, Eq. 2.47 becomes

min
d=dA∪dIA

∇x f (x(k)) · d+
1
2
· dT ·H(x(k)) · d (2.49)

s.t. dA = 0

g IA(x(k) + dIA) > 0 .
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2 .3 Numerical Solvers

A SQP algorithm now solves this quadratic problem using (Quasi-)Newton and
step-size control mechanisms to keep the iteration points within the feasible
region. The iteration continues until the iteration step falls below the required
tolerance and a local minimum is found. The latter is checked by the Lagrange
multipliers of the active constraints µA, which need to be greater than or equal to
zero. An active constraint with a negative multiplier implies that the objective can
be further reduced in its feasible direction. Hence, the constraint is deactivated
and a new sub-problem is generated. SQP algorithms are particularly suitable in
case a minimum is located at one or more variable bounds. However, they only
work, if a feasible initial point is known, i.e., a point where all functional terms
of Eq. 2.47 are defined. They can be slow, whenever the sub-problem needs to
be frequently updated due to changes from inactive to active constraints or vice
versa (Nocedal and Wright, 2005, pp. 560-561).

Finally, an NLE, reformulated into a least-squares minimization problem accord-
ing to Eq. 2.13, can be solved by a barrier-interior-point algorithm. Generally,
the latter extends an objective function f (x) by a barrier term b(x) so that the
constrained minimization problem has the form

min
x

f (x) + µ · b(x) (2.50)

s.t. h(x) = 0

x > 0 .

A typical choice for b(x) is

b(x) := −
n

∑
i=1

ln xi , (2.51)

which increases the objective towards infinity whenever an xi of x gets close to
zero, i.e., iteration points are driven away from the boundaries. The barrier term
also convexifies the objective in this way, which is more pronounced the larger
the scalar barrier parameter µ is. In the special case of solving an NLE in given
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variable bounds as least-squares minimization problem Eq. 2.50 becomes

min
x

f (x)− µ ·
n

∑
i=1

ln (xi − xi)− µ ·
n

∑
i=1

ln (xi − xi) (2.52)

s.t. x− x > 0

x− x > 0 .

Eq. 2.50 is then solved by an inner iteration for a fixed µ, the so-called barrier prob-
lem, in which a (Quasi-)Newton method with some step-size control mechanism
searches for a local minimum fulfilling a relaxed version of the Karush-Kuhn-
Tucker conditions (Eq. 2.31). The inner iteration is followed by an outer iteration,
in which the optimality conditions for the original problem at the current bar-
rier problem’s solution are checked. If they are fulfilled in a preset tolerance
the algorithm stops. Otherwise, it decreases µ and solves the next barrier prob-
lem. Several techniques exist to successively decrease µ. The Fiacco-McCormicks
approach decreases µ monotonously by

µ(k+1) = σ(k) · µ(k), 0 < σ < 1 , (2.53)

for a constant scalar σ. In Nocedal et al. (2009), adaptive approaches are presented
and studied, in which µ is already modified during the optimization of the barrier
problem. Basically these methods aim to decrease µ more strongly, whenever
progress in the minimization problem is high and dampen it otherwise. The
applied interior-point solvers in Nocedal et al. (2009) can find the solutions of
the studied problems much faster than the Fiacco-McCormicks approach. Barrier
interior-point methods are very well suitable, if the optimum lies in the interior
of the variable intervals. If this is not the case for some variables, the algorithm
may need a very long time to sufficiently reduce µ before a required tolerance is
accomplished (Nocedal and Wright, 2005, p. 593). More about SQP and interior-
point algorithms can be found in Biegler (2010, pp. 135-179).

In order to solve linear equation systems of the (Quasi-)Newton steps efficiently,
various linear solvers exist, whose discussion goes beyond the scope of this work.
Two established methods are the Lower Upper (LU) decomposition and Gauss
elimination, which are explained in detail in Dahmen & Reusken (2008, pp. 68-82).
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2 .4 Preconditioning

For large, sparse linear systems there are moreover further enhancements of the
Gauss elimination for example the MA27 solver (Duff et al., 2017a, p. 236).

2.4 Preconditioning

Every iteration step of a Newton-based numerical iteration method consists of
solving a linear system of the form

A · x = b , (2.54)

whereas A equals the current Jacobian matrix, x the Newton step and b the
negative vector of the current function residuals.

The application of numerical iteration algorithms is always error-prone, in other
words there is always a discrepancy between the exact solution of a mathematical
problem and the computed one. Three major types of errors are responsible,
namely round-off errors, inaccuracies in the approximating algorithm and errors
in the input data the problem is initialized with, i.e., if x is searched for in Eq.
2.54, but A and b already contain errors, e.g., due to round-off errors in their
computation. The first two types are associated with the algorithm and further
examined in a stability analysis. An algorithm is termed stable if the order of the
error it generates stays within the range of the error related to the input data. The
influence of the error-prone input data on the problem is investigated in condition
analysis and is only problem-dependent. It is assumed that the state-of-the-art
solvers applied in this research work are all stable and since no new real-valued
numerical iteration method is developed, stability will not be further discussed.
More about the stability of algorithms can be found in Dahmen & Reusken (2008,
pp. 42-48). However, the condition analysis plays an important role in this thesis,
because it greatly depends on the problem formulation itself. An ill-conditioned
system can cause diverging iteration sequences, if for example the Newton step
can not be accurately calculated. Problems are termed well-conditioned as long
as the error of the output data is not much higher than the one of the input data,
ideally, the error does not increase at all. Referring to linear systems of the form
2.54, the exact input data is A and b, both associated with an error of ∆A and ∆b
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respectively. The output data is x with an error of ∆x. To quantify the error ∆x

that results from perturbed input data, ∆A shall be initially neglected. Then it
follows

∆x = A−1 · ∆b . (2.55)

Using any of the p-norms presented in table 2.1 and the triangle inequality, one
can also overestimate the relative error ∥∆x∥p

∥x∥p
of x by

∥∆x∥p

∥x∥p
≤

:=κp(A)⏟ ⏞⏞ ⏟
∥A−1∥p · ∥A∥p ·

∥∆b∥p

∥b∥p
. (2.56)

In this inequality κp(A) is called the relative condition number of matrix A in
norm p (Dahmen and Reusken, 2008, p. 59), which is basically the enhancement
factor from the relative errors of b to the one of x. The relative condition number
can never be lower than 1

1 ≤ κp(A) . (2.57)

The lower it is, the better a system is conditioned. Hence, the perfect value is 1,
in which case no error enhancement occurs. The identity matrix for example has
a condition number of 1. However, if A is perturbed, Eq. 2.54 turns into

(A+ ∆A) · (x+ ∆x) = b+ ∆b , (2.58)

from which the following overestimation for ∥∆x∥p
∥x∥p

of x is deduced

∥∆x∥p

∥x∥p
≤ κp(A)

1 − κp(A) · ∥∆A∥p
∥A∥|p

·
(︃∥∆A∥|p

∥A∥|p
+

∥∆b∥|p
∥b∥|p

)︃
for κp(A) · ∥∆A∥|p

∥A∥|p
< 1 .

(2.59)

The exact derivation of condition 2.59 from 2.58 is given in Dahmen & Reusken
(2008, pp. 59-60). Note if ∥∆A∥|p

∥A∥|p ≪ ∥∆b∥|p
∥b∥|p , condition 2.59 becomes equal to 2.56. To

check the accuracy of a numerically determined solution x of Eq. 2.54, Dahmen
& Reusken (2008, p. 61) conclude the following condition, which bounds the
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2 .4 Preconditioning

Tab. 2.1: Important p-norms for real-valued n-dimensional vectors x :=
(x1, . . . xi, . . . ,xn)T and m × n-dimensional matrices A with elements aj,i,
row indices j = 1 . . . m and column indices i = 1 . . . n.

p Vector norm Induced matrix norm

1 ∑n
i=1 |xi| maxi=1...n ∑m

j=1 |aj,i|

2
(︁
∑n

i=1 |xi|2
)︁0.5 maxi=1...n σi

∞ maxi=1...n |xi| maxj=1...m ∑n
i=1 |aj,i|

maximum relative error to the exact solution x∗:

∥x− x∗∥p

∥x∥p
≤ κp(A) ·

:=r⏟ ⏞⏞ ⏟
∥b−A · x∥p

∥b∥p
, (2.60)

with r being the residual vector. In consequence, if the entries of the residual
vector are close to 0 this does not have to apply for the distance between computed
and exact solution in case of a large condition number. Hence, the computed
solution can be quite inaccurate. A rule of thumb states that for κp(A) ≈ 10k, k
digits of accuracy are lost in the computed solution (Watkins, 2002, p. 165).

Regarding the vector and matrix norms the p = 2-norm is used throughout this
work. The related relative condition number of A according to table 2.1 becomes

κ2(A) := max
i=1...n

σi(A
−1) · max

i=1...n
σi(A) =

maxi=1...n σi(A)

mini=1...n σi(A)
. (2.61)

The singular values σi are determined by a singular value decomposition, which
is explained in Gander et al. (2014, pp. 269-280) next to the derivation of Eq. 2.61.
Note that singular matrices have singular values equal to zero and hence their
condition number becomes infinite. In this work, the condition number is used
to determine the condition of NLEs, or to be more precise, their linear approxi-
mations at iteration points and their solutions. In the end, this quantity is used to
check whether a preconditioning strategy, such as the scaling or decomposition
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methods presented in the next sections, can successfully improve the condition of
an NLE.

2.4.1 Scaling

Real world problems are associated with a broad range of different scales. Espe-
cially in chemical engineering processes, variable values may range from micro
scale transport phenomena such as diffusive mass transfer up to macro scale
models such as energy and material balances. For example, diffusion coefficients
in liquids are typically of the order 10−9 m2 s−1, while the heat released when
1000 kg of water condenses at atmospheric pressure is about 2.35 × 109 J. Hence,
a process model that relies on both, encompasses about 19 orders of magnitude
in the decimal system using SI units. These different orders of magnitude often
cause a broad range of orders in the non-zero entries of the Jacobian matrix as
well, with the consequence that elements of low order become almost zero. When
such elements lie on the diagonal or their related rows become structurally iden-
tical to another row due to their disappearance, the Jacobian matrix is singular or
nearly singular and the overall system becomes ill-conditioned. Through row and
column scaling of the matrix A, and the vectors x and b, it is possible to improve
the condition. This is demonstrated with the following two-dimensional system⎡⎢⎢⎢⎢⎣

15 1000

0 2

⎤⎥⎥⎥⎥⎦ · x =

⎛⎜⎜⎜⎜⎝
100

1

⎞⎟⎟⎟⎟⎠ , (2.62)

which has a condition number of κ2(A) = 3.334 and the actual solution x∗ =

( 80
3 ; 0.5)T. This rather large condition number results from the fact that the rows

are structurally quite similar, because 15 is much smaller than 1000 just as 0
is much smaller than 2. Through row scaling the entries can be equilibrated.
Generally, row scaling involves a matrix multiplication on each side of Eq. 2.54

DR ·A · x = DR · b . (2.63)
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2 .4 Preconditioning

Exemplarily, a method is shown that Eq. 2.62 can be row-scaled with. Here, row
scaling refers to the vector norm p = 1 from table 2.1 applied on each row vector
of A. The diagonal row scaling matrix DR looks as follows

DR :=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

dR,1 . . . 0

...
. . .

...

0 . . . dR,n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, with dR,j = min{ 1

∑n
i=1 |aj,i|

;
1
|bj|

} . (2.64)

The sum of the absolute values of all entries aj,: in row j is calculated and com-
pared with the absolute value of bj. All aj,: and bj are then divided by the larger
value of both so that none of them is greater than one and lower than minus one.
In consequence, the scaled version of Eq. 2.62 becomes⎡⎢⎢⎢⎢⎣

0.0148 0.9852

0 1

⎤⎥⎥⎥⎥⎦ · x =

⎛⎜⎜⎜⎜⎝
9.852

0.5

⎞⎟⎟⎟⎟⎠ , with DR :=

⎡⎢⎢⎢⎢⎣
1

1015 0

0 1
2

⎤⎥⎥⎥⎥⎦ (2.65)

and a condition number of κ2(DR · A) = 133.35. Another way of scaling is column
scaling, which is essentially a unit transformation of the variables. A linear system
with n variables to solve is then

DC :=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

dC,1(x1) . . . 0

...
. . .

...

0 . . . dC,n(xn)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(2.66)

A ·DC ·
:=y⏟ ⏞⏞ ⏟

(D−1
C · x) = b , (2.67)

with dC,i being the conversion factor of the i-th variable for i = 1 . . . n. The vector
y equals the converted variable entries, which are used in the scaled linear system.
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The values in the actual units can be simply determined by x = DC · y. Example
2.62 can also be column-scaled for instance if the order of magnitude referring to
the decimal system of the solution is already known. Assuming this is here the
case then the converted linear system becomes⎡⎢⎢⎢⎢⎣

150 100

0 0.2

⎤⎥⎥⎥⎥⎦ · y =

⎛⎜⎜⎜⎜⎝
100

1

⎞⎟⎟⎟⎟⎠ with DC :=

⎡⎢⎢⎢⎢⎣
10 0

0 1
10

⎤⎥⎥⎥⎥⎦ . (2.68)

The condition number is κ2(A · Dc) = 1083.33, hence, in this case, less well-
conditioned than after row scaling. One sees that the first row’s entries have been
equilibrated but the second row’s entry is much smaller and the entire row tends
to be a row with near zero entries compared to the first one. Through additional
row scaling the rows are equilibrated as well and the condition number decreases
to 4.44. The corresponding system is⎡⎢⎢⎢⎢⎣

0.6 0.4

0 0.4

⎤⎥⎥⎥⎥⎦ · y =

⎛⎜⎜⎜⎜⎝
0.4

2

⎞⎟⎟⎟⎟⎠ with y =

⎛⎜⎜⎜⎜⎝
8
3

5

⎞⎟⎟⎟⎟⎠ and x =

⎡⎢⎢⎢⎢⎣
10 0

0 1
10

⎤⎥⎥⎥⎥⎦ · y .

(2.69)
If the variables’ orders of magnitudes are not known a priori, there are also
automatic scaling algorithms available for the equilibration of matrix entries. Two
of them can be used in the numerical iteration process of the suggested hybrid
approach, namely the routines from Curtis & Reid (1972) and Knight et al. (2014).
The first one minimizes the expression

min
ρj,γi

∑
aj,i ̸=0

(log|aj,i| − ρj − γi)
2 with i,j = 1 . . . n , (2.70)

with DR = diag(e−ρj) and DC = diag(e−γi) so that all absolute values of the
entries in A become close to one. The second method is iterative and uses the
norm p = ∞ on row and column vectors in the calculation specification

a(k+1)
j,i := ∥a(k)j,: ∥−0.5

∞ · a(k)j,i · ∥a(k):,i ∥−0.5
∞ . (2.71)
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Every row and column vector converges to one in the ∞-norm, which is proven
in Ruiz (2001). Hence, all entries of A are again within the range [−1, 1].

2.4.2 Decomposition

A matrix A from a linear system of 2.54 can be permuted to a block triangular
form

P ·A ·Q :=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

B1,1 . . . 0

...
. . .

...

Bn,1 . . . Bn,n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (2.72)

with Bi,i being irreducible subblock matrices that either can not be further sub-
divided into even smaller matrices or have been permuted as well into a block
triangular form by a so-called fine decomposition. Formally, the permutation
equals two matrix multiplications P ·A ·Q, where P is responsible for the row
and Q for the column permutation of A. The linear system then becomes

(P ·A ·Q)⏞ ⏟⏟ ⏞
:=B

·
:=y⏟ ⏞⏞ ⏟

Q−1 · x = P · b . (2.73)

Several algorithms exist to bring A into a block triangular form. Duff et al. (2017a,
pp. 108-136) present a thorough overview on established methods. Among them,
we shall focus on the Dulmage Mendelsohn (DM) decomposition that was first
introduced in Dulmage & Mendelsohn (1958) and comes from the theory of
bipartite graphs. A bipartite graph is a mapping of two independent sets of
elements known as vertices, where each vertex from one set can be assigned
to at least one vertex from the other set and vice versa. Such an assignment is
termed an edge. The method aims to find a maximum matching between rows
and columns of A. A matching is defined as an ordering of a specific row (vertex
from set of rows) to a specific column (vertex from set of columns) based on
non-zero elements in A (edges), i.e., the linear function related to the row can
be applied to solve the corresponding variable associated with the column. A
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maximum matching in this sense means, finding the maximum amount of 1-to-1
orderings between rows and columns. In well-determined, nonsingular systems of
dimension n, A is square, and n matchings can be found in a maximum matching.
In rectangular or singular systems not every row or column can be sorted to a
corresponding column or row, some of them will remain unmatched. The number
of maximum matchings is therefore lower than the dimension of A. The coarse
DM decomposition is especially useful for the latter type of systems. After finding
the maximum matching it starts with the unmatched rows and sorts them to the
upper corner of the permuted matrix. For an m × n matrix this equals the rows
(m − l + n1) presented in figure 2.2. Columns that share non-zero elements with
such rows are sorted to the left so that all together they build the first block
(m − l + n1)× n1. Next, unmatched columns are permuted to the right, and rows,
in which they have non-zero elements, are sorted to the bottom and build the
last block m1 × (m1 + n − l). The middle block (l − m1 − n1)× (l − m1 − n1) is
a square, well-determined block with a maximum matching. In the fine DM
decomposition all three blocks are individually brought into a block triangular
structure. The problems considered in this work only belong to the type of well-
determined, square systems so that the coarse decomposition will not be used
and the fine decomposition is of greater importance. Nevertheless, if a square
system is singular the number of matchings in a maximum matching will be
lower than the system’s dimension and the same kind of structure as in the coarse
decomposition will appear. This is useful for troubleshooting of models as over-
determined parts can then be easily identified in the upper left part (too many
equations for too few variables) and under-determined parts in the bottom right
block (too few equations for too many variables).

The fine DM decomposition produces on a well-determined equation system, i.e.,
as many unknown variables as linear independent equations, a block triangular
form with non-zero diagonal elements as shown in figure 2.3a. Each square block
on the diagonal equals an independent sub-problem. Hence, the numerical solver
starts in the top left and processes successively each of such blocks. The variables
associated with the leftmost block on the diagonal are solved first. Variables that
have been solved already are set to their solutions and represent constants in
the subsequent blocks on the diagonal. Hence, the solution space can be greatly
decreased, in case some variables can be removed during this process. Solving a
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Fig. 2.2: Block triangular structure after coarse DM decomposition, from Duff et al. (2017a,
p. 134).

large n × n system of linear equations by LU decomposition for example requires
about 2 · n3

3 floating point operations, if it is solved as a dense system (Boyd and
Vandenberghe, 2013, p. 668). Assuming the system could be decomposed into
two n

2 × n
2 subblocks and solving them sequentially reduces the computational

costs down to 25 % (4 · (n/2)3

3 = n3

6 = 1
4 ·
(︂

2 · n3

3

)︂
). In Bublitz et al. (2017a) it was

demonstrated for two chemical process models, namely a flash unit and an ab-
sorption column, that solving a decomposed system decreases the computational
time of the numerical iteration by a significant extend compared to the original
problem. On top, the condition of the individual sub-problems improved, most
likely because functions and variables of certain sub-problems rather possess sim-
ilar orders of magnitude. An additional advantage of this permutation is that
some subblocks might be completely independent from each other, for example
subblocks 1 to 3 in figure 2.3a. They can actually be solved in parallel and further
decrease the computational time. We reference in the following text always to fine
Dulmage-Mendeslohn decomposition, whenever writing DM.

In DM, some subblocks of large dimension often persist, for example the fourth
block in figure 2.3a. They may remain difficult to solve. However, the class of
Bordered Block Triangular Forms (BBTFs) methods is able to decrease the size of
such diagonal blocks further by moving some columns of the matrix, which hold
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(a) Block triangular decomposition.
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(b) Bordered block triangular transformation.

Fig. 2.3: Permuted Jacobian incidence matrices of the flash unit model described in section
4.3. An analysis on solving these systems numerically is given in Bublitz et al.
(2017a).

many row entries, to the right-hand side. In this way, it excludes such columns
from the sequence of blocks on the diagonal and only small, dense blocks remain.
Figure 2.3 shows the difference for the same system between its block triangular
form in figure 2.3a and its bordered block triangular form in Fig 2.3b. The latter
moves here just one column to the right. In this way, all diagonal blocks, except for
one dense 2× 2 block, reduce to 1× 1 subsystems. The columns that are moved to
the right together with their matched rows at the bottom build the border. Figure
2.4 shows the resulting matrix forms from DM and BBTF applied on a rather large
equation system. It can be seen that BBTF keeps the dimension of the diagonal
blocks small in contrast to the DM decomposed form. An efficient algorithm to get
a matrix into this form is the Hellerman-Rarick algorithm that was first introduced
in Hellerman & Rarick (1971) and is nowadays known under the designation P3.
The current version used in this work is named P5 and refers to the advancement
of Erisman et al. (1985). This method ensures that the diagonal elements are
non-zero, which P3 could not. Hence, structural stability is given in P5. Details
about the actual ordering algorithm can be found in Erisman et al. (1985) and
Duff et al. (2017b). BBTF seems to be favorable concerning the computational
work because of the low dimensional subblocks that it creates. One idea is to fix
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(a) Block triangular decomposition.
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(b) Bordered block triangular transformation.

Fig. 2.4: Permuted 203× 203 Jacobian incidence matrices of the distillation column model
described in section 4.5 consisting of five separation trays and five components.

in a first step all variables associated with columns of the border and solve the
diagonal’s blocks sequentially in the same manner as it was suggested for block
triangular matrices. In a second step, the variables of the border are solved in
their corresponding border functions, at the numerically determined values of
the other variables from the previous step. Next, the variables of the border are
updated, and the first step is repeated. The procedure continues until the final
solution is found. In Bublitz et al. (2017a) it was demonstrated that this procedure
is indeed faster than solving the sequence of sub-problems resulting from a DM
decomposed system, if the variables of the border are initialized with values not
far from the actual solution. Nevertheless, except for these close-by initial points,
the strategy suffers from numerical instabilities as was also concluded by Baharev
(2016) and Duff et al. (2017b). No special strategy exists up to now to ensure that
the pivot elements are far away from zero in order to achieve a better conditioned
system. If this issue can be solved in future, this strategy seems to be even more
suitable for parallelization than the DM decomposition. The BBTF algorithm
cannot only be used for solving but also for determining the variables of the
border. Hereafter they are called tearing variables, because they literally tear a
large equation system apart so that a sequence of small independent subproblems
can be solved. Thus, the tearing variables also represent an important connection
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between the subproblems and shall be further investigated within the scope of
this work.

2.5 Presolve

By presolve, an additional step prior to the numerical iteration of optimization
problems of type 2.4 is meant, in which the latter are simplified with the help of
preprocessing algorithms. For this purpose, software such as AMPL offers op-
tional strategies to speed up the iteration process and/or increase its robustness.
AMPL starts with the elimination of linear constraints that depend on only one
variable and whose solution can thus be uniquely determined. In the entire equa-
tion system, all instances of such a variable are replaced by their solutions, i.e.,
the model is reduced by one dimension per variable. Secondly, linear constraints
of the system are used to further tighten initial variable intervals. Finally, con-
straints that are always fulfilled, i.e., cannot further restrict any variable intervals
are removed. More detailed explanations and examples of this methodology and
its options can be found in Fourer et al. (2009, pp. 275-282).

2.6 Interval Arithmetic

As Moore et al. (2009, p. ix) wrote "with interval computation we can program a
computer to find intervals that contain - with absolute certainty - the exact answer
to various mathematical problems". With respect to NLEs it is possible to find
all of their numerical solutions within given variable domains. This can be done
by the use of contracting operators Γ (f (x),x) that try to remove all parts of the
box where variable intervals have no feasible value in one or more other variable
intervals to solve

f (x) = 0 . (2.74)

These removed (sub)boxes are termed inconsistent. In a constraint-propagation
scheme, the variable intervals are successively reduced until the box is either
empty, solved or consistent.Various contracting techniques exist. The focus in the
following sections is put on the five applied in this thesis, which are the interval
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Newton Γnwt (f (x),xc,x) that additionally requires a point of expansion xc ∈ x,
hull consistency Γhc (f (x),x), box consistency Γbc (f (x),x), cutting ΓC (f (x),x),
and splitting ΓS (f (x),x) operators. Beforehand, a short introduction to general
Interval Arithmetic (IA) operations is given that are further explained in the book
of Moore et al. (2009, pp. 10-50).

2.6.1 General Interval Arithmetic

Operations in real-valued algebra are also defined in IA. Indeed, IA’s operations
are extensions of the real-valued case. For degenerate intervals, i.e., intervals
with zero width, they are equal. Generally, the elementary operations (Addition,
Subtraction, Multiplication, Division) of two intervals x, y can be expressed by

x ⊙ y := {x ⊙ y : x ∈ x, y ∈ y} ⊙ ˆ︁=+,−, ·, or/ , (2.75)

while for the division this holds only for 0 /∈ y. If 0 ∈ y the resulting interval
will be [− inf , inf]. Nevertheless, an operator shall be introduced later to gain
some tighter enclosures in this case. Table 2.2 shows the specific rules for each
elementary operation. It also contains rules for the exponent, logarithm and
general power functions. The latter can also be used for the n-th root n

√
x ≡ x

1
n .

Ranges for such unary, monotonic functions can be easily determined by real
arithmetic operations as their minimum and maximum value are related to the
lower and upper bound values of x. Similar rules exist for partially monotonic
functions such as the trigonometric functions (Sine, Cosine, Tangent, Cotangent,
Secant, Cosecant), which can be found in mpmath’s documentation (Johansson,
2010) that is the python package used for IA here.

Tab. 2.2: Elementary operations and some univariate, monotonic functions in IA.

Operation Resulting Interval

x + y := [x + y, x + y]

x − y := [x − y, x − y]
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x · y := [min p, max p]

p = {x · y, x · y, x · y, x · y}

x/y := [min q, max q], 0 /∈ y

q = {x/y, x/y, x/y, x/y}

[− inf , inf], 0 ∈ y

exp x := [exp x, exp x]

log x := [log x, log x], x > 0

xn := [xn, xn], x > 0 or n is not even

[xn, xn], x < 0 and n is even

[0, |x|n], 0 ∈ x and n is even

While the addition of 0 and multiplication with 1 do not change an interval, the
multiplication with −1 is usually not its additive inverse. Hence, as already
shown in Eq. 2.2 and Eq. 2.3 the subtraction of an interval from itself equals
0 only if the interval is degenerate, when interval and real arithmetic become
equivalent. IA is associative and commutative but only distributive in the real
case

x · (y + z) = x · y + x · z . (2.76)

For intervals x = [0, 1], y = [1, 2], z = [−2, 3] the interval extensions of the left
and right term of this equation are

x · (y + z) = [0, 1] · ([1, 2] + [−2, 3]) = [−1, 5] (2.77)

x · y + x · z = [0, 1] · [1, 2] + [0, 1] · [−2, 3] = [−2, 5] . (2.78)

Hence, the formulation of the expression has a great influence on the tightness of
the resulting interval here. The reason for this is the so-called interval dependency
problem. To determine the lower bound of Eq. 2.78, the value in x differs for both
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x instances, while in real-valued arithmetic their values must be the same

f (x,y,z) = x · y + x · z = −2 . (2.79)

In order to obtain tight enclosures, one should try to avoid multiple variable
occurrences in expressions to prevent interval dependency. This is also true for
fractions where a variable is part of both nominator and denominator, here shown
for x = [0, 1], y = [1, 2]

x
x + y

=
[0, 1]

[0, 1] + [1, 2]
= [0, 1] (2.80)

that can be easily rearranged to

1

1 +
y
x

=
1

1 + [0, 1]
[1, 2]

= [0.5, 1] . (2.81)

The general conclusion that can be drawn from this example is that as long as all
variables occur only once in a function f (x)

f (x) = f
∗
(x) (2.82)

holds, i.e., the range of its interval extended version in box x is as tight as its
image set f

∗
(x). This is also true for a particular variable xi that occurs only once

in a function f (x), while all other variables have multiple variable instances. If all
variables but xi are replaced by their intervals one obtains the interval extended,
univariate function g

i
(xi)

g
i
(xi) := f (x1, . . . xi, . . . xn) xi ∈ xi i = 1 . . . n , (2.83)

for which Eq. 2.82 also applies

g
i
(xi) = g∗

i
(xi) . (2.84)

The image set of a function with multiple instances of a particular variable can
be greatly overestimated by IA due to interval dependency as shown in Eq. 2.78
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and Eq. 2.80. Hence, one can only conclude that f (x) contains its image set

f (x) ⊇ f
∗
(x) . (2.85)

The described fundamental operations are sufficient enough to build interval
extensions for the discussed NLEs in this thesis, as even long mathematical ex-
pressions can be decomposed into these unary and binary operations. Complex
solutions are out of interest of this work’s real-world problems. Therefore the com-
plex space is neglected here, although interval extensions exist, e.g., log x, x < 0,
and can be found in Petković & Petković (1998). The intersection of two boxes x

and y yields the subbox that is contained in both

x∩ y := (xi=1 ∩ y
i=1

, . . . , xi=n ∩ y
i=n

) .

If the two intervals of any variable do not intersect the resulting box is empty. If
box x is a subbox of y all of its variable intervals lie within the intervals of y.

x ⊆ y if xi=1 ⊆ y
i=1

, . . . , xi=n ⊆ y
i=n

An interval extended function is said to be inclusion isotonic, if the following
property holds

x ⊆ y =⇒ f (x) ⊆ f (y) . (2.86)

This is true for every interval extension of a real function applied on a box x that
does not contain any division by zero. Hence, every subbox within x contains at
most the minimum and maximum values of f (x). As already mentioned f (x) can
overestimate the actual image set f

∗
(x) of f (x) in x due to interval dependency.

To achieve a tighter estimation of f
∗
(x), the box x can be divided into subboxes,

for example by splitting up the interval of a variable xi with multiple instances in
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f (x) into nl subintervals xi,l of equal width

xi,l := [xi +
l − 1

nl
· w(xi), xi +

l
nl

· w(xi)] l = 1 . . . nl (2.87)

{x}i,nl := {

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1

...

xi,1

...

xn

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
; . . . ;

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1

...

xi,nl

...

xn

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
} . (2.88)

In case the set {x}i,∞ was theoretically constructed, one would completely remove
the interval dependency for xi as each subinterval then equals a real value in xi.
In consequence, the image set g∗(xi) would be obtained based on the definition
of the interval extended, univariate function g

i
(xi) from Eq. 2.84. Doing this for

all variables in x with multiple instances in f (x), the exact image set f
∗
(x) could

be theoretically achieved. To tackle interval dependency in a function f (x) at
least partly, one can divide the intervals of affected variables into subintervals
and evaluate f (x) by IA in each subbox separately. The union of the resulting
function ranges ∪ f ({x}i,nl) is in the worst case identical to f (x) but will be much
tighter in general. The following condition holds:

f (x) ⊇ ∪ f ({x}i,nl) ⊇ f
∗
(x) . (2.89)

This is the so-called "refinement" of interval extended function evaluations. More
on that topic can be found in Moore et al. (2009, pp. 53-55).

2.6.2 Interval Newton

IA is capable of extending the well-known, real-valued arithmetic Newton-Raphson
method used for numerical iteration of nonlinear equation systems. The advan-
tage over the latter is that its success no longer depends only on the quality of one
chosen initial point. Instead, it requires initial ranges for all unknowns. They span
the initial box that is iteratively reduced to the system’s solution(s). Combinations
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of the Interval Newton with Generalized Bisection (INGB) methods are able to find
all solutions within such an initial box or they can proof that such a box does not
contain any solution (Schnepper and Stadtherr, 1996). The information that an
initial box is empty can be extremely useful for model debugging. If the expected
range is not consistent to the used model, one has to look for structural errors in
the model’s formulation rather than for numerical issues during the iteration.

An interval extension of the real-valued arithmetic Newton-Raphson method was
introduced by Moore in his dissertation and is extensively discussed in Moore
et al. (2009, pp. 105-127). Similar to the real-valued method, a system referring
to problem 2.74 is linearized by computing its first derivatives with respect to the
iteration variables. The derivatives are evaluated in the current box x(k) of the
k-th iteration step and stored in an interval extended Jacobian matrix J(x(k)). In
order to determine the Newton step the vector of the system’s functions f (xc) is
evaluated at any point xc within x(k). A common choice is the midpoint m(x(k)).
Based on these quantities the interval extended Newton step is shown in Eq.
2.91.

xc := m(x(k)) (2.90)

x(k+1) := x(k) ∩
(︂
xc − f (xc) · J −1

(x(k))
)︂

⏞ ⏟⏟ ⏞
Γnwt(f (x),xc,x(k))

. (2.91)

The interval extended version of the function vector is used as this method also
works if some of the system’s parameters are uncertain and can only be repre-
sented by intervals. In this case the method still converges and terminates with
(an) exact solution range(s) within the chosen bounds. Figure 2.5 shows the graph-
ical interpretation of an univariate function in x(0) = [0, 4]. The Jacobian matrix
equals the gradient with respect to x, which is an interval here. The roots of
the linearized system for the minimum and maximum gradient value determine
lower and upper bounds of the next iteration step’s x-interval that is x(k+1). A
gradient value of 0 results in infinite roots for 0 ∈ f (xc) or no root for 0 /∈ f (xc).
Both make the intersection with an initially provided interval referring to Eq. 2.91

inevitable as this is the only way to bound an iteration variable range in this
case (see determination of x(1) in figure 2.5). Nevertheless, the procedure still
converges even in such a singular case.
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Fig. 2.5: First two iteration steps of the interval Newton method to determine the root of
f (x).

The interval Newton method is able to identify empty boxes and boxes with a
unique solution. These properties are for example proven in Neumaier (1990,
pp. 131-152). Following conclusions can be made regarding box x(k):

1) If Γnwt

(︂
f (x,xc,x(k)

)︂
⊂ x(k) =⇒ There is a unique solution x∗ ∈ x(k) with

f (x∗) = 0, the interval Newton method converges to it. All variable bounds
of the reduced box must lie in the interior of x(k).

2) Else if Γnwt

(︂
f (x,xc,x(k)

)︂
∩ x(k) = ∅ =⇒ There is no solution in x(k) that

satisfies f (x) = 0.

3) Else if Γnwt

(︂
f (x),xc,x(k)

)︂
∩x(k) = x(k) =⇒ The box is consistent and x(k)

needs to be bisected into subboxes that are processed independently.

4) Else: x(k+1) := Γnwt

(︂
f (x),xc,x(k)

)︂
∩ x(k), no conclusion can be made at

this point and the test is repeated in the next iteration step.

This so-called “root inclusion test”, should be applied on a box after its Newton
step reduction as long as it has not been discarded by case 2) or been proven to
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contain a unique solution by case 1). In this way, all solutions to an NLE can be
found, e.g., with the method suggest by Schnepper & Stadtherr (1996).

The inverse of the Jacobian matrix in Eq. 2.91 is not computed directly, as this gen-
erally leads to an overestimated box x(k+1) due to interval dependency (Hansen
and Smith, 1967). Instead, other methods exist to solve the underlying linear
system. A detailed overview is given by Hansen & Walster (2003, pp. 83-106). The
interval extended Gauss elimination procedure as introduced by Wilkinson (1961)
works well on nearly degenerate entries in J and f (xc) and can be used to bound
errors or proof regularity of linear systems, i.e., the interval matrix contains no
real-valued matrices that are singular. It is not applied in this work as the initial
variable intervals are generally wide and dependency issues during the procedure
coupled with propagation of round-off errors through the sequential solving pro-
cedure would greatly increase the chance of the method to fail. Another option is
the hull method that traces back to Bliek (1992) and Hansen (1992) and was further
developed by Rohn (1993), Ning & Kearfott (1997), Neumaier (1999), Neumaier
(2000) and Hansen (2000). This method requires a regular Jacobian matrix, which
cannot be guaranteed for, especially within a wide initial box. The third method
is an interval extended way of the Gauss-Seidel procedure that was proposed
by Alefeld & Herzberger (1970) and further extended by Hansen & Sengupta
(1981), which also works on irregular matrices. Hansen’s and Sengupta’s version
involves preconditioning of J(x) and f (xc) that will be referred to at the end of
this section. Without preconditioning the procedure is formulated as follows

x(k+1)
i := x(k)i ∩ x(k)c,i −

f
i
(xc) + ∑i−1

j=1 j
ij
· (x(k+1)

j − x(k+1)
c,j ) + ∑n

j=i+1 j
ij
· (x(k)j − x(k)c,j )

j
ii

(2.92)

for the i-th equation and variable of the equation system. This is performed
successively for all n variables and equations of the square problem, and the
variable intervals are updated along the way. If the Jacobian interval j

ii
contains

zero, the Gauss-Seidel step from Eq. 2.92 would not reduce x(k)i by applying
the division rule from table 2.2. Therefore, Hansen and Sengupta defined this
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operation in a new way.

x/y :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x · [1/y, 1/y] if 0 /∈ y,

[−∞, + ∞] if 0 ∈ x and 0 ∈ y

[x/y, + ∞] if x < 0 and y < y = 0

[−∞, x/y]
⋃︁

[x/y, + ∞] if x < 0 and y < 0 < y

[−∞, x/y] if x < 0 and 0 = y < y

[−∞, x/y] if 0 < x and y < y = 0

[−∞, x/y]
⋃︁

[x/y, + ∞] if 0 < x and y < 0 < y

[x/y, + ∞] if 0 < x and 0 = y < y

∅ if 0 /∈ x and 0 = y

(2.93)

Doing so, one gains the useful information about the infeasible region around
zero, which can never be part of the solution set produced by applying real-valued
arithmetic division on all real elements in x and y. Consequently one excludes
the singular case and the former interval splits up into two disjoint subintervals
related to two subboxes. In order to use this method efficiently, there should
be no structural zeros on the diagonal of the Jacobian matrix, i.e., that the i-th
variable is not part of the i-th equation. This case can be avoided by applying the
DM decomposition before (see section 2.4.2), given that the system of interest is
well-determined.

As an alternative interval extended Newton step, Krawczyk’s method should be
mentioned, which was originally introduced to avoid divisions by zero containing
intervals in Eq. 2.91 (Krawczyk, 1969). Neumaier showed that the preconditioned
interval Newton method combined with the Gauss-Seidel procedure produces an
enclosure, which is at least as tight as the one resulting from Krawczyk’s method
(Neumaier, 1990, p. 138). In consequence, the latter will not be further considered
in this thesis.

Preconditioning is applied to achieve sharper bounds for the intervals resulting
from Eq. 2.92 and to identify boxes with unique or no solution by the root inclu-
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sion test as soon as possible. In fact, if the Jacobian matrix fulfills the condition

min
x∈j

i,i

|x| >
n

∑
j=1,j ̸=i

|j
i,j
| , (2.94)

it is said to be diagonally dominant, in which case the interval Newton method
converges without any bisection required (Kearfott, 1990). A common approach
is to scale Eq. 2.91 by the real-valued matrix, that contains all midpoints of the in-

terval Jacobian matrix m
(︂
J(x(k))

)︂−1
so that the general Newton step becomes

x(k+1) := x(k) ∩

⎛⎜⎜⎜⎝xc − f (xc) · m
(︂
J(x(k))

)︂−1

⏞ ⏟⏟ ⏞
k

·J −1
(x(k)) · m

(︂
J(x)(k)

)︂
⏞ ⏟⏟ ⏞

G
−1

⎞⎟⎟⎟⎠ ,

(2.95)

with the intention that G is more diagonally dominant than J(x(k)). This is true
if J(x(k)) is a regular matrix with rather small interval entries so that it is almost
degenerate. For a degenerate Jacobian matrix, G equals the identity matrix, which
matches condition 2.94. The Gauss-Seidel procedure becomes

x(k+1)
i := x(k)i ∩ x(k)c,i −

ki + ∑i−1
j=1 g

ij
· (x(k+1)

j − x(k+1)
c ) + ∑n

j=i+1 g
ij
· (x(k)j − x(k)c )

g
ii

.

(2.96)

Unfortunately, this preconditioning might worsen the performance for irregular
Jacobian matrices. Kearfott introduced an alternative preconditioning strategy for
the Gauss-Seidel procedure, which „involves optimality conditions expressible as
linear programming problems“(Kearfott, 1990, p. 1) to find the minimal widths of
the variable intervals. The interested reader is referred to Kearfott (1990), where
the performance of multiple preconditioners for the Gauss-Seidel procedure are
compared. Gau and Schnepper have suggested two alternative preconditioners.
The first one is the usage of the real-valued inverse of the current box’s mid points

J(m(x(k)))−1 instead of m
(︂
J(x(k))

)︂−1
in Eq. 2.95, so that the computation of

G
−1 becomes less expensive. The second option is a pivoting strategy to identify
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the optimal row / column combination, i.e., in which equation a variable interval
can be reduced the most or the box can be even discarded if the interval does not
overlap with the original one (Schnepper and Stadtherr, 1996).

2.6.3 Consistency Techniques

In contrast to the interval Newton method, in which the initial variable space is
reduced via a sequence of linear approximations of an NLE at the current iterate,
consistency methods use the initial variable intervals directly and check to which
extent at all, they can contain solutions in the individual equations of Eq. 2.74.
For example, in a scalar function f (x, y) that depends on two variables x, y with
their initial intervals x, y, a subinterval y

s
⊂ y can be removed if

0 /∈ f (x, y
s
) .

In this way, the initial variable space can be successively reduced by an alternation
through all equations and variables. Consistency methods mostly outperform the
interval Newton method during the reduction of large boxes (Hansen and Walster,
2003, p. 205) and can, to some extent, tackle the interval dependency problem.
However, there are cases in which the variable intervals of a box become mutually
consistent, i.e., no further subbox can be removed, although the box is not yet de-
generate according to the desired tolerances. The size of a consistent box depends
on the applied method and the formulation of the equations. In this work, two
consistency methods are investigated, namely: hull and box consistency. Before
both methods are introduced, the differences in their achievable consistencies
shall be discussed.

Lhomme (1993) defined three degrees of consistency in IA from which arc con-
sistency is the highest one measured by the tightness of the variable intervals
followed by hull and box consistency. Table 2.3 shows some 2D/3D examples
with consistent variable intervals respectively. Equations with arc consistent inter-
vals are also hull consistent and hull consistent intervals are box consistent as well.
Arc consistency means no infeasible regions exist within the consistent intervals
as is the case for examples (a), (c) and (e) in table 2.3. Hull consistency allows
these infeasible regions, which can be seen in example (b) as there is no solution
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for {x1 ∈ x | − 2 < x1 < 2}. Hull consistency algorithms decompose an equation
into so-called primitives, which could be for example (b) p1 = x2

1, p2 = 2 · x2 and
p1 = p2. The equation is said to be hull consistent, if all primitives are fulfilled
using the IA operations defined in section 2.6.1. If no infeasible regions occur
in the equation’s related intervals, it is hull and arc consistent, which holds for
example (c): One can easily see that the underlying constraint x1 = x2 needs to be
met so that consistency is reached as soon as x1 = x2. Box consistency algorithms
would stop with already looser bounds for x2 as example (d) shows. They use the
IA operations for all variables but one, which is evaluated by real arithmetic at its
bounds instead. Example (d) would therefore be evaluated at its distinct bounds
of x1 and x2. As both function ranges contain zero

0 ∈ [x1 − 2 · x1, x1 − 2 · x1] + x2 = [−1, 2] (2.97)

0 ∈ x1 − 2 · x1 + [x2, x2] = [−2, 3] , (2.98)

the box is consistent. Due to interval dependency in Eq. 2.98, when x1 is eval-
uated by IA, the bounds of x2 can not be adequately tightened. However, the
underlying constraint x1 = x2 is normally not this easily found and multiple
occurrences of the same variable in single equations are generally processed as
independent variables in hull consistency methods with the same initial interval.
This is exemplarily shown in equation (f), which is the decomposed version of (e)
that a typical hull consistency method works with. Example (f) is already hull
consistent when x1 = x3 = x4 = [−1, 1], i.e., for the decomposition

x3
1 = [−1, 1] ⊆ x2

3 − x4 − x2 = [−4, 2] (2.99)

x2 = [0, 3] ⊆ x2
3 − x4 − x3

1 = [−2, 3] (2.100)

x2
3 = [0, 1] ⊆ x3

1 + x4 + x2 = [−2, 5] (2.101)

x4 = [−1, 1] ⊆ x2
3 − x3

1 − x2 = [−4, 2] . (2.102)

In contrast to the latter, a box consistency method keeps the linkage between the
variable instances and can further reduce x1 to [−1, 0] by equation (e), because
there is no solution for x1 = 1

0 /∈ (1)3 − (1)2 + 1 + [0, 3] = [1, 4] , (2.103)
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Tab. 2.3: Partial consistencies for 2D and 3D examples.

Examples x1/x3/x4 x2 Highest consistency ID

x2
1 − 2 · x2 = 0

[2, 3] [2, 4.5] Arc consistent (a)

[−3, 3] [2, 4.5] Hull consistent (b)

x1 − 2 · x1 + x2 = 0
[0, 1] [0, 1] Arc consistent (c)

[0, 1] [0, 2] Box consistent (d)

x3
1 − x2

1 + x1 + x2 = 0
[−1, 0] [0, 3] Arc consistent (e)

Box consistent

x3
1 − x2

3 + x4 + x2 = 0 [−1, 1] [0, 3] Arc consistent (f)

and any other distinct value x1 > 0. In this case, box consistency is equivalent
to the true arc consistent bounds. In the work of Collavizza et al. (1998) this
rank order of consistencies is proved mathematically. Arc consistent methods do
not exist, as far as we know, because it does not seem very efficient to filter out
all infeasible regions within intervals at once. After all, 2k subboxes would arise
from a box if each of k of its variable intervals previously contained one infeasible
region. Hull and box consistency methods, by definition, allow such infeasibile
regions in intervals and remove one at a time as a box becomes consistent. Given
that, as shown in the previous examples, for some equation formulations hull
consistency yields sharper variable bounds and for others box consistency, both
approaches are used for box reduction.

The hull consistency method applied in this thesis is the HC4revise algorithm
that has been introduced by Benhamou & Puget (1999). Figure 2.6 presents
the decomposed version of an equation by this algorithm where nodes equal
either mathematical operations, variables or constants. Starting from the “leaves",
variable intervals are propagated using the IA-based mathematical operations and
both equation sides are intersected in the so-called forward evaluation step. The
resulting interval at the node of the root is [0, 16]. Starting from this root node,
the equation is now evaluated in reverse order to end at the leaves and reduce
the variable intervals on the way. This is called backward evaluation. Here, the
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= [0, 16]

× [0, 40] − [−100, 16]

2 [2, 2] x [0, 20] z [0, 16] ˆ [0, 100]

y [−10, 10] 2 [2, 2]

(a) Forward evaluation.

=[0, 16]

×[0, 16] −[0, 16]

2[2, 2] x[0, 8] z[0, 16] ˆ[0, 16]

y[−4, 4] 2[2, 2]

(b) Backward evaluation.

Fig. 2.6: Working principle of HC4revise applied on equation: 2 · x = z − y2 within the
bounds: x = [0, 20], y = [−10, 10] and z = [0, 16]. Example is taken from
Benhamou & Puget (1999).

intervals x = [0, 20] and y = [−10, 10] can be reduced to [0, 8] and [−4, 4], while z
remains unchanged. The equation is hull consistent in the resulting box. In order
to solve an NLE of more than one equation, it is cycled through all equations.
All reduced intervals of one variable are intersected along the way, because the
resulting domain needs to be feasible within every equation. One pass through
all equations is termed one reduction step and denoted for the hull consistency
method by the use of the contractor Γhc as

x(k+1) := x(k) ∩ Γhc

(︂
f (x),x(k)

)︂
. (2.104)

The algorithm stops when all equations are hull consistent in the remaining box.
To sum up, hull consistency methods have the advantage of not requiring any
derivatives. However, a disadvantage is that especially in equations with several
instances of a variable, intervals cannot be reduced well as the examples from
table 2.3 have shown. Box-consistency methods seem to be better suited for this
purpose. Box consistency methods extend a real-valued function of the type
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f (x) = 0, x ∈ Rn (2.105)

to its IA representation by replacing all real-valued variables by their intervals
except one

g(xi) = f (x1, . . . ,xi, . . . ,xn) = 0 . (2.106)

The interval extended, univariate function g(xi) is then iterated within the current
interval xi to remove parts in g(xi) that do not fulfill Eq. 2.106. Commonly, the
interval Newton operator from section 2.6.2 is applied on the edge intervals
y = [xi, c] and z = [d, xi] with c,d ∈ xi to linearly approximate the lowest and
highest root in xi. An implementation can be found in Mc-Allester et al. (1995)
where the mid points of y and z are used as point of expansion for the Newton
step

x(k+1)
i := x(k)i ∩

[︃
Γnwt

(︂
g(xi), m(y),y

)︂
, Γnwt

(︂
g(xi), m(z),z

)︂]︃
. (2.107)

The choice of c and d directly influences the widths of y and z and therefore the

widths of the gradient intervals ∂g
∂xi

(y) and ∂g
∂xi

(z). A heuristic is given in Hansen
& Walster (2003, pp. 201-203) on how to choose c and d to avoid slow progress for
too small gradient intervals or no progress for too large ones with approximated
roots outside of xi. Similar to hull consistency methods, box consistency methods
cycle through all equations and variable domains until box consistency is achieved.
Analogously, one pass through all equations is expressed by the box consistency
operator Γbc

x(k+1) := x(k) ∩ Γbc

(︂
f (x),x(k)

)︂
. (2.108)

As already mentioned box consistency methods often find tighter bounds than
hull consistency and interval Newton operators for a variable that occurs multiple
times in a function due to the avoidance of interval dependency through its real-
value evaluation. Nevertheless, it is also said to be the computationally most
expensive method out of the three (Hansen and Walster, 2003, p. 227). The
algorithm HC4 suggested by Benhamou & Puget (1999) combines hull and box
consistency methods. It uses the aforementioned HC4revise algorithm for single
and a box consistency method for multiple variable occurrences in a currently
processed equation. Like the Interval Newton method, a “root inclusion test" can
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also be performed for consistency methods (Hansen and Walster, 2003, p. 226),
i.e., they can proof uniqueness or nonexistence of solution(s) in boxes.

2.6.4 Splitting Techniques

Whenever a problem becomes consistent without all variable intervals being de-
generate the current box needs to be split into subboxes that are then processed
independently. Consistency methods will reduce any initial box for the following
2D-example

x2
1 + x2

2 = 1 (2.109)

x1 − x2 = 0 (2.110)

to the consistent intervals x1 = x2 = [−1, 1]. Only by splitting one interval, the
algorithm proceeds to find the two solutions

{x∗} = {
(︂
−
√

0.5, −
√

0.5
)︂

;
(︂√

0.5,
√

0.5
)︂
} .

An interval may be bisected, but theoretically an interval can also be split at any
other interior point. The general bisection step of a box is described by

{x(k+1)} := {

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x(k)i=1

...

[x(k)i=s, m(x(k)i=s)]

...

x(k)i=n

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
;

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x(k)i=1

...

[m(x(k)i=s), x(k)i=s]

...

x(k)i=n

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
}

⏞ ⏟⏟ ⏞
ΓS(f (x),x(k))

, (2.111)

where xi=s denotes the variable interval that is chosen to be split. Several heuris-
tics exist. Table 2.4 presents the most common ones among them. To determine
the largest derivative one requires a merit function obj that is minimized. A valid
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2 .6 Interval Arithmetic

choice could be the sum of the squared function residuals

obj =
n

∑
j=1

f j(x)
2 . (2.112)

Uniform subdivision is not practical as it produces too many boxes, especially
in large NLEs. Cyclic bisection may suffer of unsatisfying progress in the box
reduction according to Asaithambi et al. (1982) and Ratschek & Rokne (1988).
A good summary on this topic is given in Ratschek & Rokne (2009). Whenever
a variable interval contains an infeasible region, a so-called gap, the Hansen-
Sengupta operator from Eq. 2.93 could theoretically split it into two feasible
subintervals. If the initial box contains many of these gaps such a reduction would
cause a combinatorial explosion as k gaps produce 2k subboxes that all need to
be processed (Lhomme, 1993). In consequence, contractors usually ignore the gap
and only mark intervals with a gap until the overall problem becomes consistent.
Subsequently, only one of the intervals with a gap is split to produce two subboxes,
a common choice is to select the largest gap (Hansen and Greenberg, 1983). Other
contracting methods are then used on both subboxes until consistency is reached
once again. Usually, some subboxes are proven to be empty during the procedure
so that the number of them remains reasonable.

55



2 Theoretical Background

Tab. 2.4: Methods for choosing which variable’s interval to split of an n-dimensional box.

Method Selected variable interval(s) Number
of boxes

Source

Uniform
subdivision

all n intervals 2n (Moore et al.,
2009, pp. 55-
57)

Largest
width

maxi=1...n w(xi) 2 (Hansen and
Greenberg,
1983)

Cyclic bi-
section

cycling all n intervals 2 (Moore, 1979,
pp. 49-50)

Largest
derivative

maxi=1...n w
(︂

∂ obj
∂xi

(x) · (xi − m(xi))
)︂

2 (Ratz and
Csendes, 1995)

2.6.5 Cutting

An alternative way to splitting is the usage of cutting that can be seen as a stronger
consistency than the aforementioned hull consistency (Lhomme, 1993). Instead
of removing infeasible gaps in the interior of a variable interval, one tries to
cut off infeasible subintervals at its lower and/or upper bound by proving the
related subbox to be empty for the given problem. Figure 2.7 shows this principle.
Through cutting one can for example further reduce the hull consistent bounds
x1 = x2 = [0, 1] of the equation system given by Eq. 2.109 and Eq. 2.110 without
generating new subboxes by splitting. Applying a hull consistency method on
Eq. 2.109 in the subinterval xu

1 = [0.8, 1] of x1 results in x2 = [0, 0.6]. However,
this contradicts Eq. 2.110, so that the subbox is empty. Accordingly, this can
be proven for the subinterval xl

1 = [0, 0.6] and as the problem is symmetrical,
both intervals x1 and x2 can be reduced to [0.6, 0.8]. In this way, the risk of
exponential growth of the computational effort caused by too many subboxes can
be partially avoided. Nevertheless, cutting cannot completely replace splitting as
the intervals can also become consistent without being degenerate. The reason is
again interval dependency, which also occurs in the considered example, i.e., for
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Solution 2

Solution 1

Cutting

Fig. 2.7: Sketch of box cutting. The dark subboxes at the edges can be removed if they
are proven to be empty.

a certain x1 ∈ [0.6, 0.8] x2 has different values to solve Eq. 2.109 and Eq. 2.110 in
real-valued arithmetic.
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3 Novel Hybrid Approach

The proposed hybrid approach is an automatic initialization and solution strategy
to efficiently solve NLEs of the form f (x) = 0 in case no converging initial point
or tight bounds are at hand. The user must provide an initial box x(0). The hybrid
approach then follows the interval and real-valued arithmetic containing steps
shown in figure 3.1 from the perspective of one box.

1) Contraction

4) Cutting3) Root-finding

5) Splitting

2 a) Termination

2 b) Termination

2 c) Termination

Solved box returned

Yes

Sol-
ved
?

No No

Yes

Con-
sis-
tent
?

Empty box discarded

Real solution stored

Con-
sis-
tent
?

Sol-
ved
?
Yes Yes

No No

No
Sol-
ved
?

Yes

Fig. 3.1: Five steps of the hybrid approach: IA steps (yellow shaded), termination steps
(red shaded), real arithmetic root-finding step (green shaded).
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Sections 3.1 to 3.5 explain these steps in detail. It is essential that as soon as
a box is solved or identified as being empty, it is marked accordingly and not
reduced any further. A box is labeled as "solved" when it is degenerate, i.e., the
width of each interval falls below a minimum value determined by a relative
and absolute tolerance (explained in section 3.2). If a solution is found in the
root-finding step, it is immediately reported to the user in a text file. If the key
"termination" is set to one_solution in the solver’s dictionary, the algorithm
acts as a local solver and terminates the hybrid approach when a real-valued
solution, i.e., a single root, is found. Otherwise, the solution is stored and used
in the unique solution test, i.e., if a box satisfies the condition and the solution
lies inside the box, it does not need to be reduced further and is also considered
solved. A reduction step involves that all currently unsolved boxes are processed
once by the hybrid approach. How such a step looks like for an individual box is
explained in section 3.6 and how it does for multiple boxes is topic of section 3.7.
Subsequently, section 3.8 discusses parallelized processes in the algorithm, and
section 3.9 presents briefly the implementation of the hybrid approach in Python.
Section 3.10 closes this chapter with the definition of some analysis parameters to
evaluate the performance of the hybrid approach in the upcoming chapters.

3.1 Contraction

Three different methods can be used for the contraction step in the hybrid ap-
proach, namely

– The Interval Newton (see section 2.6.2)

– The hull consistency method HC4revise from Benhamou & Puget (1999) (see
section 2.6.3)

– A new box consistency method, called Bnormal (own development, ex-
plained in this section)

The Interval Newton has been implemented in form of the Gauss-Seidel step
referring to Eq. 2.92. It is iterated variable-wise, meaning that the variables are
successively reduced and each newly reduced variable interval is subsequently
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used in the next variable’s reduction step. Gaps during the reduction are ignored
and only the outer bounds of the interval are used. Nevertheless, such an interval
is marked as discontinuous and can be used for splitting later. Except for the
preconditioner pivotAll, the i-th variable is only reduced in the i-th equation.
The DM decomposition (see section 2.4.2) ensures that there is no structural zero
on the diagonal of the Jacobian matrix, i.e., the i-th equation depends always
on the i-th variable for a well-posed equation system. The general form of the
Newton contractor applied on the box x(k) in the k-th reduction step is

x(k+1) := Γnwt

(︂
f (x),xc,x(k)

)︂
, (3.1)

with the point of expansion chosen to be the intervals mid point

xc := m(x) . (3.2)

The Jacobian matrix, or to be more precise, the Gauss-Seidel step can be precon-
ditioned in a variety of ways. The Jacobian matrix and the vector of the functions’
residuals are multiplied by a real-valued, preconditioning matrix P to improve
the condition of the resulting interval matrix G, i.e., having interval entries of
similar orders of magnitude.

G := J ·P P ∈ Rn × Rn (3.3)

k(xc) := P · f (xc) (3.4)

P :=

⎡⎢⎢⎢⎢⎢⎣
p1,1 . . . p1,n

...
. . .

...

pm,1 . . . pm,n

⎤⎥⎥⎥⎥⎥⎦ (3.5)

Entries of G and k are then used in the preconditioned Gauss-Seidel step referring
to Eq. 2.96. The option used in the scope of this thesis will be the preconditioning
strategy pivotAll, where each element pj,i of P is defined by

pj,i :=

⎧⎨⎩0 if j
j,i
= 0

1 if j
j,i
̸= 0

, (3.6)
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with j
j,i

being the corresponding entry in the interval Jacobian matrix. Each vari-
able interval is thus reduced in each equation depending on this variable. Three
other preconditioning options have been implemented, but could not achieve any
increase in efficiency compared to pivotAll in the test runs of this work. For
the sake of completeness, they are presented in section 6.8.

Another contraction method that can be used in combination with Interval New-
ton or individually is HC4revise. The method reduces the variable intervals
equation-wise, i.e., all variable intervals of one equation are led to consistency. Af-
terwards, the method continues with the next equation and the reduced variable
intervals are directly employed. One contraction step involves one run through
all equations. Note that the overall problem does not have to be consistent after a
single contraction step as the newly reduced intervals might be inconsistent in the
first equations. According to the definition of hull consistency, gaps are ignored
and there is no return value of the external routine that allows for recognizing
them. The python package that contains HC4revise is called pyibex developed by
Desrochers (2015) and used in the novel hybrid approach. Both, Interval Newton
and HC4revise can face issues to reduce intervals of variables that occur multiple
times in an equation. Mathematical models of chemical engineering processes
frequently contain such type of equations for example in reaction kinetics, ther-
modynamic properties, fugacity or activity coefficient calculations. If variables
can not be further reduced by contraction, the current box will be split, and the
iteration is quickly dominated by extensive splitting, becoming almost as slow
as a classical branch and bound algorithm. One aim of this thesis is to develop
a method that works well on this type of equations with a priority given to the
reduction efficiency rather than the computational time of one contraction step,
because extensive splitting might slow down the algorithm even more than a
slightly more expensive but efficient contraction step.

Before the newly developed method Bnormal is introduced, a small example
typical for chemical engineering problems shall point out this issue. The mole
fraction y of a binary mixture’s low-boiling component in the vapor phase that is
in phase equilibrium with a liquid phase can be calculated by

y =
α · z

1 + (α − 1) · z
, (3.7)
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where z denotes the low-boiler’s mole fraction in the liquid phase, and the relative
volatility α is assumed to be constant. For the variables y, z, α the following
intervals are known y = [0.1, 0.2], z = [0, 1] and α = [1, 2]. How much can
Interval Newton and HC4revise reduce these intervals? First, the Interval Newton
is examined. Therefore, Eq.3.7 is brought into the zero-form

f (y,z,α) = y − α · z
1 + (α − 1) · z

= 0 . (3.8)

No preconditioning shall be used and xc equals the variable intervals’ mid points
so that

xc =

⎛⎜⎜⎜⎜⎜⎝
0.15

0.5

1.5

⎞⎟⎟⎟⎟⎟⎠
f (xc) = −0.45

∂ f
∂y

= j1,1 = 1
∂ f
∂z

= j1,2 = − α

(1 + (α − 1) · z)2
∂ f
∂α

= j1,3 =
z2 − z

(1 + (α − 1) · z)2 .

Now, the Gauss-Seidel step

x(k+1)
i := x(k)i ∩ x(k)c,i −

f
i
(xc) + ∑i−1

j=1 j
ij
· (x(k+1)

j − x(k+1)
c,j ) + ∑n

j=i+1 j
ij
· (x(k)j − x(k)c,j )

j
ii

is exemplary applied for the first contraction step of z

z(1) = [0, 1] ∩ 0.5 − −0.45 + 1 · ([0.1, 0.2]− 0.15) + [−1, 1] · ([1, 2]− 1.5)
[−2, − 0.25]

(3.9)

z(1) = [0, 1] ∩ 0.5 − [−0.4, 4] = [0, 0.9] . (3.10)

The other intervals y and α can not be reduced at all. In fact, without bisection
none of the tested contraction methods are able to reduce y and α any further
so that the analysis focuses on the reduction of z. After the first Newton step
z is reduced to [0, 0.9], and the method needs in total 16 steps to finish with a
consistent interval of z(15) = [0, 0.54]. Why z(16) can not be further tightened?
Some of the intervals in Eq. 3.9 result from the interval extended versions of the
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variables’ derivatives. Evaluated with the usage of natural IA (see section 2.6.1),
they greatly overestimate the actual range of validity due to interval dependency
as can be seen in Eq. 3.11 and Eq. 3.12.

∂ f/∂z =
α

(1 + (α − 1) · z)2 (3.11)

∂ f/∂z =
α

(1 + (α − 1) · z)2 (3.12)

To determine the maximum value of this derivative by IA, the upper bound of
α is used in the numerator of Eq. 3.11 and its lower bound in the denominator.
In real arithmetic both instances of the same variable must have the identical
value. Hence, in real arithmetic α and α are out of scope. Interval dependency
also occurs in the determination of ∂ f/∂α. In consequence, these coarse intervals
result in a wide interval extended Gauss-Seidel step taken from xc. Regarding the
current example, the width of the Gauss-Seidel step in the 16th contraction step
is at least as wide as the width of the 15th contraction step and no tightening can
be obtained.

Next, HC4revise is applied on the given problem. Figure 3.2 shows the first
contraction step, which covers forward and backward evaluation. The reduced
interval z is [0.05, 0.4] and therefore already essentially smaller than the consistent
interval resulting from Interval Newton. The method reaches consistency after
the sixth contraction step at z(6) = [0.05, 0.25]. This method works better than
the Interval Newton, because no IA-based linear approximation is used anymore.
Nevertheless, one can see in the first contraction step that in backward evalua-
tion the intervals of both z instances differ as shown in figure 3.2. The one in
the numerator changes to [0.05, 0.4], while the one in the denominator can not
be reduced. Hence, before the second contraction step the latter is updated to
[0.05, 0.4]. Nevertheless, its reduction potential is not directly used in the first
contraction step and makes more reductions steps inevitable. A problem of both
methods is the missing linkage between multiple instances of the same variable.
For this reason, a method was developed that attempts to preserve precisely this
linkage and thus reduce the original box within a contraction step further com-
pared to Interval Newton and HC4revise. This self-developed method is called
Bnormal and belongs to the group of box consistency methods, explained in sec-
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= [0.1, 0.2]

÷ [0, 2] y [0.1, 0.2]

× [0, 2] + [1, 2]

α [1, 2] z [0, 1] 1 [1, 1] × [0, 1]

z [0, 1]− [0, 1]

α [1, 2] 1 [1, 1]

(a) Forward evaluation.

= [0.1, 0.2]

÷ [0.1, 0.2] y [0.1, 0.2]

× [0.1, 0.4] + [1, 2]

α [1, 2] z [0.05, 0.4] 1 [1, 1] × [0, 1]

z [0, 1]− [0, 1]

α [1, 2] 1 [1, 1]

(b) Backward evaluation.

Fig. 3.2: HC4revise applied on the equation y = α·z
1+(α−1)·z in the box z × y × α = [0, 1]×

[0.1, 0.2]× [1, 2].
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tion 2.6.3. Let us focus on the reduction of z again. Eq. 3.7 can be divided into a
z-dependent part g(z) and a z-independent part b

y⏞⏟⏟⏞
b

=
α · z

1 + (α − 1) · z⏞ ⏟⏟ ⏞
g(z)

. (3.13)

If b and g(z) are evaluated by IA in x, three cases can occur:

b

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⊂ g(z) z can be reduced until b = g(z)

⊇ g(z) No reduction of z is possible

∩ g(z) = ∅ There is no solution in x .

(3.14)

In case two and three the box can not be further reduced, because g(z) is tighter
or as tight as b (case two) or g(z) and b do not intersect at all (case three) so
that x has no solution and can be discarded. However, case one provides the
opportunity to tighten z and g(z) further until the condition b = g(z) is met. If
case one holds and g(z) is a continuously differentiable, monotonously increasing
or decreasing function in z, then there is exactly one convex subset in z where the
condition b = g(z) is fulfilled. In the current example, case one is met and g(z) is
both differentiable and monotonously increasing in z, since

∂g/∂z(x) =
α

(1 + (α − 1) · z)2 = [0.25, 2] ≥ 0 . (3.15)

If all other variables in g(z) are subsequently replaced by their intervals and only
z is evaluated by real arithmetic, the maximum function value of this interval
extended, univariate function g(z) can be found at z, while its minimum value
lies at z. Figure 3.3 shows the chart of g(z) in z. Hence, the upper bound of z
can be decreased until the condition b = g(z) is met (highlighted by the upper
dot in figure 3.3) and the lower bound of z can be increased until b = g(z) holds
(highlighted by the lower dot in figure 3.3). This is the basic idea of Bnormal.
Lower and upper bound are iteratively increased and decreased, respectively, by
a univariate version of the Interval Newton method as described in section 2.6.3
until the conditions are met. The interval extended Newton steps of the upper
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Fig. 3.3: Reduction of continuously differentiable, monotonously increasing, interval ex-
tended function g(z) = [1, 2]·z

1+([1, 2]−1)·z in the initial range z(0) = [0, 1] by Bnormal.

bound iteration zub and the lower bound iteration zlb are

z(0)ub := z (3.16)

z(k+1)
ub := m(z(k)ub )−

g(m(z(k)ub ))− b
∂g/∂z(z(k)ub )

∩ z(k)ub (3.17)

z(0)lb := z (3.18)

z(k+1)
lb := m(z(k)lb )− g(m(z(k)lb ))− b

∂g/∂z(z(k)lb )
∩ z(k)lb . (3.19)

Both iterations are independent of one another and start from the initial interval
z(0). They terminate when both z(k)ub and z(k)lb are degenerate according to the
user-specified tolerance. Then the reduced interval z(k+1) is

z(k+1) := [z(k)lb , z(k)ub ] . (3.20)
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Tab. 3.1: Contraction steps k and CPU time required to reduce z = [0, 1] until consistency
is achieved in the equation 0 = y − α·z

1+(α−1)·z with y = [0.1, 0.2] and α = [1, 2].
Tested on a Notebook Intel i7 Processor (8x 1.8 GHz, 8. Generation) and 16 GB
RAM with a Linux operating system.

Interval Newton HC4revise Bnormal

k z CPU (ms) k z CPU (ms) k z CPU (ms)

1 [0, 0.81] 0.66 1 [0.05, 0.40] 0.27 1 [0.05, 0.25] 3.44

2 [0, 0.73] 1.17 2 [0.05, 0.28] 0.53 2 [0.05, 0.25] 6.73
...

...

16 [0, 0.54] 8.90 6 [0.05, 0.25] 1.56

For the current example z and z can even be derived analytically

b =

g(z)⏟ ⏞⏞ ⏟
α · z

1 + (α − 1) · z
(3.21)

0.2 =
1 · z

1 + (2 − 1) · z
(3.22)

z =
0.2

1 − 0.2
= 0.25 (3.23)

b =

g(z)⏟ ⏞⏞ ⏟
α · z

1 + (α − 1) · z
(3.24)

0.1 =
2 · z

1 + (1 − 1) · z
(3.25)

z = 0.05 . (3.26)

Bnormal needs only one contraction step to reduce z to [0.05, 0.25], in contrast to
the other two methods. A second contraction step is necessary to ensure consis-
tence (like the last steps of the other contraction methods). Table 3.1 summarizes
the results of all three contraction methods applied on this example. It can be
seen that although HC4revise requires more contraction steps, overall less time is
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needed to obtain the identical consitent intervals as Bnormal. Hence, a contraction
step using Bnormal is much more expensive than one using HC4revise and even
Interval Newton. However, it is not always the case that the consistency methods
become consistent at the same intervals, as has already been illustrated by the
2D/3D examples in section 2.6.3. The extra effort may therefore be justified if it
allows the box to be reduced even further. As a consequence, combinations of the
contraction methods will also be examined later in this work.

Concerning Bnormal, we have not yet discussed the cases where g(z) in z is con-
tinuously differentiable and monotone decreasing, non-smooth or non-monotone.
For the reduction of z in continuously differentiable, monotone decreasing func-
tions g(z), the following two conditions are true: b = g(z) and b = g(z). Alterna-
tively, they can be reformulated as monotonously increasing functions g∗(z):

−b =

g∗(z)⏟ ⏞⏞ ⏟
−g(z) . (3.27)

For non-smooth and non-monotone functions a filter algorithm has been devel-
oped. Firstly, regions, where g(z) is non-smooth, are filtered out of the domain by
a bisecting algorithm that splits up z into subintervals and keeps – for the moment
– only those with finite derivative intervals ∂g/∂z. Secondly, the smooth subinter-
vals are bisectioned analogously until only monotone subintervals are left. This is
done by evaluating ∂g/∂z in the current subinterval, if the derivative values are all
greater or equal to zero it is a monotonously increasing function and if it is lower
or equal to zero it is a monotone decreasing function. Constant functions with
a derivative value of zero are counted to the monotonously increasing functions.
Finally, the criteria for the already described reduction procedure are fulfilled and
each subinterval is individually reduced. Multiple subintervals can result from
the filtering process that do not share any bound with another. Some of them
might be removed, because there is no intersection of g(z) with b in them. Others
might encompass an infeasible gap. The number of boxes is limited by the hyper-
parameter "maxBoxNo". If there is enough capacity, an infeasible gap is removed
from the original interval and the set of both subintervals is returned, resulting in
two subboxes. Otherwise, Bnormal returns only the hull consistent box similar to
Interval Newton and HC4revise. Nevertheless, such intervals are labeled for later
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use in splitting. Intervals, where g(z) is continuous but non-monotone can also
occur for example in

g(z) = [−1, 1] · z . (3.28)

They are sorted out by the filtering algorithm and separately tightened. The
intervals are simply divided into a certain number of subintervals that the user
has to set by the hyperparameter "resolution". The function g(z) is then evaluated
in each subinterval and checked for an intersection with b. For efficiency, it is
started from the lowest subinterval in increasing order and the method stops when
a subinterval zlb is found where g(zlb) ∩ b ̸= ∅. The lowest bound of zlb is kept.
Next, it checks the highest subinterval and moves downwards until it finds the first
subinterval zub where g(zub)∩ b ̸= ∅. Intervals between zlb and zub are not further
checked to save time and the interval [zlb, zub] is returned. The implementation
and further details on the method Bnormal have been published in detail in
Bublitz et al. (2021b). The most relevant change to the current version is that
the univariate Interval Newton method replaces the former bisecting algorithm
for the reduction of intervals in continuously differentiable monotone functions
because of computational efficiency. The algorithm is part of the Appendix figure
A.3.

Let us turn once again to the Vapor Liquid Equilibrium (VLE) example of Eq. 3.7.
In Bnormal, the variable z has been evaluated by real-valued arithmetic in the
interval extended function g(z), which preserved the fact that both of its instances
must have the same value in g(z). Hence, only one contraction step was necessary
to achieve the exact image set of g(z) so that

b = g(z(1)) = g∗(z(1)) . (3.29)

Further reduction of z(1) through g(z) without splitting is impossible, unless b or
g(z) are modified in some way. Going back to Eq. 3.21 and 3.24 one can see that α

is also affected by interval dependency. In section 2.6.1 an effective method called
refinement has been introduced, which can further tighten the range of interval
extended function evaluations, when interval dependency is present. For this
purpose, a method termed tighten_bounds has been implemented as part of the
hybrid approach that makes use of these refinements. Whenever a function needs
to be evaluated by IA, tighten_bounds checks variable by variable, how many
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Fig. 3.4: The algorithm of tighten_bounds.

occurrences a variable has and whether its interval is not degenerate yet. Only
if a variable has multiple occurrences and is not solved, refinements are useful.
When such a variable has been found its interval is subdivided into a certain
number of subintervals specified again by the hyperparameter "resolution". The
higher the "resolution" is set the closer comes the function value range from the
interval extended function to the actual image set of the function. Figure 3.4
shows the algorithm of tighten_bounds. The evaluation of b and g(z) can be done
by tighten_bounds. The interval b is not affected since b only consists of y, which
has only one occurrence. However, g(z) can be tightened. Is the "resolution"
parameter set to 5, z can be further narrowed to z(1) = [0.052, 0.208] after the
first contraction step, which is proofed to be consistent in the second. Table 3.2
presents the results of this refinement. For completion this refinement can even
be solved analytically. Eq. 3.21 and 3.24 are reformulated and evaluated for each
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Tab. 3.2: Resulting subintervals zl from refinement of α with five subintervals, analytically
solved by Eq. 3.30 and 3.31.

l αl zl zl

1 [1.0, 1.2] 0.083 0.208

2 [1.2, 1.4] 0.072 0.179

3 [1.4, 1.6] 0.066 0.156

4 [1.6, 1.8] 0.057 0.139

5 [1.8, 2.0] 0.052 0.125

subinterval αl

zl =
b

αl − b · (αl − 1.0)
l = 1 . . . 5 (3.30)

zl =
b

αl − b · (αl − 1.0)
(3.31)

The reduced interval z equals

z = [min({zl=1, . . . , zl=5}), max({zl=1, . . . , zl=5})] = [0.052, 0.208] , (3.32)

which agrees with the algorithm’s results. However, this additional work re-
sults in a CPU time of 16.25 ms that the algorithm (Bnormal combined with
tighten_bounds) needs to process the two contraction steps. The test was ab-
solved on the same computer as the ones from the pure contraction methods
shown in table 3.1. On the one hand, Bnormal is significantly slower in case
tighten_bounds is applied, on the other hand some extensive box splitting might
be prevented in later stages of the hybrid approach.

A full reduction step consists of multiple contraction steps from either one contrac-
tion method on its own or a combination of all three methods HC4revise, Interval
Newton and Bnormal. The reduction step is finished when a box is either solved,
proved to be empty, or consistent. The algorithm used for the contraction that
integrates the three methods above, is called contract_box and shown in figure 3.5.
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As input arguments it takes one box x, the functions f and variables x related
to the problem f (x) = 0, a dictionary options with iteration specific data and
two parameters p and l. Parameter p is a tuple that contains information about
the so-called parent of the current box. The parent box of an unsplit box is the
initial box. Whenever a box is split the reduction step before the split and its
index regarding the current box order are stored so that it can always be reloaded
in upcoming reduction steps. Former boxes will be needed for a certain splitting
technique explained in section 3.5. The parameter l is the index of the box itself in
the current order of boxes. There are further properties of a box, which describe
its current state that are in contract_box abbreviated by

– s := boolean, true if box is solved

– d := boolean, true if box is discontinuous

– c := boolean, true if box is consistent to contraction

– uniquenwt := boolean, true if box has unique solution based on the interval
newton contractor

– uniquebc := boolean, true if box has unique solution based on the box
consistency contractor .

A solved box is not further processed in any of the hybrid approach’s reduction
steps. A discontinuous box contains at least one gap that can be treated by
splitting later. A consistent but not solved box can not be further reduced by
contraction and it is continued with the next steps of the hybrid approach. The
two parameters uniquenwt and uniquebc are necessary for the unique solution test
based on Interval Newton or Bnormal. This test was already introduced in section
2.6.2. Its usage here as a termination criterion will be explained in section 3.2.
Initially, s, d and c are set to false and turned to true if a box is solved, proved
to contain a gap or can not be further reduced by contraction, respectively.

For clarity and comprehensibility the methods get_allowed_boxes, consistent,
root_inclusion, solved and unique_solution_test, which contract_box invokes in-
ternally, are only briefly explained. Their comprehensive algorithms are part
of Appendix A. As test results of the thesis of Ebert (2021, pp. 34-39) showed,
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HC4revise seems to be the fastest out of the three methods regarding CPU time
per reduction step. This agrees with the already shown measurements from table
3.1, although it does not state anything about the reduction efficiency. However,
when HC4revise is selected, contract_box starts with it and cycles through all
equations until either hull consistency of the complete problem is reached, the
box is solved, or proven to be empty. Empty and solved boxes are directly re-
turned from contract_box, while a hull consistent box y is further processed by
the other contractors, when they are selected. If this is the case, the algorithm iter-
ates through all variables, for each one contraction step by Interval Newton and
one by Bnormal is performed. Solved intervals according to the selected relative
and absolute tolerances are skipped and if an interval is empty, the box has no
solution and contract_box returns an empty set. Interval Newton also contains
the described preconditioning and Bnormal the additional option tighten_bounds.
They consider gaps so that multiple subintervals can be returned in the set {zvi

}
and {a}vi of the current variable vi. To keep the number of subintervals low,
root_inclusion applied on the whole system in the respective subboxes follows
the contraction step. In case {zvi

} contains a single interval, the processed box y

is directly updated to improve the reduction efficiency of the subsequent variable
intervals. Otherwise the hull that encompasses all subintervals is determined and
the related interval is updated to y

vi
. After all variables have been contracted

in one cycle there are nvar sets {zvi
} containing all their reduced subintervals.

Through the cross product of all these sets a set of reduced boxes {z} is obtained.
If each {zvi

} consists of only one reduced interval there will be only one reduced
box in {z}. This one is then applicable for a check of being solved by the two
methods solved and unique_solution_test.

A solved box is returned by contract_box, while an unsolved box and multiple
boxes in {z} are checked for consistency next. In consistent the reduced box y

that corresponds to the hull of all current subboxes is compared to the initial box
x. If all intervals remain constant regarding the selected relative and absolute
tolerances, y is termed consistent, c is set to true and the reduction step is almost
done. In the present implementation {z} is not directly computed, because if
many discontinuities are present in x, this can cause a high number of boxes. In
the complete procedure the number of boxes is always restricted by the parameter
"maxBoxNo" that is part of the dictionary options. The method get_allowed_boxes
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finally checks how many subboxes can be built without exceeding "maxBoxNo".
Hence, the gap of some intervals might be considered and they split into their
feasible parts until "maxBoxNo" is reached, while others are not split and set to
their intervals from y. If gaps can not be used for interval reduction, the boxes
from {z} are labeled as discontinuous and may be split later, whenever capacity
becomes available. When the allowed {z} has been generated, it is returned
together with a set of the boxes’ properties. Consistent boxes will be tested by the
root-finding algorithm.
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3 Novel Hybrid Approach

Fig. 3.5: The algorithm of contract_box.76



3 .2 Termination

3.2 Termination

The contraction of a box continues until either consistency is achieved, the maxi-
mum number of contraction steps selected by the hyperparameter "redStepMax"
is reached, it has been proven that the box contains a unique solution and this
solution has already been determined numerically, or the box has been narrowed
so much that all variable intervals are degenerate according to the set tolerances,
i.e., it contains a solution and is sufficiently close to it. Recommendations for
the settings of the algorithm’s hyperparameters for a new system will be given
in Appendix A.3.1. Numerical iteration methods mostly use relative tolerances
εRel as stopping criteria, because they consider the iteration variables’ order of
magnitude. Using an absolute tolerance εAbs instead bears the risk of reducing
variables with a low order of magnitude to a lesser degree as their value may be
lower than the absolute tolerance value. Hansen & Walster (2003, pp. 176-177)
show that a relative stopping criterion, such as

εRel ≥ w(x)
|x| , (3.33)

should never be applied as a sole criterion for IA since for a typical choice of
εRel ≪ 1, the constraint 3.33 will never be met by a variable interval x that contains
zero. For such an interval the condition

1 ≤ w(x)
|x| ≤ 2 (3.34)

always holds. Hence, this hybrid approach employs the formula implemented in
the method numpy.isclose() of the python package numpy (Harris et al., 2020):

(εAbs + εRel · |x|) ≥ w(x) . (3.35)

Condition 3.35 needs to be met by all variable intervals x of a box x before it
is tagged as "degenerate". Nevertheless, a degenerate interval x is still further
tightened by decreasing the values of εAbs and εRel for this specific variable i by
an order of magnitude (εAbs

i = 0.1 · εAbs
i , εRel

i = 0.1 · εRel
i ) whenever it reaches

degeneration because the reduction of other variable intervals might strongly
depend on it and would never fulfill condition 3.35 otherwise. Let us look at an
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example
a = 107 · b , (3.36)

with b = [1.9, 2.0]× 10−6. Assuming absolute and relative tolerances of εAbs =

εRel = 10−6, the interval b is already degenerate. However, in case variable a only
occurs in Eq. 3.36, it can not be reduced any further than a = 107 · b = [1.9, 2]
and would thus never fulfill the required tolerances. Instead, the algorithm would
start to split a in many subintervals associated to many subboxes until the width
of each subinterval satisfies condition 3.35. However, successively decreasing εRel

and εAbs for degenerate intervals such as b prevents this exhaustive splitting. To
ensure that the successive reduction of the tolerance values does not unnecessarily
slow down the methodology though, it is only performed until both tolerances
drop below a value of 10−15. Of course, in the worst case, increased splitting can
occur even beyond this limit resulting in many solved neighbour boxes fulfilling
condition 3.35. However, such boxes are then merged in a suitable way to keep
the number of boxes small. Later in this section this will be explained in detail.
For intervals containing zero and those close to zero, the absolute tolerance εAbs

dominates. For higher orders of magnitude the relative tolerance εRel becomes
restrictive instead. The consistency check relies on analogue conditions 3.37 and
3.38, for the lower and upper bounds of the intervals

(εAbs + εRel · max {|x(k+1)|, |x(k)|}) ≥ w(|x(k+1) − x(k)|) (3.37)

(εAbs + εRel · max {|x(k+1)|, |x(k)|}) ≥ w(|x(k+1) − x(k)|) . (3.38)

A box is consistent if both conditions hold for all intervals. To filter singular
or discontinuous points xsd of a function f (x) in x by the contraction method
Bnormal, the filter algorithm stops bisecting when condition 3.39 is fulfilled by
the interval xsd with xsd ∈ xsd.

(0.1 · εAbs + 0.1 · εRel · |xsd|) ≥ w(xsd) (3.39)

Absolute and relative tolerances are multiplied by 0.1 so that condition 3.39 is
more restrictive than condition 3.35 to prevent cutting away a potential solution,
close to xsd. Finally, Bnormal’s univariate Interval Newton terminates when either
the currently processed interval z is degenerate, or the relevant bounds of g(z) and
b are almost equal, e.g., the interval associated with their distance is degenerate.
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In case of a univariate, monotone increasing function g(z) these distances are
|g(z)− b| and |g(z)− b| for lower and upper bound iteration of z respectively (see
Eq. 3.17 to 3.20). For both, condition 3.35 is applied.

Solving a problem f (x) = 0 on an initial box x(0), a reduced box x with x ⊂ x(0)

is tagged as "solved" when one of the two conditions holds:

1) The box x is degenerate according to condition 3.35 and contains a solution
x∗ to f (x) = 0, i.e.,

0 ∈ f (x) . (3.40)

2) The box fulfills a unique solution test and a solution x∗ with x∗ ∈ x has
been determined numerically beforehand by the root-finding algorithm.

Hence, if a box is degenerate, the condition 3.40 is checked. However, if the
tolerances εAbs and εRel are chosen too small, a box might be extensively split
before it fulfills condition 3.35. On one hand interval dependency can cause
relatively wide intervals f (x) so that criterion 3.40 can also be falsely met by
empty boxes close to the real solution. On the other hand, rounding errors in
badly conditioned systems can cause very flat functions so that there is rather a
solution interval than a single real-valued solution. To prevent a worst case, in
which hundreds of boxes are returned as solved, a method has been developed
to unify all neighbour boxes, i.e., boxes that differ only in one dimension and
the according variable intervals share exactly one bound. A solved, unified box
is marked as such in the result file and an alternative tolerance value εuni is
returned

εuni = max
xi∈x

w(xi)

1 + |xi|
. (3.41)

Based on condition 3.40, Eq.3.41 assumes identical absolute and relative tolerance
values that equal εuni. On these terms, εuni is the actual tolerance that the unified
box fulfills. Besides, the result file also states the variable, which requires this
tolerance. The second case, in which a box is tagged as "solved", encompasses a
successful unique solution test and a numerically determined real-valued solution
situated within the box. For each contraction method a “specific unique solution
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test" exists. In Interval Newton and HC4revise the box has a unique solution if

=x(k+1)⏟ ⏞⏞ ⏟
Γnwt(f (x),x

(k)
c ,x(k)) ⊂ x(k) or (3.42)

=x(k+1)⏟ ⏞⏞ ⏟
Γhc(f (x),x(k)) ⊂ x(k) . (3.43)

These cases have been introduced in see section 2.6.2 and 2.6.3. Whenever the
contraction operator produces a box y that is completely in the interior of x(k) this
iteration has a fixed point and the sequence of contracted intervals will converge
to it (Hansen and Walster, 2003, pp. 182-188). Such a box y equals x(k+1) and
makes the intersection with x(k) in x(k+1) := x(k) ∩ y redundant. In Interval
Newton and HC4revise the complete problem f (x) is not reduced all at once.
Instead, in Interval Newton the Gauss-Seidel step is performed variable-wise and
in HC4revise the contractor is applied equation-wise so that the box is successively
reduced and updated before the next Gauss-Seidel step or contraction in the
subsequent equation. Hence, the relevant conditions that are checked in Interval
Newton and HC4revise are

Γnwt,j,i( f j(x),x
(k)
c ,y) ⊂ x(k)i and (3.44)

Γhc,j,i( f j(x),y) ⊂ x(k)i , (3.45)

where i denotes the currently reduced variable by function j and y is the already
updated box within one contraction step. When the Interval Newton is not
preconditioned by pivotAll, only the case j = i is checked, i.e., variable xi is only
reduced by fi(xi), the corresponding function, which determines the diagonal
element of the Jacobian matrix. If pivotAll is chosen, it suffices to find any
xi-dependent function f j(x) from f (x) = 0 that fulfills Eq. 3.44 in the current
contraction step. In HC4revise the functions are iterated successively. Hence,
as soon as Eq. 3.45 is true for one specific variable xi this condition has not to
be checked for any other xi-dependent function anymore. Finally, a successful
unique solution test is achieved if Eq. 3.44 or Eq. 3.45 hold for all variables xi in
the respective contraction step. Note that x(k)i is always the interval from the last
contraction step not the already updated interval y

i
that is directly used in the

next Gauss-Seidel step or subsequent equation of HC4revise’s contraction step.
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In Bnormal the univariate version of the Interval Newton is used. Hence, Eq. 3.44

also applies here, where f j is reformulated to

f j(x) = gj,i(xi)− bj,i . (3.46)

Note that there exist as many reformulations of f j(x) as the number of variables
the function depends on. The method Bnormal reduces variable by variable
and uses all functions that a variable occurs in. Hence, a variable xi must fulfill
condition

Γbc,j,i( f j(x),y) ⊂ x(k)i (3.47)

in any xi-dependent function f j(x) from f (x) = 0. Such a function needs to be
found for all variables so that the condition for the contraction step is

=x(k+1)⏟ ⏞⏞ ⏟
Γbc(f (x),x(k)) ⊂ x(k) . (3.48)

The unique solution test is applied after each contraction step. Variables with
already degenerate intervals are excluded from it. Whenever it has been proven
that a box has a unique solution, it is checked if it contains one of the already
numerically found solutions from step 3 of the hybrid approach. If this is the
case, the box is tagged as "solved" and will not be further processed in the hy-
brid approach. When a box has not been tagged as "solved" after contraction, a
consistency check is executed regarding the conditions 3.38 and 3.37 for lower
and upper bound that both need to be fulfilled to name a box "consistent". In-
consistent boxes are further contracted, while consistent boxes are subsequently
passed to the real-valued arithmetic solver as described in the next section. After
cutting and splitting (step 4 and 5), the boxes are also checked for degeneracy. The
already discussed criteria apply except that no “unique solution test" is applied.
The consistency check after cutting is the same.
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Tab. 3.3: Applied state-of-the-art solvers and their settings.

Solver Options and Settings Implementation

IPOPT "linear_solver": "MA27" casadi

"linear_system_scaling": "MC19"

"mu_init": 10−1

"warm_start_init_point": "yes"

SLSQP Default scipy

Fsolve Default scipy

Newton "scaling": "None" Own Implementation

"scaling": "MC29"

"scaling": "MC77"

3.3 Root-finding Algorithm

IA-based contraction methods can reduce boxes to such an extent that they are
either degenerate or consistent. A consistent box is generally bisected and the
resulting subboxes are further contracted. In the hybrid approach a root-finding
solver is started from the midpoint of a consistent box, before the bisection is
started given, that the reduction may suffice already for a root-finding solver
to converge. However, the suggested procedure can also be used as classical
IA-based bisecting method. Setting the algorithm’s hyperparameter "hybridAp-
proach" to false simply skips the root-finding step. The available root-finding
solvers and their applied settings in the upcoming sections are listed in table 3.3.
Not explicitly stated settings are at their default values. The scaling procedures
"MC77", "MC29" and "MC19" as well as the linear solver "MA27" are obtained
from HSL and were briefly discussed in section 2.3 and 2.4.1. The user can specify
the maximum number of iteration steps to be applied and the function tolerance
ε f Tol for the solver’s termination. An NLE is not solved as one large system,
instead the NLE solver is applied on all the subsystems identified by the DM
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decomposition (see section 2.4.2). The implementation from the python package
casadi is used (Andersson et al., 2019). If the current box of a subsystem is already
degenerate according to the values of εAbs and εRel , it is skipped. Otherwise, the
selected root-finding solver is started from the midpoint of the box by default.
The available state-of-the-art root-finding solvers are constrained optimization
methods such as scipy’s wrapper to SLSQP, an SQP routine originally introduced
by Kraft (1988) and casadi’s wrapper to IPOPT, an interior-point filter line-search
algorithm, which is introduced in Wächter & Biegler (2006). The objective function
applied to solve the associated NLE as residual minimization problems is

min
x

0.5 · ∑n
i=1 fi(x)

2

ε f Tol . (3.49)

Dividing the least-squares problem by ε f Tol appears to be sensible to force the
solver to continue with the iteration, although the objective value is already below
the required tolerance. Sometimes the minimizer does not yet fulfill the same tol-
erances in the corresponding root-finding problem and leads to strong deviations
from the actual solution, especially in ill-conditioned systems. For this reason, it
is always checked whether such a point is a solution to the root-finding problem
for the required tolerance. If this is not the case, the Newton solver is started
from the point and should converge quickly to the actual solution if that exists in
its vicinity. In addition to the optimization algorithms, the state-of-the-art Fsolve
method of scipy expects a well-determined n× n root-finding problem (f (x) = 0),
i.e., as many unknown variables as linear independent equations, and solves it in-
ternally as an unconstrained least-squares minimization problem of its first-order
Taylor approximation via a modification of Powell’s trust-region-dogleg algorithm
(Powell, 1970). Hence, each iteration step d(k+1) is a minimizer to

min
d

J(x(k)) · d+
1
2
· dT ·H(x(k)) · d (3.50)

s.t. ∥d∥ ≤ ∆

d = x(k+1) − x(k) .

∆ is the trust region’s radius that has been explained in section 2.3. The Jacobian
matrix J is generally determined by Broyden’s rank-1 update referring to Eq.
2.27, whenever progress is achieved. Otherwise and at the initial point, a forward
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difference approximation is applied. The Hessian matrix H is approximated by

H ≈ JT · J . (3.51)

3.4 Cutting

Whenever an unsolved box is consistent according to the applied contraction
methods, an attempt is started to identify empty edge boxes, which can be cut off.
A small example was given in section 2.6.5 to illustrate the general principle of
cutting. In this section the focus is put on the actual implementation. The method
originates from Ebert (2021, pp. 46-50). The basic idea is to select one specific
variable interval x, generate an edge interval y ⊂ x by taking a certain step ∆x
into the box starting from the currently processed lower or upper bound, and then
evaluating the current system f (x) in the related edge box y. If 0 /∈ f (y) there
is no real-valued solution for f (x) = 0 in the edge box, and it can be removed.
In Ebert’s original implementation all variables were successively cut for at most
nine steps taken from lower and upper bound into the box. The step size was
initially chosen to 1 % of the variable’s interval width and in each step increased
by another 1 % of the current width. While this method could indeed prevent
splitting, its drawback is, the long extra computational time compared to the
conventional approach consisting of contraction and bisection only. Therefore, the
method has been further developed regarding two aspects:

1) Which variable intervals shall be cut?

2) How to select a more efficient step size for cutting?

Figure 3.6 shows the actual implementation of the method, called cut_box. Regard-
ing the first aspect, the former algorithm has been generalized for the preselection
of nt certain cut variables. The function input requires a set of the cut variable’s
global indices {t} := {t1; . . . ; ti; . . . ; tnt} with i being the index of the variable
in the preselected set. Previous computational experiments from Bublitz et al.
(2017a) showed strong sensitivity of NLEs regarding the initial values of their
tearing variables. In case they were chosen close to the solution, the initialization
of all other variables was almost irrelevant for a successful numerical solution in a
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system decomposed by BBTF. Hence, if only the tearing variables are preselected
for cutting, the reduction of their intervals might be sufficient enough to tighten
the solution space of a problem significantly and create further potential for other
variable intervals to be contracted in the first step of the hybrid approach. The
tearing variables are determined by the method BBTF introduced in section 2.4.2.
The applied algorithm is the MC33 from the Harwell Subroutine Library (HSL,
2022). Should the user desire to only cut the tearing variables, the hyperparameter
"cutBox" needs to be set to tear. However, when it is set to all the preselection
encompasses all variables with the difference to former versions that the variables
are sorted by their permutation index resulting from the DM decomposition.

The second aspect concerning the step size selection has been slightly modified
compared the original implementation by Ebert (2021, pp. 46-47). Instead of
increasing the step size ∆x by 1 % in each cut and allowing a maximum of nine
steps per bound, the step size increases quadratically by the formula

rstep :=
(
√︁

rstep · 100 + 1)2

100
(3.52)

∆x := rstep · w(xti
) , (3.53)

starting with a minimum relative step size rmin of 1 %. Initially, the low step
size is preserved to exclude just those variable intervals from cutting that really
have no empty edge boxes. The step size increases then up to a maximum of
100 %, which is equivalent to ten cutting steps with respect to Eq. 3.52 and 3.53.
Thus, the complete remaining interval is checked for root inclusion in step 10

allowing for the potential identification of an empty box and terminating the
process before further cutting is done. Especially for wide intervals this method
appears advantageous, as they can be further tightened in fewer cutting steps.
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Fig. 3.6: The algorithm of cut_box.
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3 .5 Splitting

After each individual bound reduction the step size is set back to rmin. Another
advancement is that, after all cut variables have been reduced once, the cycle
restarts to cut away further edge boxes based on the newly tightened box. So
when the step size from the last cycle has been too large, some edge boxes might
disappear in the new cycle given that it is again initiated with rmin. For root
inclusion the algorithm test_HC4 is invoked, which applies three steps of the
HC4revise method as described in Ebert (2021, pp. 46-47). The HC4revise method
is quite fast and if it is applied multiple times, more empty edge boxes can be
identified and removed. The cutting method cycles through all cut variables until
consistency is reached exactly as in the contraction methods. Cut variables, which
are already degenerate with respect to the set absolute tolerance εAbs and relative
tolerance εRel , are removed from the preselected set and therefore not cut. If all cut
variables are degenerate or no edge boxes can be removed the variable cut retains
its initial value false and is returned together with the unchanged box. If the
variable cut is false, when the method returns, the next step for the currently
processed box will be splitting following the hybrid approach.

3.5 Splitting

If a box is consistent to cutting and contraction, it is marked as eligible for splitting.
Whenever the current number of processed boxes is lower than the maximum
number of processed boxes permitted, an eligible box is split. The selection
process, which box to split first, is explained in section 3.7. Concerning the
question which variable to split, the techniques presented in section 2.6.4 are all
heuristic. So far, there is no analytic solution to the problem which variable split
leads to the best performance. The objective that has been focused on in this work
is to:

Enable a maximum reduction of both boxes resulting from the split in the upcom-
ing contraction.

Selecting only one specific variable for splitting, for example the one with the
largest interval width, does not have to match this objective. Hence, the algorithm
split_box has been developed to select not just one variable but rather a set of
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Fig. 3.7: The algorithm of split_box.

potential split variables and determine the best split out of those regarding the
objective. Figure 3.7 introduces this algorithm. Before discussing the preselection
of potential split variables, it shall be assumed for now this has already been
accomplished: All preselection methods return a set with the global indices of
the potential split variables denoted by {t}. Such a set is an input argument of
split_box. Among these variables the algorithm skips all already solved variable
intervals according to the absolute and relative tolerances εAbs and εRel and contin-
ues with bisecting the box successively at each remaining potential split variable.
To test the success of a split, a single contraction step by the HC4revise method
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is applied on each of the resulting subboxes (Γhc(f (x),y1) and Γhc(f (x),y2)). If
this results in one box to be empty, the algorithm updates x to the non-empty
subbox and restarts the procedure. If both boxes are empty, the algorithm simply
returns an empty set. In case both boxes are non-empty, the algorithm continues
trying to fulfill the objective. Therefore the success of a box split is measured by
the relative average box length εRABL that is defined as

εRABL(y,x) :=
∑nvar

i=1
w(y

i
)

w(xi)

nvar
, (3.54)

for all non-degenerate variable intervals in x and with x being the box before
and y being the box after the reduction. The average box length is calculated
using the number of all nvar variables instead of the number of non-degenerate
variable intervals only . If nvar were replaced by the latter in Eq.3.54, a just solved
variable interval may cause an increase in the average box length due to the
decreasing number in the denominator, although the total box volume drops. The
average box length is determined in method average_boxlength that is part of the
Appendix figure A.7a. The resulting average box lengths of both subboxes after
splitting are summed up and compared with the current minimum value of this
sum from former splits amin. Initially, amin is set to 2, because in worst case both
subboxes can not be reduced at all by contraction, in which case

a = εRABL(y1,x) + εRABL(y2,x) = 2 · nvar − 0.5
nvar

. (3.55)

This will always be lower than 2 for a finite number of variables. Hence, even
if all tested split variables can not reduce the original box at all, at least one of
them is split and stored in set {z} that corresponds to the current best split. If
all potential split variables have been tested, the set {z} is returned – if it is non-
empty. An empty set {z} can occur if no potential split variable has actually been
bisected, because all of them are already solved or the input argument {t} has
been empty from the beginning on. In both cases, the set {t} is edited to contain
all variable indices, i.e., all variables are potential split variables and the procedure
is restarted. If the set {z} is still empty after testing all variables, this can only be
related to all intervals being solved referring to an already solved box x. Hence, a
set with the solved box {x} is returned. Algorithm bisect_box is shown in figure
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Fig. 3.8: The algorithm of bisect_box.

3.8. In general, it separates the box x at the current split variable into two equally
sized subboxes, except when the center of the interval to be split is just zero or the
lower or upper interval bound is close to zero. In these three cases, the box is cut
asymmetrically because it is assumed that variable values of zero are more often
associated with singular or discontinuous points and these are even inherited to
both subboxes when splitting at zero. If the midpoint is zero, a narrow subbox in
the range [−10−6, 10−6] is cut out and checked for containing a solution. If it does
not, the two outer subboxes [x, − 10−6] and [10−6, x] are returned. Otherwise,
symmetric splitting is applied. If the lower or upper interval bound is zero or
close to zero, the box is also split asymmetrically, into a small subbox containing
the zero bound and a large subbox encompassing the remaining interval. The
idea is that the small subbox can be discarded early in the following contraction
steps. For preselecting potential split variables the following four methods are
available:

– forecastSplit: All variables are selected

– forecastTear: All tearing variables are selected
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Fig. 3.9: get_tearId_to_split.

– tearVar: Only one tearing variable is selected per split, and it is alternated
through all tearing variables

– leastChanged: One or multiple variables with the lowest relative change
in their interval width(s) are selected

If option forecastSplit is chosen the method split_box is initialized with an
empty set {t}. For forecastTear the set {t} contains the global indices of the
tearing variables from the BBTF. The difference to option tearVar is that the
latter bisects just one tearing variable in a split and selects the subsequent tearing
variable in the next split, instead of finding the best split among them. Hence,
this method is supposed to be faster than the other two for one split. The order
of splitting is then given by an increasing global index. If a box has been split at
the variable interval with the highest global index, it is restarted with the lowest
index in the next split. Tearing variables with solved intervals are skipped from
this alternation. The algorithm is shown in figure 3.9. In option leastChanged

the relative change of each variable’s interval width xi to its respective interval
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Fig. 3.10: get_leastChangedId_to_split.

width before the last split xparent
i is calculated by

εRW(xi,x
parent
i ) :=

w(xi)

w(xparent
i )

. (3.56)

The global index of the variable that changed the least, i.e., has the maximum
value for εRW , is returned in a set {imax}. Especially in the first splits, multiple
variable intervals might have not changed at all, which is equivalent to εRW = 1.
For this case, all corresponding indices are stored in {imax} and returned. The
method behind this option is called get_leastChangedId_to_split and presented
in figure 3.10. The box xparent is the so-called parent box of the current box x

that is supposed to be split. While a parent box is bisected, it produces two child
boxes. The origin of each child box is stored in a tuple p with this following
information

p := (reduction step, index of box) . (3.57)

More about the storage of boxes is described in Appendix A.3.2.
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3.6 Processing One Box

Now all steps of the hybrid approach according to figure 3.1 have been explained.
It remains to discuss, how the actual reduction step of one box is performed.
It depends on the current state of the box, which is described by multiple box
properties that have partly been introduced in section 3.1. The relevant ones for
the reduction step selection and their abbreviations are:

– k := index of current reduction step

– l := box index of current reduction step

– r := boolean, true if box is ready for a split

– s := boolean, true if box is solved

– d := boolean, true if box is discontinuous

– c := boolean, true if box is consistent to contraction

– p := tuple with (reduction step, box index) of parent box

– cb := boolean, true if box is consistent to cutting

The method reduce_box, shown in figure 3.11, determines the next step for a box
based on its property values.

A solved box keeps its properties and is simply returned. Given that in other steps,
such as splitting, multiple boxes can occur, all properties and boxes are generally
returned in a set, even if they did not change. A consistent and continuous box
is first attempted to be cut in method cut_box, if it is still applicable for cutting.
This is the case when its property cb has not been turned to false after reaching
consistency in the former reduction steps. After cutting, the box is checked for
being successfully reduced, which is equivalent to a true cb value. In this case,
the box is further checked for being solved and returned.

A continuous and consistent box to both contraction and cutting is then checked
by the value of the parameter r for its permission to be split. The latter is initially
true, if the capacity of currently processed boxes allows an increasing number
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of boxes. Nevertheless, r can still be set to false even if there is enough capacity
present when priority is given to another box to be split first. How and why the
prioritization is important is explained in section 3.7. If a box is not eligible for
splitting, it is just returned with unchanged properties. Through the discarding
process of empty boxes, parameter r might become true later. If the box is ready
for splitting, it follows the preselection of split variables and the actual split in
split_box. After the split, the set of split boxes, that can consist of one or two
boxes, is checked for root inclusion and if it matches the tolerances for being
solved, in which case property s changes. A set of non-empty boxes and their
updated properties or an empty set is then returned by the method. For a box
that is consistent but discontinuous, it is also checked if it is eligible for splitting.
However, if r is true a discontinuity from the domain will be used for the split,
which has been previously labeled in one of the three contraction methods as
described in section 3.1. If a consistent and discontinuous box is not ready for
a split, it will be returned with unchanged properties. Finally, a box that is not
consistent traces the same path as a consistent and discontinuous box.

As long as a box is not consistent, r and cb are always true. Hence, it is contin-
ued with reducing an inconsistent box by contract_box. The method contract_box
contains the two checks for a box being solved or consistent, according to figure
3.5. It also sets d to false, if a box has been split by its one and only disconti-
nuity during the contraction. If a split takes place in contraction, the origin of
the resulting boxes is updated in {p}. Hence, contract_box returns the set of the
reduced box or reduced boxes {y}, and the corresponding sets of updated prop-
erties {s}, {d}, {c} and {p}. The cb value is then set true for all generated boxes.
In all unsolved boxes in {y}, the root-finding algorithm is started. Solutions
determined by the root-finding algorithm are stored in num and later updated to
the dictionary options to be always available in the upcoming reduction steps for
the unique solution test in contract_box. If root-finding is deselected by setting
the hyper parameter "hybridApproach" from options to false a pure IA-based
generalized bisecting algorithm is applied.
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Fig. 3.11: The algorithm of reduce_box. 95
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3.7 Processing Multiple Boxes

The upmost implementation layer of the hybrid approach consists of the algorithm
solve_NLE presented in figure 3.12. It requires the functions f (x) related to the
problem f (x) = 0, the symbolic variables x, the initial box x(0) corresponding
to the user-specified variable bounds and the dictionary options that holds all
parameters the user can set. The algorithm tries to reduce all boxes currently
processed. One pass over all boxes equals one reduction step. To prevent the risk
of long-running processes, the number of reduction steps is restricted by the pa-
rameter nmstep specified by the user. Beside this, the current number of processed
boxes nbox can never exceed the maximum number of boxes nmbox. Initially, nmbox

equals one and is increased by one whenever all of the processed boxes become
consistent to contraction and cutting, i.e., a split is unavoidable for progress. The
properties to describe the state of a box have been explained in the previous sec-
tion. In solve_NLE the individual properties of the boxes are stored in sets to be
used in the next reduction step. The order is important here, and each property’s
position in the set is equivalent to the one of its corresponding box in {x}new,
which is the set of all boxes resulting from the reduction step. The reduction step
starts when the initial box is non-empty, unsolved in the given tolerances, and
nmstep is greater than zero. The parameter nmbox will not be increased before the
first reduction step, because the initial box is assumed to be inconsistent and its
properties values c and cb are false. In a new reduction step the dictionary
options is updated for the current number of boxes nbox, the maximum number
of boxes nmbox, the current reduction step k, and new solutions determined by
the root-finding algorithm in the last reduction step {num}. These properties are
relevant to all box reductions in reduce_boxes for restricting the number of box
splits and checking the unique solution test. Algorithm update_options can be
found in figure A.7b in the Appendix. If more than one box shall be reduced, the
order of boxes is important as first boxes are split first.
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Fig. 3.12: The algorithm of solve_NLE.
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Important for this hybrid approach is to quickly find any solution of the system
rather than finding all system’s solutions or to proof the nonexistence of other
solutions in the entire initial box. Especially for large dimensional systems with
enormous initial boxes, the identification of all solutions can become computa-
tionally intractable. In consequence, it is more efficient to focus on only those
boxes that seem to be most promising for containing a solution. As a measure all
functions f j from f (x) are evaluated at each box’s midpoint. The absolute values
of these function residuals are summed up

f resl =
n f unc

∑
j=1

| f j(m(xl))| , (3.58)

to obtain the overall residual f resl of a box xl . This is performed for all boxes in
{x} to sort them as well as their properties in increasing residual order. Hence,
boxes with a low residual are split first. The detailed algorithm sort_boxes is pre-
sented in figure A.8 in the Appendix. To continue in solve_NLE from figure 3.12

the sorted boxes and properties, which have been obtained from the last reduc-
tion step, are still all labeled by {}new. They are now stored in the corresponding
sets without this superscript. The sets {}new are then emptied for the upcoming
reduction step. Based on the boxes’ order, it is determined which box is eligible
for a split in reduce_boxes by the method ready_for_reduction. The latter returns
a set {r} of boolean values in sorted order, which are true for boxes that can
be processed and split. Figure 3.13 depicts the algorithm ready_for_reduction.
Initially the boolean values in {r} are all false. For solved boxes they remain
false and for inconsistent boxes they are turned to true. The important bit are
the consistent boxes. Referring to the current capacity cbox = nmbox − nbox only the
first cbox consistent boxes are allowed to be split. In the general implementation
one might recognize that after each reduction step the maximum number of boxes
nmbox is set to the current number of boxes |{x}new|, or it is at most increased by
one if |{x}new| = nmbox and all boxes are consistent. Hence, in this approach cbox

should either be zero or one and there is at most one consistent box split in a
reduction step. It is waited for all boxes to reach consistency, because inconsistent
boxes might be contracted to a very low residual level and are then the first ones
to be split. Otherwise splitting a box whenever it becomes consistent could pro-
duce many boxes with lower residuals before the still contracted boxes become
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Fig. 3.13: The algorithm of ready_for_reduction.

consistent. Hence, less promising boxes would come first in the box order and
would be extensively split but could not be easily discarded because of interval
dependency. By the time the promising boxes were consistent, there would not
be any capacity for them to be split, before the extensively split boxes disappear,
which could take a while.

Next, the set of boxes {x} is pruned in reduce_boxes or reduce_boxes_par, which
both return a set of reduced boxes {x}new and their corresponding properties.
Whether the first or second method is called depends on the parameter par that is
true, if parallel processing has been selected by the user and is applied for the box
reduction. The implementation of reduce_boxes_par will be topic of section 3.8. In
the algorithm reduce_boxes presented in figure 3.14 all boxes xl are successively
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Fig. 3.14: The algorithm of reduce_boxes.

tightened. If the resulting set of reduced boxes {x}new
l is empty, it is continued

with the reduction of the next box. Otherwise, {x}new
l is unified with the set of

already reduced boxes {x}new from the previous box reductions. The same is
done for the property sets. If all boxes are empty then the set {x}new and the
property sets are returned as empty sets to the method solve_NLE. Obviously, the
system has no solution in the initial box in this case. For error analysis, the reason
for a box to be identified as empty is stored in options. The reason statement
always encompasses one equation and one empty variable interval. The global
ID of this equation and the final intervals of all variables the equation consists
of at the time when one interval becomes empty are stored. On top of that, the
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Fig. 3.15: The algorithm of reduce_boxes_par.

ID of the empty box resulting from {x} is kept to also return the last non-empty
bounds before the reduction. This error analysis is not always returned to the user,
because one of the algorithm’s major tasks is to identify and discard empty boxes.
Only when the complete initial box becomes empty, the information about the
last processed, empty box are assigned to the dictionary error_in f o by the method
store_error_output (see figure A.9a in the Appendix). All solutions determined by
root-finding are stored in {num}. After having reduced all boxes from {x}, the
method restarts from where it has begun with checking the termination criteria
whether all boxes are empty or solved, and finally increasing the reduction step,
if nmstep has not been reached yet.

3.8 Parallelization

To decrease the CPU time of the whole procedure, the reduction of multiple boxes
has been parallelized. Instead of invoking method reduce_box successively in the
algorithm reduce_boxes, the method reduce_boxes_par starts it for multiple boxes
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at the same time. The latter is shown in figure 3.15. How many boxes may be re-
duced in parallel depends on the number of cores physically available on the used
computer. By the parameter "cpuCountBoxes" the user may specify how many
cores are used in parallel. The user should refrain from choosing "cpuCount-
Boxes" higher than the number of physically available cores as this may slow
down the program enormously as the task scheduler of the Operating System (OS)
might start "cpuCountBoxes" processes simultaneously and will always switch
between them to progress them equally (Dutton et al., 2008). The python package
multiprocessing developed by McKerns et al. (2012) is used for parallel comput-
ing. The box reduction processes are completely independent from one another
so that no information needs to be shared while they are running. To allow that,
the method ready_for_reduction from figure 3.13 is inevitable. It determines the
number of boxes to be split before the actual reduction takes place. In conse-
quence, the maximum number of boxes is never exceeded by the procedure. For
further information on how to parallelize the box reduction using algorithms
reduce_box_worker and get_results, see Appendix A.3.3. The entire approach
offers even more opportunities for process parallelization that is referred to in
section 6.9.

3.9 Implementation of the Hybrid Approach

The hybrid approach has been implemented as a python package named modOpt
that can be downloaded from the git repository1. Instructions are given in the
git-project how the package and its dependent packages and libraries should be
installed. The modOpt package is subdivided into five sub packages:

– constraints

– decomposition

– initialization

– scaling

1https://git.tu-berlin.de/dbta/simulation/modOpt
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– solver

– tests

to modularise independent functionalities. Doing so, one can for example use the
IA-based reduction that only relies on the sub packages constraints and decompo-
sition without root-finding, i.e., skip step three of the hybrid approach. To enable
this separation, the options dictionary shown in the algorithms of the previous
sections consists actually of three dictionaries namely bxrd_options, smpl_options
and num_options. If no root-finding is required, the latter two dictionaries do not
even have to be defined in the python script. Similar to this, sampling is omitted,
if the dictionary smpl_options is missing, and the midpoint of the box is used
for root-finding, which is the default setting applied in this thesis. The python
script can be automatically generated for any NLE from MOSAICmodeling by
applying the User Defined Language Specificator (UDLS) modOpt_constraints_V2.9
(ID: 167855). How to use and create a UDLS in MOSAICmodeling is explained
in Tolksdorf et al. (2019). The sub package tests contains scripts, in which the
hybrid approach is applied on some chemical process examples to check if the
algorithm works as expected. The scripts also serve as templates for anybody who
wants to apply the hybrid approach on their own NLEs. In modOpt the python
package mpmath is used for the IA operations. Some of mpmath’s functions with
limited domains in R such as ln(x),

√
x, x

y
z , tan(x), arccos(x), arcsin(x) have

been modified to discard complex ranges, which are out of interest in the field of
real applications. How this has been implemented is explained in Ebert (2021, pp.
55-64).

3.10 Analysis Parameters

The success of the hybrid approach is analyzed at each box reduction step k by
the following parameters:

– Relative Average Domain Length (RADL) (εRADL,(k))

– Number of boxes (n(k)
box)
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– Successful root-finding iterations during the box reduction .

Parameter εRADL,(k) originates from the Relative Average Box Length (RABL) εRABL,
which has been previously introduced in section 3.5. The notation originates from
the following definitions: The Box Length (BL) εBL is the sum of the nvar variable
interval widths of a box x

εBL(x) :=
nvar

∑
i=1

w(xi) . (3.59)

The Relative Box Length (RBL) εRBL sums up the relative change of the interval
widths from a certain box x to another box, for example the initial box x(0)

εRBL(x,x(0)) :=
nvar

∑
i=1

w(xi)

w(0)(xi)
, (3.60)

for all nvar variables from x(0) that are not solved. εRABL is then the averaged
value of εRBL with respect to the nvar variables

εRABL(x,x(0)) :=
εRBL(x,x(0))

nvar
. (3.61)

Finally, if multiple boxes {x}(k) are processed in a reduction step k, the Relative
Average Domain Length (RADL) εRADL is defined as

εRADL({x}(k),x(0)) :=
∑

n(k)
box

l=1 εRABL(x
(k)
l ,x(0))

n(k)
box

, (3.62)

which determines the averaged εRABL value with respect to all n(k)
box boxes x

(k)
l ∈

{x}(k). Whenever εRADL({x}(k),x(0)) is shown or discussed in the upcoming
sections, it is simply denoted as εRADL,(k), i.e., the value of εRADL in the k-th re-
duction step references to the initial box so that εRADL,(0) = 1. If all solutions
within x(0) have been found, εRADL is zero. Only those nvar variables are counted,
which initially have non-degenerate intervals, i.e., have not yet been solved. Initial,
degenerate variable intervals are equivalent to declaring them as constant param-
eters. Alternatively to εRADL, the first idea has been to define a so-called Relative
Hypercubic Length (RHL) parameter εRHL that relates the sum of all reduced box
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volumes from reduction step k to the initial box volume and takes the nvar-th root
of this value

εRHL,(k) := nvar

⌜⃓⃓⎷nbox

∑
l=1

nvar

∏
i=1

w(x(k)l,i )

w(x(0)i )
. (3.63)

Doing so, one assumes the initial box and the sum of reduced boxes to be both hy-
percubic, in which case the nvar-th root equals their edge length. Solved intervals
are excluded from the product as the actual problem then only reduces by one
dimension and the remaining volume is non-zero. However, this quantity seems
to be inappropriate for large systems. Assume all 400 initial variable intervals of
a certain system are reduced down to 10 % of their width the computer has to
calculate

εRHL =
400
√

0.1400 , (3.64)

with the radicand being non-representable as a floating point number in python’s
precision (the lowest computable value is ≈ 2.23 · 10−308). Hence the calculated
value becomes zero, although the reduced boxes can be far off from being solved.
The number of boxes n(k)

box is expected to have a great influence on the CPU time,
while the relative, averaged number of variables nRA,(k)

var,solved gives an idea on how
many variables in a box have already been solved at reduction step k. The last
parameter used to validate the hybrid approach’s performance is the success of
the iteration by a root-finding method in between the box reduction. If only one
feasible solution is of interest the hybrid approach can also stop as soon as this
has been found and act in this way as local solver. All of the three parameters
only validate the effectiveness of the hybrid approach and are by their definition
independent of the model’s size or structure. However, in the scope of this thesis
the model properties shall also be investigated by certain parameters that are
introduced in the next chapter.
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In this chapter, the process engineering examples are presented, on which the
hybrid approach is tested. Only NLEs are considered that contain complex sub-
systems after a DM decomposition (see section 2.4.2). The definition of complex
systems as well as parameters applied to quantify the complexity of each example
are presented in section 4.1. Sections 4.2 to 4.5 contain descriptions of each test
case with a focus set on the formulation of individual equations that have a strong
influence on the performance of the IA-based box reduction.

4.1 Characterization of Complex Systems

Complex systems are defined here in such a way that they contain at least one
nonlinear equation and consist of at least two equations, which cannot be solved
independently of each other. Purely linear, nonsingular systems are usually not a
problem thanks to contemporary solution algorithms such as LU decomposition
or Gauss elimination (Dahmen and Reusken, 2008, pp. 68-82). In chemical process
models, complex systems frequently occur to describe phase equilibria, reactive
systems or process units and flowsheets with recycle streams. The test cases
contain at least one complex subsystem of this kind. The nonlinearity of complex
systems poses a particular problem for conventional numerical solvers, since
the system can have more than one solution or non-smooth function curves as
discussed in section 1.1. In addition, different scales of equations and unknowns
lead to ill-conditioned systems and eventually to an early termination or slow
progress of the solver. This is exactly where the hybrid approach is supposed
to help. However, problems can also vary in complexity. To the best of the
author’s knowledge no measure has been defined yet for the complexity of an
NLE. Therefore, four parameters are now introduced to enable a gradation of
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complexity: The dimension of the complex system nls, the condition number κ2

of the Jacobian matrix evaluated at its solution(s) (it was defined in section 2.4),
the non-zero density of the Jacobian matrix ρnz and the nonlinearity ratio εnl . The
non-zero density is a measure for how strongly the equations are coupled with
each other. For a n × n system with nnz non-zero entries in its Jacobian matrix,
ρnz is defined as

ρnz :=
nnz

n2 . (4.1)

The nonlinearity ratio indicates how many of the non-zero entries are nonlinear
by calculating the equations’ second derivatives with respect to the variables and
counting the structurally non-zero elements nnl

εnl :=
nnl

nnz
. (4.2)

Since the Newton-based algorithms work with linear approximations, this quan-
tity provides a measure for the deviation of the approximation from the actual
model. If εnl = 0, the Newton method should be able to solve the linear subsys-
tem in one step. Finally, the higher the values of these parameters, the higher the
system’s complexity.

The hybrid approach is applied on DM-decomposed NLEs. The dimension of
the whole system seems to be less important for solving it than the dimension
of its individual subsystems. For example, any number of linear equations, each
with one, linearly independent unknown, could be assembled into a system of
equations. The system would certainly be easy to solve, although it is very high
dimensional. For this reason, the parameters are only determined for the largest,
complex subsystem of each example. Table 4.1 shows their values. For the CSTR
and the Flash Unit more than one solution exist so that each row corresponds to
one of them, i.e., κ2 is different. The four test cases have been selected in such a
way that they differ greatly in their parameter values and thus, represent a broad
variety of complexity. The aim is to check whether the hybrid approach is able
to solve them all and how it performs in comparison to conventional numerical
methods. A total of eight test cases have been examined within the scope of
this work, but the other four do not contribute any additional findings to the
conclusion. However, since they support the results, they are included in the
analysis of the results in chapter 6, and their models are part of Appendix B.
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Tab. 4.1: Structural properties of largest subsystems of tested NLEs at the known solu-
tions: nls is the dimension, κ2 is the condition number of the Jacobian matrix
evaluated at the solution, ρnz is the non-zero density of the Jacobian matrix and
εnl is the nonlinearity ratio.

NLE nls κ2 ρnz εnl

CSTR 3 7.0 × 105 0.667 0.500

3 1.2 × 103 0.667 0.500

3 1.5 × 104 0.667 0.500

Flash Unit 8 3.5 × 102 0.281 0.111

8 2.1 × 102 0.281 0.111

Total Condenser 12 4.8 × 106 0.194 0.357

Heavies Column 158 3.4 × 1010 0.036 0.560

4.2 CSTR

In the model of the steady-state Continuous Stirred-Tank Reactor (CSTR) adopted
from Liu (2017), the catalytic hydrogenation of aromatics (A) in an oil takes place
by addition of hydrogen

A + H
2

Products .

The reaction is exothermic. The CSTR is well-mixed, and operates adiabatically at
constant pressure. The entire mathematical model including the reaction rate and
properties of the aromatics, catalyst and hydrogen can be found in Appendix B.2.
The largest complex subsystem encompasses the energy balance, the component
balance of (A) and the exponential reaction rate. No interval dependency occurs so
that no special formulations are required. Figure 4.1 represents the mathematically
possible conversions of A in the CSTR at different inlet temperatures of the oil and
aromatics containing feed. Two steady-state solutions exist in the temperature

109



4 Test Cases

Fig. 4.1: Conversion of aromatics in CSTR for different Feed Temperatures analytically
solved referring to Liu (2017) and by hybrid approach.

range from 554.10 K to 581.12 K. One at low conversion when the feed temperature
was previously low and is increased up to a temperature lower or equal to 581.12 K,
which is the so-called ignition point. The other is related to a high conversion
when the feed temperature was previously high and is then cooled down to
a temperature equal or greater than 554.10 K, the so-called extinction point. A
third unstable and thus unsteady solution exists between extinction and ignition
temperature that has an intermediate conversion compared to the ones belonging
to the steady states. This example was implemented to ensure that the hybrid
approach can exactly find one, two, or three solutions depending on the set feed
temperature. In figure 4.1 the solutions detected by the hybrid approach are
marked. It finds all solutions according to the feed temperature, in particular
only the two solutions at the ignition and extinction point. Which solver options
to select for an efficient iteration process will be investigated in the next chapter.
Only the test case at a feed temperature of 565.0 K will then be examined.
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T, p,KLV
i , γLi , α

L
i , U

HUi, HUL, HUV , V L, V V , V total, HL, H,A

Q

FV , hV , yi

FL, hL, xi

FF , hF , xFi
TF , pF ,∆p

Fig. 4.2: Sketch of the Flash Unit model.

4.3 Flash Unit

In the flash unit, a liquid mixture of ethanol and water is partially evaporated
by pressure reduction. The temperature in the unit is kept constant by supply-
ing heat. The two phases within the unit are assumed to be well-mixed and in
thermodynamic equilibrium. The real behavior of the liquid phase is described
by activity coefficients according to Wilson’s model. The associated equations
are taken from the monograph of Gmehling & Kolbe (1992, p. 240-241). Ideal
gas behavior is assumed for the gas phase. Feed conditions as well as pressure
drop and temperature within the flash unit are set, while all quantities associ-
ated with the exiting streams and the heat demand are unknown. The design
values, parameters, and model equations can be found in Appendix B.3. The
largest complex subsystem contains eight equations: A summation relation for
each phase, as well as three equations per component to describe the chemical
equilibrium, the general equilibrium constant and the activity coefficient. The
latter is determined by an exponential expression depending on the unknown
molar composition, which occurs several times in the equation and causes inter-
val dependency. Moreover, in this model and in the following ones, functions are
used to determine thermodynamic properties of pure components such as molar
enthalpies, molar volumes, and vapor pressures, as well as model parameters to
describe the chemical equilibrium. This means that these variables are explicitly
represented by their functional expression and do not appear as iteration vari-
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ables in the equation system. The advantage is that the dimension of the NLE
is reduced, i.e., the initialization of the functional variables is eliminated. The
disadvantage is that the equations become very long and contain many nonlin-
ear expressions including interval dependency. However, reformulations are not
necessary here, because the hybrid approach can still solve the system. The NLE
has two solutions in the initial box x = [−109, 109]28, one of which is physically
plausible. The other contains mole fractions outside the interval [0, 1] as well as
negative flow rates and is therefore purely mathematical.

4.4 Total Condenser

A superheated ethanol (1)and water (2) stream at known composition (yh,sh,in
i=1 =

0.412, yh,sh,in
i=2 = 0.588) is condensed and subcooled at atmospheric pressure in

this example. The vapor stream enters the counter-current heat exchanger at
80 °C. A shell and tube heat exchanger is used for this purpose, in which water
is deployed as coolant with an inlet temperature of 25 °C at a pressure of 1 bar.
The coolant flows inside the pipes. The heat exchanger model consists of three
sections sketched in figure 4.3 referring to the shell-side fluid state, namely the
superheated (sh), the two-phase (2ph) and the subcooled (sc) section. The vapor
phase is assumed to be ideal, while activity coefficients are considered for the
liquid phase. The latter are determined according to Wilson’s model based on
equations and parameters from Gmehling & Kolbe (1992, p. 240-241). In the 2ph
section, the vapor and liquid phases coexist on the shell-side. Thermodynamic
equilibrium is assumed between the phases. However, the compositions change
from the state of saturated vapor (dew point) to the boiling liquid state (bubble
point). In the model, geometrical and hydraulic quantities such as heat transfer
surface area per section as well as liquid and gas volume and hold up are also
calculated. The total heat transfer surface area and volume are already specified
by the chosen heat exchanger geometry including the number and dimension of
the tubes. It is not specified with which temperatures the hot and the cold stream
exit at the respective outlets. The VLEs at the inlet and outlet of the two-phase
section represent a complex system, analogous to the Flash Unit, which is solved
without problems by the hybrid approach. Accordingly, the temperatures Tph2,h,in,
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F sh,h,n,in, ysh,h,ini , hsh,h,n,in, psh,h,in, T sh,h,in

F sc,h,n,o t, xsc,h,o ti , hsc,h,n,o t, psc,h,o t, T sc,h,o t

F sc,c,n,in

xsc,c,ink

hsc,c,n,in

psc,c,in

T sc,c,in

T sh,c,o t
psh,c,o t

hsh,c,n,o t
xsh,c,o tk

F sh,c,n,o t

sh

2ph

sc

Fig. 4.3: Sketch of the Total Condenser model.

Tsc,h,in and enthalpies hph2,h,n,in, hsc,h,n,in of the hot stream are clearly determined
for the given pressure and inlet concentration. The temperature and enthalpy of
the hot stream after subcooling, Tsc,h,out and hsc,h,n,out, as well as the temperatures
Tph2,c,in, Tsh,c,in, Tsh,c,out and enthalpies hph2,c,n,in, hsh,c,n,in, hsh,c,n,out of the cooling
stream remain unknown. They can only be determined as a function of the surface
areas available for heat transfer in each section Ash, Aph2 and Asc, which in turn
depend on the unknown temperature differences. Thus, these relations build the
largest complex subsystem of this NLE with a dimension of 12. Tests have shown
that the formulation of the heat transfer has a fundamental role to play in order
to sufficiently reduce the intervals of the temperatures and heat transfer surface
areas. For one section, the total energy balance around the section and the energy
balance around its tube-side are formulated in the following way, shown for the
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superheated section

0 = Fsh,h,n,in · hsh,h,n,in − Fsh,h,n,out · hsh,h,n,out + Fsh,c,n,in · hsh,c,n,in (4.3)

− Fsh,c,n,out · hsh,c,n,out

0 = Fsh,c,n,out · (
NCk

∑
k=1

xsh,c,out
k · hsh,c,n,L,out

k )− Fsh,c,n,in · (
NCk

∑
k=1

xsh,c,in
k · hsh,c,n,in

k ) (4.4)

− ksh · Ash · (T
sh,h,in − Tsh,c,out)− (Tsh,h,out − Tsh,c,in)

ln( (T
sh,h,in−Tsh,c,out)

(Tsh,h,out−Tsh,c,in)
)

.

Consequently, the explicit calculation of the mixed streams’ molar enthalpies
hsh,c,n,in, hsh,c,n,out and the heat flux Qsh by

hsh,c,n,in =
NCk

∑
k=1

xsh,c,in
k · hsh,c,n,L,in

k (4.5)

hsh,c,n,out =
NCk

∑
k=1

xsh,c,out
k · hsh,c,n,L,out

k (4.6)

Qsh = ksh · Ash · (T
sh,h,in − Tsh,c,out)− (Tsh,h,out − Tsh,c,in)

ln( (T
sh,h,in−Tsh,c,out)

(Tsh,h,out−Tsh,c,in)
)

(4.7)

are omitted. If Eq. 4.5 - 4.7 were implemented and their respective terms in Eq.
4.4 replaced, the linkage is lost in IA that for example the value of Tsh,c,in in Eq.
4.7 must be the same as in the functional expression hsh,c,n,L,in

k (Tsh,c,in) of Eq. 4.5.
Especially during the contraction of Tsh,c,in or Tsh,c,out in Eq. 4.4, the suggested
formulation achieves tighter bounds. In consequence, the heat transfer surface
area can then be further reduced in the upcoming contraction step, so that all in
all the sequence of reduced boxes converges more quickly. The reformulation is
also applied for the other two sections. Beyond these reformulations, the three
auxiliary equations

0 = Tout,c,sc − Tsc,c,in − avsc (4.8)

0 = Tsh,c,out − Tph2,c,out − avsh (4.9)

0 = Tph2,c,out − Tsc,c,out − avph2 (4.10)
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4 .4 Total Condenser

are implemented with the auxiliary variables avsc, avph2, avsh whose initial inter-
vals are all set to [10−2, 109]. The general formulation of the logarithmic tempera-
ture difference ∆Tln for a counter-current heat exchanger is

∆Tln :=

:=∆T1⏟ ⏞⏞ ⏟
(Th,in − Tc,out)−

:=∆T2⏟ ⏞⏞ ⏟
(Th,out − Tc,in)

ln
(︂

Th,in−Tc,out

Th,ou−Tc,in

)︂ (4.11)

for the cold side c and the hot side h. The logarithmic temperature difference is
also used in Eq. 4.4. It is only valid for the case when ∆T1 ̸= ∆T2. In the real
number range this condition is not fulfilled at a single point. For example, if Th,in,
Th,out and Tc,in are known, Tc,out must not be equal to Th,in − Th,out + Tc,in. The
contraction method Bnormal is capable to filter such a discrete singular point. For
the temperature intervals Th,in , Th,out and Tc,in, however, there are infinitely many
cases as soon as

∆T1 ∩ ∆T2⏞ ⏟⏟ ⏞
:=∆T3

̸= ∅ . (4.12)

∆T3 cannot be filtered out when its width is greater than the tolerances. Thus,
∆Tln extends to [−∞, ∞]. If this is true for the subcooled section, ∆Tln also
contains the case where ∆Tln = 0 and the energy balance on the tube-side becomes
independent of Asc

0 = Fsc,c,n,out · (
NCk

∑
k=1

xsc,c,out
k · hsc,c,n,L,out

k )− Fsc,c,n,in · (
NCk

∑
k=1

xsc,c,in
k · hph2,c,n,out

k ) (4.13)

− ksc · Asc · 0 .

This equation is fulfilled, if the enthalpy stream difference between section inlet
and outlet is zero. In this case, there are infinitely many solutions for Asc, i.e., Asc

cannot be reduced beyond the total heat transfer surface area of the condenser and
neither do the dependent variables such as the other heat transfer areas, outlet
temperatures, and hold ups. No enthalpy stream difference between inlet and
outlet means no heat is transferred in this section and Tsc,c,in = Tsc,c,out. Finally,
for all three sections the respective conditions are excluded by Eq. 4.8 - 4.10. The
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complete model, variable and parameter specifications, and the physical solution
within the investigated range can be found in Appendix B.6.

4.5 Heavies Column

Three components, namely Toluene (1), Biphenyl (2), Benzene (3), enter this col-
umn, in which the high-boiling component Biphenyl is removed from the rest.
The feed is supplied on the column’s top tray, i.e., only the stripping section
is used to reduce the loss of Toluene and Benzene in the liquid residual. The
column originates from the HDA process, which has been implemented as part
of the master thesis of Rajes (2020). The VLE on the trays is described by a φ-φ

approach. Fugacity coefficients and enthalpies are calculated based on SRK’s
equation of state as described in Rao (1997, pp. 74-79, p. 280, p. 321). In total, the
model contains five separation trays, plus a total condenser and a partial reboiler.
The model is sketched in figure 4.4. Thermodynamic equilibrium between the
phases is assumed on all trays and in the heat exchangers. Reflux ratio RC and
boilup ratio RR are fixed as design specifications. The influence of an increasing
number of trays from 5 to 7, 10, 15, and 20 trays on the hybrid approach will be
investigated in the next chapter. The model equations, in turn, can be found in
Appendix B.8. The NLE with a total of 171 equations can be decomposed into
13 subsystems using DM, of which 12 are one-dimensional. However, a large,
complex system remains. The reason is that a part of the unknown outlet streams
from the condenser and reboiler are returned to the tray section and thus repre-
sent an unknown input at the same time, i.e., the models of the condenser, tray
section and reboiler can only be solved simultaneously. Each of them contains the
typical equations according to the Material balance, Equilibrium, Summation, Heat
equations (MESH) approach (Henley and Seader, 1981, pp. 556-560) plus the spe-
cific correlations the VLEs and enthalpies are calculated with. Only the pressures
on the trays, in the condenser and in the reboiler as well as a few parameters of
pure components can be calculated outside of the complex subsystem in advance.
In case of the latter, some formulations of the equations are particularly important
for the performance of the hybrid approach. They are presented now. According
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tr=N
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FLtr=N+1
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Fig. 4.4: Sketch of the Heavies Column model.

to the φ-φ concept the phase equilibrium is expressed by

0 = Ktr,i · xtr,i − ytr,i (4.14)

0 = Ktr,i · φV
tr,i − φL

tr,i , (4.15)

with the molar fractions xtr,i, ytr,i, fugacity coefficients φL
tr,i, φV

tr,i of liquid (L) and
vapor phase (V) and the equilibrium constant Ktr,i. The fugacity coefficients φL

tr,i

and φV
tr,i are originally calculated by the function

φ = exp((Z − 1) · b
bmix

− ln(Z − B) (4.16)

+
amix

bmix · R · T
· ( b

bmix
− 2 · ( a

amix
)0.5) · ((2 − n) · ln(

Z + B
Z

)

+ (n − 1) · 1
2 · (2)0.5 · ln(

Z + B · (1 + (2)0.5)

Z + B · (1 − (2)0.5)
))) ,
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i.e., the right-hand side of Eq. 4.16 is inserted directly into Eq. 4.15. In the
Bachelor thesis of Reum (2022) it was found that the following reformulation of
Eq. 4.15 can be processed much faster in a reduction step

0 = lnphiL
tr,i − lnphiV

tr,i · ln (Ktr,i) , (4.17)

where, instead of the fugacity coefficients, lnphiL
tr,i and lnphiV

tr,i are implemented
directly as function variables. The new function to calculate them is

lnphi = (Z − 1) · b
bmix

− ln(aux) (4.18)

+ (
b

R · T
· ( (amix)

0.5

bmix
− (a)0.5

b
)2 − a

b · R · T
) · ((2 − n) · ln(1 +

B
Z
)

+ (n − 1) · 1
2 · (2)0.5 · ln(1 +

2 · (2)0.5

Z
B + 1 − (2)0.5

)) .

This reformulation tries to reduce as many variable instances as possible com-
pared to Eq. 4.16 to prevent interval dependency. The quantities a, b, n, R, T are
real-valued parameters in this simulation so that their number of occurrences is
not important. The aux variable contains one auxiliary variable each for the liquid
and vapor phase, which are calculated as follows

0 = ZL
min,tr − BL

tr − auxL
tr (4.19)

0 = ZV
max,tr − BV

tr − auxV
tr . (4.20)

This prevents the logarithmic expression in the second term of Eq. 4.18 to become
[−∞,∞], as soon as Z ∩ B ̸= ∅ is satisfied. Such a nonempty set cannot be filtered
out by the contraction method Bnormal if its width is larger than the required
tolerances. However, by allowing only positive values for the auxiliary variables
(auxL

tr, auxV
tr > 0) it is excluded from the feasible region. Another reformulation

concerns the use of the algorithm HC4revise. It cannot handle negative numbers
inside a cubic root and instead returns the empty set. In reality, the cubic root
has three solutions, one of which is real and the other two complex. In the
case considered here, this problem occurs in the equations for calculating the
compressibility factors ZL

min,tr and ZV
max,tr, where only the real solutions are of

118



4 .5 Heavies Column

interest. The original form for the liquid phase is

ZL
min,tr =

−qL
tr

2 + (DL
tr)

0.5

(
−qL

tr
2 + (DL

tr)
0.5)

2
3

+
−qL

tr
2 − (DL

tr)
0.5

(
−qL

tr
2 − (DL

tr)
0.5)

2
3

− αL
tr
3

. (4.21)

Eq. 4.21 is replaced by the three equations

0 = aux1L
Z,tr + aux2L

Z,tr −
αL

tr
3

− ZL
min,tr (4.22)

0 =
−qL

tr
2

+ (DL
tr)

0.5 − (aux1L
Z,tr)

3 (4.23)

0 =
−qL

tr
2

− (DL
tr)

0.5 − (aux2L
Z,tr)

3 . (4.24)

The same procedure is pursued for the vapor phase. The complex solutions
are avoided in this formulation, and the contraction methods can process those.
The complete model, its variable and parameter specifications, and a physical
solution are presented next. Regarding the classical MESH equations of the total
condenser, its component balances, the summation relation of the liquid phase
and the energy balance are replaced by

ytr=N,i = xtr=N+1,i (4.25)

FV
tr=N = FD · (RC + 1) (4.26)

FL
tr=N+1 = FD · RC (4.27)

0 = FD · (hV
tr=N+1 − hL

tr=N+1) + QC . (4.28)

The total mole balance Eq. 4.26 is expressed using the reflux ratio. The reason
is that instances of iteration variables can be reduced in this manner. Only two
of the three unknown flows FV

tr=N , FL
tr=N+1 and FD remain, since the reflux ratio

is already specified. The same applies for the heat balance Eq. 4.28. Eq. 4.26

and 4.27 are implemented as functions, i.e., if the calculated variables FV
tr=N and

FL
tr=N+1 appear in an equation, they are replaced by the functional relationship

given by the right-hand side of the equation. Accordingly, they do not appear as
iteration variables and no initial bounds need to be specified. Especially for box
consistency methods such as Bnormal, this offers further reduction potential as
hidden dependencies are not lost (compare the examples from table 2.3). Since for
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the distillate flow rate of a stationary, flow-driven simulation of a column already
meaningful initial bounds can be given, i.e., it is non-negative and never exceeds
the flow rate of the feed, it remains as iteration variable. Another option would
have been to replace one of the functions 4.27 and 4.28 by FD as a function of RC,
FL

tr=N+1 and/or FV
tr=N . Similar to the total condenser, the internal flow rates of the

partial reboiler are expressed by the functions 4.29 and 4.30.

FL
tr=1 = FB · (RR + 1) (4.29)

FV
tr=0 = FB · RR (4.30)

Component balances and energy balance are formulated according to the Eq. 4.31

and 4.32.

0 = FB · ((ytr=0,i − xtr=0,i)− (RR + 1) · (ytr=0,i − xtr=1,i)) (4.31)

0 = FB · ((hV
tr=0 − hL

tr=0)− (RR + 1) · (hV
tr=0 − hL

tr=1)) (4.32)

The component balances of the tray section are replaced by component balances
whose balance volume ends at the outlet of the distillate and begins at the vapor
inlet of the current tray. This balance volume is sketched for the top tray in figure
4.4 by the dotted line. Thus, the balance equations of the generic tray model turn
into

0 =
NST

∑
s=tr

FF
tr=s · xF

tr=s,i + FV
tr−1 · ytr−1,i − FD · xtr=N+1,i − FL

tr · xtr,i (4.33)

0 =
NST

∑
s=tr

FF
tr=s · hF

tr=s − FD · hL
tr=N+1 + FV

tr−1 · hV
tr−1 − FL

tr · hL
tr + Qtr + QC . (4.34)

In these formulations, it again pays off that the initial interval of the distillate flow
can be chosen more precisely than the intervals of the internal flows. In flowsheet
simulators, the feed streams of a column as well as their enthalpies are usually
specified in the model and thus, enter it as real defined values.
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The hybrid approach is now studied on the test cases presented in the last chapter
regarding its capability as a global solver in section 5.2, i.e., to find all solutions
in a given initial box and as a local solver in section 5.3, i.e., to automatically
initialize root-finding algorithms that can quickly find one solution. The analysis
parameters introduced in section 3.10 are used to evaluate its performance. Pre-
viously, settings related to the IA-based contraction will be examined in section
5.1 to ensure it to be highly efficient in the hybrid approach. All tests have been
performed on a Notebook Intel i7 Processor (8x 1.8 GHz, 8. Generation) and
16 GB RAM with a Linux operating system. The results of all test runs can be
downloaded as a zip-file from depositonce1.

5.1 Contraction

To identify an efficient way of contracting NLE systems, various combinations
of the contraction methods from section 3.1 have been applied on the test cases
introduced in chapter 4. In all scenarios, only the first step of the hybrid approach
is applied until consistency is reached starting from initial variable intervals that
are all set to [−109, 109]. The relative and absolute tolerances are chosen as
εRel = 10−3 and εAbs = 10−8 and the resolution is set to 8. Besides, the maximum
number of boxes is limited to 1 initially. In order to also consider the removal of
discontinuities in the interior of variable ranges, three reduction steps are subse-
quently applied, as the maximum number of boxes is one in the first reduction
step. In the second reduction step the maximum number of boxes is increased by
one and a discontinuity can be removed so that both resulting boxes are further

1https://doi.org/10.14279/depositonce-18207
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Tab. 5.1: Results of combined contraction method, initialized with x(0) = [−109, 109]nvar .
The following settings were applied: resolution = 8, εRel = 10−3, εAbs = 10−8

and the notation is: Interval Newton (n), Bnormal (bc), optionally for Bnormal:
tighten_bounds (tb), HC4revise (hc).

Contraction / hc_n_bctb hc_n_bc

NLE εRADL CPU (s)
εRADL−εRADL

hc_n_bctb
εRADL

hc_n_bctb
CPU (s)

CSTR 1.61 × 10−8 0.30 0.0 0.29

Flash Unit 4.40 × 10−1 0.85 0.0 0.81

Total Condenser 1.58 × 10−1 27.42 4.05 × 10−5 12.25

Heavies Column 7.08 × 10−1 449.50 0.0 133.78

reduced. Finally, the relative average domain length εRADL and the CPU time are
tracked.

The results of the best combinations of contraction methods regarding the reduc-
tion of the initial variable domain are shown in table 5.1. All other combinations
tested can be found in Appendix C.1. For the four examples, the lowest εRADL

values could be achieved by combining all contraction methods (HC4revise, Inter-
val Newton and Bnormal). Only in the case of the Total Condenser, the additional
feature tighten_bounds could lower the εRADL further. However, the CPU time
increases noticeably through tighten_bounds. It is more than three times higher in
case of the Heavies Column, without any reduction in εRADL. Table 5.2 presents the
results of the single contraction methods: HC4revise and Bnormal. The Interval
Newton cannot reduce any of the initial boxes of the four examples without the
other contraction methods. Hence, its results are not shown here. However, all
values of εRADL are higher in the single contraction methods than in the combined
versions, presented in table 5.1. Thus, it seems reasonable to alternate between
the three contraction methods, despite the higher CPU time. The order of the
contraction methods in the combined versions is chosen as follows:

1.) HC4revise → 2.) IntervalNewton → 3.) Bnormal .
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Tab. 5.2: Results of single contraction methods: HC4revise (hc) and Bnormal (bc), initial-
ized with x(0) = [−109, 109]nvar . The following settings were applied: resolution
= 8, εRel = 10−3, εAbs = 10−8.

Contraction / hc bc

NLE
εRADL−εRADL

hc_n_bctb
εRADL

hc_n_bctb
CPU (s)

εRADL−εRADL
hc_n_bctb

εRADL
hc_n_bctb

CPU (s)

CSTR 1.14 × 10−4 0.16 3.08 × 10−3 2.20

Flash Unit 2.17 × 10−9 0.66 9.52 × 10−9 3.84

Total Condenser 1.82 × 100 3.38 1.24 × 100 99.75

Heavies Column 2.98 × 10−10 48.52 3.80 × 10−1 56.78

The contraction starts with HC4revise, because it is the fastest method with the
lowest εRADL values in three out of the four examples. When HC4revise reaches
consistency, Interval Newton continues as it is faster than Bnormal (see Appendix
C.1), and potentially HC4revise was already able to tighten the box well enough
for it to proceed. Finally, Bnormal is used to reduce the bounds. As long as any of
the currently applied methods can further contract the box, the approach cycles
through them until consistency is reached, and the reduction step terminates. In
the following investigations, the combination of all three contraction methods
is always applied. Optionally, the feature tighten_bounds is examined to check
whether it can contribute to a faster solution identification.

For the two versions (with and without tighten_bounds), the influence of the
resolution parameter is investigated. On one hand, it determines into how many
parts an interval, where a function is non-monotonic, is subdivided in order to
check them for root inclusion and to remove empty parts. On the other hand,
it sets the number of refinements applied in the tighten_bounds algorithm. For
the two combinations, the resolution parameter is successively set to 2n with
n = 0,1,2, . . . ,7 so that in total 16 cases per test example are investigated. Again,
the approach is initiated at x(0) := [−109, 109]nvar and three reduction steps are
applied. Only in the Total Condenser an increasing resolution can lower εRADL at all.
Figure 5.1 shows the change in εRADL and CPU time depending on the resolution
for the two versions. Through applying tighten_bounds εRADL declines clearly
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Fig. 5.1: Relative Average Domain Length (left) and CPU time (right) of Total Condenser
after three reduction steps, initialized with x(0) = [−109, 109]3, set tolerances:
εRel = 10−3, εAbs = 10−8.

with increasing resolution. However, the CPU time increases noticeably. Without
tighten_bounds, εRADL hardly changes up to a resolution of 32. After that, there
is a large drop in εRADL, which is related to the reduction of a non-monotonic
function domain. However, the CPU time grows less than with tighten_bounds.
While εRADL does not change with rising resolution in the other test cases, their
CPU time still increases. Like the Total Condenser, the version with tighten_bounds
takes always longer than without. In particular, the iteration of the largest NLE,
which is the Heavies Column, lasts for more than 2 h, when tighten_bounds is
applied at a resolution of 32. A good compromise seems to be a resolution of
8, because when tighten_bounds is used, it can reduce intervals to some extend
without noticeably slowing down the reduction of large NLEs. For simulations
beyond this work, it is recommended to choose an integer value out of the range
4 to 32 with tighten_bounds and 8 to 64 without.
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5 .2 Global Solver

Tab. 5.3: Varied options in IA iteration tests.

Parameter Tested Options Shorthand Notation

tightBounds true; false tb; -

cutBox all; tear cba; cbtv

splitBox forecastSplit; forecastTear; fcs; fctv;

tearVar; leastChanged tv; lc

5.2 Global Solver

This section addresses the research question of how well the hybrid approach
is suited as a global solver. Its performance is compared to the pure IA-based
solver without root-finding step. If a numerical solution can be found at an early
stage by root-finding, there is the possibility that the box surrounding it fulfills
the unique solution test before the box becomes degenerate. Hence, further box
reduction steps could be saved compared to the IA-based solver. As part of
the examinations, we also check which settings for cutting and splitting are best
suited to solve the system globally as quickly as possible. Two options for cutting
and four for splitting are tested, whose abbreviations are shown in table 5.3. For
the two versions of contraction, this results in 16 settings to be tested for each
NLE. The variable bounds are set to [−109, 109]. If a system cannot be globally
solved in 3000 s, the variable bounds are first coarsely narrowed. If this still does
not resolve the problem, then the method that achieves the largest box reduction
measured by εRADL in 3000 s is considered to be the most efficient. The relative
and absolute tolerances are set to εRel = 10−3 and εAbs = 10−8 and the resolution
value equals 8. Only for the Heavies Column the values of εRel and εAbs need to be
adjusted to 10−10 and 10−15 to compute one mole fraction with the lowest system
order of 10−13. As root-finding algorithm, Scipy’s Fsolve is applied in the hybrid
approach.

Tables 5.4 and 5.5 show the results of the tests. Only the CSTR and the Flash Unit
can be solved globally. The IA-based solver is faster than the hybrid approach
in both cases. A successful unique solution test occurs in both systems only in
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the last reduction step, i.e., when the boxes are almost degenerate. Since several
root-finding steps were performed during the iteration, the hybrid approach is
also slower than the IA-based solver. The latter, on the other hand, is very well
suited for both systems, since no process knowledge is required for initialization,
and all solutions have been found in a short time. The two models differ from the
other test examples in the small dimensions of their largest, complex subsystems,
which are three and eight.

Tab. 5.4: Most efficient global solution strategies of small systems in initial boxes x(0) :=
[−109, 109]nvar .

NLE Cut & nstep IA-based Solver Hybrid Approach

Split CPU (s) nsolved
nbox

CPU (s) nsolved
nbox

CSTR cbtv_lc 7 0.93 3/3 0.98 3/3

Flash Unit cbtv_tv 20 13.15 2/2 15.04 2/2

Tab. 5.5: Most efficient global solution strategies of intermediate and large systems in
more restricted initial boxes that are presented in Appendix C.5.

NLE Cut & nstep IA-based Solver Hybrid Approach

Split CPU (s) εRADL CPU (s) nsolved
nbox

Total Condenser cba_fcs 174 3156 7.6 × 10−6 3139 0/2

Heavies Column cbtv_ftv 55 3016 6.6 × 10−1 9144 0/15

According to the results in table 5.5, the Total Condenser and the Heavies Column
cannot be solved globally in 3000 s. For both systems, the variable bounds have
been roughly adjusted and can be found in Appendix C.5. In the case of the
Total Condenser, the root-finding algorithm Fsolve finds a numerical solution after
471 s, but the unique solution test is not satisfied at any time. After 10 478 s, the
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5 .2 Global Solver

IA-based solver can solve one box of the Total Condenser. There are six other boxes
present at this time. All intervals of the other boxes are either identical or close to
the solved box. If the test run is continued, further boxes are solved. In order to
label a box as solved, all of its variable intervals have to become degenerate. This
is true for most of them, but a few exist that don’t meet the tolerances although
they are closeby. Hence, as they are the only ones unsolved, they are exhaustively
bisected until each respective subbox is degenerate. In section 3.2 a method
has been presented to prevent exhaustive splitting in one variable dimension.
An alternative tolerance εuni is calculated and a unification of the subintervals
returned. Nevertheless, this method does not work if multiple variables have to
be bisected before the termination criterion is fulfilled. Only one variable at a
time is bisected in a reduction step followed by further box contraction so that
the connection to its formerly neighboring box is lost. In consequence, the solved
boxes cannot be easily unified. With the split method fcs, the cut method cbtv and
tight_bounds selected, the IA-based solver was able to solve all boxes after almost
four hours. The total number of boxes is 22. The variables, whose intervals differ,
are those describing the heat transfer in the subcooled and superheated section,
i.e., the heat transfer surface areas Asc and Ash as well as the temperatures Tsc,h,out,
Tsc,c,out, Tph2,c,out and Tsh,c,out, because each box lacks at least one intersection with
another box in one of their dimensions. As the surface area of the two-phase
section is three orders of magnitude larger than that of the superheated section
Ash and two orders larger than that of the subcooled section Asc, the system
seems to be ill-conditioned, which results in solution intervals for both, rather
than distinct values. This leads to the differing section outlet temperatures as well.
The ill-condition of the problem can also be seen in the high condition number of
the Jacobian matrix evaluated at the numerically found solution (κ2 = 4.8 × 106).

In the case of Heavies Column, the resulting four boxes after more than 3000 s
are not close to degeneration yet. Its largest reduction change with respect to
εRADL happens in the first reduction steps according to figure 5.2. In the fifth
reduction step, splitting occurs for the first time but the total box volume decreases
only slightly, and thus converges quite slowly to the real solution(s). All of the
variables that are independent of the largest complex subsystem are solved at this
point. However, the IA-based solver can only slightly reduce the intervals of its
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Fig. 5.2: Relative average domain length (top) and number of boxes over CPU time of
Heavies Column with εRel = 10−10, εAbs = 10−15 and resolution = 8.

iteration variables after the first box reduction step. In the hybrid approach, the
root-finding algorithm Fsolve could not find the numerical solution once within
the 3000 s, thereby the unique-solution test could not be fulfilled as well. NLEs
with large, complex subsystems like this one, whose largest, complex subsystem
has a dimension of 158, combined with a bad condition (κ2 = 3.4 × 1010) and a
high percentage of nonlinear terms (εnl = 0.56), cannot be solved globally in an
acceptable time with the IA-based methods used here.

The cutting method is essential in all test cases to avoid excessive box splitting
within the IA-based solver. Figure 5.3 shows the changes in relative average
box length and number of boxes over the first 14 s with and without cutting for
the Flash Unit. Without cutting, the number of split boxes increases steadily,
while the reduction in εRADL stagnates. In general, however, it cannot be said
whether all variables or only the tear variables should be used for cutting. In
the Total Condenser, the extra effort that results from cutting all variables leads
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Fig. 5.3: Relative average domain length (top) and number of boxes over CPU time of
Flash Unit with εRel = 10−3, εAbs = 10−8, x(0) = [−109, 109]29 and resolution = 8.

to less splitting and the hybrid approach works more efficiently than if only
the tear variables are cut. This is not the case for the other three test examples,
where cutting the tear variables is more efficient even if it results in more boxes.
Regarding splitting, there is no apparent tendency either. However, in three of the
four NLEs the most efficient IA methods (see table 5.4 and 5.5) are always related
to one of the split strategies based on the method split_box, namely: lc, ftv and
fcs. Just in the Flash Unit, tv is the most efficient choice, because this system has
only one tear variable.

Finally, the results show that the hybrid approach applied as a global solver does
not reduce the CPU time compared to the IA-based solver. The IA-based solver,
in turn, is just able to find all solutions of the test cases whose largest complex
subsystem does not exceed a dimension of 8 in 3000 s.
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5.3 Local Solver

Now we compare the hybrid approach and classical root-finding algorithms with
respect to their ability to locate solutions quickly. The question is whether the
box reduction of the hybrid approach is sufficient to generate an initial point in
short time, from which the selected root-finding algorithm converges. In the tests,
the root-finding step of the hybrid approach is fulfilled by a certain state-of-the-
art solver and its performance is compared to a corresponding reference run, in
which only the solver is applied. As state-of-the-art root-finding algorithms Fsolve,
SLSQP, IPOPT and Newton2 are examined. The Newton solver is tested with no
scaling as well as the two scaling methods MC29 and MC77, which have been
introduced in section 2.4.1. For the reference runs, each example is attempted to
be solved from the initial point x = (0.5, . . . ,0.5)T in the unbounded box, i.e., all
initial intervals are set to [−109, 109], or the adjusted boxes from the last section.
When intervals have been adjusted their midpoint is taken as initial point. For the
Flash Unit, the bounds of the mole fraction were reduced to [0, 1] to retain only
the physically relevant solution. Unless otherwise explicitly mentioned, 10,000

iteration steps and a function tolerance of 10−8 are used for these root-finding
reference runs. The hybrid approach is initialized with the identical bounds that
are used in the reference runs. All 16 possible settings for contraction, cutting and
splitting are tested to identify the fastest strategy for each test case. Resolution,
tolerance settings, and number of maximum iteration steps for root-finding in
the hybrid approach correspond to the values of the last section. In general, a
maximum of 10 box reduction steps is used, because as already shown in the last
section, the initial box volume reduces the most in the first reduction steps.

Table 5.6 contains the most efficient settings of the hybrid approach for each of
the root-finding algorithms that is able to find a numerical solution. Only those
root-finding algorithms are listed, that could solve the NLE as part of the hybrid
approach, reference run, or both. Generally, only IPOPT and Fsolve in case of
the CSTR as well as IPOPT and SLSQP in case of the Flash Unit are able to find
a solution without box reduction and are thus, faster than the hybrid approach.
In both examples, however, one box reduction step suffices for most other root-
finding algorithms to converge as well. Since after one box reduction step neither

2Used nomenclature: fslv for Fsolve, slsqp for SLSQP, ipopt for IPOPT and nwt for Newton

130



5 .3 Local Solver

Tab. 5.6: Comparison of root-finding with hybrid approach for the test cases.

NLE Solver Cut & nstep CPU (s), Runs:

Split Reference Hybrid Approach

CSTR fslv − 1 0.03 0.10

ipopt − 1 0.06 0.13

nwt − 1 − 0.10

nwt_mc29 − 1 − 0.10

nwt_mc77 − 1 − 0.10

slsqp − 1 − 0.13

Flash Unit fslv cbtv 3 − 3.05

ipopt − 1 0.54 0.72

nwt cbtv 3 − 3.36

nwt_mc29 − 1 − 0.58

nwt_mc77 − 1 − 0.60

slsqp − 3 0.41 3.18

Total fslv cbtv 3 − 39.54

Condenser ipopt − 1 − 9.65

nwt_mc29 − 1 − 9.87

nwt_mc77 − 1 − 9.00

slsqp − 1 − 9.24

Heavies ipopt − 1 − 98.12

Column
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cutting nor splitting occur (indicated by − in table 5.6), the box reduction depends
in this case only on the combined contraction by HC4revise, Interval Newton and
Bnormal. In the two test runs of the Flash Unit by Newton and Fsolve, the hybrid
approach requires three box reduction steps. Here, the solution is actually not
found by the root-finding algorithms, in fact, the system is globally solved by
the IA-based box reduction. Hence, another advantage of the hybrid approach
is that, whenever a root-finding algorithm does not converge or converges to an
undesired solution outside the variable bounds, the hybrid approach still keeps
the possibility to find the solution within the bounds as a pure IA-based solver.

In the other two NLEs, numerical solutions can only be found by the hybrid
approach. However, not all root-finding algorithms converge within the maximum
of 10 box reduction steps. In the ill-conditioned Total Condenser, the results show
that scaling the Newton algorithm leads to a successful iteration. The Heavies
Column can only be solved by IPOPT. For this particularly challenging system,
more effort has been put into the initialization of the reference run. The initial
point and initial bounds can be found in the Appendix in table C.6 as well as in
MOSAICmodeling’s evaluation (ID: 165321). The initial values have been chosen
carefully using prior process knowledge, e.g., the tray temperatures lie between
the boiling temperatures of the non-azeotropic mixture and decrease towards the
column’s head. Furthermore, it has been considered that the functions’ residuals
of the root-finding problem take finite values at the initial point, i.e., the problem
is feasible. None of the root-finding solvers converge under these conditions in the
reference runs. Besides, an export to AMPL has been performed for comparison.
The AMPL export from MOSAICmodeling creates an optimization problem from
the NLE with constant objective function, for which the powerful presolve option
can be switched on and is applied in advance. But even with this methodology
the selected solver IPOPT cannot find a solution starting from the initial point or
the midpoint of the initial box and aborts after a short time with a "Restoration
Phase Failed" or "Converged to a point of local infeasibility" exception. However,
one box reduction step applied seems to be sufficient here to reduce in particular
the SRK parameters (amix,tr, bmix,tr, aEoS) and the auxiliary variables (auxtr) to such
an extent that IPOPT converges. There seem to be infeasible points or regions
especially in their intervals, which otherwise, complicate a numerical iteration.
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Tab. 5.7: Comparison of reduction efficiency after nstep = 1 and nstep = 15 box reduction
steps applied on classical and reformulated NLE Heavies Column.

Model nstep = 1 nstep = 15

εRADL
classical 0.7132 0.6777

εRADL
re f ormulated−εRADL

classical

εRADL
classical

3.11 × 10−14 −2.49 × 10−3

It is interesting to note that the hybrid approach only works well on the refor-
mulated system as described in section 4.5. Comparing the boxes of the classical
column model with those of the reformulated one, it is noticeable that the boxes
differ only marginally in their εRADL,(1) values after one box reduction step. The
original system has even a slightly better performance on the aV

mix,tr parameters,
which results in the lower εRADL,(1). The reformulation has actually been per-
formed to reduce the occurrence of the internal flow rates and their enthalpies
and compositions in the associated balance equations of the tray section in order
to improve the reduction performance on the initial box, which does not seem to
be the case in the first reduction step. After 15 box reduction steps however, the
εRADL,(15) of the reformulated system is actually lower. Returning to the hybrid
approach, this is still only successful in case of the reformulated system. In con-
sequence, the actual improvement is achieved in the root-finding iteration. This
is validated through initializing the reformulated system with the box obtained
from one box reduction step by the classical model. In this case, IPOPT also con-
verges starting from the midpoint of this box. One possible reason could be that
the truncation error that occurs when balancing tray-to-tray is prevented, since in
the reformulated system, the balance volume always reaches from the head of the
column to the current tray.

The number of trays of the column has been increased to test an even larger NLE
with a larger complex subsystem. The initial intervals of the tray related variables
have been chosen in the same way as the ones from the model with five trays. The
reference runs are again unsuccessful, while the hybrid approach converges for
all tested numbers of trays applying IPOPT after one box reduction step. Time
increases approximately linearly with number of trays as shown in figure 5.4,
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Fig. 5.4: Change of εRADL and CPU with increasing number of trays in the NLE Heavies
Column.

while εRADL rises but seems to approach a value of 0.721. It is nice to see that if
the operating range of the column can be roughly estimated, even an increasing
number of trays does not present a major hurdle for the hybrid approach.

Finally, it is observed that the hybrid approach is able to solve all test cases
in a short time and it is always the more robust solution strategy compared to
conventional root-finding. Large NLEs can be solved with just a few box reduction
steps and IPOPT applied, even where IPOPT in combination with the presolve
strategy from AMPL fails. Cutting has not even been used in most test runs,
since only one box reduction step is required before the root-finding algorithm
converges. Splitting is not necessary at all. The method tighten_bounds can not
achieve any improvement either. However, to ensure that the hybrid approach
works efficiently, equations must be formulated carefully, as exemplary discussed
in sections 4.4 and 4.5.

5.4 Parallelization

By means of the parallelization described in section 3.8, several boxes resulting
from splitting can be processed simultaneously within one reduction step. This
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Tab. 5.8: Comparison of fastest runs of parallelized IA-based solver out of 2,3 . . . 6 cores
applied, represented by par and sequential process represented by seq.

NLE Cut & Split Corespar
εRADL

seq

εRADL
par

CPUseq
CPUpar

(s/s)

Flash Unit cbtv_tv 2 6.32
6.32 × 10−10 13.15

11.21

Total Condenser tb_cbtv_fcs 6 2.78
2.78 × 10−6 14351

8706

Heavies Column cbtv_ftv 4 6.59
6.57 × 10−1 3009

1557

methodology is suitable when multiple boxes occur. The processing time of the
CSTR is so short that the effort is pointless. When the hybrid approach was
used as the local solver, no splitting occurred at all. Therefore, only the test
cases, in which the pure IA-based solver searched for the global solutions, are
parallelized. The Heavies Column is the only example of the four, which could not
be solved globally. Hence, only the time is tracked until an equivalent εRADL to the
sequential procedure is reached. A total of two to six process cores are examined
for a specific cut and split strategy per example. Table 5.8 shows the results of
the fastest runs with parallelization, denoted by par, and without, represented by
seq. In all cases, parallelization reduces the CPU time. Depending on the number
of boxes that occur during the iteration, different numbers of cores lead to the
fastest runs. A maximum of 5, 34 and 14 boxes occur during IA-based reduction
processes of the Flash Unit, Total Condenser and Heavies Column respectively. In
this way, it can be concluded that the maximum number of cores does not always
lead to the shortest time, but the more boxes occur during the iteration, the more
cores should be used to reduce the CPU time.
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In the completed studies, the hybrid approach convinces mainly as a local solution
strategy. Only a few IA-based box reduction steps were necessary, before the
state-of-the art root-finding algorithms quickly converged to a solution in all
tested cases. Although the hybrid approach could globally solve the NLEs with
smaller complex subsystem (dimension ≤ 8), it did not show any reduction of
the CPU time by a successful unique solution test compared to the pure IA solver.
Moreover, the hybrid approach can only efficiently solve the two NLEs with the
larger complex subsystems, when they are initialized with some general process
knowledge and not without the IA favorable reformulations. Generalized findings
from the studies concerning reformulation and initialization are given in section
6.1 and section 6.2. Section 6.3 analyses the test results regarding the complexity
of the examined process models. In section 6.4 to 6.6, the application areas for
IA-based solver, root-finding algorithm and hybrid approach with respect to the
model’s complexity are discussed. Tools for debugging are introduced in section
6.7. Finally, other functionalities that have been tested as part of the hybrid
approach to increase its efficiency without success so far, are presented in section
6.8, before summarizing the work in section 6.9, and giving an outlook in section
6.10.

6.1 Reformulation

In the scope of this work, the structure of equations was also investigated in
order to find advantageous formulations regarding the reduction of intervals by
IA-based methods and the speed of real arithmetic methods. This is illustrated
now for small examples taken from the tested NLEs.
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At first, the hybrid approach could not reduce the initial intervals of the mole
fractions in the Heavies Column at all. Its VLE is described by the φ− φ approach

φL
i · xi = φV

i · yi . (6.1)

In particular, the function for determining the fugacity coefficients φL
i and φL

i ,
which is

φ = exp((Z − 1) · ( b
bmix

)− ln(Z − B) (6.2)

+
amix

bmix · R · T
· ( b

bmix
− 2 · ( a

amix
)0.5) · ((2 − n) · ln(

Z + B
Z

)

+ (n − 1) · 1
2 · (2)0.5 · ln(

Z + B · (1 + (2)0.5)

Z + B · (1 − (2)0.5)
)) ,

was responsible for the bad performance of the contracting methods, when ap-
plied on the intervals of the mole fractions. Evaluating Eq. 6.2 by IA, produces
wide ranges of values for the fugacity coefficients due to interval dependency and
non-degenerate intervals with undefined function expressions resulting in ±∞
interval bounds. Hence, these wide ranges could not be used for any interval
reduction in Eq. 6.1. In the thesis of Reum (2022), various reformulations of Eq.
6.2 have been examined in order to reduce the intervals of the fugacity coefficients
further. First, a significant reduction in the speed has been achieved by using the
natural logarithm instead of the exponential function so that Eq. 6.2 becomes

lnphi = (Z − 1) · ( b
bmix

)−
:=TM1⏟ ⏞⏞ ⏟

ln(Z − B) (6.3)

+

:=TM2⏟ ⏞⏞ ⏟
amix

bmix · R · T
· ( b

bmix
− 2 · ( a

amix
)0.5) ·((2 − n) · ln(

:=TM3⏟ ⏞⏞ ⏟
Z + B

Z
)

+ (n − 1) · 1
2 · (2)0.5 · ln(

:=TM4⏟ ⏞⏞ ⏟
Z + B · (1 + (2)0.5)

Z + B · (1 − (2)0.5)
)) .

lnphi is an output variable here, not a function. Eq. 6.1 thus changes to

lnphiL
i − lnphiV

i = ln
yi

xi
. (6.4)
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The reduction in speed due to the replacement of the exponential term by the
inverse operation of the natural logarithm is specific to the applied IA package
mpmath . Code A.1 in the Appendix contains a simple computer experiment
and its results, which verifies this. In order to improve the reduction via IA,
Eq. 6.3 has been further reformulated. Thereby, critical terms (TM1 to TM4) were
identified, generalized and corresponding reformulations developed to improve
the reduction efficiency. The generalized form of these terms as well as some
more reformulations, either identified by ourselves or found in the book of Moore
et al. (2009, pp. 19-50), are summarized in table 6.1. Reformulations derived for
Eq. 6.3 are discussed now. Subtracting two variables x and y in the denominator
of fractions or in logarithms as in term TM1, lead to undefined ranges of values
in IA-based evaluation as long as the condition x ∩ y ̸= ∅ holds. Either this
condition must be avoided by a suitable choice of initial intervals or an auxiliary
variable aux with an initial interval of 0 < aux may be introduced. The latter is
applied to replace TM1

TM1 = ln aux (6.5)

aux = Z − B, aux > 0 . (6.6)

In TM2, interval dependency is caused by the multiple occurrences of the vari-
ables amix and bmix. All other variables R, T, a and b are either design variables or
functions depending on design variables only so that their intervals are degener-
ate. The number of instances of amix and bmix is reduced by means of quadratic
completion so that TM2 is exchanged by

TM2 = (
b

R · T
· ( (amix)

0.5

bmix
− (a)0.5

b
)2 − a

b · R · T
) (6.7)

The generalized form of quadratic completion is shown in row c) in table 6.1.
Interval dependency occurs only when the multipliers p1 and p2 have different
signs. In TM3 the occurrence of Z is reduced to avoid interval dependency by

TM3 = 1 +
B
Z

. (6.8)
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TM3 is equivalent to the inverse of function d) from table 6.1, so reformulation d)
can also be applied here and leads to Eq. 6.8

TM3 =
Z + B

Z
=

(︃
Z

Z + B

)︃−1

=

(︄
1

1 + B
Z

)︄−1

= 1 +
B
Z

. (6.9)

There are many other formulations that can be similarly put into such a standard
form of table 6.1 to save the number of reformulation rules for special cases.
Finally, TM4 can be rewritten as

TM4 = 1 +
2 · (2)0.5

Z
B + 1 − (2)0.5

(6.10)

to reduce the number of instances of Z and B. The generalized reformulation
according to Eq. 6.10 is shown in row e) of table 6.1. One important, additional
reformulation that improves the performance of the IA-based reduction is taken
from the equation system of the Total Condenser, namely the calculation of the
logarithmic temperature difference

∆Tln =
∆Tl − ∆Tr

ln ∆Tl
∆Tr

. (6.11)

To avoid value ranges, where the logarithmic function is not defined, i.e., when
∆Tl ∩ ∆Tr ̸= ∅, the quotient is substituted by an auxiliary variable aux with
0 < aux. Eq. 6.11 is then replaced by

∆Tln =
∆Tl − ∆Tr

ln aux
(6.12)

aux =
∆Tl

∆Tr
. (6.13)

This corresponds to the generalization (i) in table 6.1. Table 6.1 is extensible
and can be used as a guideline for formulating equations or as a basis for an
automated reformulation algorithm.
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Tab. 6.1: Recommended reformulations for hybrid approach.

Function Reformulation ID Condition Reason

f (x) = exp (x) aux, ln (aux) = x a) − Speed

f (x) = p0 + p1 · x + p2 · x2 p2 ·
(︂

x + p1
2·p2

)︂2
− p2

1
4·p2

+ p0 b) |p1|+ |p2| Interval dependency

̸= |p1 + p2|

f (x) = ∑n
p=0 pp · xp p0 + x · (p1 + x · (p2 + . . . c) ∑n

p=0 |pp| Interval dependency

xn−1 · (pn−1 + pn · x) . . . ) ̸= |∑n
p=0 pp|

f (x,y) = x
y+x

1
y
x +1

d) − Interval dependency

f (x,y) = y−x
y+x 1 − 2

y
x +1

e) − Interval dependency

f (x,y) = x
y−x

1
y
x −1

f) − Interval dependency

f (x,y) = 1
y
x −1

1
aux−1 , aux = y

x g) x ∩ y ̸= ∅ Infeasibility

f (x,y) = 1
y−x

1
aux , aux = y − x h) x ∩ y = ∅ Interval dependency

f (x,y) = 1
y·x−1

1
aux−1 , aux = y · x i) 1

x ∩ y ̸= ∅ Infeasibility

f (x,y) = 1
ln ( y

x )
1

ln (aux) , aux = y
x j) x ∩ y ̸= ∅ Infeasibility

f (x,y) = ln (y − x) ln (aux), aux = y − x k) x ∩ y ̸= ∅ Infeasibility1
4
1



6 Analysis of Results

6.2 Initialization

Of course, the tighter the initial variable bounds are chosen, the less work and
time is required for the hybrid approach. On the one hand, fewer contraction steps
are needed, on the other hand, some infeasibilities disappear and the impact of
interval dependencies is lower, so that excessive splitting can be prevented. Table
D.1 to table D.3 in the Appendix contain guidelines according to which variables
can be initialized under certain model conditions. However, this list has a strong
focus on the case studies of this thesis and can be expanded for new process
units.

6.3 Model Complexity

A definition of complex systems, as used in the work, has already been given
in section 4.1. Parameters were also introduced in that context to quantify the
complexity of an NLE’s dominant subsystems, namely: Its dimension, the non-
zero density of its Jacobian matrix, the nonlinearity ratio of these non-zero entries
and the condition number of its Jacobian matrix. Theoretically, more than one
dominant subsystem is possible. However, in the ones tested here, it was always
limited to one subsystem with a significantly higher dimension. Now, using these
parameters, the application range of the hybrid approach is to be defined in com-
parison to the sole IA-based solver and root-finding based algorithms, taking into
account the results from the computational experiments. In addition to the four
examples discussed in this thesis, the four other examples from Appendix B will
be considered as well. In contrast to the condition number, the other three quan-
tities can be determined independently of the initialization of the problem and
therefore seem to be better suited to define the range of application. Figure 6.1
shows the nonlinearity ratio plotted over the dimension of the largest subsystem
for all tested examples. In the Appendix in figure D.1 an analogous diagram
is shown, which plots the non-zero density versus dimension of the largest sub-
system. However, the nonlinearity ratio seems to contribute more decisively to
whether a system can be solved or not by a certain solution strategy.
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Fig. 6.1: Nonlinearity ratio versus dimension of largest subsystem for the tested examples
and recommended application area for global solver ( ), root-finding algorithm
( ) and hybrid approach ( ).

6.4 Global Solution

If the root-finding is turned off, the algorithm acts as a pure IA-based solver. If
no wide infeasibilities are present in the initial box or have been successfully
removed by reformulation, the IA-based solver seems to find all solutions up to
a dimension of the largest subsystem of eight in the case of the tested examples
in less than 15 s (covered by the yellow shaded area in figure 6.1). The variable
intervals were not restricted at all, i.e., they had their default boundary values of
±109. With increasing dimension this appears to be possible only if some effort
has been put into the initial variable bounds. Thus, the Reactive Flash Unit can be
solved globally, but the IA-based solver needs 552 s, while a local search by IPOPT
takes only 6 s to find the solution. Furthermore, clustering around a solution can
occur as in the case of Total Condenser and lead to the fact that there is not only
one solved box in the required tolerance, but very many, which again slows down
the algorithm considerably.
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6.5 Root-finding

For larger systems, it usually becomes more difficult or practically impossible to
find all solutions due to clustering, excessive box splitting, and the increasing time
required by an IA-based reduction step. State-of-the-art numerical solvers, on the
other hand, find a solution quickly if the dominant subsystem of the process
model is not so strongly nonlinear and if, as the dimension of the dominant
subsystem increases, a little more effort is put into its initialization as in the
case of Column Methanol Water. The initialization is included in table C.2 in the
Appendix. When there is sole interest in finding one feasible solution, then the
pure root-finding is superior to the IA-based procedure and the hybrid approach
because of the speed. The larger the nonlinearity ratio, the more difficult the
search for an initial point becomes, where a root-finding algorithm converges
from. To some extent trust region or line search strategies can help, which have
been introduced in section 2.3. However, in ill-conditioned systems the method
might stagnate or converge to undesired solutions. In least-squares minimization
problems, the solvers may also terminate at one of the numerous local minima.
Hence, none of the root-finding algorithms manages to solve the Total Condenser,
Partial Condenser and the Heavies Column without box reduction. According to
the results, it is suggested that up to a nonlinearity ratio lower than that of the
Total Condenser, which is around 0.36, and larger than that of the Column Methanol
Water, which is around 0.1, pure root-finding algorithms in combination with
a line search or trust region strategy are sufficient. It is assumed that with an
increasing dimension of the largest subsystem, root-finding algorithms can only
solve those with lower nonlinearity ratios. Hence their application area decreases
with higher dimensions and the hybrid approach should be applied instead. An
exact limit between both strategies can not be given at this point. To improve
robustness of the numerical iteration, it turned out to be useful to decompose the
overall system in general and to solve the subsystems sequentially. This also led
to improved conditions in the subsystems as had already been shown in Bublitz
et al. (2017a). Scaling the Newton algorithm with MC29 or MC77 in general leads
to better convergence, while the unscaled Newton often fails.
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6 .6 Hybrid Approach

6.6 Hybrid Approach

From figure 6.1 it can be seen that the hybrid approach has its merits in the
area of high nonlinearity ratios and higher dimensions of the largest subsystem,
especially when only one feasible solution is sought. Here the other two strategies
take too long or fail, for example in the case of the Total Condenser, Partial Condenser
and Heavies Column. For smaller dimensions, of course, it finds all solutions just
like the IA-based solver. It turns out that the unique solution test does not save
any time in the case studies since it was only satisfied by non-empty boxes close
to the solution. To the contrary, the numerical iteration slowed down the hybrid
approach compared to the pure IA-based solver. An advantage over the IA-
based solver is, however, that a numerical solution is returned as soon as it has
been found. This can happen well before the termination of the IA-based solver.
In general, IA-based solvers and hybrid approach have the property of finding
more than one solution and can prove that a box has only one solution by a
successful unique solution test. Thus, they are quite superior to numerical solvers
in this application area, although they require more time. Another observation
is that the nonlinearity ratio hardly changes with increasing number of stages
of the columns (it drops slightly), probably because this ratio is constant for the
equations belonging to one stage. The small difference comes from the fading
influence of the related equations to reboiler and condenser. Regarding the Heavies
Column, the hybrid approach can find a solution for all tested numbers of stages
without the need to further narrow down the variable bounds with increasing
dimension.

6.7 Debugging

To err is human. During modeling, errors often sneak into the formulation of
equations or into the initialization of variables. In complex process models, the
error source can be less evident and the search for the error is even more frus-
trating, because the error messages are usually not very specific. The best advice
is to build up the equation system modularly in subsystems from the very start
and to check them successively. This also allows for reuse of the modules in other

145



6 Analysis of Results

equation systems, e.g., for the calculation of phase equilibria. Assume that this
modularization has already been done, and there remains a subsystem, which
cannot be solved. There are now three possible types of error: a structural error
in the equation system, an initialization error concerning the initial values or
variable bounds, or an error in the solution algorithm. How to efficiently debug
the solution algorithm is explained in Appendix D.3. Now, tools are presented,
which were developed in the context of the hybrid approach, in order to be able
to identify errors of the first two groups.

A structural error means that the equations of the system are linearly dependent
and there are infinitely many or no solutions. This contradicts the requirement
of the hybrid approach, which only works for well-determined NLEs. Some
linear dependencies can be detected using the DM decomposition. Applying
the UDLS PYTHON_NLE_ModOpt_1.0.moslsp (ID:106247) in MOSAICmodeling,
Python code can be generated to solve a DM decomposed NLE directly using
the Newton method. In contrast to the hybrid approach, the incidence of the
Jacobian matrix is directly output graphically in addition to a separate analysis
text file. Some structural errors become immediately apparent by zero entries on
the diagonal of the matrix. For example by mistake, both molar fractions of the
binary feed mixture of the Flash Unit might have been declared as design variables,
while the temperature of the vessel is accidentally chosen to be iterated. Hence,
the summation relation of the feed is overspecified while there are infinitely
many solutions to the composition of the phase equilibrium, i.e., it is under-
determined. The corresponding Jacobian matrix is shown in figure 6.2a. One
recognizes immediately the incomplete diagonal. The numbering of the matrix
rows corresponds to the global indices of the equations, via which one can directly
determine the overspecificed summation relation that has the global index four
in the considered system. The analysis text file contains a corresponding legend
that helps to identify this critical equation and fix the model subsequently.

An initialization error produces either an abortion of the numerical iteration, e.g.,
because the Jacobian matrix is already singular at the initial point, or an abortion
of the box reduction due to an empty initial box. An abortion of the numerical
iteration is no tragedy, because the hybrid approach simply continues in this
case. Nevertheless, it would be nice especially in complex systems that cannot
be solved globally, if the numerical solver converges after the first box reduction
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( ), failed entries ( ) and solved entries rely-
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Fig. 6.2: Jacobian incidence matrices of Flash Unit used for error detection.

steps. A solver abortion can often be avoided by reconsidering the initial values
or reformulating equations as it has been exemplified in sections 6.1 and 6.2. To
identify the critical equations, which should be reformulated, again the UDLS
PYTHON_NLE_ModOpt_1.0.moslsp (ID:106247) helps. It generates a colored
Jacobian matrix that pictures the solver’s success as shown in figure 6.2b. The
solver processes the squared blocks along the diagonal. If such a block contains
only green entries, the corresponding subsystem could be solved. Blocks with red
entries could not be solved and those with yellow entries could be solved but they
depend on red blocks, i.e., variables, which originate from the failed subsystems.
In consequence, decomposition is used here to debug the model. The red blocks
should be successively analyzed and reformulated if necessary. In the example in
figure 6.2b the first subblock cannot be solved, because of a division by zero at the
initial point. An abortion of the box reduction in general means that the variable
bounds do not fit to each other. In this case, it would be helpful to localize the
source more precisely. For this reason, the equation and variable that led to an
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empty box are saved temporarily. If there are several boxes, the last box identified
as empty is saved. The critical equation and variable, as well as the initial and
final intervals of all other variables in the equation before termination, are written
to a text file.

Fig. 6.3: Error text file to identify inconsistent variable intervals of van der Waals’ System.

For example, let vph be incorrectly initialized to [5, 10] in the van der Waals’ System.
The hybrid approach terminates after one reduction step with the error text file
shown in figure 6.3. It is easy to see that the final intervals do not match in
this case. In more complicated cases, the final bounds at least give a clue which
variable interval seems to be strange. Possibly, another equation in which this
variable appears, was set up incorrectly so that the expected variable intervals are
infeasible. Hence, such equations should be carefully checked. If the error cannot
be identified via this methodology, only debugging the algorithm will help.

6.8 Things that did not work out

During the development of the hybrid approach further features were tested.
However, they could not contribute to its performance increase. Firstly, various
preconditioning methods can be applied in the Interval Newton. The point of
expansion xc corresponds to the midpoint of the intervals in this work. Alter-
natively, a function called condJ was implemented, whereby, in addition to the
midpoint, the point at the lower bounds of all variable intervals x and the point
at the upper bounds of all intervals x can be considered. From the three points,

148



6 .8 Things that did not work out

the one with the lowest condition number κ2 is then selected

xc := min{κ2 ((J(x)) , κ2 (J(m(x))) , κ2 (J(x))} . (6.14)

However, in all tested cases, the midpoint was always chosen and the evalua-
tion of κ2 at the three points only slowed down the process. Secondly, there
are three more options to precondition the Gauss-Seidel step. The real-valued
preconditioning matrix P , is defined for the three cases as follows

– inverseCentered: P := m(J)−1

– inversePoint: P := J(xc)−1

– inverseDiagonal: pj,i :=

⎧⎨⎩0 if j ̸= i

m(j
j,i
)−1 if j = i

The entries pj,i of P are used to calculate the preconditioned Jacobian matrix
and vector of functions’ residuals according to Eq. 3.3 and 3.4. They are in
turn inserted into the Gauss-Seidel step according to Eq. 2.96. The method
inverseCentered has already been discussed in section 2.6.2. The method
inversePoint seems to be useful in combination with condJ as the best con-
ditioned Jacobian matrix out of the three is employed for scaling. Neverthe-
less, this method can be combined with center as well. The preconditioner
inverseDiagonal does not depend on the choice of xc. It is a diagonal matrix,
which simply takes the inverse of the interval midpoints on the diagonal of the
Jacobian matrix. This method is the least costly one out of the four. However,
all three preconditioning methods resulted in irregular matrices, especially in the
first box reduction steps, which in turn caused the variable intervals not to be
reduced. Possibly, an increase in efficiency only occurs when the interval bounds
are already close to the solution. However, such an investigation was not carried
out within the scope of this work.

Next, affine arithmetic using the Python package affapy extends the function
evaluation by the classical, so-called natural interval arithmetic. Affine arithmetic
can partly tackle the interval dependency issue as it transforms a classical interval
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x into its affine form

x := m(x) + ϵ1 · 0.5 · w(x), ϵ1 = [−1, 1] . (6.15)

For example the mathematical expression

f (x) = x2 − x (6.16)

evaluated by natural IA in the interval x = [0, 1] equals f (x) = [−1, 1]. Using its
affine form

f (x) := m(x)2 − m(x) + ϵ1 · 0.5 · w(x) · (2 · m(x)− 1) + ϵ1 · 0.25 · w(x)2 (6.17)

the interval can be further tightened to f (x) = [−0.5, 0.0]. However, the evaluation
of functions by affapy slowed down the whole procedure very much. Tighter
bounds in one reduction step could be achieved but in the same time the boxes
could be reduced much further by contraction, cutting, and splitting only. In
figure D.2 in the Appendix this is illustrated for the box reduction of the Flash
Unit.

Another functionality tested has been a set of sampling methods with and without
a multi-start procedure. According to this, the reduced, feasible regions of the
DM-decomposed subsystems can be well mapped via sampling methods. In the
scope of this work samples generated by the latin hypercube method (McKay et
al., 1979), the low discrepancy sequences of Hammersley (Hammersley and Hand-
scomb, 1964), and Sobol (Sobol, 1967) have been tested as well as the Covariance
Matrix Adaption Evolution Strategy (CMAES) (Hansen, 2016) from optuna which
is a Python package. The sample or several samples with the lowest functional
residuals of the NLE are subsequently used as initial point(s) for the numerical it-
eration. In general, the solutions could also be found via sampling, but only if this
was also possible via the midpoint. However, the computation of the midpoint
is much faster, which is why no merit in sampling could be observed so far. The
idea was that especially in large and complex systems the chance is not very high
that the midpoint of a box is a converging initial point and by sampling one or
even several better suited points can be found to increase the robustness. But the
space that needs to be sampled in the subsystem of the Heavies Column for exam-
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ple is much too large to get close to a solution via this approach. Generating 5000
samples by optuna’s CMAES took more than 80 min. One idea to increase the
efficiency of the sampling methods was to use the BBTF matrix decomposition in-
stead of DM (see section 2.4.2) and to resolve only the relatively low-dimensional
subsystem of tearing variables via the sampling methods with a high number of
samples. The midpoint was still used for the other subsystems. However, the
numerical iteration was always unstable despite scaling of all subsystems.

Finally, in the beginning not only parallelized contraction of the boxes but also
of the variables was tested. However, the box can be reduced less within one
reduction step, since already reduced variable intervals are not updated before
the reduction of the upcoming variable intervals during one contraction step. The
program was tested with eight process cores at maximum. If in the future more
cores are easily available this option could become relevant again, because the
time reduction of one reduction step might pay off the further required reduction
steps. In Bublitz et al. (2021b) was already shown for Bnormal, which operations
within its algorithm can be parallelized efficiently.

6.9 Conclusion

In this work, a method was sought to bridge the gap between increasingly complex
process models and their solvability using conventional numerical methods. In
particular, this involved a generally applicable initialization strategy for NLEs.
For this purpose, the combination of IA-based and root-finding algorithms was
considered promising. The IA-based algorithm can discard infeasible points or
regions, where model equations or their derivatives are not defined, and thus,
pave the way for a fast root-finding iteration. This so-called hybrid approach was
implemented as part of a custom package named modOpt in Python. A UDLS
was created in MOSAICmodeling to apply the hybrid approach to NLEs from
MOSAICmodeling, where the test cases were implemented.

In the first version, the hybrid approach only included the conventional IA-based
contraction methods: Interval Newton and HC4revise in combination with the
state-of-the-art root-finding algorithms: Scipy’s Fsolve and SLSQP as well as
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IPOPT and a self-implemented Newton, according to steps one to three of the
hybrid approach. Since the reduction of the interval bounds was insufficient
in the VLE calculations, the method Bnormal as well as the additional feature
tighten_bounds were developed. Their scope is limited to equations with multiple
instances of one or more variables, in which interval dependency occurs, e.g., in
the calculation of fugacity or activity coefficients to reduce their intervals further.
In addition, Bnormal is able to directly remove infeasible values from the variable
domain and thus, clears the way for root-finding algorithms. Since contraction-
based IA methods did not always lead to the desired physical solution when the
NLE had more than one solution, the hybrid approach was extended by splitting
(step five of the hybrid approach). Independent of the variables selected for
splitting, it significantly increased the number of boxes and CPU time in complex
systems with a dimension of eight and higher. To avoid extreme box splitting,
further functionalities were developed such as cutting (step four of the hybrid
approach), a linearly increasing restriction of the maximum number of boxes in
the ongoing process, and the forecast split strategy. In the latter, splits of different
variable intervals are considered and exactly that split is carried out, which can
subsequently reduce the two subboxes the most by contraction. For cutting and
splitting, all variables or only the tearing variables can be chosen. Moreover, for
splitting, those variables can be selected whose intervals have changed the least
compared to the last split or to their initial bounds, if no split has occurred yet. To
speed up the iteration process in the presence of several boxes, the box reduction
was parallelised as well. Thus, the hybrid approach achieves the initially set
research goals as follows:

– Infeasible points or regions are filtered out by means of Bnormal

– Initial box is efficiently reduced through the combination of the contrac-
tion methods and the development of new methods to avoid extreme box
splitting

– Recurrent root-finding steps are an inherent part of the hybrid approach, in
which the numerical solver is started from the midpoint of the current box

On this basis, the initially posed research questions will be finally answered
now:
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RQ1. How well does the hybrid approach perform in locating a desired solution of an NLE
compared to state-of-the-art root-finding algorithms?
For some of the tested NLEs, especially those with a large complex subsys-
tem, a high condition number and/or a high nonlinearity ratio, the state-
of-the-art numerical solvers could not find any solution. However, at most
three box reduction steps were necessary in the hybrid approach to achieve
convergence. Yet, there were also a few other NLEs, which could be solved
directly by the root-finding algorithms in less time than the hybrid approach
due to the absence of the more time-consuming box reduction.

RQ2. How well does the hybrid approach perform to solve an NLE globally compared to a
pure IA-based solver?
The expectation that a successful unique solution test in combination with a
numerical solution, previously found in a root-finding step, could terminate
the IA-based iteration earlier, was not fulfilled. The unique solution test
occurred, if at all, only shortly before a box was classified as solved. The
additional root-finding steps of the hybrid approach even increased the CPU
time compared to the sole IA-based solver.

RQ3. How can the complexity of an NLE be measured?
The non-zero density, nonlinearity ratio and condition number of the Jaco-
bian matrix as well as the systems’ dimension were considered to quantify
the complexity of an NLE and determined for the test examples in section
4.1. These parameters were only calculated for their largest complex sub-
system, since it had the greatest influence on the success of the numerical
solvers. Theoretically, an NLE could contain more than one of such complex
subsystems. In the test cases examined, however, one always dominated.
Hence, an NLE is considered to be more complex the higher the respective
parameter values of its dominating subsystem turn out to be.

RQ4. Which equation formulations are useful to ensure an efficient numerical iteration?
Section 6.1 summarizes important formulations of equations as well as refor-
mulations of functional terms that have emerged from the literature review
and our own computational experiments. In short, one should minimize the
number of variable instances in an equation to prevent interval dependency.
In addition, functional terms should be avoided, whose variables allow an
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infinite number of combinations of real values in their intervals, where those
terms are not defined.

RQ5. Can structural properties of an NLE be used to conclude, which numerical method
is appropriate to solve it?
According to figure 6.1, dimension and nonlinearity ratio of the dominating
complex subsystem seem to be well suited to distinguish the application
areas of the three solution strategies: IA-based solver, root-finding algorithm
and hybrid approach. The hybrid approach is particularly effective for sys-
tems with a dimension greater or equal to 12 and a nonlinearity ratio of 0.36
and higher. They could not be solved by the other two methods. Systems
with lower dimensions could also be solved globally in short time (less than
20 s). Systems with a low nonlinearity ratio in turn, could be solved by root-
finding algorithms in less time than the hybrid approach needed. However,
these limits are only a rough estimate and seem to depend on the condition
of the system as well. For systems with higher condition numbers, the ap-
plication areas of IA-based solver and root-finding algorithms are expected
to decrease in favor of the hybrid approach.

Finally, tools for a quick identification of error sources in failed numerical iter-
ations have been implemented in the scope of this work and are presented in
section 6.7.

6.10 Outlook

Beyond the examples studied in this thesis, it would be interesting to apply the
hybrid approach to even more complex problems. For this purpose, the existing
HDA process of Rajes (2020) is a good starting point, e.g., to take into account
challenging recycle streams in the model. Furthermore, NLEs which include heat
integration and process intensification would be interesting to examine. While this
work has focused on steady-state process models, it would also be interesting to
extend the application of the hybrid approach to other areas, where NLE solvers
are commonly in use, for instance to initialize and solve Differential Algebraic
Equation systems (DAEs) and Partial Differential Algebraic Equation systems (PDAEs).
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For this purpose, such systems only need to be transformed into algebraic NLPs
by finite differences or orthogonal collocation as described in Hangos & Cameron
(2001, pp. 191-222). In the long term, it might be beneficial to build an open access
library of process engineering problems, or further extend existing libraries such
as the COCONUT benchmarks created by Shcherbina et al. (2003). This saves
time to model processes and makes a comparison of newly developed approaches
easier. The performance of the hybrid approach’s box reduction strongly depends
on the initialization of the variable intervals and the formulation of the equations.
In the field of chemical process models, the intervals could be set automatically
according to simple heuristics analogous to those summarized in Appendix D.2.
Equations could be automatically reformulated, whenever critical terms such as
the ones from section 6.1 are present. In addition, the research should continue to
identify further favorable formulations for IA. The hybrid approach itself could
be improved by speeding it up, increasing the efficiency of a box reduction step or
improving the root-finding step through the development of a suitable sampling
strategy. As shown in the tests, a trade-off between speed and success of a reduc-
tion step usually appears. In particular tighten_bounds and the affine arithmetic
could not convince here so far due to the long processing time. However, since
the package affapy behind the affine arithmetic was first released in May 2020, a
performance increase can possibly be expected here in the near future. In the case
of tighten_bounds, the current implementation would have to be analyzed more
closely in order to accelerate this methodology, or its calls within the program
would have to be reduced. Cutting and splitting contribute enormously to box
reduction, but the investigations of this work do not show any tendency, which
strategy, i.e., variable selection, leads to the highest box reduction in the least
amount of time. A more precise analysis is needed to identify promising splits
and cuts without applying these methods to all variables each time. Another
option to increase the speed of the hybrid approach is to further parallelize pro-
cesses within the program based on some ideas given in Bublitz et al. (2021b).
Finally, for sampling strategies, there are many new developments due to the high
interest in data-driven modeling that can be easily linked to the hybrid approach.
The same is true for new numerical solution methods. How the latter two can be
connected to the hybrid approach is explained in modOpt’s git project1.

1https://git.tu-berlin.de/dbta/simulation/modOpt

155

https://git.tu-berlin.de/dbta/simulation/modOpt




Appendix A

Algorithms, Scripts and Software

A.1 Bubble point method

A well-known algorithm to solve the cascade of equilibrium trays in a distillation
column model, which is illustrated in figure A.1, is the Wang Henke’s bubble point
method (Wang and Henke, 1966). In the column model, the top tray represents
the condenser, where the side stream FU,tr=1 corresponds to a potential distillate
rate, FL,tr=1 to the reflux rate and Qtr=1 to the cooling duty. The lowest tray n
corresponds to the reboiler with heat duty Qtr=n. The bubble point algorithm
is schematically shown in figure A.2. First of all, the design variables have to
be specified, and the tear variables have to be initialized, which are the tray’s
temperatures Ttr and light phase flow rates FV,tr. Furthermore, initial values for
the equilibrium constants Ktr,c have to be specified, e.g. as a function of the initial
temperature guesses by assuming an ideal phase equilibrium. Next, the mole
fractions of the heavy phase xL,tr,c at the current values of Ttr, FV,tr and Ktr,c can
be calculated via the component balances ranging from the top of the column to
the current tray section. FL,tr and xV,tr,c are previously eliminated via the total
mass balances and the general chemical equilibrium

FL,tr = FV,tr+1 +
tr

∑
j=1

FF,j − (FW,j + FU,j)− FV,tr=1 (A.1)

xV,tr,c = Ktr,c · xL,tr,c , (A.2)
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Fig. A.1: Cascade of equilibrium trays of a column model including streams F and mole
fractions x.

so that the following linear, tridiagonal equation system results

0 =

:=Atr⏟ ⏞⏞ ⏟(︄
FV,tr +

tr−1

∑
j=1

FF,j − (FW,j + FU,j)− FV,tr=1)

)︄
·xL,tr−1,c (A.3)

−

:=Btr,c⏟ ⏞⏞ ⏟
(FV,tr+1 +

tr

∑
j=1

FF,j − (FW,j + FU,j)− FV,tr=1

+ FU,tr − (FW,tr + FV,tr) · Ktr,c) · xL,tr,c

+

:=Ctr,c⏟ ⏞⏞ ⏟
FV,tr+1 · Ktr+1,c ·xL,tr+1,c +

:=−Dtr,c⏟ ⏞⏞ ⏟
FF,tr · xF,tr,c .

This can be solved efficiently using the Thomas algorithm (Thomas, 1949). Here
Atr=1 and Ctr=n,c are zero at all times. One system of this type is solved per
component c. The calculated xL,tr,c may violate the summation relation, so they are
normalized in a next step according to Figure A.2. Subsequently, the temperatures

158



A.1 Bubble point method

Fig. A.2: Schematic diagram of Wang Henke’s bubble point method for solving a cascade
of equilibrium trays (Wang and Henke, 1966).
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are iteratively determined via the bubble point equations so that the mole fractions
of the light phase xV,tr,c are then obtained from the chemical equilibrium. Now,
the cooling and heat duties of the condenser and reboiler can be calculated. Since
temperatures, pressures and compositions in all streams are known, the specific
enthalpies h can be determined explicitly and so can Qtr=1 and Qtr=N . Next, the
flows of the light phase FV,tr are obtained through the heat balances from the top
of the column to the current tray section. These equations can be transformed
into a sparse linear system with the coefficients αtr, βtr, gammatr

0 = αtr · FV,tr + βtr · FV,tr+1 − γtr (A.4)

αtr = hV,tr − hL,tr−1 (A.5)

βtr = hV,tr+1 − hL,tr (A.6)

γtr = (
tr−1

∑
j=1

FF,j − FU,j − FW,j − FV,tr=1) · (hL,tr − hL,tr−1) (A.7)

+ FF,tr · (hL,tr − hF,tr) + FW,tr · (hV,tr − hL,tr) + Qtr . (A.8)

The unkown FV,tr can be explicitly calculated one after the other according to
the formula shown in Figure A.2, starting with the known flow rate FV,tr=1. At
the end of the calculation sequence, the flow rates of the heavy phase FL,tr are
determined by the total mass balances represented in Eq. A.1. Finally, the temper-
atures of the current iteration step k are compared to those of the previous one.
If they differ according to the tolerance εFTOL, the tear variables are adjusted and
the iteration continues with step k + 1, otherwise the system is solved. To adjust
the tear variables, damping strategies are often necessary to keep them within a
physically reasonable range. The bubble point algorithm is mainly used for col-
umn simulations in which narrow-boiling mixtures are separated, since here Ktr,c

changes preferably with the temperature than with the concentrations (Friday and
Smith, 1964). If this is not the case, small differences in concentration can already
lead to large changes in temperature and the algorithm is prone to oscillating tear
variable values, which may even result in divergence. Hence, convergence is by
no means guaranteed in this method.
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A.2 Additional Algorithms of Hybrid Approach

Fig. A.3: The algorithm of the univariate interval newton for monotone increasing func-
tions.
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Fig. A.4: The algorithm of get_allowed_boxes.

(a) consistent. (b) root_inclusion.

Fig. A.5: The algorithms of consistent and root_inclusion.
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(a) solved. (b) unique_solution_test.

Fig. A.6: The algorithms of solved and unique_soluton_test.

(a) average_boxlength. (b) update_options.

Fig. A.7: The algorithms of average_boxlength and update_options.
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Fig. A.8: The algorithm of sort_boxes.

(a) store_error_output. (b) test_HC4.

Fig. A.9: The algorithms of store_error_output and test_HC4.
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Fig. A.10: The algorithm of get_results.

Fig. A.11: The algorithm of reduce_box_worker.
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A.3 Python Scripts and Settings

A.3.1 Hyperparameters

The hybrid approach depends on many hyperparameters that are all set in a
Python dictionary. Table A.1 contains all hyperparameters that have to be set by
the user and the recommended default settings. In the following, recommenda-
tions are given on which parameters should deviate from the default values when
a new system is to be solved. We focus only on the case, where a solution is to be
found as quickly as possible. Recommended settings in dictionary bxrd_options
of the

– Tolerances: textbfabsTol should be at least one order of magnitude lower
than the order of magnitude of the smallest expected value of the solution.
For relTol, a value one to five orders of magnitude higher than absTol is
recommended.

– Resolution: The integer value should be at least 2. A maximum value of 128

was tested in the context of this work. According to the eight test examples,
the value of resolution should rather be set in the lower range, a value
between 4 and 32 is recommended with method tighten_bounds and 8 to
64 without so that the time of a box reduction step is not dominated by
the refinement. To increase the reduction success of a box reduction step,
a higher value is recommended, while a lower value decreases the process
time of a step.

– Maximum number of box reduction steps: For a completely new system, it
is suggested to leave redStepMax at a value of 1 and to make the first box
reduction step as reductive as possible without paying too much attention
to the CPU time. This means that all contraction methods including tight-
Bounds should be selected and a high resolution set. In this way, the hybrid
approach may already find a solution after one step. If the step takes too
long, which depends on the dimension and complexity of the NLE, then
the resolution should be successively lowered and tightBounds should be
turned off. If no solution can be found in this way, redStepMax should be
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set to a value between 3 and 5 next. Cutting and splitting are set according
to the advised settings, so that within this iteration at least cutting and pos-
sibly splitting are performed. If there is still no solution found, redStepMax
should be increased further. It is difficult to predict how long the algorithm
will take, since the number of boxes can increase significantly as the program
proceeds and hence, the time of one box reduction step raises. However,
with the following worst-case scenario, one can roughly overestimate an
adequate value for redStepMax based on a maximum permitted CPU time
∆tmax and an averaged time for one box reduction step t determined from
the run with redStepMax set to a value between 3 and 5 (because it includes
cutting in this case). The heuristic formula is

redStepMax = −1.5 +

√︃
4.5 +

6 · ∆tmax

t
. (A.9)

The formula is based on the assumption that after every third box reduction
step one box splits into two and the number of boxes increases accordingly.
Furthermore, none of the boxes is identified as empty.

– Cutting and splitting strategies: In order to test whether the solution can
already be found in the first box reduction steps, it should be started with
settings that allow for a maximum box reduction in one step. For this
purpose, cutBox is set to "all" and splitBox to "forecastSplit". If the runtime
of the program is already intractable, less time-consuming options can be
chosen, which in turn are accompanied by a loss in the box reduction per
step. cutBox should in this case be set to "tear" and splitBox should be
set to "leastChanged", "forecastTear" and "tearVar" in that order, when the
previous choice still takes too long.

Recommended settings in dictionary num_options of the

– Root-finding based solver: If "casadi-ipopt" is installed on the computer, it
is recommended to use this solver, else one of the other solvers from table
A.1 can be tried.

– Solving mode: In order to terminate the hybrid approach after one solution
has been found, termination must be set to "one_solution".
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Tab. A.1: Dictionary keys of moOpt and default values.

Dictionary Key Value and Description

bxrd_options fileName String, default: "example"

naming of output files

savePath String, default: "./results"

path to location for storage

redStepMax Integer, default: 1

max. number of box reduction steps

maxBoxNo Integer, default: 1

initial restriction to box number

per reduction step

absTol Float, default: 10−8

absolute tolerance value, see section 3.2

relTol Float, default: 10−3

relative tolerance value, see section 3.2

resolution Integer, default: 8

resolution of refinements, see section 3.1

parallelBoxes Boolean, default: False

True for parallel box processing,

see section 3.8
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Dictionary Key Value and Description

cpuCountBoxes Integer, default: 2

number of processors used in

parallelization

affineArithmetic Boolean, default: False

True for application of affine

arithmetic, see section 6.8

hcMethod String, default: "HC4"

choose hull consistency method,

if set to "None" it is not applied

newtonMethod String, default: "newton"

choose interval newton method,

if set to "None" it is not applied

newtonPoint String, default: "center"

point of expansion, see section 6.8

alternative values: "condJ"

preconditioning String, default: "pivotAll"

preconditioning for Interval Newton,

see section 6.8

alternative values: "inverseCentered",

"inversePoint", "inverseDiagonal"
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Dictionary Key Value and Description

bcMethod String, default: "bnormal"

choose box consistency method,

if set to "None" it is not applied

tightBounds Boolean, default: False

True for application of tight_bounds

cutBox String, default: "tear"

variables to be cut, see section 3.4

alternative values: "all", "None"

splitBox String, default: "tearVar"

variables to be split, see section 3.5

alternative values: "leastChanged",

"forecastSplit","forecastTear"

considerDisconti Boolean, default: False

True for splitting

discontinuous boxes first

hybridApproach Boolean, default: True

False for IA-based solver

analysis Boolean, default: True

False for no calculation of analysis

parameters, see section 3.5
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Dictionary Key Value and Description

timer Boolean, default: True

False for no record of CPU time

debugMode Boolean, default: False

True for printing out

intermediate results

when the program is running

smpl_options smplNo Integer, default: 0

number of samples, 0 for mid point,

-1 for user-specific initial values

smplBest Integer, default: 1

number of best samples in root-finding

smplMethod String, default: "sobol"

only active if smplNo ̸= 0

alternative values: "hammersley",

"latin_hypercube", "optuna"

num_options solver String, default: "newton"

solver applied

used root-finding

alternative values: "SLSQP", "fsolve",

"casadi-ipopt", "matlab-fsolve-mscript"
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Dictionary Key Value and Description

mode Integer, default: 1

only active in minimizer

1 least square minimization

2 equality constraints

termination String, default: "all_solutions"

application as global or local solver

alternative values: "one_solution"

FTOL Float, default: 10−10

function tolerance of numerical solvers

iterMax Integer, default: 100

number of maximum iteration steps

scaling String, default: "None"

scales Newton solver, see section 3.3

alternative values: "MC29", "MC77"

scalingProcedure String, default: "block_iter"

active in scaled Newton solver

scales block wise at each iteration step

alternative values: "block_init", "tot_init",

"tot_iter" scales block wise (block) at

initial point (init) or iteration step (iter)
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A.3.2 Storage of Reduced Boxes in Python

The boxes from all reduction steps are stored in an npz-file, which is a zipped
archive from Python ’s package numpy . By calling the method get_parent_box
that requires the tuple p and the path to the npz-file npz the parent box of x is
reloaded from this archive.

A.3.3 Processing Multiple Boxes in Parallel

To reduce the memory utilization, multiprocessing works with pickling of objects,
i.e., converting their structure and values into a byte stream. Output arguments
can be stored and accessed in a multiprocessing specific dictionary object. Hence,
the wrapper function reduce_box_worker shown in Fig. A.11 has the task to write
the set of reduced boxes and their properties into the so-called results dictionary
for each box reduction. The method get_results then converts all elements of
the results dictionary back to sets used in solve_NLE. The parallelization does
not work on windows operating systems yet due to an internal pickling error
of multiprocessing in reduce_box. The program runs error-free on Linux and
Unix OS. However, the sequential and the parallel version of reduce_boxes are
both part of the algorithm solve_NLE and are individually chosen by setting the
parameter "parallelBoxes".

A.3.4 Use of Matlab’s fsolve in the Hybrid Approach

To invoke Matlab’s fsolve in the hybrid approach, Matlab needs to be installed
and executable. Beside this, the Python package matlab must be installed so that
Python can start the Matlab engine and receive the results accordingly during the
running program. The iteration will be faster, when a Matlab script containing the
complete NLE is directly used. This m-File can automatically be generated from
the evaluation in MOSAICmodeling using the UDLS modOpt_solver_matlab_V0

(ID: 147665). Matlab’s fsolve will invoke this file in an iteration whenever "solver"
is set to matlab-fsolve-mscript. An alternative, slower way is to set "solver"
to matlab-fsolve, in which case the symbolic functions are directly converted
from sympy’s to Matlab’s syntax.

173



Appendix A Algorithms , Scripts and Software

Code A.1: Testing mpmath’s exp() and ln() function.

import mpmath
from time import time

def main ( ) :
x = mpmath . mpi ( 0 . 1 , 1 0 . 0 )
nl = i n t (1 e6 )
aux = mpmath . iv . exp ( x )

print ( " Test ing exp ( ) funct ion : " )
loop_and_track_funct ion (mpmath . iv . exp , x , nl )

print ( " Test ing ln ( ) func t ion : " )
loop_and_track_funct ion (mpmath . iv . ln , aux , nl )

def loop_and_track_funct ion ( fun , x , nl ) :
t1 = time ( )
for l in range ( nl ) : fun ( x )
t2 = time ( )
print ( ’ The I n t e r v a l value i s \n %s . ’ % s t r ( fun ( x ) ) )
print ( ’ Elapsed time i s %f seconds .\n ’ % ( t2 −t1 ) )

i f __name__ == " __main__ " : main ( )

Output:

Test ing exp ( ) funct ion :
The I n t e r v a l value i s
[1 .1051709180756474904 , 22026 .465794806717895 ] .
Elapsed time i s 11 .372387 seconds .

Test ing ln ( ) funct ion :
The I n t e r v a l value i s
[0 .099999999999999866773 , 10 .000000000000001776 ] .
Elapsed time i s 10 .493530 seconds .
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A.4 Software Packages

Tab. A.2: List of all used Python packages.

Package name Version Reference

affapy 0.1 https://pypi.org/project/affapy

casadi 3.5.1 https://web.casadi.org

ipopt 0.2.0 https://pypi.org/project/ipopt

matlab 0.1 https://pypi.org/project/matlab

matplotlib 3.2.0 https://matplotlib.org

modOpt 0.1 https://git.tu-berlin.de/dbta/simulation/modOpt

mpmath 1.1.0 https://mpmath.org

multi- 2.6.2.1 https://pypi.org/project/multiprocessing

processing

numpy 1.19.3 https://numpy.org

optuna 2.10.0 https://optuna.org

pyibex 1.9.2 https://pypi.org/project/pyibex

scipy 1.5.3 https://scipy.org

sympy 1.5.1 https://sympy.org
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Tab. A.3: List of all other used software.

Name Subroutines Version Reference

Ampl 20220310 https://ampl.com/

HSL MC19 1.0.0 https://hsl.rl.ac.uk

MC27 1.0.0 https://hsl.rl.ac.uk

MC29 1.0.0 https://hsl.rl.ac.uk

MC77 1.0.1 https://hsl.rl.ac.uk

Matlab R2020a https://mathworks.com

MOSAICmodeling 3.0.1 https://mosaic-modeling.de

Python 3.7.6 https://python.org/
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Appendix B

Tested Models

In addition to the NLEs and specifications of the four examples discussed in detail
in this thesis, four additional process models are presented here that have also
been tested to verify the applicability of the hybrid approach. Since structurally
they do not differ too much from the other four examples, their presentation in
the thesis has been omitted. Nevertheless, they have been considered relevant in
chapter 6, especially in figure 6.1. Their structural properties are shown in table
B.1.

Tab. B.1: Structural properties of largest subsystems of additionally tested NLEs at the
known solutions: nls is the dimension, κ2 is the condition number of the Jacobian
evaluated at the solution, ρnz is the non-zero density of the Jacobian and εnl is
the nonlinearity ratio.

NLE nls κ2 ρnz εnl

van der Waals’ System 1 1.0 × 100 1.000 1.000

1 1.0 × 100 1.000 1.000

Reactive Flash Unit 15 8.0 × 106 0.307 0.290

Partial Condenser 29 4.9 × 1011 0.162 0.493

Methanol/Water Column 100 4.6 × 106 0.045 0.095
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Fig. B.1: Solutions of van der Waals’ equation of state applied on n-octane at a pressure
of 2.15 bar and a temperature of 427.85 K.

B.1 van der Waals’ System

In this example the molar volume v of n-octane is determined by van der Waals’
equation of state (van der Waals, 1873). At a pressure of 2.15 bar and temperature
of 427.85 K, the component is boiling, i.e., there are two physical solutions. The
smaller molar volume belongs to the liquid phase and the larger to the vapor
phase. In between, there is a third purely mathematical solution, also called un-
stable solution. All properties of n-octane and process conditions of this example
are taken from Rao (1997, pp. 53-55). Figure B.1 shows the three solutions to the
given pressure that exist for the cubic equation of state. In the physical model,
only one or both physical solutions are of interest. However, a conventional New-
ton method is not prevented from converging to the unstable solution when the
initial point is not chosen favorably. By restricting the derivative of pressure with
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respect to volume to values less than or equal to zero, the unstable solution can
be removed by means of IA. In a similar way, by the auxiliary equation

v = vph + vcrit , (B.1)

with the auxiliary variable vph and the critical volume vcrit, the solution for the
liquid phase (vph > 0) or the solution for the vapor phase (vph < 0) can be ex-
cluded if required. Thus, via these additional auxiliary conditions, discontinuous,
conditional syntax can be avoided and the desired solution(s) are obtained based
solely on the initial variable range. The system is the only one in this work that is
not complex according to the definition in section 4.1, since all three equations can
be solved separately The hybrid approach correctly determines no, up to three
solutions depending on the initialization of the auxiliary variables. In the compu-
tational experiments only the case with two solutions is examined more closely.
To exclude the unstable solution, the initial interval of the pressure derivative with
respect to the volume is set to [−109, 0]. The full equation system including its
notation, variable and parameter specifications as well as its solutions is presented
next.

Tab. B.2: Notation, base names.

Base Name Description Engineering Unit

P Pressure Pa
R Ideal gas constant J mol−1 K−1

T Temperature K
a Van der Waals constant a Pam6/mol2

b Van der Waals constant b mol m−3

dPdv Ratio of first pressure derivative with m3 mol−1

respect to molar volume to critical pressure
v Molar volume mol m−3

Tab. B.3: Notation, superscripts.

Superscript Description

crit critical
ph phase
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Equation System

0 = P − R · T
v − b

+
a

(v)2

0 = dPdvcrit +
R · T

(v − b)2 · Pcrit −
2 · a

Pcrit · (v)3

0 = vph + vcrit − v

Tab. B.4: Design variable specification.

Design Variable Value Engineering Unit

P = 2.150E5 Pa
Pcrit = 1.999E7 Pa
R = 8.314 J mol−1 K−1

T = 4.279E2 K
a = 3.789 Pam6/mol2

b = 2.370E − 4 mol m−3

vcrit = 7.110E − 4 mol m−3

Tab. B.5: Liquid solution.

Iteration Variable Value Engineering Unit

v = 3.535E − 4 mol m−3

dPdvcrit = −4.535E3 m3 mol−1

vph = −3.575E − 4 mol m−3

Tab. B.6: Vapor solution.

Iteration Variable Value Engineering Unit

v = 1.567E − 2 mol m−3

dPdvcrit = −6.483E − 1 m3 mol−1

vph = 1.496E − 2 mol m−3
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Tab. B.7: Unstable solution.

Iteration Variable Value Engineering Unit

v = 7.539E − 4 mol m−3

dPdvcrit = 2.188E2 m3 mol−1

vph = 4.285E − 5 mol m−3

B.2 CSTR

Tab. B.8: Notation, base names.

Base Name Description Engineering Unit

E Activation energy J mol−1

M Molar mass g mol−1

Q Volume flow rate cm3 h−1

R Ideal gas constant J mol−1 K−1

T Temperature K
X Conversion g g−1

∆HR Reaction enthalpy J mol−1

ρ Density g cm−3

c Concentration mol cm−3

cp Heat capacity J mol−1 K−1

m Mass g
r Reaction rate mol h−1 g−1

x Weight fraction g g−1

Tab. B.9: Notation, subscripts.

Subscript Description

Cat Catalyst
Feed Feed
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Tab. B.10: Notation, indices.

Index Range Description

c 1 . . . NC Component index

Equation System

0 = Xc −
cFeed,c − cc

cFeed,c

0 = QFeed − (
1

Xc
− 1) · mCat · r

0 = cFeed,c − xFeed,c ·
ρ

Mc

0 =
T − TFeed

Xc
− −∆HR · cFeed,c

ρ · cp

0 = r − 1.3 · (10)11 · exp(
−E

R · T
)

Tab. B.11: Component index.

Index Component

c = 1 Aromatics

Tab. B.12: Design variable specification.

Design Variable Value Engineering Unit

E = 1.355E5 J mol−1

Mc=1 = 2.100E2 g mol−1

QFeed = 3.000E1 cm3 h−1

R = 8.314 J mol−1 K−1

TFeed = 5.650E2 K
∆HR = −2.000E5 J mol−1

ρ = 8.500E − 1 g cm−3

cp = 1.750 J mol−1 K−1

mCat = 2.000E1 g
xFeed,c=1 = 3.000E − 1 g g−1
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Tab. B.13: Solution with low conversion.

Iteration Variable Value Engineering Unit

T = 5.703E2 K
Xc=1 = 3.241E − 2 g g−1

cFeed,c=1 = 1.214E − 3 mol cm−3

cc=1 = 1.175E − 3 mol cm−3

r = 5.023E − 2 mol h−1 g−1

Tab. B.14: Solution with high conversion.

Iteration Variable Value Engineering Unit

T = 7.142E2 K
Xc=1 = 9.140E − 1 g g−1

cFeed,c=1 = 1.214E − 3 mol cm−3

cc=1 = 1.044E − 4 mol cm−3

r = 1.594E1 mol h−1 g−1

Tab. B.15: Unstable solution.

Iteration Variable Value Engineering Unit

T = 6.482E2 K
Xc=1 = 5.094E − 1 g g−1

cFeed,c=1 = 1.214E − 3 mol cm−3

cc=1 = 5.958E − 4 mol cm−3

r = 1.557E1 mol h−1 g−1

B.3 Flash Unit

Tab. B.16: Notation, base names.

Base Name Description Engineering Unit

A Parameter various
B Parameter various
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Base Name Description Engineering Unit

C Parameter various
D Parameter various
E Parameter various
F Molar flow; parameter mol s−1; various
H Height m
HU Molar holdup mol
K Equilibrium constant −
Q Heat flow J s−1

R Ideal gas constant J mol−1 K−1

T Temperature K
U Internal energy J
V Volume m3

∆h Enthalpy difference J mol−1

∆p Pressure drop bar
α Wilson parameter −
γ Activity coefficient −
λ Wilson parameter −
π Physical constant pi −
h Molar enthalpy J mol−1

p Pressure bar
v Molar volume m3 mol−1

x Mole fraction (liquid) mol mol−1

y Mole fraction (vapor) mol mol−1

z Compressibility factor −

Tab. B.17: Notation, superscripts.

Superscript Description

E Excess
F Feed
L Liquid
LV Saturated
V Vapor
total Total
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Tab. B.18: Notation, subscripts.

Subscript Description

hL Correlation enthalpy (liquid)
hV Correlation enthalpy (vapor)
pLV Correlation saturation pressure

Tab. B.19: Notation, indices.

Index Range Description

i 1 . . . NC Component index

Tab. B.20: Component index.

Index Component

i = 1 Ethanol
i = 2 Water

Equation System

0 = FF · xF
i − FV · yi − FL · xi

0 = KLV
i · xi − yi

0 =
NC

∑
i=1

xF
i − 1

0 =
NC

∑
i=1

xi − 1

0 =
NC

∑
i=1

yi − 1

0 = FF · hF − FV · hV − FL · hL + Q

0 = pF − p − ∆p
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0 = KLV
i − γL

i · pLV
i

p

0 = γL
i − 1

xi + αL
i · (1 − xi)

· exp((1 − xi) · (
αL

i

xi + αL
i · (1 − xi)

− ∑NC
i=1 αL

i − αL
i

(∑NC
i=1 αL

i − αL
i ) · xi + (1 − xi)

))

0 =
∑NC

i=1 vL
i − vL

i

vL
i

· exp(
−λL

i
T

)− αL
i

0 =
NC

∑
i=1

xF
i · hF

i + hE,F − hF

0 =
NC

∑
i=1

xi · hL
i + hE,L − hL

0 =
NC

∑
i=1

yi · hV
i + hE,V − hV

0 =
HUV · R · T · zV

p · 105 − VV

0 = (
NC

∑
i=1

vL
i · xi + vL,E) · HUL − VL

0 = xi · HUL + yi · HUV − HUi

0 = HUL · (hL − p · 105 · (
NC

∑
i=1

xi · vL
i + vL,E)) + HUV · (hV − R · T · zV)− U

0 = VL + VV − Vtotal

0 = 4 · VL

π · (D)2 − HL

0 = rD,H − D
H

0 = A − π

4
· (D)2

0 = Vtotal − A · H
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Functions

h(T) = A · T
1000

+
B
2
· ( T

1000
)2 +

C
3
· ( T

1000
)3 +

D
4
· ( T

1000
)4 + E · ( T

1000
)−1

+ F + ∆h

Applications:

– hF
i (T

F,AhL,i . . . FhL,i, ∆hhL,i)

– hL
i (T,AhL,i . . . FhL,i, ∆hhL,i)

– hV
i (T,AhV,i . . . FhV,i, ∆hhV,i)

p(T) = (10)A− B
C+T

Applications:

– pLV
i (T,ApLV,i . . . CpLV,i)

Tab. B.21: Design variable specification.

Design Variable Value Engineering Unit

D = 0.16 m
FF = 80.0 mol s−1

H = 0.5 m
HL = 0.25 m
T = 353.15 K
TF = 353.15 K
∆p = 0.25 bar
π = 3.14159265359 −
hE,F = 0.0 J mol−1

hE,L = 0.0 J mol−1

hE,V = 0.0 J mol−1

pF = 1.0 bar
vE,L = 0.0 m3 mol−1

xF
i=1 = 0.15 mol mol−1

zV = 1.0 −
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Tab. B.22: Parameter specification.

Parameter Value Engineering Unit

AhL,i=1 = 102538.0 J mol−1 K−1

AhL,i=2 = −203.606 J mol−1 K−1

AhV,i=1 = 5385.58 J mol−1 K−1

AhV,i=2 = 30.092 J mol−1 K−1

ApLV,i=1 = 5.24677 −
ApLV,i=2 = 5.0768 −
BhL,i=1 = −138.44 J mol−1 K−2

BhL,i=2 = 1523.29 J mol−1 K−2

BhV,i=1 = 236.1088 J mol−1 K−2

BhV,i=2 = 6.832514 J mol−1 K−2

BpLV,i=1 = 1598.673 K
BpLV,i=2 = 1659.793 K
ChL,i=1 = −0.03469 J mol−1 K−3

ChL,i=2 = −3196.413 J mol−1 K−3

ChV,i=1 = 0.1237 J mol−1 K−3

ChV,i=2 = 6.793435 J mol−1 K−3

CpLV,i=1 = −46.424 K
CpLV,i=2 = −45.854 K
DhL,i=1 = 20.4367 J/mol/K4

DhL,i=2 = 2474.455 J/mol/K4

DhV,i=1 = 2.3E − 5 J/mol/K4

DhV,i=2 = −2.53448 J/mol/K4

EhL,i=1 = 0.0 K
EhL,i=2 = 3.855326 K
EhV,i=1 = 3.7E − 5 K
EhV,i=2 = 0.082139 K
FhL,i=1 = 0.0 J mol−1

FhL,i=2 = −256.5478 J mol−1

FhV,i=1 = 0.0 J mol−1

FhV,i=2 = −250.881 J mol−1

R = 8.314 J mol−1 K−1

∆hhL,i=1 = −276000.0 J mol−1

∆hhL,i=2 = −285830.0 J mol−1

∆hhV,i=1 = −234000.0 J mol−1

∆hhV,i=2 = −276000.0 J mol−1
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B.3 Flash Unit

Parameter Value Engineering Unit

λL
i=1 = 95.68 K

λL
i=2 = 506.7 K

vL
i=1 = 5.869E − 5 m3 mol−1

vL
i=2 = 1.807E − 5 m3 mol−1

Tab. B.23: Physical solution.

Iteration Variable Value Engineering Unit

A = 2.011E − 2 m2

FL = 6.429E1 mol s−1

FV = 1.571E1 mol s−1

HUL = 2.330E2 mol
HUV = 1.284E − 1 mol
HUi=1 = 2.015E1 mol
HUi=2 = 2.130E2 mol
KLV

i=1 = 4.765 −
KLV

i=2 = 0.645 −
Q = 1.410E5 J s−1

U = −6.58E4 J
VL = 5.03E − 3 m3

VV = 5.03E − 3 m3

Vtotal = 1.005E − 2 m3

αL
i=1 = 2.348E − 1 −

αL
i=2 = 7.774E − 1 −

γL
i=1 = 3.299 −

γL
i=2 = 1.021 −

hF = −2.791E5 J mol−1

hL = −2.821E5 J mol−1

hV = −2.581E5 J mol−1

p = 7.5E − 1 bar
rD,H = 3.2E − 1 −
xi=1 = 8.624E − 2 mol mol−1

xi=2 = 9.138E − 1 mol mol−1

xF
i=2 = 8.500E − 1 mol mol−1

yi=1 = 4.109E − 1 mol mol−1

yi=2 = 5.891E − 1 mol mol−1
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Tab. B.24: Mathematical solution.

Iteration Variable Value Engineering Unit

A = 2.011E − 2 m2

FL = 2.025E2 mol s−1

FV = −1.225E2 mol s−1

HUL = 6.876E1 mol
HUV = 1.284E − 1 mol
HUi=1 = 9.343E1 mol
HUi=2 = −2.454E1 mol
KLV

i=1 = 1.581 −
KLV

i=2 = 3.217 −
Q = −6.464E5 J s−1

U = −1.538E6 J
VL = 5.03E − 3 m3

VV = 5.03E − 3 m3

Vtotal = 1.005E − 2 m3

αL
i=1 = 2.348E − 1 −

αL
i=2 = 7.774E − 1 −

γL
i=1 = 1.094 −

γL
i=2 = 5.094 −

hF = −2.791E5 J mol−1

hL = −2.223E5 J mol−1

hV = −1.817E5 J mol−1

p = 7.5E − 1 bar
rD,H = 3.2E − 1 −
xi=1 = 1.350 mol mol−1

xi=2 = −3.547E − 1 mol mol−1

xF
i=2 = 8.500E − 1 mol mol−1

yi=1 = 2.141 mol mol−1

yi=2 = −1.141 mol mol−1

B.4 Reactive Flash Unit

This model describes the synthesis of methyl acetate (CH
3
COOCH

3
) by the esteri-

fication of acetic acid (CH
3
CCOH) and methanol (CH

3
OH)
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B.4 Reactive Flash Unit

CH
3
COOH + CH

3
OH CH

3
COOCH

3
+ H

2
O .

A liquid, equimolar mixture of acetic acid and methanol is fed to the unit at a
pressure of 1 bar and a temperature of 323.15 K. Catalyst such as sulfuric acid
is additionally inserted. How much methyl acetate is produced in the liquid
phase depends on the liquid’s composition at chemical equilibrium and how
far away the mixture is from it. Reaction kinetics are accordingly taken into
account in this model. To increase the yield of methyl acetate, heat is supplied
to partially evaporate the liquid mixture at a temperature of 353.15 K. Due to its
low boiling temperature methyl acetate accumulates mainly in the vapor stream
next to methanol. The two phases within the flash unit are assumed to be well-
mixed and in phase equilibrium. Reaction kinetics and phase equilibrium are
described by the approach of Huss et al. (2003), in which the activity coefficients
of the liquid phase are expressed according to Wilson’s model. Equations for the
equilibrium constant and the reaction rate as well as the respective parameters are
retrieved from studies of Song et al. (1998). The model encompasses 53 equations,
has one solution at the given conditions in the initial box x = [−109, 109]53 and
its largest, complex subsystem consists of 15 equations. The NLE, parameter and
variable specifications as well as the solution are listed below.

Tab. B.25: Notation, base names.

Base Name Description Engineering Unit

A Parameter various
B Parameter various
C Parameter various
HU Hold-up mol
K Equilibrium constant −
L Liquid ratio −
N Mole flow mol s−1

Q Heat flux J s−1

R Ideal gas constant J mol−1 K−1

T Temperature K
γ Activity coefficient −
ν Stochiometric coefficient −
c Heat capacity J mol−1 K−1

h Molar enthalpy [ J mol−1
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Base Name Description Engineering Unit

k Rate constant s−1

p Pressure Pa
r Reaction rate s−1

v Specific volume cm3 mol−1

x Liquid mole fraction mol mol−1

y Vapor mole fraction mol mol−1

Tab. B.26: Notation, superscripts.

Superscript Description

Antoine Antoine equation for vapor pressure calculation
F feed
L liquid
LV vapor liquid equilibrium
V vapor
Wilson Wilson’s gE model
re f reference conditions

Tab. B.27: Notation, subscripts.

Subscript Description

eq equilibrium
f forward
p constant pressure

Tab. B.28: Notation, indices.

Index Range Description

i 1 . . . Ni component index
j 1 . . . Nj secondary component index
k 1 . . . Nk ternary component index
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B.4 Reactive Flash Unit

Tab. B.29: Component index.

Index Component

i = j = k = 1 Acetic Acid
i = j = k = 2 Methanol
i = j = k = 3 Methyl Acetate
i = j = k = 4 Water

Equation System

0 = NF · xF
i − NL · xi − NV · yi + νi · r

0 = Keq − 2.32 · exp(
782.98

T
)

0 =
Ni

∑
i=1

xi − 1

0 =
Ni

∑
i=1

yi − 1

0 = NF · hF − NL · hL − NV · hV + Q

0 =
Ni

∑
i=1

yi · hV
i − hV

0 =
Ni

∑
i=1

xi · hL
i − hL

0 =
Ni

∑
i=1

xF
i · hF

i − hF

0 =
vi=j

vi
· exp(

−1.0 · AWilson
i,j

R · T
)− Li,j

0 =
9.732 · (10)8

3600
· exp(

−6287.7
T

)− k f

0 = k f · (γi=1 · xi=1 · γi=2 · xi=2 −
γi=3 · xi=3 · γi=4 · xi=4

Keq
)− r
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0 = cV
p,i · (T − TLV

i ) + hLV
i + cL

p,i · (TLV
i − Tre f

i ) + hre f
i − hV

i

0 = cL
p,i · (T − Tre f

i ) + hre f
i − hL

i

0 = cL
p,i · (TF − Tre f

i ) + hre f
i − hF

i

0 = yi · p − γi · xi · pLV
i

0 = 1 − ln(
Nj

∑
j=1

xi=j · Li,j)−
Nk

∑
k=1

xi=k · Li=k,j=i

∑
Nj
j=1 xi=j · Li=k,j

− ln(γi)

0 = AAntoine
i +

BAntoine
i

T + CAntoine
i

− ln(pLV
i )

Tab. B.30: Design variable specification.

Design Variable Value Engineering Unit

AWilson
i=1,j=1 = 0.0 −

AWilson
i=1,j=2 = 2535.2019 −

AWilson
i=1,j=3 = 1123.1444 −

AWilson
i=1,j=4 = 237.5248 −

AAntoine
i=1 = 22.1001 −

AWilson
i=2,j=1 = −547.5248 −

AWilson
i=2,j=2 = 0.0 −

AWilson
i=2,j=3 = 813.1843 −

AWilson
i=2,j=4 = 107.3832 −

AAntoine
i=2 = 23.4999 −

AWilson
i=3,j=1 = −696.5031 −

AWilson
i=3,j=2 = −31.1932 −

AWilson
i=3,j=3 = 0.0 −

AWilson
i=3,j=4 = 645.7225 −

AAntoine
i=3 = 21.152 −

AWilson
i=4,j=1 = 658.0266 −

AWilson
i=4,j=2 = 469.5509 −

AWilson
i=4,j=3 = 1918.232 −

AWilson
i=4,j=4 = 0.0 −

AAntoine
i=4 = 23.2256 −
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Design Variable Value Engineering Unit

BAntoine
i=1 = −3654.62 K

BAntoine
i=2 = −3643.3136 K

BAntoine
i=3 = −2662.78 K

BAntoine
i=4 = −3835.18 K

CAntoine
i=1 = −45.392 K

CAntoine
i=2 = −33.434 K

CAntoine
i=3 = −53.46 K

CAntoine
i=4 = −45.343 K

HU = 10.0 mol
NF = 1.0 mol s−1

R = 8.314 J mol−1 K−1

TF = 323.15 K
T = 323.15 K
TLV

i=1 = 391.2 K
Tre f

i=1 = 298.15 K
TLV

i=2 = 337.8 K
Tre f

i=2 = 298.15 K
TLV

i=3 = 330.0 K
Tre f

i=3 = 298.15 K
TLV

i=4 = 373.15 K
Tre f

i=4 = 298.15 K
νi=1 = −1.0 −
νi=2 = −1.0 −
νi=3 = 1.0 −
νi=4 = 1.0 −
cL

p,i=1 = 123.0 J mol−1 K−1

cV
p,i=1 = 50.0 J mol−1 K−1

cL
p,i=2 = 80.0 J mol−1 K−1

cV
p,i=2 = 45.0 J mol−1 K−1

cL
p,i=3 = 140.0 J mol−1 K−1

cV
p,i=3 = 86.0 J mol−1 K−1

cL
p,i=4 = 75.6 J mol−1 K−1

cV
p,i=4 = 35.0 J mol−1 K−1

hLV
i=1 = 875160.0 J mol−1

hre f
i=1 = 483520.0 J mol−1
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Design Variable Value Engineering Unit

hLV
i=2 = 725700.0 J mol−1

hre f
i=2 = 238400.0 J mol−1

hLV
i=3 = 1583000.0 J mol−1

hre f
i=3 = 445890.0 J mol−1

hLV
i=4 = 40650.0 J mol−1

hre f
i=4 = 285830.0 J mol−1

p = 100000.0 Pa
vi=1 = 57.54 cm3 mol−1

vi=2 = 44.44 cm3 mol−1

vi=3 = 79.84 cm3 mol−1

vi=4 = 18.07 cm3 mol−1

xF
i=1 = 0.5 mol mol−1

xF
i=2 = 0.5 mol mol−1

xF
i=3 = 0.0 mol mol−1

xF
i=4 = 0.0 mol mol−1

Tab. B.31: Physical Solution.

Iteration Variable Value Engineering Unit

Keq = 2.130E1 −
Li=1,j=1 = 1.000 −
Li=1,j=2 = 3.257E − 1 −
Li=1,j=3 = 9.465E − 1 −
Li=1,j=4 = 2.896E − 1 −
Li=2,j=1 = 1.560 −
Li=2,j=2 = 1.000 −
Li=2,j=3 = 1.362 −
Li=2,j=4 = 3.920E − 1 −
Li=3,j=1 = 9.136E − 1 −
Li=3,j=2 = 5.626E − 1 −
Li=3,j=3 = 1.000 −
Li=3,j=4 = 1.816E − 1 −
Li=4,j=1 = 2.545 −
Li=4,j=2 = 2.096 −
Li=4,j=3 = 2.299 −
Li=4,j=4 = 1.000 −
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Iteration Variable Value Engineering Unit

NL = 7.585E − 1 mol s−1

NV = 2.415E − 1 mol s−1

Q = 1.883E5 J s−1

γi=1 = 1.026 −
γi=2 = 1.154 −
γi=3 = 1.077 −
γi=4 = 8.109E − 1 −
hF = 3.635E5 J mol−1

hL = 3.913E5 J mol−1

hV = 1.056E6 J mol−1

hF
i=1 = 4.866E5 J mol−1

hL
i=1 = 4.903E5 J mol−1

hV
i=1 = 1.368E6 J mol−1

hF
i=2 = 2.404E5 J mol−1

hL
i=2 = 2.428E5 J mol−1

hV
i=2 = 9.680E5 J mol−1

hF
i=3 = 4.494E5 J mol−1

hL
i=3 = 4.536E5 J mol−1

hV
i=3 = 2.035E6 J mol−1

hF
i=4 = 2.877E5 J mol−1

hL
i=4 = 2.900E5 J mol−1

hV
i=4 = 3.315E5 J mol−1

k f = 5.006E − 3 s−1

pLV
i=1 = 2.759E4 Pa

pLV
i=2 = 1.807E5 Pa

pLV
i=3 = 2.125E5 Pa

pLV
i=4 = 4.738E4 Pa

r = 1.344E − 3 s−1

xi=1 = 5.885E − 1 mol mol−1

xi=2 = 3.855E − 1 mol mol−1

xi=3 = 1.025E − 2 mol mol−1

xi=4 = 1.579E − 2 mol mol−1

yi=1 = 1.665E − 1 mol mol−1

yi=2 = 8.040E − 1 mol mol−1

yi=3 = 2.347E − 2 mol mol−1

yi=4 = 6.067E − 3 mol mol−1
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B.5 Partial Condenser

In this unit, a vaporous stream of the five components Toluene (1), Biphenyl
(2), Benzene (3), Hydrogen (4) and Methane (5) is partially condensed in order
to remove a great part of the light-boiling components (4 to 5) from the heavy-
boiling products, which remain in the condensate. Both phases in the condenser
are assumed to be well-mixed and thermodynamic equilibrium holds between
them. The VLE is described by SRK in the way suggested by Rao (1997, pp. 74-79,
p. 280, p. 321). Further information about the actual implementation of this model
can be found in the master thesis of Rajes (2020, p. 32-33). The modifications that
have been made to this model to solve it more efficiently include the calculations
of the VLE. They are analogous to those of Heavies Column. The system has a
dimension of 34, of which the largest complex subsystem comprises 29 equations
and it can be placed in the intermediate sized range with respect to the other
systems. In comparison with the other systems, it has a high condition number
of 4.9 × 1011 and nonlinearity ratio of 0.493. The complete model, its variable and
parameter specifications, and a physical solution are presented next.

Tab. B.32: Notation, base names.

Base Name Description Engineering Unit

∆h Molar enthalpy difference J mol−1

∆p Pressure drop per tray Pa
Θ Parameter Equation of State −
α Parameter Equation of State −
β Parameter Equation of State −
γ Parameter Equation of State −
ω Acentric factor −
π Mathematical constant −
φ Fugacity coefficient −
A Area; Parameter Equation of State m2; various
a Parameter Equation of State Pam6/mol2

a0 Parameter 1 various
a1 Parameter 2 various
a2 Parameter 3 various
a3 Parameter 4 various
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B.5 Partial Condenser

Base Name Description Engineering Unit

a4 Parameter 5 various
a5 Parameter 6 various
a6 Parameter 7 various
a7 Parameter 8 various
a8 Parameter 9 various
a9 Parameter 10 various
a10 Parameter 11 various
aux Auxiliary parameter −
aux1 Auxiliary parameter 1 −
aux2 Auxiliary parameter 2 −
B Parameter Equation of State −
b Parameter Equation of State mol m−3

cp Specific isobar heat capacity J mol−1 K−1

D Parameter Equation of State various
F Flow rate mol s−1

h Molar enthalpy MJ mol−1

K Equilibrium constant −
lnphi ln of fugacity coefficient −
Pc Critical pressure Pa
n Selection of Soave Redlich Kwong −

(n=1) and Peng Robinson (n=2)
p Pressure; Parameter Equation of State bar; −
Q Heat duty MJ s−1

q Parameter Equation of State −
R Ideal gas constant J mol−1 K−1

r Parameter Equation of State −
T Temperature K
Tc Critical temperature K
U Internal energy J
V Volume m3

x Mole fraction liquid phase mol mol−1

y Mole fraction vapor phase mol mol−1

Z Compressibility factor −
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Tab. B.33: Notation, superscripts.

Superscript Description

F Feed
D Distillate
B Bottom
R Reboiler
C Condenser
L Liquid phase
LV Liquid-vapor
o Standard state
V Vapor phase

Tab. B.34: Notation, subscripts.

Subscript Description

cp Heat capacity
dep Departure function
EoS Equation of state
EoSa Function a of Equation of state EQS
EoSalp Function alpha of Equation of state EQS
EoSb Function b of Equation of state EQS
f Standard formation
hLV Enthalpy of evaporation
max Maximal
min Minimal
mix Mixture
Z Auxiliary parameter Z

Tab. B.35: Notation, indices.

Index Range Description

i 1..NC Component index
j 1..NC Second component index
tr 1..Ntr Tray index
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Tab. B.36: Component index.

Index Component

i = j = 1 Toluene
i = j = 2 Biphenyl
i = j = 3 Benzene
i = j = 4 Hydrogen
i = j = 5 Methanol
tr = 1 Tray

Equation System

0 = FF
tr · yF,tr,i − FL

tr · xtr,i − FV
tr · ytr,i

0 = Ktr,i · xtr,i − ytr,i

0 =
NC

∑
i=1

xtr,i − 1

0 =
NC

∑
i=1

ytr,i − 1

0 =
FF

tr · hF
tr − FL

tr · hL
tr − FV

tr · hV
tr + Q

hsca

0 =
NC

∑
i=1

xtr,i · (atr,i)
0.5 ·

NC

∑
j=1

xtr,i=j · (atr,i=j)
0.5 · (1 − ki,j)− aL

mix,tr

0 =
NC

∑
i=1

ytr,i · (atr,i)
0.5 ·

NC

∑
j=1

ytr,i=j · (atr,i=j)
0.5 · (1 − ki,j)− aV

mix,tr

0 =
NC

∑
i=1

xtr,i · bi − bL
mix,tr

0 =
NC

∑
i=1

ytr,i · bi − bV
mix,tr

0 = lnphiL
tr,i − lnphiV

tr,i − ln(
ytr,i

xtr,i
)

0 =
−qL

tr
2

+ (DL
tr)

0.5 − (aux1L
Z,tr)

3

0 =
−qL

tr
2

− (DL
tr)

0.5 − (aux2L
Z,tr)

3
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0 =
−qV

tr
2

+ (DV
tr)

0.5 − (aux1V
Z,tr)

3

0 =
−qV

tr
2

− (DV
tr)

0.5 − (aux2V
Z,tr)

3

0 = aux1L
Z,tr + aux2L

Z,tr −
αL

tr
3

− ZL
min,tr

0 =
−qV

tr
2

+ (DV
tr)

0.5 − (aux1V
Z,tr)

3

0 = aux1V
Z,tr + aux2V

Z,tr −
αV

tr
3

− ZV
max,tr

0 = ZL
min,tr − BL

tr − auxL
tr

0 = ZV
max,tr − BV

tr − auxV
tr

0 =
NC

∑
i=1

xtr,i · (atr,i)
0.5 ·

NC

∑
j=1

0.5 · xtr,i=j · aEoS,tr,i=j · (atr,i=j)
−0.5 · (1 − ki,j)

+
NC

∑
i=1

0.5 · xtr,i · aEoS,tr,i · (atr,i)
−0.5 ·

NC

∑
j=1

xtr,i=j · (atr,i=j)
0.5 · (1 − ki,j)− aL

EoS,tr

0 =
NC

∑
i=1

ytr,i · (atr,i)
0.5 ·

NC

∑
j=1

0.5 · ytr,i=j · aEoS,tr,i=j · (atr,i=j)
−0.5 · (1 − ki,j)

+
NC

∑
i=1

0.5 · ytr,i · aEoS,tr,i · (atr,i)
−0.5 ·

NC

∑
j=1

ytr,i=j · (atr,i=j)
0.5 · (1 − ki,j)− aV

EoS,tr

0 =
NC

∑
i=1

xtr,i · cpEoS,tr,i − cpL
EoS,tr

0 =
NC

∑
i=1

ytr,i · cpEoS,tr,i − cpV
EoS,tr

Functions

aEoS =
−a · (a0 + a1 · ω + a2 · (ω)2)

(α · T · Tc)0.5

Applications:

– aEoS,tr,i(αtr,i, a0EoSalp, a1EoSalp, a2EoSalp, ωi, Ttr)
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h = (R · T · (Z − 1) +
T · aEoS − a

b
· ((2 − n) · ln(1 +

B
Z
)

+ (n − 1) · 1
2 · (2)0.5 · ln(1 +

2 · (2)0.5

Z
B + 1 − (2)0.5

))) · (10)−6

Applications:

– hV
dep,tr(BV

tr ,Ttr,ZV
max,tr,a

V
mix,tr,a

V
EoS,tr,b

V
mix,tr,n)

– hL
dep,tr(BL

tr,Ttr,ZL
min,tr,a

L
mix,tr,a

L
EoS,tr,b

L
mix,tr,n)

cpEoS = ho + ((a0 · T +
1
2
· a1 · (T)2 +

1
3
· a2 · (T)3 +

1
4
· a3 · (T)4

+
1
5
· a4 · (T)5 +

1
6
· a5 · (T)6 +

1
7
· a6 · (10)−10 · (T)7 +

1
8
· a7 · (10)−10 · (T)8

+
1
9
· a8 · (10)−20 · (T)9 +

1
10

· a9 · (10)−20 · (T)10 +
1
11

· a10 · (10)−20 · (T)11)

− (a0 · To +
1
2
· a1 · (To)2 +

1
3
· a2 · (To)3 +

1
4
· a3 · (To)4 +

1
5
· a4 · (To)5

+
1
6
· a5 · (To)6 +

1
7
· a6 · (10)−10 · (To)7 +

1
8
· a7 · (10)−10 · (To)8

+
1
9
· a8 · (10)−20 · (To)9 +

1
10

· a9 · (10)−20 · (To)10 +
1
11

· a10 · (10)−20

· (To)11)) · (10)−6

Applications:

– cpEoS,tr,i(ho
i , To, a1cp,i, a2cp,i, a3cp,i, a4cp,i, a5cp,i, a6cp,i, a7cp,i, a8cp,i, a9cp,i, a10cp,i)

h = hdep + cpEoS

Applications:

– hV
tr(cpV

EoS,tr,h
V
dep,tr)

– hL
tr(cpL

EoS,tr,h
L
dep,tr)
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D =
(q)2

4
+

(p)3

27

Applications:

– DV
tr(pV

tr,q
V
tr)

– DL
tr(pL

tr,q
L
tr)

α = −1 + (n − 1) · B

Applications:

– αV
tr(BV

tr ,n)

– αL
tr(BL

tr,n)

γ = −A · B + (n − 1) · ((B)2 + (B)3)

Applications:

– γV
tr(AL

tr,B
L
tr,n)

– γL
tr(AV

tr,B
V
tr ,n)

q = 2 · (α)
3

27
− β · α

3
+ γ

Applications:

– qV
tr(α

V
tr,β

V
tr,γ

V
tr)

– qL
tr(α

L
tr,β

L
tr,γ

L
tr)

b =
a0 · R · Tc

Pc

Applications:

– bi(a0EoSb, Pci, R, Tci)
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α = (1 + (a0 + a1 · ω + a2 · (ω)2) · (1 − (
T
Tc

)0.5))2

Applications:

– αtr,i(ωi, a0EoSalp, a1EoSalp, a2EoSalp,Ttr,Tci)

B =
b · p
R · T

· (10)5

Applications:

– BL
tr(Ttr,bL

mix,tr,ptr,R)

– BV
tr(Ttr,bV

mix,tr,ptr,R)

p = − (α)2

3
+ β

Applications:

– pL
tr(α

L
tr,β

L
tr)

– pV
tr(α

V
tr,β

V
tr)

lnphi = (Z − 1) · b
bmix

− ln(aux)

+ (
b

R · T
· ( (amix)

0.5

bmix
− (a)0.5

b
)2 − a

b · R · T
) · ((2 − n) · ln(1 +

B
Z
)

+ (n − 1) · 1
2 · (2)0.5 · ln(1 +

2 · (2)0.5

Z
B + 1 − (2)0.5

))

Applications:

– lnphiL
tr,i(BL

tr,Ttr,ZL
min,tr,atr,i,aL

mix,tr,bi,bL
mix,tr,n,R,aux)

– lnphiV
tr,i(BV

tr ,Ttr,ZV
max,tr,atr,i,aV

mix,tr,bi,bV
mix,tr,n,R,aux)
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a =
a0 · (R)2 · (Tc)2

Pc
· α

Applications:

– atr,i(a0EoSalp,αtr,i, Pci,R, Tci)

A =
a · p

(R · T)2 · (10)5

Applications:

– AV
tr(Ttr,aV

mix,tr,ptr,R)

– AL
tr(Ttr,aL

mix,tr,ptr,R)

β = A − (B + 0.5)2 + 0.25 − (n − 1) · 2 · ((B + 0.25)2 − 1
16

)

Applications:

– βV
tr(AV

tr,B
V
tr ,n)

– βL
tr(AL

tr,B
L
tr,n)

Tab. B.37: Design variable specification.

Design Variable Value Engineering Unit

FF
tr=1 = 75.0 mol s−1

Ttr=1 = 298.15 K
hF

tr=1 = −0.00257 MJ mol−1

ki=1,j=1 = 0.0 −
ki=1,j=2 = 0.0 −
ki=1,j=3 = 0.0 −
ki=1,j=4 = 0.39 −
ki=1,j=5 = 0.0978 −
ki=2,j=1 = 0.0 −
ki=2,j=2 = 0.0 −
ki=2,j=3 = 0.0 −
ki=2,j=4 = 0.0 −
ki=2,j=5 = 0.0 −
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Design Variable Value Engineering Unit

ki=3,j=1 = 0.0 −
ki=3,j=2 = 0.0 −
ki=3,j=3 = 0.0 −
ki=3,j=4 = 0.0 −
ki=3,j=5 = 0.08 −
ki=4,j=1 = 0.39 −
ki=4,j=2 = 0.0 −
ki=4,j=3 = 0.0 −
ki=4,j=4 = 0.0 −
ki=4,j=5 = −0.0133 −
ki=5,j=1 = 0.0978 −
ki=5,j=2 = 0.0 −
ki=5,j=3 = 0.08 −
ki=5,j=4 = −0.0133 −
ki=5,j=5 = 0.0 −
ptr=1 = 35.0 bar
yF,tr=1,i=1 = 0.0042649948 mol mol−1

yF,tr=1,i=2 = 0.001113764794 mol mol−1

yF,tr=1,i=3 = 0.079187738812 mol mol−1

yF,tr=1,i=4 = 0.36066689299 mol mol−1

yF,tr=1,i=5 = 0.5547666052 mol mol−1

Tab. B.38: Parameter specification.

Parameter Value Engineering Unit

Pci=1 = 4108000.0 Pa
Pci=2 = 3847270.0 Pa
Pci=3 = 4895000.0 Pa
Pci=4 = 1313000.0 Pa
Pci=5 = 4599000.0 Pa
R = 8.314 J mol−1 K−1

To = 298.15 K
Tci=1 = 591.75 K
Tci=2 = 780.0 K
Tci=3 = 562.05 K
Tci=4 = 33.19 K
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Parameter Value Engineering Unit

Tci=5 = 190.56 K
ωi=1 = 0.264 −
ωi=2 = 0.3643 −
ωi=3 = 0.209 −
ωi=4 = −0.215993 −
ωi=5 = 0.011 −
a0EoSalp = 0.48 −
a0EoSa = 0.42748 −
a0EoSb = 0.08664 −
a0cp,i=1 = 90.437308284 MJ mol−1 K−2

a0cp,i=2 = 128.05624781 MJ mol−1 K−2

a0cp,i=3 = 51.129279111 MJ mol−1 K−2

a0cp,i=4 = −1.5493755831 MJ mol−1 K−2

a0cp,i=5 = 33.026084022 MJ mol−1 K−2

a10cp,i=1 = 3.8712156396E − 8 MJ/mol/K12

a10cp,i=2 = 0.0 MJ/mol/K12

a10cp,i=3 = −1.1438815377E − 7 MJ/mol/K12

a10cp,i=4 = −1.2743155754E − 7 MJ/mol/K12

a10cp,i=5 = 3.8907702866E − 8 MJ/mol/K12

a1EoSalp = 1.574 −
a1cp,i=1 = −0.9985041803 MJ mol−1 K−3

a1cp,i=2 = −1.1747162507 MJ mol−1 K−3

a1cp,i=3 = −0.42303172933 MJ mol−1 K−3

a1cp,i=4 = 0.48497196032 MJ mol−1 K−3

a1cp,i=5 = 0.0076633861482 MJ mol−1 K−3

a2EoSalp = −0.176 −
a2cp,i=1 = 0.0080485154551 MJ/mol/K4

a2cp,i=2 = 0.0088938352242 MJ/mol/K4

a2cp,i=3 = 0.0030031574926 MJ/mol/K4

a2cp,i=4 = −0.0036640321738 MJ/mol/K4

a2cp,i=5 = −9.1006983668E − 5 MJ/mol/K4

a3cp,i=1 = −2.5807841212E − 5 MJ/mol/K5

a3cp,i=2 = −2.2994177666E − 5 MJ/mol/K5

a3cp,i=3 = −3.3486993073E − 6 MJ/mol/K5

a3cp,i=4 = 1.6281929297E − 5 MJ/mol/K5

a3cp,i=5 = 7.2093965149E − 8 MJ/mol/K5

a4cp,i=1 = 5.1269606228E − 8 MJ/mol/K6
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Parameter Value Engineering Unit

a4cp,i=2 = 3.3640587786E − 8 MJ/mol/K6

a4cp,i=3 = −1.0329470431E − 8 MJ/mol/K6

a4cp,i=4 = −4.5501303806E − 8 MJ/mol/K6

a4cp,i=5 = 2.7753312144E − 9 MJ/mol/K6

a5cp,i=1 = −6.8621127767E − 11 MJ/mol/K7

a5cp,i=2 = −3.0247984794E − 11 MJ/mol/K7

a5cp,i=3 = 4.0748420476E − 11 MJ/mol/K7

a5cp,i=4 = 8.2690901469E − 11 MJ/mol/K7

a5cp,i=5 = −1.0507135092E − 11 MJ/mol/K7

a6cp,i=1 = 6.3016209804E − 4 MJ/mol/K8

a6cp,i=2 = 1.6555674018E − 4 MJ/mol/K8

a6cp,i=3 = −6.4864211744E − 4 MJ/mol/K8

a6cp,i=4 = −9.8950188959E − 4 MJ/mol/K8

a6cp,i=5 = 1.798208819E − 4 MJ/mol/K8

a7cp,i=1 = −3.9191597331E − 7 MJ/mol/K9

a7cp,i=2 = −5.0634912115E − 8 MJ/mol/K9

a7cp,i=3 = 5.853852096E − 7 MJ/mol/K9

a7cp,i=4 = 7.7256546544E − 7 MJ/mol/K9

a7cp,i=5 = −1.7355522847E − 7 MJ/mol/K9

a8cp,i=1 = 1.5780545132 MJ/mol/K10

a8cp,i=2 = 0.066363537276 MJ/mol/K10

a8cp,i=3 = −3.1168733123 MJ/mol/K10

a8cp,i=4 = −3.783493389 MJ/mol/K10

a8cp,i=5 = 0.97650324341 MJ/mol/K10

a9cp,i=1 = −3.7117182927E − 4 MJ/mol/K11

a9cp,i=2 = 0.0 MJ/mol/K11

a9cp,i=3 = 9.147761772E − 4 MJ/mol/K11

a9cp,i=4 = 0.0010542025496 MJ/mol/K11

a9cp,i=5 = −2.9979456966E − 4 MJ/mol/K11

hsca = 1.0 −
ho

i=1 = 0.05017 MJ mol−1

ho
i=2 = 0.182088 MJ mol−1

ho
i=3 = 0.08288 MJ mol−1

ho
i=4 = 0.0 MJ mol−1

ho
i=5 = −0.07452 MJ mol−1

n = 1.0 −
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Tab. B.39: Physical solution.

Iteration Variable Value Engineering Unit

FL
tr=1 = 6.3601 mol s−1

FV
tr=1 = 6.8639E1 mol s−1

Ktr=1,i=1 = 2.045E − 3 −
Ktr=1,i=2 = 5.032E − 6 −
Ktr=1,i=3 = 6.399E − 3 −
Ktr=1,i=4 = 6.900E1 −
Ktr=1,i=5 = 1.025 −
Q = −2.604 MJ s−1

ZV
max,tr=1 = 1.367E − 1 −

ZL
min,tr=1 = 9.845E − 1 −

aL
EoS,tr=1 = −4.304E − 3 Pam6/mol2/K

aV
EoS,tr=1 = −2.172E − 4 Pam6/mol2/K

aL
mix,tr=1 = 2.656 Pam6/mol2

aV
mix,tr=1 = 9.553E − 2 Pam6/mol2

aux1L
Z,tr=1 = 5.019E − 1 −

aux1V
Z,tr=1 = 3.512E − 1 −

aux2L
Z,tr=1 = −6.985E − 1 −

aux2V
Z,tr=1 = 2.999E − 1 −

auxL
tr=1 = 2.220E − 2 −

auxV
tr=1 = 9.481E − 1 −

bL
mix,tr=1 = 8.111E − 5 mol m−3

bV
mix,tr=1 = 2.557E − 5 mol m−3

cpL
EoS,tr=1 = 7.288E − 2 MJ mol−1 K−1

cpV
EoS,tr=1 = −4.430E − 2 MJ mol−1 K−1

xtr=1,i=1 = 4.920E − 1 mol mol−1

xtr=1,i=2 = 1.313E − 2 mol mol−1

xtr=1,i=3 = 8.734E − 1 mol mol−1

xtr=1,i=4 = 5.704E − 3 mol mol−1

xtr=1,i=5 = 5.860E − 2 mol mol−1

ytr=1,i=1 = 1.006E − 4 mol mol−1

ytr=1,i=2 = 6.607E − 8 mol mol−1

ytr=1,i=3 = 5.589E − 3 mol mol−1

ytr=1,i=4 = 3.936E − 1 mol mol−1

ytr=1,i=5 = 6.007E − 1 mol mol−1

210



B.6 Total Condenser

B.6 Total Condenser

Tab. B.40: Notation, base names.

Base Name Description Engineering Unit

α Wilson coefficient −
γ Activity coefficient −
λ Wilson coefficient −
π Mathematical constant pi −
ρ Molar density kmol m−3

A Area ; Parameter m2, various
av Auxiliary variable various
B Parameter various
C Parameter various
cp Specific heat capacity kJ kmol−1 K−1

D Diameter; Parameter m; various
d Diameter m
E Parameter various
F Flow rate kmol s−1

H Height; Parameter m; various
h Specific enthalpy kJ kmol−1

HU Molar Holdup kmol
K Equilibrium constant −
k Heat transfer coefficient W K−1 m−2

M Molar weight g mol−1

N Count of items −
p Pressure Pa
R Ideal gas constant kJ kmol−1 K−1

T Temperature K
U Internal energy kJ
V Volume m3

v Molar volume m3 mol−1

x Mole fraction liquid phase mol mol−1

y Mole fraction vapor phase mol mol−1
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Tab. B.41: Notation, superscripts.

Superscript Description

aux Auxiliary
c Cold
cp Heat capacity
crit Critical
dim Dimension
h Hot; Enthalpy
i Inner
in Inlet
n Molar
L Liquid phase
LV Liquid-vapor
o Outter; Reference
out Outlet
p Pipe; Pressure
ph2 Two phase region
rho Density
sc Subcooled
sh Superheated
total Total
V Vapor phase

Tab. B.42: Notation, subscripts.

Subscript Description

cNP Correlation for pipes

Tab. B.43: Notation, indices.

Index Range Description

i 1 . . . NC Component index
k 1 . . . NCk Coolant index
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Tab. B.44: Component index.

Index Component

i = 1 Ethanol
i = 2 Water
k = 1 Water

Equation System

0 = Fc,sc,n,in · xc,sc,in
k − Fc,sc,n,out · xc,sc,out

k

0 = Fh,sc,n,in · xh,sc,in
i − Fh,sc,n,out · xh,sc,out

i

0 = Fc,ph2,n,in · xc,ph2,in
k − Fc,ph2,n,out · xc,ph2,out

k

0 = Fh,ph2,V,n,in · yh,ph2,in
i + Fh,ph2,L,n,in · xh,ph2,in

i − Fh,ph2,V,n,out · yh,ph2,out
i

− Fh,ph2,L,n,out · xh,ph2,out
i

0 = Fc,ph2,n,in · xc,ph2,in
k − Fc,ph2,n,out · xc,ph2,out

k

0 = Fc,sh,n,in · xc,sh,in
k − Fc,sh,n,out · xc,sh,out

k

0 = Fh,sh,n,in · yh,sh,in
i − Fh,sh,n,out · yh,sh,out

i

0 = Kh,ph2,out
i · xh,ph2,out

i − yh,ph2,out
i

0 = Kh,ph2,in
i · xh,ph2,in

i − yh,ph2,in
i

0 =
NC

∑
i=1

xh,sc,out
i − 1

0 =
NCk

∑
k=1

xc,sc,out
k − 1

0 =
NC

∑
i=1

xh,ph2,in
i − 1

0 =
NCk

∑
k=1

xc,ph2,out
k − 1

0 =
NC

∑
i=1

xh,ph2,out
i − 1

0 =
NC

∑
i=1

xh,ph2,in
i − 1
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0 =
NC

∑
i=1

yh,ph2,out
i − 1

0 =
NCk

∑
k=1

xc,sh,out
k − 1

0 =
NC

∑
i=1

yh,sh,out
i − 1

0 = Fc,sc,n,in · hc,sc,n,in − Fc,sc,n,out · hc,sc,n,out + Fh,sc,n,in · hh,sc,n,in − Fh,sc,n,out · hh,sc,n,out

0 = ksc · Asc · (T
h,sc,in − Tc,sc,out)− (Th,sc,out − Tc,sc,in)

ln( (T
h,sc,in−Tc,sc,out)

(Th,sc,out−Tc,sc,in)
)

+ Fc,sc,n,in · (
NCk

∑
k=1

xc,sc,in
k · hc,sc,n,in

k )− Fc,sc,n,out · (
NCk

∑
k=1

xc,sc,out
k · hc,sc,n,out

k )

0 = Fn,L,h,ph2,in · hh,L,ph2,n,in + Fn,V,h,ph2,in · hh,V,ph2,n,in

− Fn,L,h,ph2,out · hh,L,ph2,n,out

− Fn,V,h,ph2,out · hh,V,ph2,n,out + Fc,ph2,n,in · hc,ph2,n,in − Fc,ph2,n,out · hc,ph2,n,out

0 = −Fc,ph2,n,in · (
NCk

∑
k=1

xc,ph2,in
k · hc,sc,n,out

k ) + Fc,ph2,n,out · (
NCk

∑
k=1

xc,ph2,out
k · hc,ph2,n,out

k )

− kph2 · Aph2 · (T
h,ph2,in − Tc,ph2,out)− (Th,ph2,out − Tc,ph2,in)

ln( (T
h,ph2,in−Tc,ph2,out)

(Th,ph2,out−Tc,ph2,in)
)

0 = Fh,sh,n,in · hh,sh,n,in − Fh,sh,n,out · hh,sh,n,out + Fc,sh,n,in · hc,sh,n,in

− Fc,sh,n,out · hc,sh,n,out

0 = Fc,sh,n,out · (
NCk

∑
k=1

xc,sh,out
k · hc,sh,n,L,out

k )− Fc,sh,n,in · (
NCk

∑
k=1

xc,sh,in
k · hc,ph2,n,out

k )

− ksh · Ash · (T
h,sh,in − Tc,sh,out)− (Th,sh,out − Tc,sh,in)

ln( (T
h,sh,in−Tc,sh,out)

(Th,sh,out−Tc,sh,in)
)

0 =
NCk

∑
k=1

xc,sc,in
k · hc,sc,n,in

k − hc,sc,n,in

0 =
NCk

∑
k=1

xc,sc,out
k · hc,sc,n,out

k − hc,sc,n,out

0 =
NCk

∑
k=1

xc,ph2,out
k · hc,ph2,n,out

k − hc,ph2,n,out

0 =
NC

∑
i=1

yh,ph2,out
i · hn,h,V,ph2,out

i − hn,h,V,ph2,out
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0 =
NC

∑
i=1

xh,ph2,in
i · hn,h,L,ph2,in

i − hn,h,L,ph2,in

0 =
NC

∑
i=1

xh,ph2,out
i · hn,h,L,ph2,out

i − hn,h,L,ph2,out

0 =
NC

∑
i=1

yh,sh,in
i · hh,sh,n,in

i − hh,sh,n,in

0 =
NC

∑
i=1

yh,sh,out
i · hh,sh,n,out

i − hh,sh,n,out

0 =
NCk

∑
k=1

xc,sh,out
k · hc,sh,out,L,n

k − hc,sh,n,out

0 = Tc,out,sc − Tc,in,sc − avsc

0 = Tc,out,sh − Tc,out,ph2 − avsh

0 = Tc,out,ph2 − Tc,out,sc − avph2

0 =
∑NC

i=1 vL
i − vL

i

vL
i

· exp(
−λi

T
)

0 =
pLV

i
p

· γi − Ki

0 =
1

xi + αi · (1 − xi)
· exp((1 − xi) · (

αi

xi + αi · (1 − xi)

− ∑NC
i=1 αi − αi

(∑NC
i=1 αi − αi) · xi + (1 − xi)

))

0 =
NC

∑
i=1

xh,sc,out
i · ρL,h,sc,n,out

i − ρL,h,sc,n,out

0 =
NC

∑
i=1

xh,ph2,out
i · ρ

L,h,ph2,n,out
i − ρL,h,ph2,n,out

0 = ρL,h,sc,n,out · Vh,sc − HUh,sc,n

0 = ρL,h,ph2,n,out · Vph2,L,h − HUL,h,ph2,n

0 =
HUV,h,ph2,n · R · Th,ph2,out

ph,ph2,out − Vph2,V,h

0 =
HUh,sh,n · R · Th,sh,out

ph,sh,out − Vh,sh

0 = xh,sc,out
i · HUh,n,sc − HUh,n,sc

i

0 = xh,ph2,out
i · HUh,n,ph2,L + yh,ph2,out

i · HUh,n,ph2,V − HUh,n,ph2
i

0 = yh,sh,out
i · HUh,n,sh − HUh,n,sh

i
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0 = HUh,n,sc · (hh,sc,n,out +
ph,sc,out

ρL,h,sc,n,out )− Uh,sc

0 = HUh,L,n,ph2 · (hh,ph2,L,n,out +
ph,ph2,out

ρL,h,ph2,n,out ) + HUh,V,n,ph2 · (hh,ph2,V,n,out

+ R · Th,ph2,out)− Uh,ph2

0 = HUh,n,sh · (hh,sh,n,out + R · Th,sh,out)− Uh,sh

0 = Ash + Aph2 − AV

0 = Vh,sh + Vph2,V,h − VV,h

0 = Vh,sc + Vh,ph2,L − VL

0 = VL,total + VV,total − V

0 = AV + Asc − A

0 = 1 − 2 · HL,total

Di − Aaux

0 = Np,total · π · do · L − A

0 = ((
Di

2
)2 · (π

2
− Aaux − (Aaux)3

6
− 3 · (Aaux)5

40
)− (

Di

2
− HL,total)

· (Di · HL,total − (HL,total)2)0.5) · L − VL,total

0 =
π · (Di)2

4
· L − V

0 = (Np,total − Np,ph2,L − Np,sc − Np,sh) · π · (do)2

4
· L − Vp,ph2,V

0 = VV,h,ph2 + Vp,ph2,V − VV,ph2,total

0 = Np,ph2,L · π · (do)2

4
· L − Vp,ph2,L

0 = VL,h,ph2 + Vp,ph2,L − VL,ph2,total

0 = Vsh,total + Vph2,V,total − VV,total

0 = Vsc,total + Vph2,L,total − VL,total

0 = AcNP · sin(BcNP · (HL,total − Di

2
Hdim )) +

Np,total

2
+ CcNP·

exp(
−HL,total

Hdim · 1000)− Np,sc − Np,L,ph2

0 = 1 − 2 · H
Di − Aaux

0 = ((
Di

2
)2 · (π

2
− Aaux − (Aaux)3

6
− 3 · (Aaux)5

40
)− (

Di

2
− H)

· (Di · H − (H)2)0.5) · L − Vtotal
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0 = Np · π · (do)2

4
· L − Vp

0 = V + Vp − Vtotal

0 = ((
Di

2
)2 · (π

2
− Aaux − (Aaux)3

6
− 3 · (Aaux)5

40
)− (

Di

2
− Hsh,total)

· (Di · Hsh,total − (Hsh,total)2)0.5) · L − Vsh,total

0 = 1 − 2 · Hsh,total

Di − Aaux,sh

0 = (AcNP · sin(BcNP · (Hsh,total − Di

2
Hdim ))

+
Np,total

2
+ CcNP · exp(

−Hsh,total

Hdim · 1000))− Np,sh

0 = Np,sh · π · do · L − Ash

0 = Np,sh · π · (do)2

4
· L − Vp,sh

0 = Vh,sh + Vp,sh − Vsh,total

0 = ((
Di

2
)2 · (π

2
− Aaux − (Aaux)3

6
− 3 · (Aaux)5

40
)− (

Di

2
− Hsc,total)

· (Di · Hsc,total − (Hsc,total)2)0.5) · L − Vsc,total

0 = 1 − 2 · Hsc,total

Di − Aaux,sc

0 = (AcNP · sin(BcNP · (Hsc,total − Di

2
Hdim ))

+
Np,total

2
+ CcNP · exp(

−Hsc,total

Hdim · 1000))− Np,sc

0 = Np,sc · π · do · L − Asc

0 = Np,sc · π · (do)2

4
· L − Vp,sc

0 = Vh,sc + Vp,sc − Vsc,total

0 = AcNP · sin(BcNP · (HL,total − Di

2
Hdim )) +

Np,total

2

+ CcNP · exp(
−HL,total

Hdim · 1000)− Np,sc − NL,p,ph2
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Functions

h(T) = hV,n − hLV,n +
(p − pLV)

ρL,n

Applications:

– hh,ph2,L,n,in
i (ρL,h,in,n

i ,hLV,ph2,in,n
i , hV,h,in,ph2,n

i , ph,in,ph2, pph2,LV,in
i )

– hh,ph2,L,n,out
i (ρL,h,out,n

i ,hLV,ph2,out,n
i , hV,h,out,ph2,n

i , ph,out,ph2, pph2,LV,out
i )

– hh,sc,L,n,out
i (ρL,h,out,n

i ,hLV,sc,out,n
i , hV,h,out,sc,n

i , ph,out,sc, psc,LV,out
i )

– hc,sc,n,in
k (ρL,c,in,n

i ,hLV,sc,in,n
i , hV,c,in,sc,n

i , pc,in,sc, psc,LV,in
k )

– hc,sc,n,out
k (ρL,c,out,n

i ,hLV,sc,out,n
i , hV,c,out,sc,n

i , pc,out,sc, psc,LV,out
k )

– hc,ph2,n,out
k (ρL,c,out,n

i ,hLV,ph2,out,n
i , hV,c,out,ph2,n

i , pc,out,ph2, pph2,LV,out
k )

– hc,sh,n,out
k (ρL,c,out,n

i ,hLV,sh,out,n
i , hV,c,out,sh,n

i , pc,out,sh, psh,LV,out
k )

h(T) = ho + A · (T − Th,o) + B · ((T)2 − (Th,o)2)

2
+ C · ((T)3 − (Th,o)3)

3

+ D · ((T)4 − (Th,o)4)

4
+ E · ((T)

5 − (Th,o)5)

5

Applications:

– hh,sh,n,in
i (Th,sh,in, ho, Th,o, Acp

i , . . . , Ecp
i )

– hh,sh,n,out
i (Th,sh,out, ho, Th,o, Acp

i , . . . , Ecp
i )

– hh,ph2,n,in
i (Th,ph2,in, ho, Th,o, Acp

i , . . . , Ecp
i )

– hh,ph2,n,out
i (Th,ph2,out, ho, Th,o, Acp

i , . . . , Ecp
i )

– hh,sc,n,out
i (Th,sc,out, ho, Th,o, Acp

i , . . . , Ecp
i )

– hc,sc,n,in
k (Tc,sc,in, ho, Tc,o, Acp

k , . . . , Ecp
k )

– hc,sc,n,out
k (Tc,sc,out, ho, Tc,o, Acp

k , . . . , Ecp
k )
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– hc,ph2,n,out
k (Tc,ph2,out, ho, Tc,o, Acp

k , . . . , Ecp
k )

– hc,sh,n,out
k (Tc,sh,out, ho, Tc,o, Acp

k , . . . , Ecp
k )

h(T) = A · (1 − T
Tcrit )

B+C· T
Tcrit +D·( T

Tcrit )
2+E·( T

Tcrit )
3

Applications:

– hh,ph2,LV,n,in
i (Th,ph2,in, Tcrit

i , ALV,h
i , . . . , ELV,h

i )

– hh,ph2,LV,n,out
i (Th,ph2,out, Tcrit

i , ALV,h
i , . . . , ELV,h

i )

– hh,sc,LV,n,out
i (Th,sc,out, Tcrit

i , ALV,h
i , . . . , ELV,h

i )

– hc,sc,LV,n,in
i (Tc,sc,in, Tcrit

i , ALV,h
i , . . . , ELV,h

i )

– hc,sc,LV,n,out
i (Tc,sc,out, Tcrit

i , ALV,h
i , . . . , ELV,h

i )

– hc,ph2,LV,n,out
i (Tc,ph2,out, Tcrit

i , ALV,h
i , . . . , ELV,h

i )

– hc,sh,LV,n,out
i (Tc,sh,out, Tcrit

i , ALV,h
i , . . . , ELV,h

i )

ρ(T) =
A

(B)1+(1− T
C )

D

Applications:

– ρL,h,sc,n,out
i=1 (Th,sc,out,AL,n,rho

i=1 , . . . , DL,n,rho
i=1 )

– ρ
L,h,ph2,n,in
i=1 (Th,ph2,in,AL,n,rho

i=1 , . . . , DL,n,rho
i=1 )

– ρ
L,h,ph2,n,out
i=1 (Th,ph2,out,AL,n,rho

i=1 , . . . , DL,n,rho
i=1 )

ρ(T) = A + B · T + C · (T)2 + D · (T)3 + E · (T)4

Applications:
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– ρL,h,sc,n,out
i=2 (Th,sc,out,AL,n,rho

i=2 , . . . , EL,n,rho
i=2 )

– ρ
L,h,ph2,n,in
i=2 (Th,ph2,in,AL,n,rho

i=2 , . . . , EL,n,rho
i=2 )

– ρ
L,h,ph2,n,out
i=2 (Th,ph2,out,AL,n,rho

i=2 , . . . , EL,n,rho
i=2 )

– ρL,c,sc,n,in
k=1 (Th,sc,in,AL,n,rho

k=1 , . . . , EL,n,rho
k=1 )

– ρL,c,sc,n,out
k=1 (Th,sc,out,AL,n,rho

k=1 , . . . , EL,n,rho
k=1 )

– ρL,c,sh,n,out
k=1 (Tc,sh,out,AL,n,rho

k=1 , . . . , EL,n,rho
k=1 )

– ρ
L,c,ph2,n,out
k=1 (Th,ph2,out,AL,n,rho

k=1 , . . . , EL,n,rho
k=1 )

p(T) = exp(A +
B
T
+ C · ln(T) + D · (T)E)

Applications:

– pLV,h,in,ph2
i (Th,ph2,in, ALV,p

i , . . . , ELV,p
i )

– pLV,h,out,ph2
i (Th,ph2,out, ALV,p

i , . . . , ELV,p
i )

– pLV,h,out,sc
i (Th,sc,out, ALV,p

i , . . . , ELV,p
i )

– pLV,c,in,sc
k (Tc,sc,in, ALV,p

k , . . . , ELV,p
k )

– pLV,c,out,sc
k (Tc,sc,out, ALV,p

k , . . . , ELV,p
k )

– pLV,c,out,ph2
k (Tc,ph2,out, ALV,p

k , . . . , ELV,p
k )

– pLV,c,out,sh
k (Tc,sh,out, ALV,p

k , . . . , ELV,p
k )

Tab. B.45: Design variable specification.

Design Variable Value Engineering Unit

FL,h,in,n,ph2 = 0.0 mol s−1

FV,h,n,out,ph2 = 0.0 mol s−1

Fc,in,n,sc = 5.2 mol s−1

Fh,in,n,sh = 0.34 mol s−1
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Design Variable Value Engineering Unit

HL,total = 0.05 m
Hdim = 1.0 m
Tc,in,sc = 298.15 K
Th,in,sh = 353.15 K
λwilson,i=1 = 95.68 K
λwilson,i=2 = 506.7 K
kph2 = 50.0 W m−2 K−1

ksc = 50.0 W m−2 K−1

ksh = 50.0 W m−2 K−1

pc,in,sc = 100000.0 Pa
pc,out,ph2 = 100000.0 Pa
pc,out,sc = 100000.0 Pa
pc,out,sh = 100000.0 Pa
ph,in,ph2 = 70000.0 Pa
ph,out,ph2 = 70000.0 Pa
ph,out,sc = 70000.0 Pa
ph,out,sh = 70000.0 Pa
vL

i=1 = 5.869E − 5 m3 mol−1

vL
i=2 = 1.807E − 5 m3 mol−1

xc,in,sc
k=1 = 1.0 mol mol−1

yh,in,sh
i=1 = 0.412 mol mol−1

yh,in,sh
i=2 = 0.588 mol mol−1

Tab. B.46: Parameter specification.

Parameter Value Engineering Unit

AcNP = 38.7993 −
Acp

i=1 = 9.008 J mol−1 K−1

AL,n,rho
i=2 = −13851.0 mol m−3

Acp
i=2 = 32.22 J mol−1 K−1

AL,n,rho
k=1 = −13851.0 mol m−3

Acp
k=1 = 32.22 J mol−1

ALV,p
i=1 = 73.304 −

ALV,p
i=2 = 73.649 −

ALV,p
k=1 = 73.649 −
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Parameter Value Engineering Unit

AL,n,rho
i=1 = 1628.8 mol m−3

ALV,h
i=1 = 65831.0 J mol−1

ALV,h
i=2 = 56600.0 J mol−1

ALV,h
k=1 = 56600.0 J mol−1

BcNP = 7.2093 −
Bcp

i=1 = 0.2139 J mol−1 K−2

BL,n,rho
i=2 = 640.38 mol m−3 K−1

Bcp
i=2 = 0.0019225 J mol−1 K−2

BL,n,rho
k=1 = 640.38 mol m−3 K−1

Bcp
k=1 = 0.0019225 J mol−1 K−2

BLV,p
i=1 = −7122.3 K

BLV,p
i=2 = −7258.2 K

BLV,p
k=1 = −7258.2 K

BL,n,rho
i=1 = 0.27469 −

BLV,h
i=1 = 1.1905 −

BLV,h
i=2 = 0.61204 −

BLV,h
k=1 = 0.61204 −

CcNP = 1.1124 −
Ccp

i=1 = −8.3846E − 5 J mol−1 K−3

CL,n,rho
i=2 = −1.9124 mol m−3 K−2

Ccp
i=2 = 1.0548E − 5 J mol−1 K−3

CL,n,rho
k=1 = −1.9124 mol m−3 K−2

Ccp
k=1 = 1.0548E − 5 J mol−1 K−3

CLV,p
i=1 = −7.1424 −

CLV,p
i=2 = −7.3037 −

CLV,p
k=1 = −7.3037 −

CL,n,rho
i=1 = 514.0 K

CLV,h
i=1 = −1.7666 −

CLV,h
i=2 = −0.6257 −

CLV,h
k=1 = −0.6257 −

Di = 0.298 m
Dcp

i=1 = 1.3723E − 9 J/mol/K4

DL,n,rho
i=2 = 0.0018211 mol/m3/K3

Dcp
i=2 = −3.594E − 9 J/mol/K4

DL,n,rho
k=1 = 0.0018211 mol m−3 K−3

Dcp
k=1 = −3.594E − 9 J/mol/K4
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Parameter Value Engineering Unit

DLV,p
i=1 = 2.8853E − 6 KELV,p

i=1

DLV,p
i=2 = 4.1653E − 6 KELV,p

i=2

DLV,p
k=1 = 4.1653E − 6 KELV,p

k=1

DL,n,rho
i=1 = 0.23178 −

DLV,h
i=1 = 1.0012 −

DLV,h
i=2 = 0.3988 −

DLV,h
k=1 = 0.3988 −

Ecp
i=1 = 0.0 J/mol/K5

EL,n,rho
i=2 = 0.0 mol/m3/K4

Ecp
i=2 = 0.0 J/mol/K5

EL,n,rho
k=1 = 0.0 mol/m3/K4

Ecp
k=1 = 0.0 J/mol/K5

ELV,p
i=1 = 2.0 −

ELV,p
i=2 = 2.0 −

ELV,p
k=1 = 2.0 −

ELV,h
i=1 = 0.0 −

ELV,h
i=2 = 0.0 −

ELV,h
k=1 = 0.0 −

L = 2.0 m
Np,total = 66.0 −
R = 8.314 J mol−1 K−1

Tcrit
i=1 = 514.0 K

Th,o
i=1 = 298.15 K

Tcrit
i=2 = 647.096 K

Th,o
i=2 = 298.15 K

Tcrit
k=1 = 647.096 K

Th,o
k=1 = 298.15 K

π = 3.14159265359 −
do = 0.025 m
ho

i=1 = −234950.0 J mol−1

ho
i=2 = −241818.0 J mol−1

ho
k=1 = −241818.0 J mol−1
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Tab. B.47: Physical solution.

Iteration Variable Value Engineering Unit

A = 1.037E1 m2

AV = 1.008E1 m2

Aaux,sc = 0.87594 m2

Aaux,sh = 0.9365 m2

Aaux = 6.644E − 1 m2

Aph2 = 1.005E1 m2

Asc = 2.830E − 1 m2

Ash = 3.536E − 2 m2

FV,h,in,n,ph2 = 3.400E − 1 mol s−1

Fc,n,out,ph2 = 5.200 mol s−1

Fc,n,out,sc = 5.200 mol s−1

Fc,n,out,sh = 5.200 mol s−1

Fh,in,n,sc = 3.400E − 1 mol s−1

Fh,n,out,sc = 3.400E − 1 mol s−1

HUL,h,n,ph2 = 1.679E2 mol
HUV,h,n,ph2 = 1.5087 mol
HUh,n,sc = 1.470E2 mol
HUh,n,sh = 1.170E − 1 mol
HUh,n,ph2

i=1 = 7.013E1 mol
HUh,n,sc

i=1 = 6.058E1 mol
HUh,n,sh

i=1 = 4.823E − 1 mol
HUh,n,ph2

i=2 = 9.926E1 mol
HUh,n,sc

i=2 = 8.646E1 mol
HUh,n,sh

i=2 = 6.883E − 1 mol
Hsc,total = 1.942E − 2 m
Hsh,total = 9.449E − 3 m
Kh,in,ph2

i=1 = 4.800 −
Kh,out,ph2

i=1 = 1.548 −
Kh,in,ph2

i=2 = 0.6432 −
Kh,out,ph2

i=2 = 0.6162 −
NL,p,ph2 = 5.798 −
Np,sc = 1.802 −
Np,sh = 2.251E − 1 −
Tc,out,ph2 = 3.353E2 K
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Iteration Variable Value Engineering Unit

Tc,out,sc = 2.995E2 K
Tc,out,sh = 3.355E2 K
Th,in,ph2 = 3.514E2 K
Th,in,sc = 3.442E2 K
Th,out,sc = 3.291E2 K
Uh,ph2 = −4.699E4 J
Uh,sc = −4.108E4 J
Uh,sh = −2.733E1 J
V = 1.395E − 1 m3

VL,h,ph2 = 4.355E − 3 m3

VL,p,ph2 = 5.692E − 3 m3

VL,ph2,total = 1.004E − 2 m3

VL,total = 1.559E − 2 m3

VL = 8.133E − 3 m3

VV,h,ph2 = 5.711E − 2 m3

VV,h = 6.656E − 2 m3

VV,p,ph2 = 5.711E − 2 m3

VV,ph2,total = 1.188E − 1 m3

VV,total = 1.239E − 1 m3

Vh,sc = 3.777E − 3 m3

Vh,sh = 4.886E − 3 m3

Vp,sc = 1.769E − 3 m3

Vp,sh = 2.221E − 4 m3

Vsc,total = 5.546E − 3 m3

Vsh,total = 5.107E − 3 m3

α
h,in,ph2
wilson,i=1 = 2.345E − 1 −

α
h,out,ph2
wilson,i=1 = 2.332E − 1 −

α
h,in,ph2
wilson,i=2 = 7.680E − 1 −

α
h,out,ph2
wilson,i=2 = 7.452E − 1 −

γ
h,in,ph2
i=1 = 3.323 −

γ
h,out,ph2
i=1 = 1.433 −

γ
h,in,ph2
i=2 = 1.021 −

γ
h,out,ph2
i=2 = 1.322 −

ρL,h,n,out,ph2 = 3.854E4 mol m−3

ρL,h,n,out,sc = 3.893E4 mol m−3

avph2 = 1.369 K
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Iteration Variable Value Engineering Unit

avsc = 3.574E1 K
avsh = 7.448E − 2 K
hL,h,in,n,ph2 = −2.806E5 J mol−1

hV,h,in,n,ph2 = −2.364E5 J mol−1

hV,h,n,out,ph2 = −2.348E5 J mol−1

hc,in,n,sc = −2.858E5 J mol−1

hc,n,out,ph2 = −2.830E5 J mol−1

hc,n,out,sc = −2.857E5 J mol−1

hc,n,out,sh = −2.830E5 J mol−1

hh,in,n,sc = −2.778E5 J mol−1

hh,in,n,sh = −2.363E5 J mol−1

hh,n,out,sc = −2.793E5 J mol−1

xh,in,ph2
i=1 = 8.584E − 2 mol mol−1

xh,in,sc
i=1 = 4.120E − 1 mol mol−1

xh,out,sc
i=1 = 4.120E − 1 mol mol−1

xh,in,ph2
i=2 = 9.142E − 1 mol mol−1

xh,in,sc
i=2 = 5.880E − 1 mol mol−1

xh,out,sc
i=2 = 5.880E − 1 mol mol−1

xc,out,ph2
k=1 = 1.000 mol mol−1

xc,out,sc
k=1 = 1.000 mol mol−1

xc,out,sh
k=1 = 1.000 mol mol−1

yh,in,ph2
i=1 = 4.120E − 1 mol mol−1

yh,out,ph2
i=1 = 6.377E − 1 mol mol−1

yh,in,ph2
i=2 = 5.880E − 1 mol mol−1

yh,out,ph2
i=2 = 3.623E − 1 mol mol−1

B.7 Methanol and Water Column

A boiling, liquid mixture of 0.55 mol mol−1 methanol and 0.45 mol mol−1 water is
separated by continuous distillation in this example. A total condenser and a
partial reboiler are used. The column’s trays are assumed to be well-mixed and
the phases are in thermodynamic equilibrium. The equilibrium is approximated
by Raoult’s law. Enthalpies and vapor pressures are determined by the Design
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Institute for Physical PRoperties (DIPPR) equations (DIPPR project 801: Physical and
thermodynamic properties of pure chemicals, evaluated process design data 1999) includ-
ing the respective parameters. The reflux ratio and the reboiler’s temperature
are specified. Keeping the latter constant, four different numbers of trays (10, 20,
30, and 40) have been investigated regarding their change in process time with
increasing size of the system. The dominating, complex subsystem of the NLE
is rather large, e.g., 100 equations for the simulation with 10 trays. Nevertheless,
compared to the other examples, it has a low nonlinearity ratio of 0.095. The
equation system, its notation, variable and parameter specifications are shown
next.

Tab. B.48: Notation, base names.

Base Name Description Engineering Unit

A Parameter various
B Parameter various
C Parameter various
D Parameter various
E Parameter various
F Flow rate mol s−1

K Equilibrium constant −
Q Heat flux J s−1

R Reflux ratio −
T Temperature K
X Input parameter various
Z Output parameter various
γ Activity coefficient −
φ Fugacity coefficient −
h Molar enthalpy [ J mol−1

p Pressure Pa
∆p Pressure drop Pa
x Liquid mole fraction mol mol−1

y Vapor mole fraction mol mol−1
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Tab. B.49: Notation, superscripts.

Superscript Description

crit Critical
f Feed
L Liquid
LV Vapor liquid equilibrium
V Vapor
h Enthalpy
n Molar
o Reference
pLV Vapor pressure
sca Scaled

Tab. B.50: Notation, subscripts.

Subscript Description

C Condenser
R Reboiler
d100 Dippr correlation 100

d101 Dippr correlation 101

d106 Dippr correlation 106

Tab. B.51: Notation, indices.

Index Range Description

i 1 . . . NC Component index
tr 1 . . . NTR Tray index

Tab. B.52: Component index.

Index Component

i = 1 Methanol
i = 2 Water
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B.7 Methanol and Water Column

Equation System - Tray Section

0 = F f ,L,n
tr · x f

tr,i + FL,n
tr+1 · xtr+1,i + FV,n

tr−1 · ytr−1,i − FL,n
tr · xtr,i − FV,n

tr · ytr,i

0 =
γtr,i · xtr,i · pLV

tr,i

psca −
φV

tr,i · ptr · ytr,i

psca

0 =
NC

∑
i=1

xtr,i − 1

0 =
NC

∑
i=1

ytr,i − 1

0 =
F f ,L,n

tr · h f ,L,n + FL,n
tr+1 · hL,n

tr+1 + FV,n
tr−1 · hV,n

tr−1 − FL,n
tr · hL,n

tr − FV,n
tr · hV,n

tr

hsca

0 =
∑NC

i=1 (xtr,i · hL,n
tr,i )

hsca − hL,n
tr

hsca

0 =
∑NC

i=1 (ytr,i · (hL,n
tr,i + hLV,n

tr,i ))

hsca − hV,n
tr

hsca

0 =
∑NC

i=1 x f
i · h f ,L,n

i
hsca − h f ,L,n

hsca

0 = ptr−1 − ptr − ∆p

Equation System - Partial Reboiler

0 = FL,n
tr=1 · xtr=1,i − FL,n

R · xR,i − FV,n
tr=0 · ytr=0,i

0 =
xR,i · pLV

R,i · γR,i

psca − ytr=0,i · ptr=0

psca

0 =
NC

∑
i=1

xR,i − 1

0 =
NC

∑
i=1

ytr=0,i − 1

0 =
FL,n

tr=1 · hL,n
tr=1 − FL,n

R · hL,n
R − FV,n

tr=0 · hV,n
tr=0 + QR

hsca

0 =
∑NC

i=1 xR,i · hL,n
R,i

hsca − hL,n
R

hsca

0 =
∑NC

i=1 yR,i · (hL,n
R,i + hLV,n

R,i )

hsca − hV,n
tr=0
hsca
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Equation System - Total Condenser

0 = FV,n
tr=NTR · ytr=NTR,i − (FL,n

C + FL,n
tr=NTR+1) · xtr=NTR+1,i

0 =
xtr=NTR+1,i · pLV

C,i · γC,i

psca − yC,i · ptr=NTR+1

psca

0 = R · FL,n
C − FL,n

tr=NTR+1

0 =
NC

∑
i=1

xtr=NTR+1,i − 1

0 =
NC

∑
i=1

yC,i − 1

0 =
FV,n

tr=NTR · hV,n
tr=NTR − (FL,n

C + FL,n
tr=NTR+1) · hL,n

tr=NTR+1 + QC

hsca

0 =
∑NC

i=1 xC,i · hL,n
C,i

hsca − hL,n
C

hsca

Functions

Z(X) = exp(ApLV
d101 +

BpLV
d101
X

+ CpLV
d101 · ln(X) + DpLV

d101 · (X)EpLV
d101)

Applications:

– pLV
C,i(TC, ApLV

d101,i, . . . , EpLV
d101,i)

– pLV
tr,i(Ttr, ApLV

d101,i, . . . , EpLV
d101,i)

– pLV
R,i(TR, ApLV

d101,i, . . . , EpLV
d101,i)

Z(X) = AL,h,n
d100 · (X − Th,o) +

BL,h,n
d100
2

· ((X)2 − (Th,o)2) +
CL,h,n

d100
3

· ((X)3 − (Th,o)3)

+
DL,h,n

d100
4

· ((X)4 − (Th,o)4) +
EL,h,n

d100
5

· ((X)5 − (Th,o)5) + hL,o,n

Applications:

– hL,n
C,i (TC), AL,h,n

d100,i, . . . , EL,h,n
d100,i)
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B.8 Heavies Column

– hL,n
tr,i (Ttr), AL,h,n

d100,i, . . . , EL,h,n
d100,i)

– hL,n
R,i (TR), AL,h,n

d100,i, . . . , EL,h,n
d100,i)

Z(X) = ALV,h,n
d106 · (1 − X

Tcrit )
BLV,h,n

d106 +CLV,h,n
d106 · X

Tcrit +DLV,h,n
d106 ·( X

Tcrit )
2+ELV,h,n

d106 ·( X
Tcrit )

3

Applications:

– hLV,n
tr,i (Ttr, ALV,h,n

d106,i , . . . , ELV,h,n
d106,i )

– hLV,n
R,i (TR), ALV,h,n

d106,i , . . . , ELV,h,n
d106,i )

Because the number of design specifications and solution values are numerous,
their presentation is omitted here. They are part of the evaluation (ID: 166690) in
MOSAICmodeling and can be viewed in the software’s simulation editor.

B.8 Heavies Column

The notation is the same as already introduced for the model Partial Condenser in
table B.32 - B.36.

Equation System - Tray Section (reformulated)

0 =
NST

∑
s=tr

(FF
tr=s · xF,tr=s,i) + FV

tr−1 · ytr−1,i − FD · xtr=N+1,i − FL
tr · xtr,i

0 = Ktr,i · xtr,i − ytr,i

0 =
NC

∑
i=1

xtr,i − 1

0 =
NC

∑
i=1

ytr,i − 1

0 =
∑NST

s=tr (FF
tr=s · hF

tr=s)− FD · hL
tr=N+1 + FV

tr−1 · hV
tr−1 − FL

tr · hL
tr + Q + QC

hsca

0 =
ptr−1

psca − ptr

psca −
∆p
psca
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Equation System - Tray Section (classical)
The equation system equals the reformulated version except for the component
balances referring to the first equation and the energy balance referring to the
fifth equation that are replaced by

0 = FF
tr · xF,tr,i + FV

tr−1 · ytr−1,i + FL
tr+1 · xtr+1,i − FV

tr · ytr,i − FL
tr · xtr,i

0 =
FF

tr · hL
F,tr + FV

tr−1 · hV
tr−1 + FL

tr+1 · hL
tr+1 − FV

tr · hV
tr − FL

tr · hL
tr + Q

hsca

Equation System - Partial Reboiler (reformulated)

0 = FB · ((ytr=0,i − xR
i )− (RR + 1) · (ytr=0,i − xtr=0,i))

0 = KR
i · xR

i − ytr=0,i

0 =
NC

∑
i=1

xR
i − 1

0 =
NC

∑
i=1

ytr=0,i − 1

0 =
FB · ((hV

tr=0 − hR,L)− (RR + 1) · (hV
tr=0 − hL

tr=1)) + QR

hsca

Equation System - Partial Reboiler (classical)
The equation system equals the reformulated version except for the component
balances referring to the first equation and the energy balance referring to the
fifth equation that are replaced by

0 = FL
tr=1 · xtr=1,i − FB · xR,i − FV

tr=0 · ytr=0,i

0 =
FL

tr=1 · hL
tr=1 − FB · hR,L − FV

tr=0 · hV
tr=0 + QR

hsca
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B.8 Heavies Column

Equation System - Total Condenser (reformulated)
Component balances and reflux ratio are applied in functions

0 = KC
i · xtr=NTR+1,i − yC

i

0 =
NC

∑
i=1

yC
i − 1

0 =
FV

tr=NTR · (hV
tr=NTR − hL

tr=NTR+1) + QC

hsca

Equation System - Total Condenser (classical)

0 = FV
tr=NTR · ytr=NTR,i − (FD + FL,n

tr=NTR+1) · xtr=NTR+1,i

0 = KC
i · xtr=NTR+1,i − yC

i

0 =
NC

∑
i=1

yC,i − 1

0 =
NC

∑
i=1

xtr=NTR+1,i − 1

0 =
FV

tr=NTR · (hV
tr=NTR − hL

tr=NTR+1) + QC

hsca

Enthalpies and the equilibrium constants are equally determined as in Partial
Condenser. Hence, the related equations and functions are not listed here.

Additional Functions (reformulated)
Next to thermophysical properties calculations, functions are also used in the
reformulated equation system to explicitly calculate the connecting streams be-
tween tray section and reboiler and tray section and condenser. The reason is
described in section 4.5.

y(x) = x

Applications:
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– ytr=NTR,i(xtr=NTR+1,i)

A(B,R) = B · (1 + R)

Applications:

– FV
tr=NTR(FD,RC)

A(B,R) = B · R

Applications:

– FL
tr=NTR+1(FD,RC)

– FV
tr=0(FB,RB)

Because the number of design specifications and solution values are numerous,
their presentation is omitted here. They are part of the evaluation (ID: 164598) in
MOSAICmodeling and can be viewed in the software’s simulation editor.
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Computational Experiments

C.1 Contraction

Tab. C.1: Results combined contraction methods: HC4revise (hc), Interval Newton (n)
and Bnormal with tighten_bounds (bctb), initialized with x(0) = [−109, 109]nvar .
The following settings were applied: resolution = 8, εRel = 10−3, εAbs = 10−8.

Contraction / hc_n_bctb hc_n

NLE εRADL CPU (s)
εRADL−εRADL

hc_n_bctb
εRADL

hc_n_bctb
CPU (s)

CSTR 1.61 × 10−8 0.30 1.14 × 10−4 0.19
Flash Unit 4.40 × 10−1 0.85 0.0 0.72
Total Condenser 1.58 × 10−1 27.42 1.82 × 100 4.16
Heavies Column 7.08 × 10−1 449.50 2.98 × 10−10 83.09

235



Appendix C Computational Experiments

Tab. C.2: Results combined contraction methods: HC4revise (hc) and Bnormal with
tighten_bounds (bctb) and without (bc), initialized with x(0) = [−109, 109]nvar .
The following settings were applied: resolution = 8, εRel = 10−3, εAbs = 10−8.

Contraction / hc_bctb hc_bc

NLE
εRADL−εRADL

hc_n_bctb
εRADL

hc_n_bctb
CPU (s)

εRADL−εRADL
hc_n_bctb

εRADL
hc_n_bctb

CPU (s)

CSTR 0.0 0.27 0.0 0.26
Flash Unit 0.0 0.80 0.0 0.76
Total Condenser −2.97 × 10−11 26.67 4.23 × 10−5 10.59
Heavies Column 0.0 423.59 0.0 98.46

Tab. C.3: Results combined contraction methods: Interval Newton (n) and Bnormal with
tighten_bounds (bctb) and without (bc), initialized with x(0) = [−109, 109]nvar .
The following settings were applied: resolution = 8, εRel = 10−3, εAbs = 10−8.

Contraction / n_bctb n_bc

NLE
εRADL−εRADL

hc_n_bctb
εRADL

hc_n_bctb
CPU (s)

εRADL−εRADL
hc_n_bctb

εRADL
hc_n_bctb

CPU (s)

CSTR 3.08 × 10−3 1.31 3.08 × 10−3 0.22
Flash Unit 9.52 × 10−9 9.22 9.52 × 10−9 6.65
Total Condenser 1.18 × 100 391.37 1.20 × 100 140.74
Heavies Column 3.80 × 10−1 302.75 3.80 × 10−1 76.84

Tab. C.4: Results single contraction methods: Interval Newton (n) and Bnormal with
tighten_bounds (bctb), initialized with x(0) = [−109, 109]nvar . The following
settings were applied: resolution = 8, εRel = 10−3, εAbs = 10−8.

Contraction / n bctb

NLE εRADL CPU (s)
εRADL−εRADL

hc_n_bctb
εRADL

hc_n_bctb
CPU (s)

CSTR 1.0 0.21 3.08 × 10−3 1.15
Flash Unit 1.0 0.28 9.52 × 10−3 6.57
Total Condenser 1.0 2.75 1.18 × 100 332.44
Heavies Column 1.0 59.91 3.80 × 10−1 278.66
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C.2 Global Solver

Tab. C.5: Adjusted initialization of NLEs.

NLE Iteration Variables Initial Interval Unit

Reactive Activity coefficients [0, 109] −
Flash Enthalpies [0,109] J mol−1

Unit Equilibrium constant [0, 109] −
Flow rates [0, 109] mol s−1

Heat flow rate [0, 109] J s−1

Mole fractions [0, 1] −
Reaction constant and rate [0, 109] s−1

Total Temperatures [298.15, 353.15] K

Condenser Temperature differences [0.01, 100] K

Activity coefficients [0, 109] −
Wilson’s coefficients [0, 109] −
Equilibrium constants [0, 109] −
Flow rates [0, 109] mol s−1

Internal Energies [−109,0] MJ

Enthalpies [−106,0] J mol−1

Densities [0, 109] mol m−3

Mole fractions [0, 1] −
Molar hold ups [0, 109] mol

Heights, Areas, Volumes [0, 109] m, m2,m3

Partial a,b of cubic equation [0, 10] Pam6/mol2,

Condenser mol m−3

Auxiliary variables [10−6, 109] −
Compressibility factors [0, 1] −
Equilibrium constants [0, 109] −
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NLE Iteration Variables Initial Interval Unit

Flow rates [0, 75] mol s−1

Heat flux [−100, 100] J s−1

Mole fractions [0, 1] −
SRK coefficients [−1, 10] −

Methanol Condenser duty [−106, 0] J s−1

Water/ Enthalpies [−106,0] J mol−1

Column Flow rates [0, 10] mol s−1

Mole fractions [0, 1] −
Pressures [103,106] Pa

Reboiler duty [0, 106] J s−1

Temperatures [240, 400] K

Heavies a of cubic equation [0, 10] Pam6/mol2

Column aEoS of cubic equation [−1, 0] −
Auxiliary variables [10−6, 109] −
b of cubic equation [0 1] mol m−3

Condenser duty [−1, 0] MJ s−1

Equilibrium constants [0, 10] −
Flow rates [0, 30] mol s−1

Integrated heat capacities [0, 0.5] MJ mol−1

Mole fractions [0, 1] −
Pressures [0.0,10] bar

Reboiler duty [0, 1] MJ s−1

Temperatures [350.0, 400.0] K

θ of cubic equation [0, 0.3] −
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C.3 Local Solver

Tab. C.6: Initial value selection for Heavies Column that result in feasible initial point. If
not explicitly stated it is used for all tray and component indices..

Iteration Variables Initial Value Unit

a of cubic equation 1.1 Pam6/mol2

aEoS of cubic equation −0.001 −
Auxiliary variable 0.5 −
b of cubic equation 0.0001 mol m−3

Condenser duty −1.0 MJ s−1

Equilibrium constants Ki=1 = Ki=2 = 0.5 −
Ki=3 = Ki=4 = Ki=5 = 1.1 −

Flow rates 1.5 mol s−1

Integrated heat capacities 0.05 MJ mol−1

Mole fractions 0.33 −
Pressures 1.5 bar

Reboiler duty 1.0 MJ s−1

Temperatures Ttr = 371 + (NTR − tr) K

TC = 370, TR = 376 K

θ of cubic equation 0.1 −
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Conclusion

D.1 Application area
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Fig. D.1: Nonzero ratio versus dimension of largest subsystem for the tested examples.

D.2 Guidelines for initialization
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Tab. D.1: Recommended initialization for geometric and hydraulic quantities.

Variable Initial range Condition

Diameter, length, height ≥ 0 −
Partial area [0, Atotal ] Known total area Atotal

Partial holdup [0, HUtotal ] Known total holdup HUtotal

Partial volume [0, Vtotal ] Known total volume Vtotal

Mole, volume, weight fractions [0,1] −
Molar, mass outlet flow rates [0, ∑NST

st=1 Fin
st ] Steady-state, flow-driven process

known NST inlet flow rates Fin
st

2
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Tab. D.2: Recommended initialization for MESH related quantities.

Variable Initial range Condition

Mole, volume, weight fractions [0,1] −
Molar, mass outlet flow rates [0, ∑NST

st=1 Fin
st ] Steady-state, flow-driven process,

known NST inlet flow rates Fin
st

Distillation, internal molar, mass [0, ∑NST
st=1 Fin

st
RC ] Steady-state, known inlet flow rates,

flow rates (liquid) known reflux ratio

Distillation, internal molar, mass [0, ∑NST
st=1 Fin

st
RR ] Steady-state, known inlet flow rates,

flow rates (vapor) known boil-up ratio

Heat rates ≤ 0 Exothermic processes

Heat rates ≥ 0 Endothermic processes

2
4
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Tab. D.3: Recommended initialization for thermophysical properties.

Variable Initial range Condition

Molar enthalpies [min (h0,i), max (h0,i)] Ideal mixture

Molar volumes (liquid) [min (v0,i), max (v0,i)] Ideal mixture

Molar volumes (gas, vapor) [R·T
p , R·T

p ] Ideal gas, known, estimated T, p

VLE, temperatures [min (TLV
0,i ), max (TLV

0,i )] Zeotropic mixture

VLE, pressures [min (pLV
0,i ), max (pLV

0,i )] Zeotropic mixture

VLE, equilibrium constants [0, 1] Heavy-boiling component

VLE, equilibrium constants ≥ 1 Light-boiling component

VLE, equilibrium constants ≥ 0 Medium-boiling component,

unkown boiling temperature

2
4
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D.3 Error in the Solution Algorithm

D.3 Error in the Solution Algorithm

An error in the solution algorithm can be found systematically via successive
debugging of the code. In small systems this can be done efficiently via the
debug mode of Python editors such as spyder from Raybaut (2009). However,
this kind of debugging is slower than the normal execution of the program and
thus extremely time-consuming for large systems. Hence, a debug function is
provided in the hybrid approach, which prints parameters describing the state
of the program to the console during program execution. For example, the ID of
the variable being currently reduced. In this way, unwanted infinite loops could
be identified and removed from the program, which caused the program to hang
during certain variable reductions.

D.4 Things that did not work out
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Fig. D.2: Comparison of hybrid approach applied on Flash Unit with and without affine
arithmetic.
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