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Abstract 

Understanding the distribution and changes in seagrass is a prerequisite for determining 

its carbon content and implementing conservation projects. In this study, using remote 

sensing techniques, the distribution and abundance of blue carbon in the seagrass 

meadows of the Economic Exclusive Zone (EEZ) of Belize was mapped between the years 

of 2016 - 2019  and 2020 - 2022 . This was done using multitemporal composite images 

from the Sentinel-2 Level-2C Surface Reflectance Archive and basemaps from the 

PlanetScope images processed through the Google Earth Engine (GEE) cloud computing 

platform. The mapping efforts discovered a loss in seagrass extension all over the study 

area. This pattern of loss was identified in both classification maps. The biophysical 

modeling results are based on the Coastal Blue Carbon model by InVEST. We incorporate 

the results from the first step into this model, using literature review data on biomass, soil 

carbon, accumulation rates, and net sequestration as reference carbon data. This analysis 

gave us a first estimate of the carbon content in terms of carbon stocks and total net carbon 

sequestration in Belize. Finally, we discuss the implications of fusing satellite imagery with 

models by comparing the efficacy of two remote sensing satellites with different spatial 

resolution in assessing carbon stocks within seagrass ecosystems. The results show an 

significant increase in carbon stock from 53.91 Mt CO2e/ha in 2016 to 2019, to 128.52 Mt 

CO2e/ha in the years of 2020 to 2022.   
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1. Introduction 

Seagrass meadows are among the so-called blue carbon ecosystems that have the 

potential to store large amounts of organic carbon in their soils for long periods (Atwood 

et al., 2020). Seagrasses are angiosperm marine plants found in temperate, subtropical 

and tropical regions (Duarte, 2002). They are globally distributed in 191 countries across 

tropical and temperate seas (F. Short et al., 2007).  

Seagrass habitats play an important role in shallow coastal areas by providing essential 

ecosystem services (do Amaral Camara Lima et al., 2023) (Veettil et al., 2020). Among 

the benefits provided by these ecosystems are: providing breeding and nutritional sites for 

aquatic life, preventing erosion, promoting sediment deposition, contributing to food webs, 

and reinforcing shoreline stability (Pham et al., 2019) (Kennedy et al., 2010) (Hemminga 

& Duarte, 2000) (Hendriks et al., 2008). 

Seagrasses have been recognized for their significant long-term carbon storage and 

sequestration capacity (Laffoley & Grimsditch, 2009) (Mcleod et al., 2011) (do Amaral 

Camara Lima et al., 2023). They accumulate carbon through excess photosynthetic 

carbon fixation, stored directly in sediments in their roots and rhizomes (Duarte & Cebrián, 

1996). The ability of seagrass meadows to receive carbon from other sources outside their 

boundaries significantly increases their carbon sequestration. Hence, these marine-

coastal environments store more carbon than terrestrial environments (Simpson et al., 

2022) (Fourqurean et al., 2012). 

Recent research has identified a global decline in seagrass habitats, threatening the wide 

range of benefits they provide (Veettil et al., 2020). Anthropogenic activities, including 

water pollution and harmful fishing methods, have precipitated a marked reduction in their 

geographic distribution (Duarte, 2002) (Hemminga and Duarte, 2000).  In addition, factors 

related to climate change, such as ocean warming and sea level rise, have harmed these 

ecosystems (Grech et al., 2012). Findings from Waycott et al. indicate that, since 1980, 

the rate of decline for seagrass has been 110 km2 yr−1, with 29% of the world's 

seagrasses being destroyed. 

The loss of seagrass represents a significant decline in the ecological and economic value 

of coastal ecosystems (C. M. Duarte, 2002). The decline or potential disappearance of 

seagrass ecosystems can lead to significant damage and complexities, especially 

considering the multitude of services they provide to coastal communities and ecosystems 

https://www.zotero.org/google-docs/?1BCNQ8
https://www.zotero.org/google-docs/?1BCNQ8
https://www.zotero.org/google-docs/?9uSIMj
https://www.zotero.org/google-docs/?02IIlB
https://www.zotero.org/google-docs/?uxm6t9
https://www.zotero.org/google-docs/?uxm6t9
https://www.zotero.org/google-docs/?E5g5tt
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worldwide (Veettil et al., 2020). Therefore, establishing seagrass distribution and 

abundance for climate change mitigation and coastal zone management is important. 

Satellite images have proven to be a valuable tool for studying coastal and marine 

ecosystems. Through remote sensing, it is possible to establish the distribution and spatial 

extent of seagrass meadows, the percentage of geographic coverage and species 

composition (Stankovic et al., 2021) (Traganos & Reinartz, 2018a) (Simpson et al., 2022) 

(Lee et al., 2023). In addition, it makes it possible to study remote coastal and marine 

habitats across expansive scales (Pham et al., 2019) (Bai et al., 2023). 

To assess the condition of aquatic environments, additional inputs are necessary to 

evaluate key elements (Simpson et al., 2022). Satellite imagery technology cannot directly 

measure these biophysical characteristics, necessitating alternative measurement 

techniques (Ibid). Integrating satellite imagery with biophysical models significantly aids in 

the estimation of seagrass carbon mapping, providing a pathway to estimate carbon 

dynamics within these species 

Biophysical modeling in an ecosystem accounting framework provides spatially explicit 

information on carbon stocks that complements the data available and takes into account 

spatiotemporal heterogeneity and unpredictability of the seabed (United Nations, 2022). 

Therefore, biophysical models refine seagrass estimates by analyzing seagrass health, 

coverage and environmental factors to assess carbon content indirectly. 

One of the main challenges in modeling seagrass carbon is the variation in biomass and 

growth rates among species (Hemminga and Duarte, 2000). This variability poses a 

challenge in generating accurate global estimates that can be applied to local dynamics 

(Serrano et al., 2021). It also impedes the optimal use of seagrass ecosystems to support 

nature-based solutions initiatives (do Amaral Camara Lima et al., 2023) and their 

incorporation into Nationally Determined Contributions (NDCs) (Arkema et al., 2023). 

Therefore, it is necessary to establish methodologies that can translate measurable 

characteristics into biophysical proxies capable of capturing the heterogeneity of seagrass 

ecosystems (Serrano et al., 2021). 

Three major gaps remain in the effort to estimate ecosystem carbon sequestration service. 

First, existing methods for estimating the extent of seafloor habitats are limited to analyzing 

single satellite imagery and thus need more computational capacity to compare their 

performance. Second, a more comprehensive mapping of ecosystem changes, including 

understanding their temporal dynamics, is needed. Finally, a better understanding of how 

https://www.zotero.org/google-docs/?oQR3PM
https://www.zotero.org/google-docs/?GVyFgS
https://www.zotero.org/google-docs/?zrIMR2
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carbon is stored and varies over time is needed to improve the valuation process, 

considering the stability of carbon storage and release mechanisms in these ecosystems. 

This study aims to establish a foundational framework for incorporating blue carbon into 

country-specific seagrass carbon stocks and sequestration estimates at the local scale. 

To this end, three main objectives are proposed.  

1. Investigate the spatial distribution dynamics of seagrasses within Belizean marine 

environments, analyzing changes across two distinct time frames: 2016-2019 and 

2020-2022. 

2. Employ the InVEST Coastal Blue Carbon (CBC) model to quantify the carbon 

content of Belizean seagrass beds.   

3. Compare the efficacy of two remote sensing satellites PlanetScope and Sentinel-

2, in assessing carbon stocks within seagrass ecosystems. 

In doing so, we seek to raise awareness of the benefits of including seagrasses in the 

Nationally Determined Contributions of countries by improving existing large-scale 

datasets, generating national-scale data, and improving the quantification of biophysical 

parameters of seagrasses in the Belize BBRRS. 

The Economic Exclusive Zone (EEZ) of Belize was chosen as a research area due to its 

significant progress in including seagrasses within its NDCs and developing a National 

Seagrass Management Policy. These include updating seagrass maps and identifying key 

areas to strengthen protection to advance sustainability initiatives. 

This study uses remote sensing methodologies to accurately map the distribution and 

abundance of blue carbon in the seagrass meadows of the BBRRS of Belize at two 

epochs. Images from the Sentinel-2 Level-2C Surface Reflectance Archive and basemaps 

from the Norwegian International Climate and Forest Initiative (NICFI) were processed 

through the Google Earth Engine (GEE) cloud computing platform. Moreover, a scientific 

literature review collected data on the biophysical values of Belize's BBRRS seagrass 

carbon stocks.   

Our study is composed of four main sections. The first part outlines the theoretical 

framework of remote sensing in coastal aquatic ecosystems and biophysical carbon 

models. The methodology is then divided into two key steps. The first step involves 

mapping seagrass meadows in Belize using two types of composites created with NICIF 

and Sentinel 2 imagery. This phase results in four maps, two for each type of satellite, in 

two-time frames: epoch 1: 2016-2019 and epoch 2: 2020-2022. The second stage involves 
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using these inputs within the biophysical blue carbon model and literature data to estimate 

the amount of carbon stored during this time period. The results of our study are then 

presented and analyzed in relation to the two elements of the SEEA-EA framework, 

ecosystem extension and condition, the optimal parameterization of the model used, and 

its limitations.
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2. Theory and State of the Art 

This chapter explores seagrass carbon research and remote sensing systems within 

coastal aquatic ecosystems. The first section focuses on the carbon dynamics within 

seagrasses and the crucial data on seagrass carbon content for understanding their role 

in the carbon cycle. The second section delves into the theory that will be applied in this 

research, highlighting the significance of satellite imagery as a proxy for carbon 

identification, the fundamentals of remote sensing in aquatic ecosystems, and the impact 

of the water column on the satellite return signal. Finally, we conclude by discussing how 

biophysical models contribute to a more thorough understanding of the natural processes 

within this aquatic ecosystem. 

2.1. Background 

2.1.1. Carbon dynamics in seagrass ecosystems 

Coastal habitats accumulate organic carbon OC mainly in their sediments (Duarte et al., 

2005). In particular, seagrass transforms carbon dioxide into organic carbon by filtering 

particulate particles from the water column (Garrard & Beaumont, 2014) and then burying 

OC in the sediment around their meadows by their roots and rhizomes (Johannessen, 

2023) (Duarte & Chiscano, 1999). The soil presents up to 98% of the total carbon stock of 

seagrass ecosystems (Serrano et al., 2019). This OC stored within its sediments can 

remain for extended periods of time if undisturbed (Mcleod et al., 2011). 

Seagrass mainly stores carbon by the allochthonous sediment trapped in its meadow., 

which refers to the carbon originating from outside the meadow (Johannessen, 2023). The 

amount of organic matter buried in seagrass sediments depends on several environmental 

factors, including geographic location, depth, turbidity, sediment type, sediment 

accumulation rate, and oxygen availability (Mazarrasa et al., 2021) (Hemminga & Duarte, 

2000) (Lavery et al., 2013). Additionally, seagrass morphology and patch density can 

enhance carbon intake due to low decomposition rates in anaerobic seagrass sediments 

(Qiu et al., 2014). The lignin content on seagrass rhizomes also slows down microbial 

degradation, facilitating long-term carbon accumulation (Hemminga & Duarte, 2000).  

It is reported that the percentage of deposited carbon buried in coastal sediments is more 

than 50% (Hemminga & Duarte, 2000). Seagrass contributes to 27 to 44 Tg C yr−1 carbon 

burial rates, which account for 10 to 18% of oceanic carbon burial (Kennedy et al., 2010). 

Moreover, net production (NEP) refers to the amount of C that has been gained or lost 

within a year. This is determined by whether C is accumulating, resulting in positive net 

https://www.zotero.org/google-docs/?5RygdK
https://www.zotero.org/google-docs/?5RygdK
https://www.zotero.org/google-docs/?Oj2rtT
https://www.zotero.org/google-docs/?A2SNUl
https://www.zotero.org/google-docs/?A2SNUl
https://www.zotero.org/google-docs/?S3vgOt
https://www.zotero.org/google-docs/?sz7diq
https://www.zotero.org/google-docs/?uRjkO5
https://www.zotero.org/google-docs/?mNTGJS
https://www.zotero.org/google-docs/?Pl3y0y
https://www.zotero.org/google-docs/?vGkBID
https://www.zotero.org/google-docs/?vGkBID
https://www.zotero.org/google-docs/?GRdfch
https://www.zotero.org/google-docs/?4uHrgK
https://www.zotero.org/google-docs/?sTGQBd
https://www.zotero.org/google-docs/?KTp8hq
https://www.zotero.org/google-docs/?mUMade
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sequestration, or being emitted, resulting in negative net sequestration (Natural Capital 

Project, 2024). On average, seagrasses transfer 24.3% of their NEP to neighboring 

ecosystems (Duarte & Cebrián, 1996), and their annual net production is 0.6 X 10^15 gC 

per year (Duarte & Chiscano, 1999).  

In recent years due to the degradation of this ecosystem, the C stocks stored by them are 

vulnerable to being released back into the atmosphere in the form of CO2, thus becoming 

a carbon source and contributing to global warming (Mcleod et al., 2011) (Atwood et al., 

2020). The amount of aboveground biomass lost, and the degree of soil modification 

depends on the magnitude of the disruption. As the degree of disturbance increases, more 

soil carbon is exposed to oxygen, leading to oxidation and subsequent CO2 emissions 

(Natural Capital Project, 2024).  

2.1.2. Carbon surveillance in seagrass ecosystems 

The primary means of monitoring carbon stored in seagrasses involves in-situ 

observations. Typically, carbon stocks in a meadow are assessed by taking cores that 

capture each component, such as above-ground biomass (AGB), below-ground biomass 

(BGB), and soil carbon (Macreadie et al., 2014). Among the various biophysical 

parameters, the carbon burial flux is the most significant factor for additional carbon 

storage potential, while the carbon stock parameter is used for quantifying and mapping 

carbon that may be at risk of future release due to physical disturbances or climate change 

(Johannessen, 2023).  

2.2. State of the Art 

2.2.1. Fundamentals of Coastal Aquatic Remote Sensing 

In recent years, spaceborne remote sensing has become extensively utilized for global 

surveillance of blue carbon ecosystems (Serrano et al., 2021) (Roelfsema et al., 2013). 

The remote sensing of seagrass includes passive and active remote sensing and LiDAR 

(Veettil et al., 2020) (Bai et al., 2023). In particular, multispectral and hyperspectral optical 

imagery have been extensively used to map this blue carbon ecosystem (Lee et al., 2023), 

observe long-term changes on a larger scale (Pham et al., 2019), differentiate vegetative 

it from other habitats (Schill et al., 2021), and monitor seagrass coverage (Blume et al., 

2023), having outstanding outcomes. 

Seagrasses are typically found in coastal areas in intertidal or subtidal zones, where tidal 

waters frequently submerge them (Bai et al., 2023). The presence of water as an additional 

medium affects the path of light in distinct ways, differing from its behavior in the 

https://www.zotero.org/google-docs/?0qEtY8
https://www.zotero.org/google-docs/?c5Ne0Q
https://www.zotero.org/google-docs/?el9In6
https://www.zotero.org/google-docs/?el9In6
https://www.zotero.org/google-docs/?YXUrWV
https://www.zotero.org/google-docs/?V9P8bo
https://www.zotero.org/google-docs/?LM6yv0
https://www.zotero.org/google-docs/?A5jzup
https://www.zotero.org/google-docs/?fx8Gn5
https://www.zotero.org/google-docs/?dqbm68
https://www.zotero.org/google-docs/?kP09qx
https://www.zotero.org/google-docs/?ouK9dg
https://www.zotero.org/google-docs/?oAjPP5
https://www.zotero.org/google-docs/?K0lEQR
https://www.zotero.org/google-docs/?K0lEQR
https://www.zotero.org/google-docs/?OsKhqR
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atmosphere (Roelfsema et al., 2009). Remote sensing techniques in benthic ecosystems 

involve more considerations than standard remote sensing for terrestrial environments, 

largely due to the varying influence of the water column (Traganos & Reinartz, 2018a). To 

derive quantitative data on optically shallow waters, it is necessary to correct atmospheric, 

air-water interface, and water column interferences (Ibid). Formula 1 explains the path of 

light in remote sensing in water. 

                                       (1) 

 

In detail, the sensor captures three different types of radiance: atmospheric contribution, 

water-leaving radiance, and surface-reflected radiance. The atmospheric contribution is 

known as La and comes from solar radiance scattered by gasses and aerosols in the 

atmosphere. When light hits the water's surface, some portion of light penetrates the water 

column in the face of underwater seagrass bed communities, and some of it gets refracted. 

The penetrated portion is also altered by the suspended sediments and phytoplankton in 

the water column (Veettil et al., 2020). These effects intensify with increasing water depth 

and turbidity, causing a notable exponential decline in light intensity (Simpson et al., 2022). 

Some return signal is scattered upward, leaving the sea surface in the sensor direction, 

resulting in water-leaving reflectance Lw. 

Additionally, surface-reflected radiance Lr occurs when light directly reflects toward the 

sensor due to the alignment between the sun's position and the sensor's viewing angle of 

the water. This effect might be limited to specific viewing angles involving waves or could 

extend widely across substantial sections of an image (Kay et al., 2009). Consequently, 

only Lw is informative about the water column, the seafloor, and optically shallow water. 

In essence, Lu is the sum of the aforementioned radiance. 

The ability to detect seagrass in satellite images relies on spectral resolution, which is 

determined by the spectral reflectance of seagrasses and the degree to which the water 

column affects this radiation (Bai et al., 2023). This absorption primarily occurs in the 

visible (400-700 nm) and infrared radiation (1000-2000 nm) ranges (Veettil et al., 2020). 

The visible spectral range, such as blue, green, and red bands, penetrates deeper into the 

water column (Traganos & Reinartz, 2018b). However, the red band is entirely absorbed 

at a depth of approximately three meters, and it is used to compensate to a degree for 

under or overcorrection of atmospheric interference (Ibid) (Li et al., 2020). Additionally, the 

ultra-blue band has greater penetration but scatters easily (Ibid). Since spectral differences 

between seagrass species are often subtle, and epiphytic plants may interfere with the 

https://www.zotero.org/google-docs/?BTMIw1
https://www.zotero.org/google-docs/?1ry50O
https://www.zotero.org/google-docs/?aQ7pua
https://www.zotero.org/google-docs/?aQ7pua
https://www.zotero.org/google-docs/?hMWklE
https://www.zotero.org/google-docs/?QNu859
https://www.zotero.org/google-docs/?2rBJ1N
https://www.zotero.org/google-docs/?zrIMR2
https://www.zotero.org/google-docs/?Hmq3c2
https://www.zotero.org/google-docs/?Hmq3c2
https://www.zotero.org/google-docs/?fV0Uan
https://www.zotero.org/google-docs/?fV0Uan
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spectral signature, differentiating between seafloor habitats and seagrass species 

presents a challenge (Simpson et al., 2022) (Busch et al., 2016). 

As light travels deeper into the water column, it becomes increasingly absorbed and 

scattered, resulting in a significant decline in distinguishing between different seagrass 

communities using optical remote sensing data (Veettil et al., 2020). Wavelengths beyond 

680 nm undergo significant attenuation as they penetrate the water column, being easily 

absorbed and attenuated, thus unsuitable for seagrass identification (Ibid).  

Depth is also a limiting factor, as all radiation is absorbed before it can reach the seabed, 

which means no bottom signal is returned to the sensor. Therefore remote sensing is 

typically only effective in the top ten meters of shallow systems due to light attenuation 

affecting the retrieval of benthic information (Ibid). These limitations pose challenges for 

remote sensing in coastal ecosystems, as atmospheric interference, water turbidity, and 

sun glint reflectance can all contribute to poor image quality and inaccurate estimations if 

not considered in the image pre-processing phase (Ibid).  

The accuracy of monitoring seagrass beds with multispectral remote sensing is 

significantly influenced by the spatial resolution. As the spatial resolution of an image 

increases, more detailed spatial information is provided (Bai et al., 2023). Free images 

from satellites like Sentinel 2, which have a 10-meter resolution, have shown promising 

results in accounting for this ecosystem (Traganos & Reinartz, 2018a). Satellites with 

smaller resolution, like Landsat, have also been utilized for this purpose, leveraging their 

high temporal resolution to conduct more extensive time-scale studies (Li et al., 2020). 

More recently, smaller spatial resolutions, such as the PlanetScope images, have been 

introduced, further enhancing the ability of these tools to measure seagrass coverage (Lee 

et al., 2023). 

Effectively measuring the complex and often non-linear processes of seagrass carbon 

sequestration through remote signals presents challenges (Simpson et al., 2022). Thus, 

to accurately measure the carbon stocks in seagrass through remote sensing, it is 

necessary to understand the biophysical processes involved in seagrass carbon 

sequestration. This requires using proxies to estimate carbon content that considers the 

unique natural characteristics of the ecosystem (Ibid) (Hein, 2014). By modeling these 

natural processes and combining the resulting data with satellite imagery and 

environmental observations, we can obtain a more comprehensive understanding of the 

dynamics of biophysical parameters in seagrass ecosystems. 

https://www.zotero.org/google-docs/?3CZVF7
https://www.zotero.org/google-docs/?4ySvYl
https://www.zotero.org/google-docs/?zrIMR2
https://www.zotero.org/google-docs/?zrIMR2
https://www.zotero.org/google-docs/?zrIMR2
https://www.zotero.org/google-docs/?95U3cD
https://www.zotero.org/google-docs/?voWyGG
https://www.zotero.org/google-docs/?xmrzMO
https://www.zotero.org/google-docs/?r4KY4x
https://www.zotero.org/google-docs/?r4KY4x
https://www.zotero.org/google-docs/?VAFfAx
https://www.zotero.org/google-docs/?O0Vnip
https://www.zotero.org/google-docs/?O0Vnip
https://www.zotero.org/google-docs/?HbRbFP
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2.2.2. Biophysical models for carbon estimation in seagrass 

The System of Environmental Ecosystem Accounting (SEEA-EA) is an innovative 

statistical framework developed by the United Nations for measuring habitat services and 

linking them to human and economic activities (Ibid). This approach leverages spatially 

explicit data to delineate ecosystems and identify health indicators, intending to inform 

policy formulation and advance the achievement of the Sustainable Development Goals 

(United Nations, 2022). 

The process of modeling carbon storage and sequestration in seagrass ecosystems 

involves a detailed and spatially explicit approach that recreates natural processes and 

components (United Nations, 2022). As defined by SEEA-EA, biophysical modeling is a 

quantitative estimation of complex processes that are not easily observed directly. The 

approach also utilizes a tiered system, similar to the one proposed by the IPCC for carbon 

accounting. Tier 1 relies on globally available data, while Tier 2 requires national datasets 

that require customization and validation. Finally, Tier 3 is based on local data (IPCC, 

2023).  

In this research, we employed the InVEST Coastal Blue Carbon (CBC) model to assess 

the various pressures contributing to carbon emissions and to estimate the potential 

carbon accumulation over time in seagrass vegetation. The objective was identifying 

locations with net carbon gains or losses over time. This model, developed by Stanford 

University and the Natural Capital Project, is an open-source tool that enables 

reproducibility and transferability across different regions. It factors in carbon storage 

across four pools- AGB, BGB, sediment, and standing dead carbon- and calculates the 

total carbon stored by summing up the carbon in these pools.  

The Coastal Blue Carbon Modeling approach simplifies the carbon cycle calculation by 

determining carbon stocks for a given year t and combining them with the net carbon 

sequestration of the previous year t - 1, for each pool p (Formula 3). Alternatively, it could 

use the starting stock values from the biophysical table  . This approach assumes 

that carbon accumulates linearly over time.   

https://www.zotero.org/google-docs/?ifutn1
https://www.zotero.org/google-docs/?ifutn1
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Formula 3. 

The model utilizes a spatially explicit approach, which combines EO with biophysical 

parameters to calculate the carbon content of seagrass ecosystems. The input to execute 

the CBC model includes maps of coastal ecosystems, the amount of carbon stored in 

tonnes/ha for each carbon pool (biomass, soil, and litter), the annual rate of carbon 

accumulation in the biomass and soil, the half-life of carbon in the biomass and soil pools, 

and the level of disturbance suffered by the ecosystem. 

The Carbon Sequestration and Storage is another model within InVESTusing maps of land 

use and stocks in the four carbon pools to estimate carbon currently stored in a landscape 

and the amount of carbon sequestered over time. This model assumes a linear change in 

carbon sequestration over time. This model was also used to determine the carbon 

dynamic on seagrass in the area. 



 

 

3. Study area 

The Caribbean Sea region has a high amount of seagrass compared to its coastline, 

making it one of the regions with the highest seagrass extents (McKenzie et al., 2020). 

Given the diverse array of environmental factors shaping the distribution of seagrass 

species, they are valuable bio-indicators for monitoring climate change and ecosystems' 

overall health (Veettil et al., 2020) (McKenzie et al., 2020).  

The study area is located on the west coast of Belize, the Belize Barrier Reef Reserve 

System (BBRRS) part of the Mesoamerican Barrier Reef System (Figure 1). The 

Mesoamerican Barrier Reef System is the most extensive barrier reef in the Western 

Hemisphere, as reported by the World Wide Fund for Nature (2019). The BBRRS is 

renowned globally for its diverse reef structures, thriving coral growth, and large seagrass 

beds (WWF, 2019). It is considered a prime example of the evolution of reef systems 

(Gibson et al., 2004), designated as a UNESCO (2023) World Heritage site. Additionally, 

the research area represents a significant distribution zone for seagrass beds within the 

Caribbean Sea. 

 
Figure 1.  Overview of the Belize Barrier Reef Reserve System and Atolls systems. True-color Sentinel-2 
imagery. Marine protected areas (MPAs) are displayed in orange, and UNESCO (2023) World Heritage Sites 
are in green. Three atolls (Turneffe, Lighthouse, and Glover’s Reefs) are outside the BBRRS  (Gibson et al., 
2004). 

https://www.zotero.org/google-docs/?BtjBZe
https://www.zotero.org/google-docs/?QxUGYR
https://www.zotero.org/google-docs/?Ihwxvq
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The Economic Exclusive Zones (EEZ) of Belize spans 34424 sq km, featuring an extensive 

coastline of 368 km. This water area boasts a diverse bathymetry ranging from 10 to 30 

in-depth. It is home to various lagoons, atolls such as Turneffe Atoll, Lighthouse Reef Atoll, 

and Glover’s Reef Atoll and islands (Gibson et al., 2004). Belize's EEZ includes 15 marine 

protected areas (MPAs), which utilize innovative methods for incorporating ecosystem 

services into stakeholder-led planning and decision-making processes (Verutes et al., 

2017). 

In the region, seagrass beds are mainly found in shallow nearshore waters of up to 1 

meter, associated with marine brackish-protected bays and estuaries or reef systems 

(WWF, 2022) (Tussenbroek et al., 2014). Turtle grass is the primary species prevalent 

along the coasts throughout the region (Wabnitz et al., 2008). Halodule wrightii and 

Syringodium filiforme species exist in lesser abundance (Gallegos et al., 1994) (Carpenter 

et al., 2022). 

The coastal and marine ecosystems in Belize are critical to the livelihoods of over 60% of 

its population. According to Verutes et al. (2017), reef-based tourism, fisheries, and 

scientific research contribute around 15% of Belize's gross domestic product annually. 

Despite the economic benefits of these activities, they pose significant risks to the marine 

and coastal ecosystems that sustain them. As highlighted by Gibson et al. (2004), activities 

such as coastal development, aquaculture practices, and dredging can cause significant 

damage to benthic habitats in the region. In addition, agricultural and urban runoff 

pollutants are major challenges that threaten the health of the Belizean seagrass 

(Hejnowicz et al., 2015) (Carlson et al., 2021).

https://www.zotero.org/google-docs/?tMHoYE
https://www.zotero.org/google-docs/?CqIidh
https://www.zotero.org/google-docs/?OWHtRl
https://www.zotero.org/google-docs/?OB8jXj
https://www.zotero.org/google-docs/?OB8jXj


 

 

4. Materials and Methods 

The study utilizes biophysical modeling to examine organic carbon in seagrasses, with a 

focus on forecasting carbon abundance in the Caribbean region through a pilot study in 

Belize. The research comprises two phases. In the first stage, high-resolution remote 

sensing data is employed to identify the presence of seagrass in Belize's Economic 

Exclusive Zone, and we analyze changes in this ecosystem from 2016 to 2022 by 

comparing two sets of composites with different spatial resolutions. In the second part, we 

model the changes in carbon content on seagrass using the Coastal Blue Carbon tool, 

which utilizes spatial explicit information. We incorporate the results from the first step into 

this model, using literature review data on biomass, soil carbon, accumulation rates, and 

net sequestration. Figure 2 shows the utilized workflow. 

 

 

Figure 2. Process of generating a classification of benthic habitat maps from a single image composite for 
each period. 
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4.1. Seagrass Mapping  

4.1.1. Data sources 

We used two satellite data sources to obtain a better understanding of the distribution of 

benthic habitats in the region. 

The first set of images was the Harmonized Sentinel-2 MSI: MultiSpectral Instrument, 

Level-1C image collection available on Google Earth Engine (GEE). The Sentinel 2 Level 

1C (S2 L1C) product includes radiometric and geometric corrections, orthorectification, 

and spatial registration on a global reference system with sub-pixel accuracy. It offers 

thirteen spectral bands ranging from range from the Visible (VNIR) and Near Infra-Red 

(NIR) to the Short Wave Infra-Red (SWIR), with four bands at 10 m, six bands at 20 m and 

three at 60 m spatial resolution (SUHET, 2014). 

The research also utilized PlanetScope Surface Reflectance Mosaics, consisting of 

analysis-ready data that have been corrected to minimize the effects of atmosphere and 

sensor characteristics. They have a spatial resolution of 4.77m with a spectral resolution 

of four bands, three visuals (Blue, Red, Green) and one Near-Infrared (Planet, 2022). 

To produce the classification maps, we integrated visual points and reference points from 

the official maps of the Ministry of Blue Economy and Civil Aviation of Belize. An 

unsupervised classification was conducted on the PS and S2 composites, resulting in five 

classes for habitat mapping. To achieve considerable mapping accuracy, we identified 5 

classes - seagrass, coral, sand, rubble, and deep water - to select the most representative 

ecosystem in the area. The points were examined manually to verify that they belonged to 

their respective classes. Additionally, we cross-checked our results with the Allan Coral 

Atlas benthic maps in the area, the UNEP-WCMC (2021, 2024) Global Distribution of Coral 

Reefs v.4 dataset and PS single scenes. A total of 510 sand and rubble points were drawn 

to represent marine substrates. 

Following the necessary data standardization and conversion procedures, we employ an 

averaging technique to derive single points for the classification map. These points 

indicate the presence of various benthic habitats, including seagrass and coral, and 

sediments, such as sand and rubble. Given the intricacy of the region, we ensure that deep 

waters are included in the classification process. 

For the validation, we collected data from two benthic maps, one from 2016 and the other 

from 2020, by randomly selecting points. A reprojection and resolution reduction was done 

in order to match the resolution of our composites. To guarantee the precision of the 

results, we first created an intersection map that reflected the habitats present in both time 

https://www.zotero.org/google-docs/?8fl09i
https://www.zotero.org/google-docs/?e1WfL3
https://www.zotero.org/google-docs/?e1WfL3
https://www.zotero.org/google-docs/?e1WfL3
https://www.zotero.org/google-docs/?e1WfL3
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frame maps. Refer to Table 1 for the total of training points by source and snapshots of 

each class and Figure 3 for their spatial distribution. 
 

Source Dates Number of points 

Manual visualization 2016 - 2019 1590 

Official Belize Benthic Maps 2016 - 2020 300 

Total  1890 

Table 1. Source of training points 

 

 
Figure 3. Training TD data distribution throughout the AOI. 

 
 

4.1.2. Multi-temporal composite 

As part of the study, two sets of composites were tailored to align with the defined periods 

of January 2016 to December 2020 and January 2021 to December 2022. These periods 

span three and four years of observations, respectively. A multi-year timeframe was 

deemed necessary to minimize the impact of atmospheric cloud interference and to 

achieve sufficient data coverage. Previous studies have shown that using 3-year periods 



4. Materials and Methods 

_____________________________________________________________________ 

23 
 

for mosaics can reduce cloud cover, haze, and sunlight interference in water mosaics 

(Schill et al., 2021) (Blume et al., 2023).  

The first set corresponds to two four-band (blue, green, red, near-infrared) surface 

reflectance composites from PS Basemaps 37 mosaics. The second pair of mosaics were 

created with S2 L1C images. These composites include the ‘B1', 'B2', 'B3', 'B4', 'B5', 'B8', 

'B8A', and 'B11' bands. In total, 2263 S2 images and 38 PS quads were selected (see 

Table 2 for composite details).  

 

Dates Image collection source 
Number of PS quads / 

S2 scenes images 

January 2016 - December 2019 
NICFI Semestral Basemaps 

S2-L1C 

8 

1229 

January 2020 - December 2022 

NICFI Semestral Basemaps 

NICFI Monthly Basemaps 

S2-L1C 

1 

29 

1007 

 
Table 2. Composite details. Number of single scenes for S2-L1C and quads for NICFI Basemaps utilized for 

constructing the composite image. 

 

Several pre-processing techniques were required to identify the benthic in the satellite 

images. The pre-processing workflow for the images was conducted in GEE to 

accommodate the data's computationally demanding nature. Adjustments were made to 

the cloud-native S2 L1C image pre-processing workflow following previous work done by 

Blume et al., 2023 and Traganos et al, 2022 and the NICFI Basemaps processing workflow 

done by Lee et al., 2023. 

In our methodology, we endeavored to adhere to a compatible approach in generating 

composites for both datasets. However, we implemented distinct procedures tailored to 

the specific attributes of each image set to ensure alignment with the unique 

characteristics of the data. The specific research workflow is shown in Figure 1. 

First, an environmental noise correction was performed to derive a multitemporal 

composite. The S2 images underwent preprocessing, selecting images containing less 

than 10% cloud cover being used. Additionally, a cloud mask was applied using the QA60 

band and a bitmask band with cloud mask information, and we rescaled the TOA values. 

On the contrary, as the NICFI Basemaps are generated using the best available pixels for 

the site, no further environmental noise filtering was necessary.  

https://www.zotero.org/google-docs/?C5F0fK
https://www.zotero.org/google-docs/?DJwtjx
https://www.zotero.org/google-docs/?5gj3HZ
https://www.zotero.org/google-docs/?uDv6Sg
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In order to create a single multi-temporal composite per image source and per timeframe, 

we calculated different percentiles to determine the ideal fit for the composites. We 

selected the 20th percentile as the best statistical metric for reducing the impact of sunglint, 

turbidity, clouds, and haze in the area (Donchyts et al., 2016). This step was taken based 

on its superior performance, as described in the study by Traganos et al. (2022). Because 

of the minimal tidal fluctuations in Belize, typically around 0.3 meters, the tidal stage was 

not considered (Gischler, 2011).  

We used the combined Otsu-based method for bimodal thresholding and the Canny edge 

filter method to differentiate land from water in the pair of images (Donchyts et al., 2016). 

This involved setting an optimal threshold to maximize inter-class variance based on the 

distribution of pixel values observed in the Normalized Difference Water Index (NDWI) of 

each composite (Equation 1) for the PS composite and the Modified Normalised Difference 

Water Index (mDWI) for the S2 L1C image (Equation 2). All histograms used for the Otsu-

based maskings achieved bi-model distributions. 

N D W I  =  G r e e n − N I R /  G r e e n + N I R         

                                     Equation 1.    

M N D W I  =  G r e e n − S W I R 1  /  S W I R 1         

                          Equation 2.    

We performed an atmospheric correction to the composite after masking out terrestrial 

regions. The resultant image represents the normalized reflectance above the water 

surface, denoted as Rrhow (Equation 3). The composite of the normalized water-leaving 

reflectance (Rhown) was adjusted to account for the differences in the optical path 

between the air and water column. To make this correction, we obtained the Below-surface 

remote sensing reflectance Rrs(λ), which describes the ratio of the radiance leaving the 

water to the radiance coming down immediately above the water surface (Traganos & 

Reinartz, 2018a) 

 

                                                       

 

Equation 3    

 

A turbidity index was implemented to mitigate the impact of light attenuation in turbid 

coastal waters. The index is rooted in a linear model employing distinct spectral profiles to 

https://www.zotero.org/google-docs/?2x6xmD
https://www.zotero.org/google-docs/?xfzc8O
https://www.zotero.org/google-docs/?UGQhO0
https://www.zotero.org/google-docs/?JRXNk1
https://www.zotero.org/google-docs/?JRXNk1
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represent each class (Pertiwi et al., 2021). In order to train the model, a set of 160 training 

data points TD, along with sampled reflectance values, were used, while 40 validation 

points VD were employed to ensure accuracy (Appendix A). It was confirmed through a 

visual analysis that the same TD and VD used in both NICFI mosaics correspond 

accurately to areas with and without turbidity in both images. The same process was 

followed with the S2 L1C image, using the same number of VD and TD points. 

Figure 4 below shows the results of the Random Forest classification maps. The 

classification algorithm that performed the best was a Random Forest. All the classification 

maps were created using 1590 points for training and 300 for validation, 80% 

corresponding to training (TP) and 20% to validation points (VP). 

A Hue-Saturation-Value (HSV) mask was created to exclude deep water pixels in the 

images. This approach proved effective in addressing the band limitations of PlanetScope, 

as noted by Lee et al. in 2023. Additionally, the N band was kept for the downstream 

feature development step instead of being eliminated by the conventional atmospheric 

correction (Lee et al., 2023). 

We applied a deep water mask using Satellite-Derived Bathymetry (SDB) to remove the 

remaining deep water pixels from the map. The conditions for this mask were set to include 

only areas at least 10 meters deep, considering the mapping efforts of the Allen Coral 

Atlas in the Caribbean (Schill et al., 2021). Most of the seagrass beds in the study area 

are distributed between 0.3 to 10 m below the water’s surface thus we used this depth to 

refine the categorization process. 

A recovery mask was applied for all previous steps to conserve pixels on Turneffe Atoll, 

Lighthouse Reef Atoll, and Glover’s Reef Atoll. Prior research has consistently 

undervalued the prevalence of seagrass within this lagoon ecosystem (Gaston et al., 2009) 

(Short et al., 2006) (Carpenter et al., 2022); therefore, we incorporated these areas into 

our composite analysis to address this oversight. 

Using a log-linear transformed linear model, two depth-invariant bands were created from 

the red, green, and blue bands (Lyzenga et al., 2006). Further bands were generated after 

completing the necessary steps to facilitate future benthic habitat mapping. Consequently, 

an ultimate composite comprising 18 bands was produced for S2 L1C. The computed 

NICFI resulted in a 5-meter spatial resolution with 13 bands. Refer to Table 3 for details of 

the S2-L1C and PS composites.  

  

https://www.zotero.org/google-docs/?gPPSvc
https://www.zotero.org/google-docs/?Dp9hr7
https://www.zotero.org/google-docs/?HPN2u8
https://www.zotero.org/google-docs/?pTBhqQ
https://www.zotero.org/google-docs/?LEZ3cH
https://www.zotero.org/google-docs/?r4APSa
https://www.zotero.org/google-docs/?hh7JOo
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Table 3. Rrs Sentinel-2 L1C and NICFI composites characteristics 

 
Rrs Sentinel-2 L1C 

composite 
Rrs PS composite 

Spatial Resolution 10 m 5 m 

Bands 

Coastal aerosol 

Blue 

Green 

Red 

Vegetation red edge 

NIR 

Vegetation red edge 

SWIR 

Coastal aerosol - Blue 

Blue-Green 

Coastal aerosol - Green 

Hue 

Saturation 

Value 

NDWI 

mDWI 

Blue-Green 

Green-Red 

Blue-Red 

Slope 

Depth 

Blue 

Green 

Red 

NIR 

Hue 

Saturation 

Value 

NDWI 

Blue-Green 

Green-Red 

Blue-Red 

Slope 

Depth 

 

4.1.2.1. Mapping method of seagrass bed distribution 

The classification aimed to differentiate the benthic ecosystems in shallow Belizean waters 

based on their spectral classes that represent the unique patterns of each ecosystem. A 

Random Forest RF model was trained with 50 trees in GEE, identifying five distinct 

classes: seagrass, coral, sand, rubble, and deep water. The selected benthic categories 

were simplified into broader classes to ensure accurate classification across the created 

composites. For instance, the dense and sparse seagrass categories were merged into 

one class to maintain consistency across the mosaics while accounting for resolution 

differences. Furthermore, this study made no distinction between seagrass classes. 
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The seagrass extent maps were thoroughly evaluated using the data sets generated in 

this and prior studies (Schill et al., 2021) (Busch et al., 2016) (F. T. Short et al., 2006) 

(Carpenter et al., 2022). These previous studies were selected due to their similar temporal 

and spatial scales and areas intersecting the 2016-2019 and 2020-2022 maps.  

Following the initial training phase, we analyzed the variable importance of each image 

band in relation to the model's accuracy. Based on this assessment, we identified the ten 

most crucial features for each image and then we proceeded to a secondary training 

phase, enhancing the classification by prioritizing the variables with the highest impact. 

The classification outcomes were evaluated by calculating overall user (OA) and producer 

accuracy (PA) for the RF classification. Furthermore, the high-resolution PlanetScope 

scenes of the study area were utilized as a reference. The visual assessment was used to 

determine the correctness of the classification. 

4.1.2.2. Change detection analysis of seagrass extent 

Studying the alteration in the benthic environments is crucial in comprehending the carbon 

dynamics over time. To achieve this, a change detection analysis was executed, and the 

variation was determined by computing the difference between two composite epochs, the 

initial period (2016 - 2019) and the subsequent (2020 - 2022). 

First, each set of maps was co-registered in Rstudio to ascertain whether changes were 

due to the gain or the loss of the ecosystem in the area. The gains and losses of the 

ecosystems  were  measured in sq km, alongside the per-pixel analysis indicating 

increases, stability, or decreases between 2016 and 2022.  

4.2. Coastal blue carbon modeling (Biophysical modeling) 

4.2.1. Carbon estimates 

Accurately evaluating the impact of seagrass on sedimentary organic carbon stocks 

requires a comprehensive assessment of carbon parameters. To accomplish this, we 

selected various biophysical factors, including biomass, soil carbon data, accumulation 

rates at a given year, and net sequestration. As public data on seagrass carbon health at 

a national or local scale was not accessible, we reviewed data from previous studies to 

inform our analysis. 

The search method used to identify carbon values associated with seagrasses in the 

Caribbean. It utilized Spanish and English keywords to ensure a comprehensive search,  

https://www.zotero.org/google-docs/?WmBD1z
https://www.zotero.org/google-docs/?ZEcTTH
https://www.zotero.org/google-docs/?zjYakB
https://www.zotero.org/google-docs/?xF5ern
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including terms like "carbon," "seagrass," "benthic habitat," and "seagrass meadow" to 

target the ecological and carbon-related aspects of seagrass environments. The search 

was geographically focused on "the Caribbean," "Caribbean countries," and specifically 

"Belize" to provide a broad yet focused selection of studies within the region. To gain a 

thorough understanding of carbon storage and processes, the search criteria included 

terms such as "biomass," "above-ground biomass," "below-ground biomass," "litter," 

"sediment," and a focus on "carbon accumulation," "organic matter," and "bulk density", 

“soil”, “sediment”, “carbon sequestration”, and “carbon stock”. The research also included 

“Thalassia testudinum” as this is the principal species found in the region. 

For calculating the parameters included in the biophysical table, we utilized specific data 

provided about carbon in seagrasses (Table 4). The initial carbon stock in the soil, 

represented as Soil-initial in tonnes per hectare, was obtained from the study by Herrera-

Silveira et. al., 2020 conducted in Mexico. Due to the proximity, it was taken into account 

for Belize, which indicated that these meadows store an average of 241 ± 118 Mg Corg 

ha^−1 in the top 1-meter thick soil layer. The calculation for the initial biomass in seagrass 

ecosystems was based on data provided regarding the average above-ground and below-

ground biomass. Data on accumulation was taken from Fu et. al., 2023 in a study 

developed in the Caribbean, Bahamas and soil from research from Duarte et. al., 2016 

using the estimation Stankovic, 2021 made for the region. Moreover, data about half-life 

and disturbance was taken from the user guide recommendation for seagrasses from 

Murray et al, 2011 and Montero-Hidalgo et. al., 2023.  
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Parameter Value Tier Source 

Biomass-initial (tonnes/ha) 1.6 1 Lovelock et. al., 2017 

Soil-initial (tonnes/ha) 52.32 2 Herrera-Silveira et. al., 2020 

Litter-initial (tonnes/ha) NA NA NA 

Biomass-yearly-accumulation (tonnes/ha year) 2.13 1 

Fu et. al., 2023 

Duarte, C. M., N. Marba, et al., 

2010 

Soil-yearly-accumulation (tonnes/ha year) 1.60 2 
Duarte et. al., 2016 

Stankovic, 2021 

Biomass-half-life (year) 0.27 1 Murray et al., 2011 

Biomass-high-impact-disturb (ratio) 1.00 1 
Murray et al, 2011 

Montero-Hidalgo et. al., 2023 

Soil-half-life (year) 1.00 1 Murray et al, 2011 

Soil-high-impact-disturb (ratio) 0.50 1 
Murray et al, 2011 

Montero-Hidalgo et. al., 2023 

 

Table 4. Data Sources for Estimating Metrics in the InVEST Blue Carbon Biophysical Model 

 

Moreover, this study calculates carbon sequestration and storage using the Carbon 

Storage and Sequestration in InVEST. For this purpose, information on carbon content on 

the four pools for seagrass was described (Table 5). These data were acquired by 

literature review. 

lucode LULC_Name C_above C_below C_soil C_dead 

1 sand 0 0 0 1 

2 seagrass 0.8 1.8 140 0 

3 rubble 0 0 0 0 

4 coral 0 0 0 0 

5 deep water 0 0 0 5 

 
Table 5. Data Sources for Carbon Pools for Estimating Metrics in the InVEST Carbon Storage and 

Sequestration Model 
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4.2.2. Carbon fluctuations 

The model contains a transition table that provides information about the intensity of 

ecosystem changes. The changes are defined as an accumulation of low-impact 

disturbances (e.g., sand to seagrass) or high-impact disturbances (e.g., seagrass to sand). 

The transitions table was thoroughly completed, taking into account the various 

possibilities of change between ecosystems. For example, we designated changes from 

SG to SD as "disturbance," while the opposite was labeled as "accumulation" (see 

Appendix). 

4.2.3. Application of InVEST for Coastal Blue Carbon Biophysical Modeling 

Initially, spatially explicit maps were calculated and seamlessly integrated into the model 

for accurate results. In this step, we utilized the full benthic classification in order to gain a 

comprehensive understanding of the changes occurring in the region.  

After several iterations of the model, we obtained the final output comprising of six detailed 

maps that highlighted carbon accumulation and emission from 2016 to 2022, carbon stock 

at 2016, and the total net carbon sequestration.  
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5.  Results 

In this section, we analyze the outcomes of the analysis outlined in the previous section. 

Initially, we focus on the results derived from seagrass maps and identify the change 

detected in two distinct periods - firstly, one composite with images from 2016 to 2019 and 

one composite from 2020 to 2022 to identify the change in seagrass levels within the 

coastal area of Belize. Next, the carbon accumulation with the seagrass is calculated to 

identify the total net carbon sequestration - this was done using the InVEST CBC model 

and Carbon Sequestration and Storage model. The model performance was accessed to 

understand the accuracy of the results. Lastly, we undertook a comparative analysis using 

different satellite images, PS with a resolution of 5m and S2 with a resolution of 10m, on 

the performance of the model and its ability to calculate carbon acquisition.  

5.1. Seagrass extent and change detection in the distribution of 

seagrass 

This section explores the creation of comprehensive maps of benthic habitats in Belize, 

with a specific emphasis on seagrass. This was achieved by developing a multi-temporal 

below-surface remote sensing reflectance composite from 2016 to 2019 and one 

composite from 2020 to 2022. The end result was two classification maps using PS images 

and two classification maps using S2 data. 

The classification was done within the marine environments of Belize. There five classes 

that were mapped, these were: 

1. Sand  

2. Seagrass  

3. Rubble  

4. Coral 
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Figure 4.Classification results of all classes in the Belizean Marine environment using the random forest 
algorithm on the PlanetScope composites 

 

Figure 5. Classification results of all classes in the Belizean Marine environment using the random forest 
algorithm on the Sentinel-2 composites 
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The results in table 5 display the extent of seagrass identified. The S2 images were able 

to identify 409.6 sq km more in the periods of  2016 - 2019 than PS images and in the 

period of 2020 - 2022 S2 images identified 466.7 sq km. S2 images used were able to 

classify a larger area extent of seagrass than PS images.  

 

 PS 2016 - 2019 PS 2020 - 2020 S2 2016 - 2019 S2 2020 - 2020 

Seagrass (sq km) 2912.50 2830.12 3322.1 3296.82 

Table 6. Seagrass Coverage Area in Square Kilometers Determined for Each Image Composite 

 

 

 

Figure 6. Seagrass extension in the Belizean Marine environment using the random forest algorithm on the 
Sentinel-2 composites. 
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Figure 7. Seagrass extension in the Belizean Marine environment using the random forest algorithm on the 
PlanetScope composites. 

 
The classification results obtained through the random forest algorithm for the Belizean 

Marine environment are summarized in Table 6. Seagrass emerges as the predominant 

class across all datasets, underscoring its paramount importance and the imperative for 

its preservation. The extent of seagrass coverage is consistently notable, indicating the 

critical need for its comprehensive understanding and conservation efforts. 

 

 

 
Coverage by 

sand(sq km) 

Coverage by 

seagrass(sq km) 

Coverage by 

coral(sq km) 

Coverage by 

rubble(sq km) 

Total area(sq 

km) 

PS 2016 - 2019 1175.14 2912.5 1029.56 100.02 5217.22 

PS 2020 - 2022 1244.95 2830.12 1096.8 124.37 5296.24 

S2 2016 - 2019 1021.03 3322.1 871.51 372.61 5587.25 

S2 2020 - 2022 1121.21 3296.82 862.65 309.1 5589.78 

 
Table 7. Classification results of all classes in the Belizean Marine environment using the random forest 

algorithm 
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During the period from PS 2016 to 2019, the coverage of seagrass stood at 2912.5 sq km, 

accounting for the largest proportion of the total area assessed at 5217.22 sq km. 

Subsequently, during PS 2020 to 2022, seagrass maintained its dominance, with coverage 

spanning 2830.12 sq km out of a total area of 5296.24 sq km. 

Sand emerges as the second most prevalent class across all datasets, followed by coral 

and rubble. Notably, while the coverage of sand, coral, and rubble fluctuates slightly across 

the different periods, seagrass consistently maintains its dominance, emphasizing its 

ecological significance within the Belizean Marine environment. 

To achieve clarity in the imagery and eliminate turbidity, we utilized masking techniques, 

especially along the coastline. After experimenting with various band combinations, we 

discovered that setting the threshold at 60 for the B, G, and R bands produced the best 

results for the NICFI mosaic in 2016 and 2020. For the S2 L1C composites, some bands 

proved more effective at this threshold. The OA and F1-scores for all four images were 

similar, ranging from 76 to 79%. However, we observed that the PS composite 

overpredicted turbidity zones in the northern part of the AOI. Upon a detailed analysis, we 

concluded that the PS composite was the most precise in removing turbid areas. 

The utilization of the random forest algorithm has facilitated a comprehensive mapping of 

seagrass coverage, shedding light on its spatial distribution and emphasizing the urgency 

of protective measures. These findings underscore the significance of ongoing research 

and conservation efforts aimed at preserving the invaluable ecological roles fulfilled by 

seagrass habitats in marine ecosystems. 

5.1.1. Classification accuracy  

Table 7 displays the accuracy results obtained from the classification process using the 

random forest algorithm and provides valuable insights into the reliability and precision of 

the mapping efforts focused on seagrass within the Belizean Marine environment. These 

metrics, including Producer Accuracy, User Accuracy, and Overall Accuracy, offer a 

comprehensive assessment of the classification performance across different datasets 

and time periods. 
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 Producer Accuracy User Accuracy Overall Accuracy 

PS 2016-2019 

Seagrass 
65.16 79.9 57 

S2 2016-2019 

Seagrass 
66.68 81.59 60 

PS 2020-2022 

Seagrass 
65.54 79.4 59 

S2 2020-2022 

Seagrass 
65.71 79.44 61 

Table 8. Accuracy of RF model for seagrass maps 

 

For the period spanning PS 2016-2019, the Producer Accuracy for seagrass classification 

is reported at 65.16%, indicating the proportion of correctly classified seagrass pixels 

relative to all seagrass pixels present in the dataset. The corresponding User Accuracy 

stands at 79.9%, representing the proportion of accurately classified seagrass pixels out 

of all pixels classified as seagrass. The Overall Accuracy for this period is noted at 57, 

reflecting the overall agreement between the classified results and ground truth data. 

Similarly, during the S2 2016-2019 timeframe, the classification accuracy metrics for 

seagrass exhibit slightly higher values, with Producer Accuracy at 66.68%, User Accuracy 

at 81.59%, and Overall Accuracy at 0.60. These figures suggest a relatively consistent 

performance in seagrass classification across different satellite datasets and time 

intervals. 

In the subsequent period of PS 2020-2022 and S2 2020-2022, the accuracy metrics 

maintain comparability with the earlier periods, with Producer Accuracy for seagrass 

hovering around 65-66% and User Accuracy ranging from 79.4% to 79.44%. The Overall 

Accuracy during these periods ranges from 59 to 61, indicating a moderate level of 

agreement between the classified results and reference data. 

The user accuracies for the seagrass class were found to be lower. It is believed that the 

differences may be attributed to misregistration issues between the image and the 

validation data. Additionally, the producer accuracy was low, suggesting a potential 

discrepancy in the classification scheme used. 
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The consistency in accuracy metrics across different time periods and satellite datasets 

underscores the reliability and robustness of the random forest algorithm in mapping 

seagrass habitats within the Belizean Marine environment. However, it also highlights 

potential areas for refinement and improvement in classification techniques to enhance 

the accuracy and precision of seagrass mapping efforts. 

In summary, the accuracy results derived from the classification process using the 

random forest algorithm are pivotal in the results section of the thesis, providing critical 

insights into the reliability of seagrass mapping efforts and supporting the estimation of 

carbon stocks associated with seagrass ecosystems in the Belizean Marine environment.  

5.1.2. Change detection in seagrass area extent  

In the investigation of the spatial distribution dynamics of seagrasses within Belizean 

marine environments across the time frames of 2016-2019 and 2020-2022, the change 

detection analysis using Planet Scope (PS) and Sentinel-2 (S2) satellites reveals 

significant insights into seagrass gain and loss, and their implications for seagrass carbon 

stocks. 

Table 8 indicates a gain of 359.76 sq km of seagrass coverage and a loss of 473.21 sq 

km according to the Planet Scope seagrass change map for the period of 2016-2019. 

Additionally, a substantial portion of 5886.40 sq km of seagrass habitat remained 

unchanged during this period. Similarly, the S2 seagrass change map shows a gain of 

197.76 sq km and a loss of 334.43 sq km of seagrass coverage, with 6532.54 sq km 

unchanged during the same period. 

 

 
Gain 

sq km 

Lost 

sq km 

No change 

sq km 

PS seagrass change map 359.76 473.21 5886.40 

S2 seagrass change map 197.76 334.43 6532.54 

Table 9. Gains and losses for each classification map 

 

The increase in seagrass coverage indicates a potential increase in seagrass biomass, 

which contributes to the accumulation of carbon stocks within seagrass ecosystems. The 

observed loss in seagrass coverage highlights areas where seagrass habitats have 

experienced decline or degradation. 
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In summary, the gain and loss detected in seagrass coverage across the investigated time 

frames have significant implications for seagrass carbon stocks and ecosystem health 

(Figure 4).  

 
Figure 8.  Changes in substrate cover from 2016 – 2022 for seagrass and coral. ( =loss,  = gain and  = no 

change). Done with PS(a) and S2 (b) maps 
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5.2. Seagrass Blue Carbon Dynamics (Biophysical modeling) 

 

5.2.1. Estimated carbon stocks with Coastal Blue Carbon Model  

The carbon stock values showed a remarkable increase from 2016 to 2022. Initially, the 

carbon stock was estimated with a maximum value of 53.92 Mt CO2e/ha, which more than 

doubled to 128.52 Mt CO2e/ha by 2022.  

The total net carbon sequestration during this period was significant, with a consistent 

amount of carbon sequestered according to the provided metrics. This consistency 

indicates a substantial and continuous carbon uptake process within the ecosystem, 

contributing to the overall increase in carbon stocks. Additionally, the estimated carbon 

accumulation during this time period points to a significant amount of carbon added to the 

ecosystem. The metrics for carbon accumulation align with those of total net carbon 

sequestration, as shown by the identical values for Estimated Total Net Carbon 

Sequestration and Estimated Carbon Accumulation between 2016 and 2022 in Appendix.    

5.2.2. Comparison of results of carbon estimations on different scale 

classifications maps 

These observations for the comparison underscore the importance of utilizing multiple 

remote sensing sources to capture a more nuanced understanding of carbon dynamics 

over time. 

The PS and S2 datasets both showed a significant increase in carbon stock between 2016 

and 2022. This is because the biophysical table used for the model was the same. 

Specifically, the PS dataset recorded an increase from approximately 6.48 billion to 15.44 

billion, while the S2 dataset showed an increase from about 1.89 billion to 4.51 billion. The 

greater numerical increase in the PS data may be due to its higher spatial resolution, which 

captured more detailed changes in carbon stock over smaller areas. 

Both datasets showed substantial carbon sequestration and accumulation over the period, 

with the PS dataset reporting a higher total net carbon sequestration sum compared to the 

S2 dataset. This difference could be attributed to the PS dataset's higher spatial resolution. 

However, the maximum value for carbon stock and sequestration parameters remained 

consistent at 74.60 for sequestration and increased similarly for carbon stock in both 

datasets. This indicates that the maximum potential for carbon sequestration and stock 

was similar across both satellite observations. 
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The comparison between the PlanetScope (PS) and Sentinel-2 (S2) datasets for biomass 

and soil carbon accumulation from epoch 1 to epoch 2 highlights distinct trends. For 

biomass accumulation, both datasets exhibit a decreasing trend; however, the PS dataset 

starts with a higher average accumulation in 2016 (0.882 Mt CO2e/ha) that significantly 

drops by 2022 (0.0198 Mt CO2e/ha), indicating a substantial reduction.  

 

The S2 dataset, while starting from a similar high in 2010 (0.922 Mt CO2e/ha), also shows 

a decline by 2030 (0.050 Mt CO2e/ha), but not as sharply as the PS dataset. This variation 

might reflect differences in resolution, influencing the perceived carbon accumulation 

rates. Similarly, soil carbon accumulation trends decrease in both datasets. 

From 2010 to 2030, biomass accumulation shows a notable increase in the maximum 

value, maintaining at 2.13 in both years, indicating that the potential for biomass carbon 

sequestration remained consistently high. However, the total sum and mean value 

decrease from 2010 to 2030, suggesting a decrease in overall biomass accumulation 

across the studied area. This might indicate that while peak potential for biomass 

accumulation remains unchanged, the average capacity across the landscape has 

diminished, possibly due to land use changes, climate factors, or ecosystem management 

practices. 

Soil carbon shows a decrease in both maximum value and overall accumulation from 2010 

to 2030. The maximum value remains constant at 1.6, yet the total sum and mean value 

significantly decrease, pointing towards a reduction in soil carbon storage across the area. 

This could reflect changes in soil management practices, degradation, or other 

environmental changes affecting soil carbon dynamics. 
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6. Discussion 

In this section, we will delve into the findings from the analysis of seagrass extent and 

change detection and the seagrass blue carbon modeling. To facilitate our discussion, we 

will refer to the first two sections of the ecosystem accounting framework, which focus on 

assessing the spatial distribution of seagrasses in the area and the capacity of this 

ecosystem to sequester carbon. We will highlight the performance of the model, 

limitations, and future directions. Moreover, we will explore how remote sensing and 

biophysical modeling can be combined to create proxies that further enrich our 

comprehension of seagrass carbon sequestration. 

6.1. Ecosystem extension: Spatial Analysis and Temporal 

Dynamics of Seagrass Ecosystems 

Based on the distribution map of seagrass beds, an analysis was conducted to assess the 

state and trends of multi-year distribution changes within the study area. Overall, the 

research indicates that the coverage of seagrass has decreased during the study period. 

This finding is consistent with previous studies of seagrass mapping conducted in other 

areas, which also reported a decline in this ecosystem (Gaston et al., 2009). 

As part of our initial objective, we aimed to measure seagrass and compare the results 

between two different time periods to determine whether there were any gains or losses. 

Our findings revealed that the study area experienced a decrease of 473.21 sq km in 

seagrass, indicating a net decline of 1.8% in the seagrass ecosystem from epoch 1 to 

epoch 2, as displayed in Table 8. These results are collaborated by the increase in areas 

of bare-sand seabed by 2020. 

Moreover, the degree of this decrease has varied by region. Both change maps reveal a 

loss of seagrass in the central north shallow area, which may be related to dredging 

activities in that region (Figure 9) (Arkema et al., 2014). Additionally, losses close to the 

coastline, particularly near river deltas, may be due to agricultural runoff, sedimentation, 

and turbidity (Ibid). Both maps also show losses in Glover's Atoll, and the Sentinel-2 

classification reveals a substantial loss in the Lighthouse Atoll (Figure 9).  

There is a pattern of gains in the southern part of the EEZ, close to the coast, and in the 

shallow water zone located in the north-central region, between the mainland and the reef, 

in both change detection performed in this set of classification maps. 
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Seagrass habitat was widespread throughout the study area, with the coastline having the 

highest concentration (as shown in Figures 7 and 8). Seagrass meadows were also found 

alongside the reef, particularly in the west of the reef barrier, which is consistent with 

previous studies conducted by Rützler & Macintyre in 1982. The presence of seagrass 

along the reef remained consistent over the years, as observed alongside the Belize 

Barrier Reef Reserve System (BBRRS). In the northern region, seagrass beds were 

captured in both classification maps within a larger area. After careful consideration, this 

may be an overinterpretation related to high turbidity levels. 

The elevated NDWI and mNDWI values detected in the center of Turneffe Atoll suggest a 

thriving seagrass ecosystem. However, the high turbidity levels present in the Atolls may 

have impacted the classification outcomes. As such, it is possible that the seagrass cover 

was overestimated in these zones (Carpenter et al., 2022).  

The seagrass cover maps presented in this study show a similar level of accuracy for the 

periods of 2016-2019 and 2020-2022. This consistency can be attributed to the use of a 

consistent mapping method that relied on detailed training points and pixel-satellite image 

classification. Despite the challenges posed by the complexity of ecological parameters, 

the accuracies for seagrass identification were relatively stable across both datasets, with 

slight improvements observed in the Sentinel-2 data.  

Further refinement of the model or inclusion of more training data could lead to improved 

accuracies. However, it is important to note that there is a certain error rate associated 

with extracting seagrass beds using the RF model. The use of precise ground truth data 

obtained directly from the investigation site helped to enhance the reliability and quality of 

the resultant maps. 

For a large proportion of the coastline, an overrepresentation of seagrass is present in 

both maps (Fig 4). This might be for an underperformance of the turbidity index. Seagrass 

was mapped in the lagoon, in agreement with other studies (Gaston et al., 2009).  

During our land masking efforts, we found that all histograms used for the Otsu-based 

masking resulted in bi-modal distributions, which allowed for a clear distinction between 

water and land. However, the deepwater masking process utilizing HSV could not perfectly 

distinguish deepwater areas, so we included this category in our final classification. To 

minimize the impact of deepwater, we incorporated bathymetry data available for the zone. 

The detectability and visibility of seagrass in satellite imagery are influenced by the 

attenuation of light in water, and water depth is a crucial factor. To address this, corrections 

https://www.zotero.org/google-docs/?PPzGX9
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are applied to the images to compensate for the effect of the water column. One of the 

challenges in creating water composites is sunglint, which can cause significant issues 

when classifying images, as observed in the Sentinel-2 classification. Losses in the 

northwest vicinity of the shore may be linked to this effect, as noted by Gaston et al. in 

2009. 

To accurately predict continuous seagrass cover, visual analysis of satellite imagery was 

utilized to produce the training dataset for classification. However, in-situ data is still 

necessary for achieving precise results. While the data points were evenly spread 

throughout the EEZ, specific regions, notably those situated within the Turneffe Atoll, had 

a higher volume of training points. This was due to these areas having been subject to 

more in-depth studies, which influenced subsequent image classifications. 

The methodology utilized was found to be successful in mapping benthic habitats in the 

area using two distinct images featuring varying spatial resolutions. Nevertheless, the 

inclusion of precise data in the model is crucial for achieving improved results in the 

classification process. This is particularly vital for classifications such as rubble and coral, 

where the RF algorithm did not perform optimally. 

Our approach combines dense and sparse seagrasses into a single classification, which 

presents a challenge when accurately calculating carbon stocks in the area. Each species 

has unique carbon sequestration and accumulation characteristics Hemminga and Duarte, 

2000). To refine our findings and accurately determine carbon stocks among seagrasses 

in the Belizean EEZ, future work should focus on discriminating between seagrass 

species.  

Effective seagrass monitoring relies on habitat mapping and observation of biophysical 

properties at the appropriate scale (Carpenter et al., 2022). Our analysis showed that the 

RF classification performed better on Sentinel-2 composites, possibly due to the versatility 

of the mosaics we created ourselves rather than pre-existing PS.  

To address the challenges posed by turbidity, one potential solution would be to evaluate 

changes in seasonal maps that include both wet and dry seasons in Belize. 

6.2. Ecosystem condition: Health assessment of seagrass in Belize 

in terms of blue carbon 

The analysis focused on carbon stock, total net carbon sequestration, and carbon 

accumulation. These metrics report the capacity of ecosystems to capture and store 

https://www.zotero.org/google-docs/?fsaiTj
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carbon dioxide from the atmosphere (Watts et. el., 2014). We focused on these 

parameters due to the fact they give information about how seagrasses act as a carbon 

sink. 

The difference in spatial resolution between PlanetScope and Sentinel-2 satellites is a 

critical factor in interpreting the results. PS higher resolution provides more detailed 

information on a finer scale, which might have resulted in capturing small-scale changes 

in seagrass cover and, thus, in carbon stocks than S2 due to its coarser resolution. This 

can lead to higher sums of carbon sequestration and stock in the PS data. However, the 

consistent maximum values across both datasets suggest that both satellites effectively 

capture the upper limits of carbon storage potential in the landscape. 

The comparison elucidates the complementarity of PS and S2 datasets in monitoring 

carbon dynamics. While PS offers detailed insights into carbon changes at a finer spatial 

scale, S2 provides a broader view that can be essential for regional or global-scale 

analyses.  

To assess the condition of carbon on seagrass on the sedimentary OC stock, it is important 

to examine all stock components, including live and dead aboveground and belowground 

biomass in the sediment column (Tanaya et al., 2018). 

By using a consistent methodology and data sources to generate accounts for multiple 

time periods, any alterations observed in the accounts can be accurately attributed to 

legitimate shifts within the ecosystem. 

The decrease in seagrass across a broad-scale area of relatively MPA’s, and loss of 40% 

seagrass in some regions during 7 years is alarming. These results are similar to other 

ones carried out in the area (Gaston et al., 2009). Some changes, however, can be natural, 

as Gaston et al, 2009 described in the study on the MPA where channels between reefs 

provide access for ocean-water flux into the lagoon during rising tides. Therefore, this 

pattern leads us to suggest that the lack of clear ocean water influx may be a limiting factor 

to seagrass survival in that region.  

Our results enhance the importance of preserving this ecosystem in the MPA system in 

Belize. Although seascape metrics could provide an effective indicator of potential carbon 

stock, there is a need to determine the appropriate spatio-temporal scale for adequately 

capturing the biophysical processes influencing the relationship between the spatial 

configuration of seagrass meadows and carbon sequestration(Simpson et al., 2022). 

https://www.zotero.org/google-docs/?E7BtUU
https://www.zotero.org/google-docs/?DzXUDg
https://www.zotero.org/google-docs/?68EjGz
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The used model assumes that the only change in carbon storage comes from the changes 

from one cover class to another. Therefore, it is a simplified version that disregards gains 

or losses over time and does not consider carbon dynamics from one pool to another.  

Technical limitations of this model are related to the way it adds the carbon pools, failing 

to account for changes in the carbon capacity of plants through years. Despite establishing 

a linear trend for the changes, this could represent a trade off for the model in terms of 

highly dynamic ecosystem such as seagrass (Lavery et al., 2013). 

This accumulation, when juxtaposed with the spatial extension calculated to be 

approximately 810,202.28 square kilometers sheds light on the critical environmental role 

played by the area. The increase from 53.91 Mt CO2e/ha to 128.52 Mt CO2e/ha between 

the two epochs underscores the region's significant contribution to mitigating climate 

change through enhanced carbon storage. 

6.3. Fusing EO with biophysical models in an EA framework 

This study leverages Earth Observation to quantify the extension of seagrass with 

biophysical modeling of carbon. Satellite images proved indispensable in determining the 

spatial location of seagrass, particularly in identifying patterns of carbon (Blume et al., 

2023). 

In the first stage, we aimed to determine whether seagrass habitat was being lost or gained 

in the area, understanding its patterns and distribution. Classification maps derived from 

satellite imagery presented the hotspots for seagrass habitats in the EEZ. Knowing the 

spatial distribution of seagrass of gains and losses (Figure 9) benefits marine planning and 

science-based decision-making (Grimm et. al., 2023).  

The InVEST Coastal Blue Carbon and Carbon Sequestration and Storage models 

performed in seagrass help to understand the carbon quantity held by this ecosystem. The 

carbon maps taken from the model reflect a considerable amount of carbon being storage 

on these ecosystem, which correspond with other results using the same methodology on 

different study sites (González-García et. al., 2022) (Montero-Hidalgo et. al, 2023).  

This study did not acknowledge the causes and consequences of those changes for the 

Belizean population. Further studies should address the causes for seagrass conversion, 

its range, and the impact of this ecosystem's loss on the services it provides to the 

population. This understanding is crucial for identifying reliable indicators for carbon stock 

assessments and policies (Macreadie et al., 2014). 

https://www.zotero.org/google-docs/?ZuZAnN
https://www.zotero.org/google-docs/?0UeyOV
https://www.zotero.org/google-docs/?0UeyOV
https://www.zotero.org/google-docs/?KRTWOt
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Due to the lack of local data, the accuracy of the model could not be defined precisely. 

Future work should compare the results from this model to ground-truth data. 

The InVEST model demonstrated its efficacy in generating carbon value estimates at 

different classification map resolutions, encompassing various carbon metrics of the 

region. This method is transparent and globally applicable, allowing for seamless 

comparisons with other regions. Setting up further agreements towards the seagrass 

carbon model is imperative to devise guidelines that safeguard this vital ecosystem. Belize 

has taken the lead in enforcing conservation measures in its territorial waters, in keeping 

with its pledge to reduce its carbon footprint (Arkema et al., 2023) (Grimm et. al., 2023). 

A marine ecosystem classification was developed to optimize the model using high-

resolution satellite imagery. This crucial input facilitated the identification of seagrass 

concentrations (Watts et al., 2014). 

Data limitations were one problem in developing this research. Therefore, the data used 

in this research was taken from a literature review. For the carbon analysis, the information 

was Tier 1 and Tier 3, where data from other regions did not consider specific species and 

location variability. Integrating additional field data could further enhance the development 

of classification algorithms and improve carbon assessment. 

Alongside the Coastal Blue Carbon model, this study utilized the Carbon Sequestration 

and Storage model to determine the quantity of carbon sequestered and stored in 

sediments. The resulting maps exhibit congruity between the findings of both models. 

Although this model has its drawbacks, including its failure to consider fluxes between 

ecosystems and its reliance on linear growth and exponential sequestration assumptions 

until the ecosystem is disrupted, it requires minimal parameters to execute. Nevertheless, 

it served as a foundation for analyzing ecosystem fluctuations. 

These findings indicate that bioregional and geomorphic characteristics may not reliably 

forecast soil organic carbon (Corg) reserves, suggesting the necessity for site-specific 

assessments grounded in local environmental conditions for Blue Carbon initiatives and 

greenhouse gas accounting (Mazarrasa et al., 2021). 

Guidelines for precise quantification of seagrass carbon stock have been established, with 

the aim of integrating it into national greenhouse gas inventories (GHG ) (Arkema et al., 

2023). Examining the ecological characteristics of seagrass and evaluating the potential 

of remote sensing techniques with other methods are integral parts of this task. 

https://www.zotero.org/google-docs/?oLZb2Y
https://www.zotero.org/google-docs/?CpbS4s
https://www.zotero.org/google-docs/?m5N3N0
https://www.zotero.org/google-docs/?m5N3N0
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Future studies will focus on improving the adaptability of the modeling techniques to 

facilitate their use across regional and national scales. Additionally, developing 

multitemporal composites with finer temporal resolutions will enable the generation of 

more extensive and comprehensive time series. This enhancement will support a more 

dependable analysis of patterns within the year, mainly by creating seasonal maps that 

capture the variations in turbidity index during Belize's wet and dry seasons. 

Assessing the condition of a system may not only involve carbon but also other biophysical 

factors that are at play in seagrass ecosystems. Based on the study's objective, coupled 

biophysical models of contaminant concentration, water quality, and Chlorophyll-a content 

can help determine a correlation between ecosystem condition and its capacity to promote 

carbon sequestration (United Nations, 2022). 

This study serves as a first step into the carbon modelling at Belize. With the  required 

data at hand, more epochs and even scenarios could be used to predict the future carbon 

levels. By incorporating scenarios such as Business-As-Usual, Conservation, No-Net-

Loss, and Intermediate-Conservation-Efforts, we could gain a better understanding of the 

future blue carbon capacity of seagrass in Belize, as stated in the works of Montero-

Hidalgo et al. (2023) and González-García (2022). This research can provide direction for 

conservation projects that aim to preserve seagrass meadows in the region. To translate 

satellite-derived ecological characteristics into metrics relevant to carbon stock and 

sequestration rate estimates. Additional assets, such as distance to the water, fisheries, 

and protected areas, will be studied and parameterised with biophysical variables under 

different management scenarios, including business-as-usual, conservation, and 

sustainable development. 

It is important to note that our research only focused on the first two stages of the 

Ecosystem Accounting Framework. By including steps such as Ecosystem Service and 

Asset Account, a defined monetary value can be assigned to preserving these 

ecosystems, as mentioned in the works of Montero-Hidalgo et. al. (2023) and González-

García et. al. (2022). This monetary value can be crucial in determining efforts for 

implementing projects that aim to preserve this vital ecosystem (Blume et al., 2023).

https://www.zotero.org/google-docs/?lheIqL
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7. Conclusion 

The importance of seagrass habitats in capturing organic carbon makes them a crucial 

element in supporting efforts to mitigate climate change. To better understand the carbon 

stocks in seagrass in Belize, we utilized the SEEA-EA framework phases of ecosystem 

extent in conjunction with Earth Observation techniques and ecosystem conditions to 

model model carbon dynamics.  

In order to determine changes in seagrass between the two periods, we analyzed spatial 

fluxes and compared C content in the region using the Coastal Blue Carbon model of 

InVEST. 

Our research shows a concerning loss of this important ecosystem in the study period, 

particularly in the northern region of Belize's EEZ. Moreover, there are also gains of 

seagrass around the study area. 

The analysis focused on carbon stock, total net carbon sequestration, and carbon 

accumulation derived from two different satellites. This analysis showed a higher carbon 

content taken from the PS composite map. However, both classification maps show a 

constant sequestration of carbon in the area of study.  

By utilizing remote sensing-based maps and biophysical carbon models, we were able to 

generate highly accurate carbon estimates, making this approach especially useful in 

areas where C stocks data is not readily available.  

This pilot research demonstrated the potential of the InVEST CBC in quantifying the 

carbon content of the Belizean seagrass beds. With the setup of this framework for a 

benthic application of InVEST, researchers, conservation managers and policy makers will 

not only be able to monitor their seagrass carbon stocks and forecasts, but also any other 

possible biophysical parameters of importance to seagrasses and other benthic habitats. 
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Appendix 

 

A. Points for turbidity index. A total of 180 points represent locations of turbidity 

alongside the coastline, with 160 points for training in black and 20 points for 

validation in green. Turbity areas example alongside the shore 
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B. Classification map PlanetScope 

 

 PS 2016-2019 PS 2020-2022 

 PA User Accuracy PA User Accuracy 

Sand 84.94 82.2 80.69 84.6 

Seagrass 65.16 79.9 65.54 79.4 

Rubble 70.58 23.1 77.64 24.52 

Coral / Algae 49.76 69.8 54.97 67.0 

Overall 0.59 0.57 

 

 

 

 

C. Classification map Sentinel-2 L1C 

 

 S2 2016-2019 S2 2020-2022 

 PA User Accuracy PA User Accuracy 

Sand 78.08 81.53 80.38 84.62 

Seagrass 66.68 81.59 65.71 79.44 

Rubble 76.83 68.11 75.61 67.03 

Coral / Algae 54.03 25.45 54.03 24.52 

Overall 0.60 0.61 
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D. Biophysical data form CBC model 

 

Parameter 

PS 

Min 

Value 

PS 

Max 

Value 

PS 

Sum 

(10^9) 

PS 

Mean 

Value 

PS Std 

Devia- 

tion 

S2 

 Min 

Value 

S2 

Max 

Value 

S2 

Sum 

(10^9) 

S2 

Mean 

Value 

S2 Std 

Devia- 

tion 

Carbon 

Stock 

(2016) 

0 53.92 6.48 22.34 26.56 0 53.92 1.89 23.34 26.72 

Carbon 

Stock 

(2022) 

0 128.52 15.44 52.62 63.20 0 128.52 4.51 55.58 63.67 

Total Net 

Carbon 

Sequestrat- 

ion (2016 - 

2022) 

0 74.60 8.96 30.90 36.75 0 74.60 2.62 32.29 36.96 

Carbon 

Accumulat- 

ion (2016 - 

2022) 

0 74.60 8.96 30.90 36.75 0 74.60 2.62 32.29 36.96 

Values in Mt CO2e/ha 

 


