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Abstract—Efforts to minimize Age of Information (AoI)
in communication networks, particularly within energy-
constrained devices in the Internet of Things (IoT), have
prompted extensive research into resource management tech-
niques. This study explores the optimization of AoI over a finite
horizon in the context of distributed IoT environments. We first
frame the scenario of N distributed equivalent sources as a
multi-agent coordination game, then we address the inefficiency
of the resulting equilibria, quantified through the Price of
Anarchy. We find the latter to be significant (higher than 1.5)
already for few sources, and increasing in the number of players.
Leveraging Harsanyi’s theoretical framework for equilibrium
selection, we argue for the importance of preplay communication
for AoI efficiency, and suggest how this can be implemented in
the IoT without resorting to full centralization.

Index Terms—Age of Information; Internet of Things; Data
acquisition; Game theory; Equilibrium selection.

I. INTRODUCTION

The advancement of communication technologies has led
us into the era of the Internet of Things (IoT), characterized
by ubiquitous connectivity among a vast array of devices [1].
Despite its progress, challenges persist for efficient resource
management in IoT networks, especially those constrained
by energy limitations. One of such issues that is expected
to become pressing in the future, in light of the increase in
real-time services, is the provision of timely information to
make accurate decisions on the system control [2].

To quantify freshness of information from a mathematical
standpoint, a relatively recent line of research adopts Age
of Information (AoI) as the metric of choice [3], seen as
most important than average delay or throughput in real-time
applications. Whenever a transmitter and receiver exchange
status updates, AoI at the receiver is defined as [4]

∆(t) = t− σ(t) (1)

where σ(t) is instant of generation of the last correctly
received transmission.

AoI minimization in communication networks corresponds
to enhance the freshness of information delivery and is
commonly subject to two requirements imposed by IoT
devices. The first relates to energy and data link restrictions,
which may result in the prohibition of persistent transmission,
requiring the nodes to limit their activity [5], [6]. Another
common limitation is that the management of multiple nodes
happens without coordination, in a distributed fashion, due to
scalability requirements on large-scale IoT scenarios [7].
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These challenges have led to a diverse array of techniques
and methodologies aimed at mitigating AoI and optimizing
resource utilization in constrained device networks. One
notable avenue of research focuses on minimizing AoI over
finite horizons [8], recognizing the critical importance of
preserving resources while maintaining information fresh-
ness. Additionally, researchers have leveraged multiple math-
ematical methodologies, from queueing theory to constrained
optimization, toward analyzing AoI dynamics [9], exploring
optimal update policies to balance information update fre-
quency and energy consumption effectively.

However, a line of relatively more recent papers deals
instead with the application of game theory as a tool for
optimizing resource allocation in various network scenarios.
This can be seen as a way to combine distributed management
of multiple agents toward the common goal of network opti-
mization. In particular, in this paper we address the problem
of AoI minimization with multiple equivalent distributed
sources as an anti-coordination game [10]. However, we
are aware that conventional game models face challenges in
scaling to the complexity of IoT systems, which commonly
results in poor performance, as will be confirmed by our
preliminary results where we quantify the Price of Anarchy
(PoA) of our system that turns out to be excessive and
not scaling [11]. This asks for the development of non-
conventional game-theoretic models tailored to address the
unique characteristics of large-scale IoT deployments.

For this reason, in this paper we extend the analysis to
include Harsanyi’s concept of equilibrium selection [12],
which may offer a better solution to the issue of multiple
strategic saddlepoints in games giving inefficient results.
This framework provides a way to choose a satisfactory
outcome based on players’ beliefs and the likelihood of
different outcomes [13]. Integration of Harsanyi’s theory
alongside game-theoretic approaches may be the solution to
coordination challenges and optimizing resource allocation
in IoT environments, emphasizing the significance of preplay
communication in achieving more desirable outcomes, partic-
ularly correlated equilibria. We seek to provide insights into
effective resource management strategies for optimizing AoI
performance and fostering coordination within IoT networks.

II. RELATED WORK

The analysis of AoI in communication networks has gar-
nered significant attention in recent years, particularly in the
context of energy-constrained device networks. Researchers
have explored various techniques to enhance the freshness
of information delivery, addressing the challenges posed by
constrained devices [4], [6], [8], [9], [14].



One notable line of research involves the minimization
of AoI over a finite horizon in the presence of energy-
constrained devices [8]. Considering that such devices rely
on limited batteries, optimizing AoI performance becomes
crucial to prolonging network lifetime while maintaining
information freshness. In addition, researchers have explored
the application of queueing theory to analyze AoI dynamics
in constrained device networks [4], [6]. Paper [4] utilized
queueing models to investigate optimal update policies for
energy-constrained devices, aiming to strike a balance be-
tween information update frequency and energy consump-
tion. Similarly, [6] examined the impact of different battery
horizons on AoI performance, providing insights into optimal
update strategies under energy constraints.

Furthermore, [14] considered AoI minimization over infi-
nite horizons in IoT scenarios, emphasizing the importance of
long-term freshness maintenance in energy-constrained net-
works. Their work contributes to understanding AoI dynamics
beyond finite timeframes, offering insights for designing
efficient communication protocols in IoT environments. Over-
all, all these studies underscore the importance of tailored
approaches for AoI minimization in constrained device net-
works, considering factors such as energy efficiency, battery
constraints, and long-term freshness maintenance.

Game theory is also used to optimize resources in net-
work scenarios [9], as it offers a framework for analyzing
distributed and interactive decision-making processes, but
conventional models struggle with the scale of IoT systems.
In response, non-conventional game theoretic models such
as evolutionary games, mean field games, minority games,
mean-field bandit games, and mean field auctions have
emerged [7]. Game-theoretic approaches in relay-assisted
channels have also shown how to improve efficiency [15].

III. ANALYSIS

A. System model

We examine a multi-agent scenario where multiple IoT
nodes send information to the same end point. The primary
objective of these agents, herein referred to as information
sources, is to optimize data freshness within the network envi-
ronment. We consider an optimal update schedule over a finite
horizon [8], during which we assume that each source can
only send one update (otherwise, the same approach can be
repeated over multiple fractions). For numerical convenience,
the finite horizon is taken as normalized to [0, 1].

We consider the standard AoI expression ∆(t) as per (1).
This implies that upon each transmission, AoI is reset to zero.
Our focus is on quantifying the average AoI within the time
window, i.e.

∆ :=

∫ 1

0

A(t)dt. (2)

An example of the evolution of ∆(t) is reported in Fig. 1,
where 3 sources are considered and their transmission instants
are set as τj , j = 1, 2, 3. Thus, it is easy to derive through
geometric arguments that (2) leads to ∆ being a function
of the choices of τj , or equivalently, of the N+1 inter-
transmission intervals yj = τj − τj−1, for j = 1, . . . , N+1
with τ0 = 0 and τN+1 = 1, which leads to

∆(y) =
1

N

N∑
i=0

[
yi
2

2
]

(3)
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Fig. 1. Example timeline for the AoI evolution. Updates are planned at
regular intervals by 3 sources, yet the second opportunity of transmission is
skipped and the third is unnecessarily used by two sources. Consequently,
the AoI experiences an increase as per the dashed surface.

If sources are fully coordinated, τj = j/(N + 1) are the best
points. Thereafter, we denote these values as milestones mj .

Now, if the sources are instead independently managed by
rational agents that do not communicate with one another, we
can make the assumption that they still choose to transmit at
one of the milestones. However, since this choice is totally
uncoordinated, it can happen that a milestone is skipped
whereas another has multiple (redundant) transmissions. This
leads to an increase in the average AoI that is also shown
in Fig. 1, as the shaded orange area. This is actually not
the consequence of a transmission failure as in [8], or a
collision as in [16], but rather that multiple uncoordinated
sources choose the same milestone to send their information,
thereby resulting in an inefficiency because of the redundant
transmission. This, in turn, reflects on fewer transmission
opportunities being exploited, which has the same impact on
AoI as an erasure [9].

B. Game theoretic analysis

To formalize this scenario, we consider multiple sources as
players in a static game of complete information, which can
be represented as G = N ,A,U , whereN is the set of players,
i.e., N independent sources of information. The action set
A = (pj)j , with 1 6 j 6 N , and 0 6 pj 6 1 denotes
the set of possible actions of players, as the probability of
transmitting in the jth milestone. The last component, U is
a set representing the payoffs of the games with different
numbers of players i and depends on the actions chosen by
the players as (2).

This kind of situation is already studied in game theory
as an anti-coordination game [10], since the strategic players
are incentivized to choose different slots, but this is equiv-
alent, under proper swap of their choices, to the pursuit of
distributed coordination among multiple independent players.
Yet, since the players are in reality not coordinated, they will
possibly choose inefficiently. A naive solution to their choice
would be to set all milestones as being chosen with equal
probability, that is, pj = 1/N for all js. Yet, this is not
an equilibrium point: the structure of the problem implies
that some milestones can be preferred (particularly the ones
in the middle), so we need to adjust the values of pj at
the equilibrium. This can be seen as a mixed strategy NE
that necessitates the application of the indifference theorem,
whereby players’ decision probabilities are adjusted to render
opponents indifferent among their available actions.

Given that our model encompasses a finite set of actions,
the pursuit of a Nash equilibrium in mixed strategies demands



adjustments to the action set A. However, the computation
of the theorem for N players scales pretty badly as it
results in an (N−1)-th degree polynomial with terms such as
(p1+p2+ · · ·+pN )(N−1). The computation can be improved
by leveraging the game’s symmetry, as players can be pre-
dicted to share identical probabilities for selecting the j-th or
the (N−j+1)-th milestones, effectively halving the size of
the action set. Additionally, we can impose a monotonicity
constraint, i.e., pj < pk whenever j < k ≤ dN/2e that further
simplifies the derivation. This results in Algorithm 1 to find
the mixed strategy NEs.

Algorithm 1 Implementation of the Indifference theorem
Require: N probability vectors p with length N
tempdev = 100 . Initialize a temporary deviation variable
with a high value

Ensure:∑N
j=1 pj = 1 ; pj ≥ 0

pj = pN−j+1 . Ensure symmetry
pj ≤ pj+1 ≤ ... ≤ pN/2,where0 ≤ j ≤ N . constraints
that subsequent slots probabilities must be greater than
previous
while Loop over length N of probability vector p do

Calculate the polynomial coefficients
Calculate expected values for different outcomes
uj(1, coef) = uj(2, coef) = .... = uj(N/2, coef)
Calculate the average value of expected payoffs
dev = abs(u1(1, coef)− average)
if tempdev ≥ dev then

tempdev = dev
results = [u1(1, coef), p]

end if
end while

Overall, the full set of NEs can be seen as comprising those
in pure strategies, which imply full coordination, and mixed
strategies, achievable through random distributed choices.
Yet, the average AoI of the mixed strategy NE is close to that
obtained when utilizing uniformly distributed probabilities
for transmission at each milestone. Conversely, any of the
pure strategy NEs, which correspond to all the players being
perfectly anti-coordinated, is much more efficient.

Fig. 2 demonstrates the resulting average AoI in scenarios
where players are perfectly coordinated and coordinated with
probabilities corresponding to the mixed equilibrium across
varying numbers of players. Equilibria in the mixed strategy
are not the persistent ones [17] and in our case, it yields
the unfavorable value of average information freshness. If
we design the system to enable preplay communication then
we will achieve a more attractive solution with a probability
mixture of pure Nash equilibria [12], solution defined as
correlated equilibrium which will result in a lower AoI.

To better see the inefficiency between perfect coordination
and distributed choices, we plot the PoA, a metric used to
quantify the inefficiency stemming from selfish behaviors
[11], [13]. In our study, the PoA is simply the ratio of AoI in
the mixed strategy NE (the worst one) vs any pure strategy
equilibrium with round-robin-like choices, which is also the
optimum. The AoI ratio of the uniform choices is plotted for
comparison. As depicted in Fig. 3, the PoA starts already
close to 1.5 for three players, and rapidly increases in N .
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Fig. 3. Price of Anarchy

The observed trend underscores the importance of fostering
cooperation and coordination among network participants
to mitigate the detrimental effects of selfish behavior. Inte-
grating preplay communication mechanisms [17] alongside
the incorporation of tie-breakers holds promise for fostering
outcomes more aligned with optimal coordination within
systems. This integration stands to mitigate the Price of
Anarchy by constraining the scope for suboptimal strategies.

IV. HARSANYI’S EQUILIBRIUM SELECTION

Harsanyi’s theory of equilibrium selection addresses the
issue of how players in a game with complete information
can select among multiple NEs to coordinate on a particular
outcome [12]. This involves a further strategic layer over the
traditional approach to non-cooperative games, where all the
NEs are treated as equivalent, and implies instead further
reasoning capabilities that are, however, not alien to devices
empowered by machine learning (ML) techniques [18].

Instead of focusing on bilateral risk comparisons be-
tween pairs of equilibria, Harsanyi proposes the concept of
multilateral risk dominance, which lies in determining the
equilibrium that minimizes risk across all alternatives with
relevant properties. By comparing the equilibria, players can
choose the one that offers the lowest strategic risk. In this
context, strategic risk pertains to the likelihood that a player’s
chosen strategy will not yield the best possible outcome
given the strategies chosen by other players. While it may
be impossible for players to entirely eliminate strategic risk,
it can be significantly mitigated by selecting equilibria with
the highest theoretical probability of realization [11]. In other
words, players seek strategies that are robust and resilient
against deviations by other players, thereby increasing the
likelihood of achieving favorable outcomes. The equilibrium
that emerges as the least risky choice, based on this evalua-
tion, is considered the solution of the game.



Harsanyi suggests that the players directly evaluate the
relative strength of different strategies in achieving favorable
outcomes across the entire game, rather than solely within
specific subgames. This involves the modification of the
equilibrium selection criterion from a combination of payoff
and risk dominance to solely relying on risk dominance.
This adjustment is made in response to the nature of non-
cooperative games and aligns with Aumann’s theory [17],
which emphasizes the limitations of achieving payoff domi-
nant equilibria in such contexts. Note that in non-cooperative
games, players act independently and pursue their own in-
terests without coordinated agreements or communication.
Even with the possibility of preplay communication, players
cannot reliably enforce agreements to achieve payoff dom-
inant equilibria. This is because there is no mechanism to
ensure compliance with agreements, and players may have
incentives to deviate from agreed-upon strategies to maximize
their individual gains.

A final adjustment involves incorporating tie-breakers to
address disparities between different equilibria. Prior theory
[19] suggests that, in symmetric games, a symmetric equilib-
rium ought to be selected, but this often leads to suboptimal
outcomes, with low stability and poor payoffs. In his updated
theory [12], Harsanyi argues that, for scenarios where preplay
communication is permitted, the optimal solution should
manifest as a correlated equilibrium.

This reasoning is usually illustrated through an (anti) co-
ordination game, where the traditional solution leans towards
a mixed strategy equilibrium, primarily due to its symmetry.
Harsanyi’s theory suggests instead a correlated equilibrium in
pure strategies, which offers a better long-term performance.
This approach is also frequent in networking problems, but
commonly interpreted as the result of a Stackelberg formu-
lation [15].

Our AoI minimization problem presents a similar structure
of an anti-coordination game [10], where the correlated
equilibrium with preplay communication would correspond
to a centralized solution, leading to a round-robin with pre-
established role (or equivalently, a polling with a central
arbitrator) [8]. Conversely, a distributed symmetric NE is an
inefficient operating point as shown in the previous results.

We argue that a selection towards correlated equilibrium
can be obtained in practical contexts through some external
means, without resorting to a centralized management. One
first option would be to break symmetry by means of a per-
sonalized preference toward a certain transmission milestone
by each source. In many kinds of sensor networks, this would
be easy to implement by leveraging individual characteristics
of the nodes, e.g., the battery level, and would reflect in a
Bayesian type from a game theoretic standpoint [20].

Alternatively, pushing the choice towards a correlated
equilibrium can be regarded as a natural consequence of rein-
forcement learning that is an already consolidated technique
in many multi-source AoI optimization problems [18].

V. CONCLUSIONS AND FUTURE WORK

Our study explored AoI-optimal finite-horizon scheduling
within networks comprising N agents [8]. We focused on the
differences between perfect coordination, a scenario unlikely
in practice, and distributed choices following a mixed strategy
NE. To quantify the inefficiency resulting from lack of
coordination, we computed the PoA [13].

As a prospective avenue for future investigation, we pro-
pose to integrate Harsanyi’s theory for equilibrium selection
[12] within multi-agent AoI minimization over a finite hori-
zon. While the solution in the standard game theoretic form
can be acceptable, it would lead to a mixed NE that was
shown to be inefficient. Leveraging preplay communication
may attain more favorable outcomes of the game, particu-
larly correlated equilibria, which offer better performance for
resource-constrained IoT systems.

We suggest that the main direction for future investigations
ought to lie in the implementation of something equivalent
to preplay communication, without explicitly resorting to
centralized control, but rather leveraging particular aspects
of the communication protocols (especially, carrier sense can
be regarded in this way, as a way to garner information
about the other users without explicit communication [21])
and reasoning capabilities in ML-empowered devices [18].
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