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Satellite-based Quantum Repeater Network

Motivation

* Future developments in qguantum communication and computation demand
inter-continental quantum links

» Quantum networks on global scale require long distance quantum repeater connections

» Satellite-based quantum repeater links allow for minimum number of nodes

Repeater Architecture
* One node repeater with no entanglement distillation/purification
- Bell State Measurement (BSM) between consecutive clicks in different memories within 75

Pgsmia = Pe(m5) |1 — Peswmis] Pgsmis = Pa(75) |1 — Pesma

* Two configurations:
- Uplink (UL): Center satellite contains memories, BSM and entanglement sources
Outer satellites perform BSMs with photons from ground in uplink
- Dowlink (DL): Center satellite contains memories, nondemolition measurement and BSM

Outer satellites contain entanglement sources
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Downlink quantum repeater architecture

Uplink quantum repeater architecture

BSM Rate Analysis

Transmission Losses
« Uplink:

- beam wandering

- beam broadening

- atmospheric attenuation

Transmission loss at 500 km Round trip duration at 500 km
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Round trip duration
* time between storage and information about entangled partner
* Uplink:  determined by inter-satellite distance

* Downlink: determined by distance to ground station

100

- fiber coupling
- atmospheric attenuation
* |Inter-satellite link:
- fixed distance
— fixed losses

Attempted BSMs Successful BSMs

Bell State Measurements
* Attempted:
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End-to-End Simulation Model

Simulation

 Full six degrees of freedom
satellite dynamics simulation

 Arbitrary orbits based on
Kepler elements

* Including Earth's rotation and
satellite eclipse condition

* Three-dimensional satellite-to-
ground and inter-satellite links

* Analyze different operating scenarios
— here: New York - Berlin
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Orbit Analysis

Satellite altitude and inter-satellite distance analysis
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Altitude in km Vsep,sat/Vsep,gs

* Inter-satellite distance adapted to ground stations: Vsep sat = Vsep,os
— lower satellite altitudes lead to higer number of BSMs

* Decreasing inter-satellite distance reduces BSM rate
- below 60-70% — no line-of-sight to ground
- control distance to optimize communication link

- two events within cutoff
— try to perform BSM

 Successful:

BSM rate in Hz
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Three-dimensional satellite ground-station pass

BSM rate for multiple ground station passes

- none of the photons is lost
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Secure BSMs
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- exponential loss model
Ploss (t) =1 - nmeme_t/TO
- decay time: 15 = 100 ms

Correct BSMs

- efficiency: Nmem = 10 %
» Correct:
- none (or both) photons flip
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» Secure:
- performance measure including success and error rate

- exponential flip probability
Phip(t) = 5 (1 —e7"/72)

- coherence time: 15 = 60 ms

- only phase flips (no bit flips)

— subject to optimization
- similar to secure key rate in quantum key distribution

Rece = Rouce [1 — Ha(E)] = o

Conclusion

» Uplink and downlink architecture for three-satellite one-node quantum repeater
» Analytic BSM rates including exponential loss and error models

* Arbitrary three-dimensional ground station passes and orbit parameters
— time-resolved entanglement distribution over each pass

* Varying entanglement distribution rate over multiple passes due to Earth's rotation
— assessment of long-term performance
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General ground-station pass geometry

* General pass geometry:

- time-varying azimuth angle « and elevation angle 6

- highest BSM rate: zenith pass (§ — 90°)

- deviations from zenith pass due to Earth's rotation — lower BSM rates
* Long-term evolution: 1-2 connections per day

- days with two passes: lower maximum elevation — lower BSM rates

Outlook

- Add additional repeater node
* In-depth simulation of quantum memory physics and error models
» Operating scenarios with multiple ground stations
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