

Corresponding Authors:
daniel.mohr@uni-greifswald.de
christina.knapek@physik.uni-greifswald.de

Work funded by DLR/BMWi (FKZ 50WM2161)

Ideas for data management and data handling concept for COMPACT

Daniel P. Mohr1,2, Christina A. Knapek1, André Melzer1

1 Institute of Physics, University of Greifswald, Greifswald, Germany
2 Institute of Atmospheric Physics, DLR German Aerospace Center, Oberpfaffenhofen, Germany

Abstract
The future complex plasma facility COMPACT [1]
will allow the investigation of large three-
dimensional complex plasmas under microgravity
conditions aboard the International Space Station
(ISS). COMPACT is a project with international
scientific contributions, supported by space
agencies (DLR, NASA, ESA) and NSF.
Data generated by experiments on the ISS have a
considerable value considering the effort needed
to repeat an experiment. To maximize the use of
the unique data in the scientific community, data
management and data handling must be designed
sensibly. We have learned from previous projects
that it makes sense to deal with this at an early
stage. Ultimately, the data must be handled on
many levels.
On the one hand, the data must be stored in a
trustworthy manner with sufficient metadata
during the experiment. On the other hand, the
FAIR principles [2, 3] should be followed as early
as possible. This creates confidence in the
scientific results.
The data should already be processed as reliably
as possible in an early stage: during the
experiment. This includes protecting both the
volatile memory and the non-volatile storage. For
example, the usage of ECC main memory, and zfs
with checksums are suitable for this. This is all
the more important as silent data corruption
certainly occurs more frequently under the
radiation conditions on the ISS and the large data
volumes of several TBs per experiment day.
The chain of trust should then be continued and
made available to the scientific community in a
suitable infrastructure. The basic concept of RIAF
[4, 5] could be applied here.
Finally, the research data on which the papers are
based should also be published in data
repositories (e. g. [6]) – tools such as
deploy2zenodo [7] could be used for this purpose.

Repository Infrastructure for Data
As a first step, it is good to obtain the research
data from the experiments carried out. To analyze
and share this data in the scientific community
that participates in COMPACT or the individual
experiments, an infrastructure is necessary.

Requirements for this infrastructure are:
● storage of large amounts of data
● verifiable verification of data integrity
● user management (scientists are spread all over
the world)

● easy access for users
● practical access to the data for software during
data analysis

⇒ basic concept of RIAF [4, 5], including
decentralized version control (lesson learned from
software development over decades)

RIAF is a repository infrastructure to
accommodate files.

● FAIR principles (reproducibility of the data)
● applied in early part of the data life cycle
● enable checks on metadata, e. g. maDMP
(machine actionable data management plan)

● cryptographic timestamping
● creation of public landing page from metadata

In this concept of RIAF most data is stored in a
repository and can be easily distributed. This
allows the data genesis in a private environment
(e. g. aircraft, ISS, ...) without network access and
later share the data using a central server
instance. Already during data genesis (e. g. raw
data, physical data, scientific data) the possibility
to share data and track changes is given. In the
end after preparing a publication the data can be
transported to a public data repository.

Collaboration platforms such as Gitea [12], GitLab
 [11] and GitHub [13] have emerged, particularly
in open source software development. These
platforms enable other desired features:

● fine grade access control
● collaboration
● issue tracking
● automated processes
● project management
● structured and traceable processing
● labeling and/or release management

⇒ RIAF and other projects (e. g. DataPLANT [14])
already use GitLab together with Git LFS [15] to
use the knowledge from software engineering to
store and work with data.

Experience in Data Handling and
Storage

We have already gained experience in data
handling and storage of experiment data during
the COMPACT project and previous projects.

● achieve consistency in time by PTP (redundant)
● experiment software stores data + metadata:

● camera images
● camera time, system time
● camera serial number
● exposure time
● …

● using zfs file-system for almost 10 years
● snapshots (delete protection, replicate data)

● parabolic flight → backup → permanent
storage

● incl. checksum, permissions, access time, …

DOI: 10.5281/zenodo.11094321

measurement

internal
data repository

analysis +
preperation

public data
repository

public software
repository

public paper
repository

Data Handling and Storage during
Experiment

In order to obtain reliable measurement data from
experiments, some requirements must be met:

● coordinated, synchronized data acquisition
● store measurement data with
necessary/associated metadata

● uniform time for the time stamps of the
measurement data (e. g. real time UTC)

● protect the data integrity

Solution: Use adequate hard- and software, e. g.:
● common trigger signals
● storing metadata during genesis of data

The biggest challenge: protection of data integrity.
● secure communications
● failure detection in RAM
● suitable file system for non-volatile memory

Possible solutions are:
● TCP/IP communication
● ECC memory
● zfs file system:

➢ ACID transactions
➢ Merkle tree: check-summing the complete
storage tree (verifying data integrity)

➢ redundant storage ← space station?!

⇒ redundancy has to be established as soon as
possible on ground (error correction)

Data Publication
To satisfy the FAIR principles [2, 3], publications
should be deployed to an open repository. In this
way the publication gets a PID [8] and at least the
metadata is publicly accessible, findable and
citable. Furthermore, current discussions about
KPIs [9] for software and data publications also
lead to the need to generate PIDs for software and
data. Scientific data comprises:

● measurements
● software
● results such as papers

For every data managed in a version control
system an automatic publication to an open
repository is useful [3].
⇒ citability of individual versions

deploy2zenodo [7, 10] is a shell script to deploy
data to the open repository zenodo:

● flexible by environmental variables
● simple integration into various environments
● e. g. in GitLab [11] CI pipeline

➔ curation by merge request
➔ curation in zenodo web interface

References
[1] C. A. Knapek et al., DOI: 10.1088/1361-6587/ac9ff0
[2] M. Wilkinson et al., DOI: 10.1038/sdata.2016.18
[3] HMC et al., DOI: 10.3289/HMC_publ_01
[4] D. Mohr, DOI: 10.5281/zenodo.7189120
[5] riaf-data.org
[6] zenodo, DOI: 10.25495/7gxk-rd71
[7] D. Mohr (2024), DOI: 10.5281/zenodo.10112959
[8] en.wikipedia.org/wiki/Persistent_identifier
[9] en.wikipedia.org/wiki/Performance_indicator
[10] D. Mohr (2023), DOI: 10.5281/zenodo.10137956
[11] GITLAB is a trademark of GitLab Inc. in the United
States and other countries and region
[12] about.gitea.com
[13] github.com
[14] www.nfdi4plants.org
[15] git-lfs.com

https://doi.org/10.5281/zenodo.11094321
https://doi.org/10.1088/1361-6587/ac9ff0
https://doi.org/10.1038/sdata.2016.18
https://doi.org/10.3289/HMC_publ_01
https://doi.org/10.5281/zenodo.7189120
https://riaf-data.org/
https://doi.org/10.25495/7gxk-rd71
https://doi.org/10.5281/zenodo.10112959
https://en.wikipedia.org/wiki/Persistent_identifier
https://en.wikipedia.org/wiki/Performance_indicator
https://doi.org/10.5281/zenodo.10137956
https://about.gitlab.com/
https://about.gitea.com/
https://github.com/
https://www.nfdi4plants.org/
https://git-lfs.com/

Corresponding Authors:
daniel.mohr@uni-greifswald.de
christina.knapek@physik.uni-greifswald.de

Work funded by DLR/BMWi (FKZ 50WM2161)

Ideas for data management and data handling concept for COMPACT

Daniel P. Mohr1,2, Christina A. Knapek1, André Melzer1

1 Institute of Physics, University of Greifswald, Greifswald, Germany
2 Institute of Atmospheric Physics, DLR German Aerospace Center, Oberpfaffenhofen, Germany

Abstract
The future complex plasma facility COMPACT [1]
will allow the investigation of large three-
dimensional complex plasmas under microgravity
conditions aboard the International Space Station
(ISS). COMPACT is a project with international
scientific contributions, supported by space
agencies (DLR, NASA, ESA) and NSF.
Data generated by experiments on the ISS have a
considerable value considering the effort needed
to repeat an experiment. To maximize the use of
the unique data in the scientific community, data
management and data handling must be designed
sensibly. We have learned from previous projects
that it makes sense to deal with this at an early
stage. Ultimately, the data must be handled on
many levels.
On the one hand, the data must be stored in a
trustworthy manner with sufficient metadata
during the experiment. On the other hand, the
FAIR principles [2, 3] should be followed as early
as possible. This creates confidence in the
scientific results.
The data should already be processed as reliably
as possible in an early stage: during the
experiment. This includes protecting both the
volatile memory and the non-volatile storage. For
example, the usage of ECC main memory, and zfs
with checksums are suitable for this. This is all
the more important as silent data corruption
certainly occurs more frequently under the
radiation conditions on the ISS and the large data
volumes of several TBs per experiment day.
The chain of trust should then be continued and
made available to the scientific community in a
suitable infrastructure. The basic concept of RIAF
[4, 5] could be applied here.
Finally, the research data on which the papers are
based should also be published in data
repositories (e. g. [6]) – tools such as
deploy2zenodo [7] could be used for this purpose.
Data Handling and Storage during

Experiment
In order to obtain reliable measurement data from
the experiments carried out, a number of
requirements must be met:
● coordinated and synchronized data acquisition
● store measurement data with
necessary/associated metadata

● uniform time for the time stamps of the
measurement data (e. g. real time UTC)

● protect the data integrity
All these points are not only an organizational
requirement for the recording systems but also for
the hardware used. Coordinated data acquisition
could be achieved by common trigger signals. The
metadata is already available when the data is
created using suitable software.
The biggest challenge is the protection of data
integrity. Every communication should be secured.
Also the computer memory should at least be able
to detect failures. A suitable file system must be
selected for non-volatile memory.
Possible solutions are:
● TCP/IP communication
● ECC memory
● zfs file system:

● ACID transactions
● check-summing the complete storage tree
(Merkle tree)

● redundant storage
For example redundant storage maybe hard to
achieve on the ISS. But then the data should be
replicated to a redundant storage as soon as
possible on ground. Checking the data integrity by
verifying the check-sums of the file-system allows
still to detect corrupted data. As soon as the data
is stored redundantly, errors can also be
corrected.

Repository Infrastructure for Data
As a first step, it is good to obtain the research
data from the experiments carried out. But to
analyze and share this data in the scientific group
that participated in COMPACT or the individual
experiments, an infrastructure is necessary.
Requirements for this infrastructure are, for
example:
● storage of large amounts of data
● verifiable verification of data integrity
● user management (scientists are spread all over
the world)

● easy access for users
● practical access to the data for software during
data analysis

The basic concept of RIAF [4, 5] provides exactly
these requirements. In addition, lessons were
learned from software development.
Decentralized version control (e. g. git) has
developed over decades in software development.
RIAF is a repository infrastructure to
accommodate files. It enables to hold the data
with the FAIR principles.
RIAF is designed to enable provenance and
reproducibility of the research data in the early
part of the data life cycle, i. e. prior to publication.
It further is designed to enable checks on
metadata relevant to research data management
as defined e. g. in a machine actionable data
management plan (maDMP). This concept of using
CI pipelines for research data allows interesting
features. The server could create cryptographic
timestamps to inhibit silent changes of the history.
Research data management can define relevant
checks on metadata. From given metadata a
public accessible landing page can be created.
In this concept of RIAF most data is stored in a
repository and can be easily distributed. This
allows the data genesis in a private environment
(e. g. aircraft, ISS, ...) without network access and
later share the data using a central server
instance. Already during data genesis (e. g. raw
data, physical data, scientific data) the possibility
to share data and track changes is given. In the
end after preparing a publication the data can be
transported to a public data repository.
If we look at software development again.
Collaboration platforms such as Gitea [12], GitLab
 [11] and GitHub [13] have emerged, particularly
in open source software development. These
platforms enable other desired features:
● fine grade access control
● collaboration
● issue tracking
● automated processes
● project management
● structured and traceable processing
● labeling and/or release management
RIAF and other projects (e. g. DataPLANT [14])
already use GitLab together with Git LFS [15] to
use the knowledge from software engineering to
store and work with data.

Experience in Data Handling and
Storage

We have already gained experience in data
handling and storage of experiment data during
the COMPACT project and previous projects.
To achieve consistency in time we use PTP to
synchronize all systems to one clock. PTP allows a
redundant setup to overcome a not working
system.
In our experiment software we already store
metadata together with the measurement data,
e. g. for camera images:
● camera time, system time
● camera serial number
● exposure time
● ...
We have been using zfs file-system for almost 10
years. Using snapshots, it not only provides
protection against accidental deletion but also
enables transport to other systems together with
the metadata and checksums from the zfs dataset.
In this way, data from parabolic flight campaigns
is temporarily stored on backup hard disks and
ultimately kept permanently in a storage system.
The data transport is completely lossless and
contains all data together with the metadata held
by the file system (e. g. checksum, permissions,
access time, ...)

Data Publication
To satisfy the FAIR principles [2, 3], publications
should be deployed to an open repository. In this
way the publication gets a PID [8] and at least the
metadata is publicly accessible, findable and
citable. Furthermore, current discussions about
KPIs [9] for software and data publications also
lead to the need to generate PIDs for software and
data.
In principal the same is true for all kind of
scientific data (e. g. measurements, software and
results such as papers). For every data managed
in a version control system an automatic
publication to an open repository is useful [3].
Software in particular is subject to frequent
changes, resulting in many versions. This leads to
the urge to automate the publishing process. This
is not only about making the software usable
through software repositories, but also about the
citability of individual versions.
deploy2zenodo [7, 10] is a shell script to deploy
data to the open repository zenodo. It can be
integrated in a GitLab [11] CI pipeline as an
automatic workflow or various other environments
for automatic publication.
Environmental variables allow very flexible use.
Depending on the selected flags, the data can be
curated before deployment in a merge request, in
the zenodo web interface or not curated at all.

References
[1] C. A. Knapek et al., DOI: 10.1088/1361-6587/ac9ff0
[2] M. Wilkinson et al., DOI: 10.1038/sdata.2016.18
[3] HMC et al., DOI: 10.3289/HMC_publ_01
[4] D. Mohr, DOI: 10.5281/zenodo.7189120
[5] riaf-data.org
[6] zenodo, DOI: 10.25495/7gxk-rd71
[7] D. Mohr (2024), DOI: 10.5281/zenodo.10112959
[8] en.wikipedia.org/wiki/Persistent_identifier
[9] en.wikipedia.org/wiki/Performance_indicator
[10] D. Mohr (2023), DOI: 10.5281/zenodo.10137956
[11] GITLAB is a trademark of GitLab Inc. in the United
States and other countries and region
[12] about.gitea.com
[13] github.com
[14] www.nfdi4plants.org
[15] git-lfs.com

DOI: 10.5281/zenodo.11094321

measurement

internal
data repository

analysis +
preperation

public data
repository

public software
repository

public paper
repository

https://doi.org/10.1088/1361-6587/ac9ff0
https://doi.org/10.1038/sdata.2016.18
https://doi.org/10.3289/HMC_publ_01
https://doi.org/10.5281/zenodo.7189120
https://riaf-data.org/
https://doi.org/10.25495/7gxk-rd71
https://doi.org/10.5281/zenodo.10112959
https://en.wikipedia.org/wiki/Persistent_identifier
https://en.wikipedia.org/wiki/Performance_indicator
https://doi.org/10.5281/zenodo.10137956
https://about.gitlab.com/
https://about.gitea.com/
https://github.com/
https://www.nfdi4plants.org/
https://git-lfs.com/
https://doi.org/10.5281/zenodo.11094321

	Slide 1
	Slide 2

