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ABSTRACT
A key technology in automation of rotorcraft flight is collision-free guidance. Especially in operations close to the
ground, detection and automatic avoidance of ground-based obstacles and aircraft is a demanding task. This paper
presents a sampling-based model predictive approach for collision-free guidance of rotorcraft. The method calculates
control inputs for the flight controller by predicting the closed-loop dynamics of the rotorcraft for a short time horizon
and evaluating the predictions with a cost function, which can take an arbitrary form. The approach implements a
simple algorithm, mitigating the need for iterative optimization and allowing for deterministic execution time. The cost
function is set to ensure collision-free maneuvering while following a desired path, as well as considering constraints
of the rotorcraft states and control inputs. The path following performance is tested in closed-loop simulations with
a non-linear helicopter model. The algorithm is implemented on a graphics processing unit for parallel execution,
strongly decreasing the computation time.

NOTATION

AAA Stability derivative matrix
BBB Control derivative matrix
c Scaling factor for control input sampling
d Distance (m)
d f Collision cost fade-in distance (m)
ds Safety margin (m)
h Integration step size
i Control input sample index
J Cost function value
k Prediction step index
M Prediction model function
np Prediction horizon
PPPobs Obstacle position (m)
p Roll rate in body frame (deg/s)
q Pitch rate in body frame (deg/s)
r Yaw rate in body frame (deg/s)
S Control input sampling function
t Time (s)
uuu Upper mode command vector
u f Velocity along body frame x-axis (m/s)
uv Velocity along vertical frame x-axis (m/s)
v f Velocity along body frame y-axis (m/s)
vv Velocity along vertical frame y-axis (m/s)
W Cost function weighting factor
w f Velocity along body frame z-axis (m/s)
wv Velocity along vertical frame z-axis (m/s)
xxx State vector
xxxcmd Commanded state vector
xxxm Measured state vector
xxxmo Model output state vector
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xxxtc State vector correction for turn coordination
xxxtrim State vector at trimmed flight state
x Position in local NED frame x-axis (m)
y Position in local NED frame y-axis (m)
z Position in local NED frame z-axis (m)
δδδ Control input vector (%)
δ Control input in one control axis (%)
δc Current value of control input (%)
δδδ s Set of sampled control input values
φ Roll angle (deg)
θ Pitch angle (deg)
ψ Yaw angle (deg)

INTRODUCTION

Rotorcraft are used in a broad field of applications due to their
ability of hovering flight. Often, the missions are carried out
close to the ground and include approaches and landing on
unprepared and unknown sites, resulting in high workloads
for the crew. This puts the aircraft at high risk of collision
with ground-based obstacles and other aircraft. Recent safety
reports of the european aviation safety agency (EASA) show
that inadequate separation to other aircraft and inadequate ob-
stacle clearance are a major source of accidents and serious
incidents in helicopter operations (Refs. 1–3). Especially, the
number of near-miss incidents and collisions with small UAVs
strongly increased in the past decade. These UAVs are not
covered by air traffic control and pose a potential threat to air-
craft operating in low altitude, for example helicopter emer-
gency medical services (HEMS). One focus of rotorcraft re-
search is therefore to increase the pilot’s situational awareness
by detecting obstacles in the vicinity of the rotorcraft with
appropriate sensors, e.g. cameras, radar and light detection
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and ranging (LiDAR). As more information to the pilot tends
to increase the workload, another trend in research is the de-
velopment of advanced automatic flight control systems that
support the pilot in high workload situation, e.g. in obstacle
avoidance.

Detection and automatic avoidance of obstacles for rotorcraft
is being investigated by various authors. Scherer et. al. pro-
posed a system for autonomous flight of a small unmanned
helicopter in an unknown environment (Ref. 4). The system
consists of a laser scanner for obstacle detection, a path plan-
ning algorithm and a reactive collision avoidance method. The
control commands are calculated geometrically by evaluating
the angles and distances to obstacles and the goal point, re-
spectively. Flight tests with a full-scale helicopter showed the
capability of avoiding static obstacles at lower flight speed
(Ref. 5).

Further significant research in the field of automatic helicopter
guidance has been carried out by Goerzen and his colleagues.
They presented a system for obstacle field navigation that pro-
vides helicopter guidance in low altitude flight in an unknown
environment based on sensor data (Ref. 6). The capabilities of
the system have been demonstrated in extensive flight tests on
helicopters with both full authority (Ref. 7) and partial author-
ity (Ref. 8) flight control systems. In their approach, a path to
the goal location is generated by creating a risk-based map of
the terrain and obstacles in the vicinity of the rotorcraft and
applying a navigation function that provides a minimum-risk
path. In order to command the helicopter to the goal, a ve-
locity command controller is used that follows the navigation
function. A simple model based on fixed acceleration lim-
its is utilized to generate feasible velocity commands. In re-
cent work (Ref. 9), the authors presented an improved method
to generate the velocity commands. For this approach, a set
of reachable flight states is estimated by calculating constant
turn-radius paths for different lateral accelerations. The tra-
jectory with the lowest risk is chosen and the corresponding

command is applied.

An approach to explicitly consider system dynamics and con-
straints in trajectory generation is given by model predictive
control (MPC). MPC, or receding horizon control, is an op-
timal control method where the dynamics of the system are
included as a prediction model in an iterative optimization to
find control inputs that minimize a cost function. Depending
on the complexity of the prediction model, the number of con-
straints and the length of the time horizon, MPC in general in-
troduces high computational effort to evaluate the control law.
Nonlinear MPC has been used for collision-free guidance of
an unmanned helicopter (Ref. 10), however a simple nonlin-
ear translational model has been used in order to reduce the
computational cost.

To overcome the disadvantages of MPC, model predictive
path integral (MPPI) has been proposed by Williams et. al.
(Ref. 11). For this method, a finite number of trajectories is
being sampled by generating random deviations of the control
input and applying them to the model over a short prediction
horizon. The optimal trajectory is chosen by evaluating a cost
function and the control sequence corresponding to the opti-
mal trajectory is set as input to the system. The trajectory sam-
pling reduces optimization iterations and allows to execute a
large part of the computations in parallel, e.g. on graphics pro-
cessing units (GPUs). Recently, the MPPI method has been
adopted in different fields of aerospace research. Comandur
et. al. use the approach for optimizing trajectories in auto-
matic helicopter ship deck landings in order to compensate
for random ship movement (Refs. 12–14). In (Ref. 15), the
method is applied for controlling an aircraft on a racecourse,
while (Ref. 16) proposes MPPI for collision avoidance of a
fixed-wing aircraft.

Another sampling-based model predictive approach is given
by sampling a set of predicted trajectories based on constant
control inputs instead of using random deviations. For that, a
set of values is sampled from the allowed range and fed into
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Figure 1: Architecture of sampling-based model predictive guidance system
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the prediction model, being held constant for each trajectory
over the prediction horizon. This method has been proposed
for collision avoidance in automotive applications (Refs. 17,
18).

The authors of the paper at hand adapted this method to short-
term collision avoidance for rotorcraft (Refs. 19, 20). The ap-
proach is characterized by a simple algorithm, which the au-
thors believe is beneficial in aircraft applications. Also, the
method provides deterministic computation time as no itera-
tive optimization is utilized, which is favorable for the exe-
cution under real-time constraints. Compared to MPPI, fewer
trajectories need to be predicted, reducing the computational
effort. While the authors’ previous publications on the topic
focused on collision avoidance, the paper at hand describes
the status of work on extending the method to provide guid-
ance of the helicopter along planned flight paths, which are
generated by a separate path planning algorithm.

The remaining paper will be structured as follows: First, the
proposed system for collision-free guidance and its compo-
nents are described in detail with the extensions and adjust-
ments made compared to the initial publications. Then, the
performance of the system for path following is evaluated in
closed-loop simulations. The paper closes with a conclusion
of the findings and an outlook to future work.

SAMPLING-BASED MODEL PREDICTIVE
GUIDANCE APPROACH

The proposed model predictive guidance (MPG) system is in-
tended to guide a helicopter along a desired path while avoid-
ing obstacles. The approach builds upon an underlying flight
controller, that provides stabilization and axis decoupling.
The implementation presented in this paper utilizes the model
following controller of german aerospace center’s (DLR’s) re-
search helicopter active control technology/flying helicopter
simulator (ACT/FHS) (Refs. 21–23) as the underlying flight
controller, but any flight control system that accounts for sta-
bilization and axis decoupling is suitable for the method.

The overall MPG system architecture is depicted in Fig. 1.
The algorithm calculates inputs for the flight controller that
provide collision-free guidance. To achieve this, an approxi-
mation of the closed-loop helicopter flight dynamics is pre-
dicted from the current flight state over a short time hori-
zon for a set of constant control inputs. The resulting set
of predicted trajectories is evaluated by applying a suitable
cost function. The control input corresponding to the trajec-
tory with lowest cost is fed to the underlying flight controller
for the current time step. In the next time step, the initial
flight state for prediction is updated with the currently mea-
sured flight state of the helicopter and the algorithm is exe-
cuted again. By applying this feedback, a closed-loop control
system for collision-free guidance is established. A program-
matic overview of the method is given in algorithm 1.

The trajectory prediction and selection is illustrated in fig-
ures 2a and 2b. Figure 2a provides a top-down view of a situa-
tion with an obstacle in front of the helicopter. The helicopter

Algorithm 1 Model predictive guidance algorithm

1: Given:
2: J: ▷ cost function value
3: δc: ▷ current control input value
4: S: ▷ control input sampling function
5: nδ : ▷ number of control input samples
6: xxxm: ▷ currently measured state
7: np← tp/h: ▷ number of predicted time steps
8: x̂xxk: ▷ predicted state
9: tp: ▷ prediction horizon

10: h: ▷ prediction step size
11: M: ▷ prediction model
12: δopt : ▷ optimal control input value
13:
14: repeat
15: Jmin← inf
16: δδδ s← S(δc) ▷ generate control input set
17: for i← 1 to nδ do ▷ for each trajectory
18: xxx1← xxxm
19: for k← 1 to np do ▷ for each prediction step
20: x̂xxk+1←M(x̂xxk,δs,i,h) ▷ predict state
21: Ji← Ji + J(x̂xxk+1) ▷ evaluate costs
22: end for
23: if Ji < Jmin then
24: δopt ← δδδ s(i) ▷ update best control
25: Jmin← Ji
26: end if
27: end for
28: send δopt
29: update xxxm ▷ update measured state

dynamics are predicted for different input values in the lateral
cyclic control axis. The colors of the resulting trajectories in-
dicate if a collision with the obstacle or the safety margin is
predicted. In figure 2b, the corresponding cost function values
are displayed. The trajectory index is plotted on the x-axis,
with index 1 corresponding to the the leftmost trajectory and
index 15 corresponding the rightmost trajectory. The cost is
plotted on the y-axis. In this example, the cost function holds
three components. First, colliding with the obstacle is penal-
ized (orange). Second, a deviation from a reference track an-
gle of zero, i.e. along the x-axis, generates costs (dark grey)
and third, the dynamic response of the helicopter shall be min-
imized (light grey). By summing up the cost components for
each tracjectory, the final cost function value is found. In this
example, the trajectory passing the obstacle on the right side
(index 12) has lowest costs and is selected by the algorithm.

The algorithm provides control inputs, i.e. stick deflections,
that correspond to the optimal predicted trajectory. The stick
deflections are fed to the control inceptors as trim commands.
When the system operates autonomously, i.e. when the pilot is
not providing stick inputs, the control inceptor positions will
correspond to the trim commands, hence the optimal control
input calculated by the algorithm is fed to the flight controller.
While the pilot is hands-on, he will receive haptic feedback of
the algorithm’s chosen control input via the stick deflection.
In addition, the pilot may override the MPG output and fly
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Figure 2: Trajectory prediction and selection

manually by moving the control inceptors out of the trim po-
sition. The algorithm will continue to provide trim commands
while the pilot is hands-on, hence the pilot can detect the di-
rection and amplitude of the algorithm’s control input through
the trim forces. When the pilot releases the control inceptors,
their position will again correspond with the trim commands
provided by the MPG and the system will continue with auto-
matic guidance of the rotorcraft.
This design shall allow for the pilot to interact with the au-
tomation without the need for disabling and re-enabling the
automatic guidance system. In addition, it uses haptic cue-
ing to provide awareness of the automation’s state. The MPG
system aims at contribtung to DLR’s ongiong research in the
field of pilot interaction with highly automated rotorcraft in
multimodal cueing environments (Ref. 24).

The following sections will give a detailed descriptions of the
further development of the three main components of the al-
gorithm: control input sampling, prediction model and cost
function.

Control input sampling

To calculate a set of predicted trajectories, a suitable set of
corresponding control inputs needs to be generated. In the
proposed approach, this is done by sampling a set of discrete
values out of the continuous range of possible control inputs
δ . The sampled set δδδ sss shall cover the full range of control
authority and therefore generate predictions which represent
the full bandwidth of possible maneuvers. Also, the distance
between neighboring values should be small to achieve a high
resolution. To reduce the total number of control samples and
hence the number of predicted trajectories and computational
cost, the control inputs are sampled with a non-linear distribu-
tion that adapts to the current input value δc. A cubic function
is applied to provide high resolution in the vicinity of the cur-
rent control input value δc while also covering the full range
of δ . The sampling method is based on (Ref. 18) and de-
scribed in Refs. 19, 20. The previously used sample distribu-
tion would, however, place half of the samples left of δc and
the other half right of it. When δc is close to the minimum
value δmin or maximum value δmax of δ , the overall resolu-
tion would decrease. Therefore, the sampling function was
slightly adapted and now reads as

δδδ s =



δmin−δc

(1− ic)3 · (i− ic)3 +δc for i < ic

δmax−δc

(nδ − ic)3 · (i− ic)3 +δc for i > ic

0 for i = ic ,

(1)

with nδ being the number of control input samples and ic be-
ing the index that the current control input δc is mapped to. It
is defined by

ic =


⌊c⌋ for c >

⌊nδ

2

⌉
⌈c⌉ for c≤

⌊nδ

2

⌉
,

(2)

with

c =

nδ −1
2(

δmax−δmin

2

)3
·
(

δc−
δmax−δmin

2
−δmin

)3

+
⌊nδ

2

⌉
.

(3)
Equations 2 and 3 basically adapt the position of ic inside the
range of nδ . Figure 3 shows an example of the applied sam-
pling method. The plot displays the value distributions for
δc = 0% and δc = 40% respectively, with δmin = −50% and
δmax = 50%. The number of samples is set to nδ = 15. As can
be seen, the area with highest density (highlighted areas in the
plot) is located around the respective current value δc. For
δc = 40%, the index of δc is shifted to ic = 11, to increase the
resolution of samples for δδδ s < 40%. The control input sam-
pling method is executed for each control axis at every time
step of the MPG algorithm. To account for the dynamics of
the control inceptors (see figure 1), the set of control inputs is
fed into a model of the control inceptors that represents the
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Figure 3: Control input sampling

stick dynamics as a second order system with specific fre-
quency and damping. The set of responses of the inceptor
model for the input δδδ s is then fed as input to the prediction
model to generate a set of predicted trajectories.

Prediction model validation

The proposed model predictive guidance algorithm strongly
relies on a mathematical model that provides predictions of
the aircraft dynamics based on given inputs. As the algorithm
is used for short-term collision-free guidance, the predictions
need to be as accurate as possible. On the other hand, the
model needs to be computationally inexpensive as the algo-
rithm needs to run under real-time constraints and the model
is repeatedly evaluated for each predicted trajectory.
The prediction model needs to represent the closed-loop dy-
namics of the rotorcraft and its flight control system. For flight
control design, models of the bare airframe dynamics are typ-
ically made available by physical modeling or system identi-
fication. One would need to combine these models with the
dynamics of the flight controller or generate a closed-loop ap-
proximation to gain a suitable prediction model for the pro-
posed guidance algorithm.

A simplification in the synthesis of the prediction model
arises if the flight controller utilizes a model following con-
trol scheme. Provided that the controller tracks the refer-
ence model with sufficient performance, the closed-loop re-
sponse of the aircraft corresponds with the controller’s refer-
ence model. Therefore, the reference model may be used as
the prediction model.
The flight control system of the ACT/FHS research helicopter
utilizes such a model following control scheme. Here, the
pilot commands a stable helicopter model that provides axis
decoupling and dynamics with desired handling qualities ac-
cording to the detail specification handling qualities for mili-
tary rotorcraft (MIL-DTL-32742) (Ref. 25), which is the suc-
cessor of the aeronautical design standard 33 performance
specification handling qualities requirements for military ro-
torcraft (ADS-33E-PRF). This command model (CM) calcu-
lates reference states xcmd based on the pilot input that are be-
ing tracked by both feedforward and feedback controllers, see

figure 1. A detailed description of the CM used in the flight
controller of the ACT/FHS can be found in Refs. 21 and 22.

For the implementation in this paper, the CM is being used
as the algorithm’s prediction model. For the implementation
of the prediction model, several modifications and simplifi-
cations compared to the original CM have been applied, a
complete description of the prediction model can be found
in Refs. 19 and 20. The resulting prediction model is a non-
linear six degree-of-freedom model accounting for rigid-body
dynamics. The state-space equations are given by

ẋxx = AAAxxx+ f
(
xxx+ xxxtc + xxxtrim

)
− f (xxxtrim)+BBBuuu ,

xxxmo = xxx+ xxxtc + xxxtrim ,
(4)

where AAA and BBB denote the stability derivative and control
derivative matrices, xxx =

[
u f v f w f p q r

]T denotes the state
vector in body frame of reference with the velocities u f ,v f ,w f
and angular rates p,q,r. The trim velocities are based on
recorded trim states of the ACT/FHS research helicopter
and are incorporated by xxxtrim, while f (xxx + xxxtc + xxxtrim) and
f (xxxtrim) account for the gravitational forces at the flight states
xxx+ xxxtc + xxxtrim and xxxtrim, respectively. Coordinated turns with
v̇ f = 0 are achieved by applying a correction of angular rates
xxxtc. The model output state vector accounting for trim an-
gles and turn coordination is given by xxxmo. The vector uuu in-
corporates the control inputs and is being generated by the
control response modes, which calculate velocity and angular
rate commands based on the control input δδδ . For cyclic in-
puts, the attitude command attitude hold (ACAH) mode has
been implemented. It commands pitch angles proportional to
the longitudinal cyclic stick deflection and roll angles propor-
tional to the lateral cyclic stick deflection, respectively. The
yaw axis incorporates a rate command direction hold (RCDH)
mode for low speed flight. For high speed flight, the model
provides turn coordination (TC) when no pedal input is given.
For the heave axis, the rate command height hold (RCHH)
mode is implemented, which commands a vertical velocity
proportional to the collective stick deflection and tracks the
current altitude when no input is given.
To reduce the computational effort in solving the model’s dif-
ferential equations, the forward Euler method is used. Apply-
ing the solver to equation 4 yields

x̂xx(k+1) = x̂xx(k)

+h ·
(

AAAx̂xx(k)+ f
(

x̂xx(k)+ x̂xxtc(k)+ x̂xxtrim(k)
)

− f
(
x̂xxtrim(k)

)
+Bûuu(k)

)
,

x̂xxmo(k) = x̂xx(k)+ x̂xxtc(k)+ x̂xxtrim(k) ,

(5)

with h denoting the integration step size, k denoting the pre-
diction step at time tk and k+1 denoting the subsequent pre-
diction step at tk+1 = tk + h. The notation with hat symbol
denotes quantities calculated with the solver, i.e. predictions.
Besides the body frame velocity and angular rates, additional
states are calculated at each prediction step. This includes Eu-
ler angles, the aircraft position in the north-east-down (NED)
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frame of reference and additional velocities in the vertical
frame of reference, for which the z-axis is aligned with the lo-
cal NED z-axis and the x-axis is horizontally aligned with the
body x-axis. The overall predicted state vector at prediction
step k reads as x̂xx(k) =

[
û f v̂ f ŵ f p̂ q̂ r̂ x̂ ŷ ẑ φ̂ θ̂ ψ̂ ûv v̂v ŵv

]T .
With equation 5, the prediction model dynamics are being
computed from k = 1, with x̂xx(k = 1) = xxxm holding the mea-
sured state vector, to k = np with np = tp/h holding the pre-
diction horizon. Performing this calculations for the set of
sampled control input values δδδ s provides the set of predicted
trajectories x̂xx.

The MPG system relies on the prediction model to closely
resemble the closed-loop system response of the controlled
helicopter. However, there are different sources that introduce
error to the model’s output.
First, the model assumes that the flight controller perfectly
tracks the commanded states. Controller tracking errors will
therefore result in errors of the prediction model.
Second, the prediction model introduces simplifications of the
baseline reference model of the controller and therefore intro-
duces modeling errors and errors due to the numerical solver.
Third, external disturbances, e.g. the influence of wind, will
cause the actual response of the helicopter to diverge from the
predictions.
The control input calculated by the algorithm is updated at
each cycle by executing the algorithm with the currently mea-
sured flight state of the rotorcraft. This feedback loop re-
duces the influence of prediction model errors to the overall
system performance. Nonetheless, a validation of the predic-
tion model was carried out to quantify the error introduced by
modeling and controller tracking errors.
To assess the quality of the model’s predictions, its output was
compared to reference data. The reference data is generated
by running simulations of a non-linear physics-based model
of the helicopter in closed-loop with the flight controller. The
same model is used for real-time simulation of the research
helicopter ACT/FHS at DLR’s full-flight air vehicle simulator
(AVES). The closed-loop response was recorded for various
flight states: the initial flight speed was varied in the range of
30 m/s to 45 m/s, the initial roll angle was varied from −30◦

to 30◦ and the initial rate of climb was varied from −3 m/s to
3 m/s. For each flight condition, control inputs with different
amplitude are fed to the controller in the longitudinal cyclic,
lateral cyclic and heave axes. This results in approximately
600 test points for validation.
To compare the validation data to the prediction model output,
the prediction horizon needed to be defined. For the applica-
tion as an collision avoidance system, the prediction horizon
needs to cover the time that is needed to decelerate the rotor-
craft from its current air speed to hover, in case that avoiding
a collision through lateral or vertical maneuvers is not reason-
able. The validation data shows that the controller is capable
of decelerating the helicopter from 45 m/s air speed to hover
in about 9 s. To cover this maneuver, the prediction horizon
for validation was defined as tp = 10s.
Next, the integration step size for the solver was defined.
Therefore, its output was calculated for the validation test

points for different step sizes and the root mean square er-
ror (RMSE) to the validation data was calculated. Figure 4
shows a box plot of the prediction model RMSE of the pitch
rate q̂ over all validation test points for integration step sizes
8ms < h < 160ms. The pitch rate was chosen as its RMSE
was found to be most sensitive to variations of h compared to
the other states. While the plot shows an increase in RMSE
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Figure 4: Influence of integration step size h on RMSE

between h = 80ms and h = 120ms, the error does not mono-
tonically increase as one could expect. Also, the prediction
model output shows strong oscillations due to undersampling
for higher integration step sizes, which are not visible in the
RMSE. Therefore, the model output was investigated in the
frequency domain as well in order to identify the oscilla-
tions. Figure 5 shows the frequency spectrum of the prediction
model’s pitch rate q̂ for different integration step sizes, nor-
malized to the sampling frequency fs = 1/h. The plot shows

0 0,2 0,4 0,6 0,8 1
10−2

10−1

100

101

102

Normalized frequency f/ fs

|q̂
|(◦

/
s)

h = 160ms
h = 128ms
h = 96ms
h = 80ms
h = 64ms
h = 48ms
h = 32ms
h = 8ms

Figure 5: Spectrum of prediction model output for q̂

a peak at f/2 for h > 80ms, indicating oscillations due to un-
dersampling.
As the RMSE is not significantly lower for smaller values of
h, and larger values introduce undersampling effects, an inte-
gration step size h = 80ms is used for the prediction model.
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With the prediction horizon tp and the integration step size h
set, the prediction model’s output was compared to the valida-
tion data. It was found, that in order to reduce the controller’s
tracking error, the range of allowed control input needs to be
limited. After limiting the control input amplitude, the sys-
tem is able to provide inputs that allow for pitch angles of
−12◦ < θ < 35◦, roll angles of −45◦ < φ < 45◦ and rates of
descent of −10m/s < wv < 13m/s.

To assess the prediction model’s accuracy, a point of reference
for the RMSE is needed. For validation of rotorcraft flight
mechanics models gathered from system identification, an ac-
ceptable model fit is achieved if RMSE < 2 (Ref. 26). Al-
though the prediction model is not used for flight mechanics
analysis, the value is used as guidance to estimate the quality
of the predictions. The RMSE values of the body velocities
û f , v̂ f , ŵ f and angular rates p̂, q̂, r̂ for all test points together
with the guidance value are displayed in figure 6. Velocities
are measured in knots and angular rates are measured in deg/s
to match the units of measurement proposed in (Ref. 26). The

û f v̂ f ŵ f p̂ q̂ r̂
0
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Figure 6: Prediction model RMSE

plot shows that the RMSE values of the prediction model are
within the order of magnitude of the guidance threshold for
all test points. In addition, the 75 % quartile of all body veloc-
ities and angular rates except the roll rate p̂ are well within
the threshold, indicating good agreement of the prediction
model’s output with the validation data for the majority of test
points.

In addition to the velocities and angular rates, the RMSE val-
ues of the flight mechanic quantities used in the algorithm’s
cost function are analyzed. Figure 7 shows the RMSE values
over all test points for the angular rates p̂, q̂, r̂, the Euler an-
gles φ̂ , θ̂ , ψ̂ , the forward and vertical velocities in the vertical
frame of reference ûv, ŵv and the position in space P̂, which
is computed from the states x̂, ŷ, ẑ. In contrast to figure 6, the
velocities are measured in m/s. The maximum RMSE for all
states besides the heading angle ψ̂ and the position P̂ is within
a value of 5 in the respective unit of measurement. For ψ̂ and
P̂ the maximum RMSE is within 9 deg and 9 m, respectively.
The larger error in the heading and position error is caused
by the utilized flight controller modes. By using the ACAH
and RCHH control response types, no tracking of the head-
ing angle and position is established, resulting in larger error
compared to the other states. Nonetheless, the results show
satisfactory agreement of the prediction model’s output with
closed-loop responses of the helicopter for the relevant states.

p̂ q̂ r̂ φ̂ θ̂ ψ̂ ûv ŵv ẑ P̂
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Figure 7: Prediction model RMSE

Therefore, the prediction model is considered to provide suf-
ficiently reliable predictions to be used in the MPG system.

Cost function design

For collision-free guidance of the rotorcraft, at each time step
the most suitable trajectory in the set of predictions needs to
be identified. This is realized by evaluating a cost function
for the prediction data. The trajectory with the smallest cost
is considered to be optimal and the corresponding control in-
put δopt is send to the control inceptors. The original cost
functions from Refs. 19 and 20 have been adapted to, besides
avoiding collisions and following reference states, account for
state and control input constraints. The resulting cost function
reads as

J =
np

∑
k=1

(
W1J1,k +WWW 2 · JJJ2,k +WWW 3 · JJJ3,k +WWW 4 · JJJ4,k

)
. (6)

The cost function value is calculated for each prediction step
k and summed up over the prediction horizon np to obtain
the overall cost for each trajectory respectively. J1,JJJ2,JJJ3,JJJ4
hold the cost function components, which will be explained
in the following. W1,WWW 2,WWW 3,WWW 4 hold the weights for each
corresponding component.

The first component J1 accounts for avoiding collisions.
Therefore, at each prediction step the distance dobs,k between
the rotorcraft’s predicted position P̂PPk =

[
x̂k ŷk ẑk

]
and the ob-

stacle’s position P̂PPobs,k is calculated. Depending on the dis-
tance towards an obstacle, the collision avoidance component
is given by

J1 =



2− 1
ds

2 dobs,k
2 if dobs,k ≤ ds ,(

dobs,k− (ds +d f )
)2

d f
2 if ds < dobs,k < ds +d f ,

0 if dobs,k ≥ ds +d f ,

(7)

and is plotted in figure 8. If the predicted distance to the ob-
stacle dobs,k is less than the minimum safety distance ds, a col-
lision is predicted and the cost value is set to a value greater
than 1. A quadratic function is applied that increases the cost
value with decreasing distance. This ensures that trajectories
with higher distance to the obstacle are chosen when all pre-
dicted trajectories collide with the safety margin. If the pre-
dicted position of the helicopter is not colliding but is within
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a certain range to the obstacle ds < dobs,k < ds + d f , another
quadratic function is applied that generates rising cost with
decreasing distance. The range for this fade-in of the cost has
been set to d f = 5 m. This measure removes sharp disconti-
nuities of the cost value in the vicinity of the obstacle, which
caused undesired behavior in early experiments, i.e. oscilla-
tions of the control inputs. Finally, if the rotorcraft’s position
is outside the fading distance dobs,k ≥ ds + d f , the cost is set
to J1 = 0.

0 ds ds +d f
0
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Distance to obstacle dobs (m)
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Figure 8: Collision cost dependent on distance to obstacle

To safely avoid collisions, the error in the rotorcraft’s pre-
dicted position needs to be considered in the cost function.
In figure 7 the RMSE of the position prediction is analyzed,
for collision avoidance however, the maximum error needs to
be taken into account. Figure 9 shows the maximum error in
x, y, z and the resulting position P for all validation test points
as a function of the prediction time tp. The error in position
increases approximately linearly with increasing time. There-
fore, a linear scheduling of the minimum safety distance ds is
added to the calculation of J1 to account for the position error.
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Figure 9: Scaling of safety distance ds

The second cost function component introduces soft con-
straints on the predicted states and the control input rates to
limit the dynamic response of the aircraft. The constraint
function is implemented as

fc(s,smin,smax) = max{smin− x,0,s− smax} , (8)

with smin and smax representing lower and upper bounds of the
state or control input rate s. The constraint function is applied
to the state predictions of p̂, φ̂ and θ̂ and the control input

rates δ̇x, δ̇y, δ̇0. Therefore J3 reads as

JJJ2 =
[

fc(p̂) fc(φ̂) fc(θ̂) fc(δ̇x) fc(δ̇y) fc(δ̇0)
]
. (9)

The third cost function component accounts for tracking ref-
erence states that are needed to guide the rotorcraft along a
path. The planned path is represented by a list of waypoints,
which hold information of position and desired velocity at
each point. The waypoint information is transformed into ref-
erence values for the airspeed uv,re f , track angle χre f and alti-
tude zre f . The reference track angle is calculated based on the
position of the helicopter related to the position of the way-
point. To proceed to the upcoming waypoint when the cur-
rent one is reached, the distances to both the current and the
upcoming waypoint are calculated. When the distance to the
current waypoint increases while the distance to the upcoming
waypoint decreases, the helicopter is considered to has passed
the current waypoint and the reference states are updated with
information from the upcoming waypoint. The cost function
component JJJ3 penalizes deviations of the predictions from the
reference states and reads

JJJ3 =

{[
|ûv−uv,re f | |ψ̂−χre f | |ẑ− zre f |

]
if tp ≤ tre f ,[

0 0 0
]

if tp > tre f ,
(10)

with tre f being a tunable parameter that allows to set the max-
imum prediction horizon that is considered for reference state
tracking.

In order to smooth the control input history generated by the
algorithm, the cost function component JJJ4 penalizes changes
of the control input, i.e. the control input rates. It reads as

JJJ4 =
[
δ̇x δ̇y δ̇0

]
. (11)

To achieve desired output, the individual cost function compo-
nents need to be weighted against each other. The different as-
pects can intuitively be ordered by their prioritization: Avoid-
ing collisions, keeping constraints, track references, minimize
control effort. Therefore, the weights can be set accordingly
W1 >>WWW 2 >>WWW 3 >>WWW 4, with WWW i >>WWW j expressing that
every element of WWW i is greater than any element of WWW j.

IMPLEMENTATION

The collision-free guidance algorithm was initially imple-
mented for simulations in DLR’s full-flight simulator AVES
(Ref. 27). The simulator implements a replication of the
flight control hardware of the ACT/FHS research helicopter
for execution of flight control algorithms. The MPG algo-
rithm was implemented in MATLAB/Simulink and executed
on the flight control computer in a single thread. This means,
all calculations were carried out sequentially. Refs. 19 and 20
show that the proposed short-term collision avoidance method
could be executed only for one axis with this hardware setup.
The computational effort of the algorithm strongly depends
on the number of predicted trajectories. It was found that
15 trajectories per control axis yield satisfactory results for
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collision-free guidance. For operation in the longitudinal
cyclic, lateral cyclic and collective control axes, the calcula-
tion of 153 = 3375 predicted trajectories is necessary. For
future investigations, the trajectory sampling method may be
adapted to include additional maneuvers, further increasing
the total number of predictions and hence the computational
effort. However, the calculations for the predicted trajectories
are independent of each other, such that the algorithm may
benefit from parallel execution.

Amdahl’s Law states that the maximum speedup of any algo-
rithm is constrained by the percentage of sequential operations
(Ref. 28). Due to the small fraction of the MPG algorithm
that needs to execute sequentially, it is well-suited for exten-
sive parallelization. This characteristic makes it particularly
effective on parallel computing architectures, such as GPUs.
These architectures are highly concurrent systems equipped
with multiple cores, referred to as streaming multiprocessors
(SMs) by NVIDIA and programmed using the Compute Uni-
fied Device Architecture (CUDA). SMs are specifically de-
signed to execute numerous threads in parallel, facilitating ef-
ficient parallel processing.
The MPG system described in the previous section and de-
picted in algorithm 1 was re-implemented utilizing paral-
lelization techniques with the CUDA framework. The new
implementation can be divided in four different phases: fetch,
update, prediction and evaluation. Their concurrent execution
timing is displayed in figure 10.

fetch

update

prediction

evaluation

Data receive event
Computed on CPU
Computed on GPU

7→ time

Figure 10: Concurrent execution timing of different phases of
the parallel implementation

The fetch phase gathers data like the helicopter flight state, the
waypoint list from the path planner and data holding informa-
tion on terrain and obstacle positions. This raw data has to
be constantly processed and updated. For example, the terrain
data is fused with readings from a LiDAR sensor and stored
in an occupancy grid.

The update phase copies the data prepared at the fetch phase
to the GPU for further processing. This phase has to be syn-
chronized with the prediction phase to not cause any read-
after-write data hazards during the prediction phase.

The prediction phase takes the currently measured rotorcraft
state xxxm as input and predicts a set of trajectories based on the
set of control inputs δδδ s and the model equation 5. At every
prediction step, the cost function (equation 6) is evaluated to
calculate the cost value for each individual trajectory.

The evaluation phase receives the individual cost function val-
ues calculated in the prediction phase and identifies the mini-
mum cost trajectory. The corresponding control input value is
set as output of the algorithm.

Considerations for efficient implementation

The fetch phase is executed concurrently with the prediction
phase to reduce the overall sequential computation time and to
meet real-time requirements. The phase is triggered by data
receive events and the most recent processed data is send to
the update phase after completion of the prediction phase in
order to minimize latency.

The data processed in the fetch phase can be pre-stored in
GPU memory during the prediction phase, significantly re-
ducing the execution time for the update phase. The update
routine then only needs to update memory references to the
new data. To achieve this, a double buffer is employed — a
computer programming concept utilizing two buffers to alter-
nate between reading and writing data, allowing simultaneous
reading from one buffer while writing to the other. If the fetch
phase takes longer than a single prediction phase, a double
buffer is sufficient for the speedup. If two fetch phase exe-
cutions for any given data stream may occur during a single
prediction phase, data hazards can still arise. For these data
streams a triple buffer guarantees the non blocking execution
of fetch phases and the prevention of data hazards during the
prediction phase whilst guaranteeing that the most recent data
will always be used in the prediction phase.

Efficient implementation of the prediction model calculations
was attained by storing the state vector xxx of the model entirely
in the registers of each SM. This reduces the delay caused by
memory accesses, enhancing computational throughput and
minimizing latency and hence reducing the computation time
of the prediction phase.

Performance evaluation

To assess the performance gain resulting from executing the
prediction phase in parallel on multiple SMs of a GPU, the
execution times of a parallel implementation and a sequential
implementation running in a single thread on a central pro-
cessing unit (CPU) were measured and compared. The assess-
ment was conducted using a NVIDIA Jetson AGX Orin 32GB
Development Kit (Ref. 29), which is a board for embedded
computing equipped with a NVIDIA GPU. The AGX Orin
lacks support for CUDA concurrentManagedAccess
(Ref. 30), resulting in the necessity to copy data from the
fetch phase only after the completion of the prediction phase.
This limitation prevents writing to the GPU memory dur-
ing the prediction phase, leading to an extended execution
time for the update phase compared to GPUs supporting
concurrentManagedAccess.

The execution time was assessed by varying the number of
predicted trajectories. The results are plotted in figure 11.
The GPU exhibits superior speed when computing more than
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50 trajectories. For the calculation of 3375 trajectories, which
are targeted for the current implementation, the GPU performs
the computation in approximately 30 ms, while the CPU re-
quires 2 s for the computation. Leveraging GPUs for the sam-
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Figure 11: CPU and GPU performance comparison for the
prediction phase

pling based guidance approach is strongly advised, as their
enhanced performance contributes to reduced execution time.
Additionally, substantial power savings can be realized, given
the GPUs proficiency in handling the required floating-point
calculations (Ref. 32).

PATH FOLLOWING PERFORMANCE
EVALUATION

In the previous sections, the design and implementation of
the sampling-based model predictive guidance algorithm have
been described. In this section, the algorithm’s capability
for path following shall be evaluated. Therefore, software-
in-the-loop simulations have been conducted. The simulation
is setup according to figure 1. The helicopter flight dynam-
ics are represented by a physics-based nonlinear model of the
ACT/FHS research helicopter. It is the same model which
was used for the validation of the prediction model. To eval-
uate the algorithm’s path following performance for turns and
climb/descent maneuvers, a test path was generated, which is
based on (Ref. 8). The maneuver starts with a short straight
segment 1 followed by a 180◦ left turn with 20◦ roll an-
gle 2 , and a climb with 7◦ slope 3 . After the climb, the
aircraft shall take a 180◦ right turn with 20◦ roll angle 4
to retake the initial heading. After the turn, the aircraft shall
descend with a slope of 7◦ 5 to the initial altitude. The ma-
neuver is concluded by a combination of a right turn of 180◦

6 and a left turn of 180◦ 7 , both at 20◦ roll angle, taking
the aircraft back to the position where the maneuver started.
After another straight segment, the maneuver is repeated with
bank angles of 30◦ and climb/descent slopes of 9◦. The path
is represented by points in space. The distance between con-
secutive points is approximately 40 m. The helicopter shall

maintain a speed of 41 m/s during the maneuver, therefore it
shall pass a waypoint approximately each second. The com-
plete reference path and the path flown by the helicopter in
simulation are plotted in figure 12. To assess the path tracking
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Figure 12: Path for testing path following controller

performance, the distance of the aircraft to the reference path
was measured. Figure 13 shows the tracking error for differ-
ent settings of the reference horizon tre f . A setting of tre f = 3s
indicates that only the first 3 s of the predicted trajectories are
considered for calculating the reference deviation cost JJJ3, see
equation 10. The boxplot shows that the tracking error in-
creases with increasing reference horizon tre f . The reference
tracking cost function JJJ3 behaves like a moving average filter:
with increasing reference horizon the number of considered
waypoints increase and hence the window of the averaging
filter. Therefore, increasing the reference horizon decreases
the bandwidth of change of the reference states, resulting in
larger tracking error. On the other hand, the bandwidth of the
control input is decreased as well, resulting in smoother time
histories. The time histories for the lateral control input at the
start of the first right turn of the maneuver is plotted in fig-
ure 14. The plot shows a smoother time history for tre f = 5s
and tre f = 7s compared to tre f = 3s. For tre f = 3s, there is a
oscillation visible at 1/s, which coincides with the helicopter
passing waypoints and the reference states getting updated.
Therefore, choosing a reference time horizon tre f > 3s seems
advisable. However, to mitigate the oscillations for shorter
horizons as well and provide smoother time histories for the
reference states, an interpolation or fading of the reference
states may be added.
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Figure 14: Lateral cyclic control input for path following

CONCLUDING REMARKS

The paper at hand proposes a sampling-based model predic-
tive approach for automatic collision-free guidance of rotor-
craft. The method calculates control inputs for the flight con-
troller by predicting the closed-loop dynamics of a stabilized
helicopter for a short time horizon. The predictions are eval-
uated by a cost function, that can take arbitrary forms. It ac-
counts for collision-free maneuvering while following a de-
sired path, as well as considering constraints on the helicopter
states and control inputs. The inputs are fed to the helicopter
in parallel to the pilot’s input by utilizing the control inceptor
trim actuators.

The prediction model used for the approach was derived from
the reference model of the underlying model following flight
controller, assuming that it would represent the closed-loop
dynamics of the helicopter if the flight controller’s perfor-
mance is sufficient. The prediction model was validated
against simulations of a high fidelity, physics-based helicopter
model in closed-loop with the flight controller. The model
showed acceptable agreement with the validation data over a
broad range of the control input bandwidth, indicating that the
approach of utilizing the flight controllers reference model is

valid.

The method, previously used for collision avoidance only, was
extended to be utilized for path following. The cost function
was modified to allow for following reference states which
are calculated from a list of waypoints that represents the
planned path. The path following performance was evalu-
ated in closed-loop simulation with a test path that includes
typical maneuvers. The method was capable of following the
path with sufficient performance, keeping the distance to track
within 5 m for the majority of time. However, deficiencies in
generating the reference states were identified, leading to os-
cillations in the control inputs.

The algorithm was re-implemented for execution on GPU
hardware, extensively utilizing parallel execution of the tra-
jectory prediction. Optimizations related to the parallel execu-
tion were introduced, reducing the computation time of the al-
gorithm. The performance of parallel execution on a GPU has
been compared to the sequential execution on a CPU, clearly
indicating the performance increase by utilizing GPUs.

Future work will focus on assessing the system performance
for a broader range of maneuvers and extending the scope of
application to include maneuvering at low speed and hover.
Furthermore, the processing of terrain and obstacles data shall
be fused to generate a comprehensive representation of the ro-
torcraft’s environment. Another topic is the consideration of
competing pilot input on the control inceptors. This informa-
tion may be used to detect the pilot’s intention and react to it
and hence decrease pilot workload and improve safety.
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