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Abstract

In the present-day communication technology involving fast-evolving Internet of
Things (IoT) systems, accurate and timely information delivery is paramount.
This thesis investigates an interesting concept of information freshness along with
accuracy in a system where the transmitting sources are correlated. We focus on
two key parameters to carry out this study: Average Age of Incorrect Information
(AoII) and Average Estimation Error.

We design a Markov Model to depict the intricacies of real-world correlated sources
within communication systems. This Markov Model aids us in investigating our
key parameters (AoII and Average error) under a range of correlation coefficients.
We further explore different transmission and estimation methods to understand
the variations in the above-mentioned parameters to comment on the optimal
method for a given system condition.

We further develop a strong theoretical framework for the transmission and estima-
tion methods tailored to the unique challenges posed by correlated sources. This
caters to our goal to understand the evolution of the AoII and Average Estimation
Error throughout the range of the correlation coefficients.

A rigorous investigation using empirical methods is conducted through carefully
designed simulations to depict the real-world applications as closely as possible.
This reveals interesting insights into the behavior of AoII and Average Error in
the presence of correlated sources accessing a wireless random access channel. The
results not only advance our understanding of these metrics but also provide prac-
tical guidance for optimizing communication systems under real-world conditions.
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Chapter 1

Introduction

1.1 Motivation

The Internet of Things (IoT) in today’s world has given rise to a new era of
connectivity, enabling day-to-day objects to collect and exchange data in a reliable
manner and process it in ways that were once unimaginable. This not only applies
to everyday objects but also plays a major role in industrial setups that need high
accuracy.

The IoT ecosystem, consisting of a vast network of interconnected devices and sen-
sors, has revolutionized various industries in no time. Healthcare, entertainment,
mass production, transportation, smart cities, and agriculture are only a few. The
paradigm shift induced by IoT across all areas of life has transformed the way
information is generated, viewed, and communicated.

However, with the expansion of interconnected devices and sensors, an important
aspect of consideration in the IoT or Wireless Sensor Network (WSN) ecosystem
is the intricate relationship between the transmitting sources.

In this dynamic environment, the age of incorrect information (AoII) within the
correlated source is a critical challenge. Not only is it the question of identify-
ing and correcting inaccurate data, but also of understanding how inaccurate or
misleading information can remain on the network and potentially have cascading
consequences. Considering the vast application area of such networks, studying the
error in the estimation of the status of the transmitting sources (sensors) proves
to be of utmost importance. It is interesting in these scenarios to understand the
duration for which the estimator results in an incorrect estimation.

As we now know the benefits of focusing on parameters such as estimation error,
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CHAPTER 1. INTRODUCTION 8

AoII, and average error length in estimation, we can move on to briefly look at
the major questions that are addressed in the thesis.

1.2 Problem Statement

In this thesis, we intend to investigate the problem of gauging the status of cor-
related sources. The system of linked sources working in a random-access channel
environment is the setting in which this study is conducted.

This thesis investigates the following research questions:

1. How does the level of correlation in a system using a random-access channel
affect the accuracy of source status estimation?

2. What effects does source correlation have in the Age of Incorrect Information,
where data relevance and accuracy are crucial?

3. Does the correlation coefficient between the sources impact the duration of
estimating a continuous error state?

4. Can we achieve meaningful improvements in state estimation when the estima-
tor has access to a vast knowledge base about the correlation between sources?

The answers to these questions capture the essence of the research and point us
in the direction of a deeper comprehension of the complex interactions between
source correlation, and estimation accuracy in a digital ecosystem. With a founda-
tion of correlated sources using random-access channel to communicate, we work
on leveraging the knowledge of correlation for dependable and more accurate de-
cisions.

1.3 Thesis Overview

AMarkov Model is developed to simulate the transitions in the state of two sources
correlated (positively and negatively) with each other. These two sources (eg:
sensor nodes in an IoT setup) use a random access channel to send updates to a
receiver. Various transmission policies are discussed to optimize the channel usage
and hence achieve better throughput. On the receiver end, the estimator may
or may not receive an update from either of the two sources. We design a MAP
(Maximum a posteriori) estimator to efficiently use the knowledge of correlation
to make better estimations. We focus on estimation error and compare it with a
simple estimator that does not use the correlation data during statute estimation.
Outcomes are compared at various levels of correlation to meaningfully explain
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the impact of correlation between the two sources. In addition to this Average
Age of Incorrect Information and Average Error lengths are studied to show the
best transmission and estimation policies.

1.4 Thesis contribution

As we move ahead in the thesis we witness significant improvement in the estima-
tion while there is more knowledge about the sources and their relationship with
each other. We study the peak estimation errors and notice how the correlation
of the system is closely related to estimation accuracy. We investigate different
transmission techniques and discuss the best transmission method for a given cor-
relation coefficient. The age of Incorrect Information which is an important metric
in decision-making for modern-day networks is investigated in detail. The average
duration in the error state gives us some important insights into the estimator
efficiency and system behavior.

1.5 Thesis Structure

The remainder of the document is organized as follows. In Chapter 2 recent work
on correlated sources in an IoT or similar setups are reviewed. Relevant literature
on random access, Error Estimation, and the Age of Incorrect Information in a
wireless environment are studied in depth.

In Chapter 3 a detailed description of the followed methodology is introduced.
The considered setup is discussed at length. In Chapter 5 the simulation results
are discussed. In this section, we interpret our findings and discuss their broader
implications, highlighting the critical importance of addressing AoII and Average
Error in the design and operation of systems with correlated sources. We also
acknowledge the limitations encountered during our research, opening avenues for
future investigations.

In conclusion, with this thesis, we strive to contribute valuable insights into the
behavior of Average Age of Incorrect Information and Average Error, in the con-
text of systems containing correlated sources. By shedding light on the intricate
connection between correlation coefficient, accuracy, and information timeliness,
this research aims to enhance the performance of communication systems in our
increasingly interconnected world.



Chapter 2

Background

2.1 IoT and WSNs Status updates

Through pervasive computing, multiple communication technologies, sensors, and
actuators, the Internet of Things (IoT) links the physical and digital worlds [4].
Sensors play an important role in IoT systems and the primary function of the
sensor nodes is to detect a parameter of interest (such as weather, air quality, etc.)
and feed the system with information about the physical environment [26]. Many
applications such as health monitoring, and environmental sensing are supported
by sensing devices in the network (nodes) sending status updates to the receiver
(sink). Similar to IoT, Wireless sensor networks (WSNs) have also been thoroughly
researched for a number of industrial and environmental monitoring and surveil-
lance applications [2]. A common ground in IoT and WSNs is the highly meshed
network of sensor nodes whose status are likely to be highly correlated with each
other due to vicinity in space or closeness in time of capturing the parameter of
interest.

Random access channels become essential due to the high number of sensors, and
several protocols are taken into consideration for various network setups. In our
work, we study contention-based protocols over contention-free protocols to min-
imize significant signaling overhead for coordinated transmissions of the status
updates from the sensor nodes. Slotted ALOHA, for instance, can be used with
WSNs [17]

In an IoT system, the correlation between several observations or source nodes
in time and space is highly likely with the considerable number of sensors placed
close to each other. Network performance can be significantly enhanced by using
correlated sensor data, or information sources [10].

10
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In [10] two sources are considered, one being the source of interest and the other
correlated source (secondary source). The system utilizes the information from the
secondary source to reduce the frequency of updates from the source of interest
by inferring valuable data from the correlated secondary source. The focus of
this study is to schedule the optimum time for status updates so as to keep the
information as fresh as possible. In this study, the scheduling is extensively studied
to optimize the parameter of interest (freshness of information). Whereas our work
majorly focuses on the estimation of the information(status) and decreasing the
estimation error using the knowledge of correlation.

In [8] an ecosystem with correlated sensor signals that uses a random access channel
(ALOHA) for communication is studied. An adaptive transmission approach is
used to exploit the correlation between signals that results in an efficient WSN.
In [32] an observation is conducted on a highly correlated spacial and temporal
sensor domain. Several key elements are investigated to utilize the correlation in
the sensor network in order to realize an efficient communication protocol. This
paper clearly leverages the knowledge of the correlation between the sources and
improves the existing system to increase reliability in medium access.

A specially correlated landscape is studied in [31] where the sensors use a common
wireless communication channel to update the sink with the information. Although
this paper studies the correlation, medium access, and the effect it has on the
efficiency of the system, the collisions are minimized using a coordinated system
which might add an overhead compared to the random access.

Regulating and optimizing the rate at which the sources transmit messages to
update the information about the sensor observations in a network of correlated
information sources allows for an increase in the throughput. These notifications
also referred to as status updates, are sent to the receiver by accessing a common
wireless random access channel. By Making use of the correlation information it
is possible to anticipate the status of various sensor devices at different locations
in an instant using the data collected at another location and a different time
instant. Therefore, it is possible to reduce the rate at which information sources
submit status updates to a gateway by utilizing the correlation between many
observations of the same phenomena [9].

2.2 Estimation Methods

Estimation of the concerned parameters in the field of sensor networks has been
extensively studied in recent times since the widespread applications in all the areas
are evident. In [37] a specially correlated dynamic field is observed. A traditional
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Kalman buck filter (KBF) that gives the minimal root mean squared (RMS) error
is studied against a reduced order KBF to highlight the tradeoffs of communication
cost. In this paper, estimation error is used as a metric to compare the cost of
communication which gives an important insight into the trade-offs in this study.
An interconnection matrix is used to represent the to represent connection and in
turn the correlation between the nodes in the network.

In [36] a graph approach towards the estimation of the sensor data is considered. In
a wireless sensor network setup, this study tries to exploit the spatial correlation
phenomenon between the sensors to estimate the state at a particular physical
location where the sensors are not present.

In the paper [11] a sequential estimation problem is studied with two decision-
makers. The observer looks at a certain stochastic process and makes sequential
observations for a certain duration. This observer decides to transmit a message
to the estimator. The estimator continuously estimates the state of the stochastic
process. The major goal of this study is to minimize a performance criterion with
the constraint that the observer agent may only act a limited number of times.

In [18] a Kalman-like filter is used for remote estimation in a communication sys-
tem. An entity called a pre-processor sends a message to the estimator irregularly
with a positive cost. The estimator with limited information sequentially esti-
mates the state of the system. In this work, the combination of pre-processor and
estimator is said to achieve the optimal cost for communication.

The authors [22] in this paper take into account the limited energy in energy har-
vesting sensors to propose optimal strategies in communions and achieve optimal
results while remote estimation.

The paper [5] presents the fundamental limits of remote estimation of autoregres-
sive Markov processes under communication constraints. A sensor estimator pair
is employed to study the remote estimation system. A senor observes a Markov
process and at each time instant there may or may not be a transmission. The es-
timator estimates the Markov process based on the observations. In such systems,
there is a chance of estimation error and hence a trade-off between communica-
tion cost and estimation accuracy. This work gives us some interesting details
about the minimum achievable estimation error. Some of the transmission and
estimation strategies that achieve the fundamental limits are also identified in this
work.

Our system uses Markov’s model to simulate the changes in the parameters of
interest and the Hidden Markov Model is used as an estimation tool, In [24, 21]
the theoretical aspects of the hidden Markov Model (HMM) are carefully and
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methodically reviewed. Although this tutorial applies the HMM in machine speech
recognition, due to its rich mathematical structure HMM can be applied to wide
areas of research such as ours.

2.3 Age of Incorrect Information

With the surge in the demand for real-time monitoring, the need for up-to-date
information in an IoT setup has increased. Recent studies have primarily focused
on the Age of Information (AoI) [35] metric that measures the freshness of the
information by means of time-stamped status updates [16]. The paper [13] focuses
on minimizing the AoI to maintain maximum freshness where status updates are
generated by the sensor nodes and transmitted randomly. In [34, 12] although
multiple transmitting sources are considered the sources are assumed to be inde-
pendent which in a practical sensor network such as an IoT system is unlikely.
In our work, the noticeable correlation between the various transmitting nodes is
explored to improve the overall performance of the system.

Tn the paper [30] formulated a simple model to study the timely monitoring of
correlated sources over a wireless network. Using this model, in the presence of
correlation new scheduling policies that optimize weighted-sum average Age of
Information (AoI) were introduced. The paper illustrates AoI improves in large
networks in the presence of correlation.

In [29] the authors try to encounter the minimization problem of AoI within a
correlated environment with stochastically identical and non-identical multichan-
nel. Although our work focuses on the correlated environment, the use of random
access channels for communication is the goal of the thesis. In [38] the authors
investigate another parameter called Urgency of Information focusing on the con-
text of the data. In [15] the problem of mismatch in achieving minimum AoI at
the minimum estimation error is discussed. An alternate metric called effective
age is proposed. A Markov chain source is observed, with various transmission
strategies for transmission of these observations.

However, in real-time applications in the remote estimation of the status of the
sources, a challenge arises that is closely tied to monitoring the status of the sensors
of interest. Reducing AoI although ensures the freshness of the information, does
not give any insight into the accuracy of the said status update. AoI on its own
may not be a sufficient parameter to fully comprehend the behavior of the system
in case of error estimation.

Age of Incorrect Information (AoII) theory was put forth that describes the price
of a monitor being in an incorrect position. A new performance matrix: Age of
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Incorrect Information is introduced (AoII) [20] which tries to tackle the short-
comings of AoI and conventional error penalty functions. The authors define the
status update as ”informative” considering the need for correct information on the
monitoring side. This paper draws attention to the existing shortcomings in the
current metric of AoI in the remote process estimation context. The work justi-
fies the need for AoII by highlighting the detrimental effect of wrong information
on the overall efficiency of a sensor network. An N-state Markovian information
source sends the status updates using an unreliable channel. In [14] the authors
investigate AoII a basic environment for binary information monitoring sources
over a feedback-controlled delay mechanism.

The paper [7] studies the minimization problem of AoII on an unreliable channel.
The paper [19] works on minimizing the average AoII in a transmitter-receiver
pair scenario. The paper summarizes that the optimal transmission strategy is a
randomized threshold policy, and proposes an algorithm to find the optimal pa-
rameters. Performance advantages of AoII are highlighted over other performance
metrics such as AoI and the error-based measure approach.

Similar to [20, 19] this thesis focuses on studying the AoII. However, the thesis uses
a random access channel open for collisions and assumes a correlation between the
transmitting sources a common phenomenon in practical sensor network scenarios.

2.4 Literature Review Outline

Notable differences between the existing work and the thesis are :

1. The majority of the research assumes independence on the transmitting end
which in practice is not the case. Hence exploring the correlation and exploiting
this knowledge is the major focus of our work.

2. A centralized approach is considered in terms of scheduling or channel access
to achieve optimal results. However, this might lead to an overhead in the design
or implementation. Our work focuses on random transmission or a decentralized
approach to the transmission of sensor data: thus reducing the complexity of the
system.

3. A simple yet efficient metric of estimation accuracy, the estimation error is
studied in detail to give a clear understanding of leveraging the knowledge of
correlation.

4. Age of Incorrect Information which not only guarantees freshness but also gives
valuable insights into the accuracy is studied, unlike the Age of Information in
various literary works.



Chapter 3

Methodology

3.1 System Model

3.1.1 Introduction

In the following chapter, we introduce the system model and discuss the construc-
tion of various elements of the model in detail. In order to design an effective
estimation model for a system with correlated transmitters, we aim to construct
a simple yet practical transmitter section, considering various transmission tech-
niques, and measure the effectiveness of the estimator by analyzing the errors in
estimation. We design a simulation to mirror the real-time scenarios, capturing
the dynamics of data transmission among correlated sources.

In the study, we focus on a system with two transmitting sources namely X and
Y . We introduce a level of correlation between the two sources to study the im-
pact of correlation (could be positive, negative, or uncorrelated) on the evaluation
parameters such as Estimation error and Age of incorrect information. The two
sources X and Y share a common wireless random access channel to transmit the
status updates to the receiver.

Time is slotted and the value generated by the sources can be represented as
follows:

X = X1, X2, X3....Xn

Y = Y1, Y2, Y3....Yn

Where Xi and Yi are the values at time slot i ∈ N

For this study, we look into one of the transmitting sources (Source X) and address
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CHAPTER 3. METHODOLOGY 16

that source as the source of interest. The evaluation of parameters is based on
the observation of that particular source. The other source is referred to as the
correlated source (source Y). Note that the system model is symmetrical and we
can monitor either of the two sources to study the evaluation parameters.

This wireless channel resembles slotted ALOHA where a packet from the transmit-
ting source takes exactly one slot to send an update (sources are slot-synchronized).
The transmitting sources compete to access the channel randomly without any cen-
tralized system to allot the slots or time to any source in particular. Therefore
the transmitting sources are slot-synchronized and we see no partial transmission
of the packets. The channel is collision-prone and a collision results in a complete
packet loss. A packet is successfully transmitted to the receiver if only one of the
sources accesses the channel at any given instance.

At the receiver, the channel is observed continuously and the possible observations
for a slot are:

1. Idle : No transmissions from either of the sources

2. Collision : Both the sources try to access the channel at the same point.

3. Successful status update: Only one of the two transmitting sources access
the channel and this results in a successful transmission.

The sequence of observations up to slot n can be represented as:

O = O1, O2, O3....On

We make the following assumptions in order to continue this study.

1. The receiver is able to detect a collision as well as an idle slot in the channel.

2. In case of a packet reception, the receiver is able to identify the transmitting
source of the packet.

At the receiver, we design an estimator which provides an estimate of the state
of the source of interest based on the sequence of observations. An estimate is
produced at each slot and we denote the sequence of estimates as follows:

Z = Z1, Z2, Z3....Zn

We compare the estimated value Zn with the real value Xn to study the accuracy
of the designed estimator.

We focus on the following evaluation parameters: average state estimation error of
one of the sources, AoII, and average duration of error estimate (of either source
X of source Y) to study the discrepancies in the estimation at the receiver. An
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understanding of how far the estimated values are from the real status gives us a
clear view of the effectiveness of the estimator design.

The source modeling and the correlation between the transmitting sources, trans-
mission methods, the random access channel, and the estimator at the receiver
serve as the foundation on which our entire investigation stands. Through an ex-
ploration of diverse scenarios and analysis, this framework aims to capture some
key aspects of the use cases closely.

We use a system model that is expected to provide insights into our investigation.
A comprehensive system model is constructed to capture the dynamics of two
correlated sources. Within our architectural model, we encounter the following
essential components:

3.1.2 Correlated Sources

To establish an interdependency between the considered data sources, we con-
struct a Markov Model. It is employed as a framework to mirror the intricacies
of dependencies inherent within sensor clusters observed in both environmental
and industrial domains. We achieve this by integrating transition probabilities
between the states of the Markov model. These connections between the states of
this model aim to simulate the correlation between the transmitting sources. Of-
ten such relationships exist among sensor clusters, however, dependencies within
the sensor data are concealed.

We first assume two sources, source X and source Y with alphabets:

X = { 0, 1, 2, 3 }

Y = { 0, 1, 2, 3 }

The above alphabet is considered to achieve a wide range of correlation coefficients
between the sources while representing various states of transitions. It is limited
to four states for ease of understanding the underlying concepts.

Figure 3.1 gives an overview of the considered Markov model. Here we consider
the joint state probability (Xn, Yn) of both sources at the slot n.

We introduce dependencies between the two sources using transition probabilities
to different states of the said Markov Model.

We introduce a Markov model with 16 states:

Markov States: { 00, 01, 02, 03, 10, 11, 12, 13, 20, 21, 22, 23, 30, 31, 32, 33}
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00 01 02 03

10 11 12 13

20 21 22 23

30 31 32 33

q

q’(1-q)
0.5(1-q’)(1-q)

0.5(1-q’)(1-q)

0.5*q’(1-q)

0.5*q’(1-q)

0.25*(1-q’)(1-q)

0.5*q’(1-q)

0.25*(1-q’)(1-q)

0.5*(1-q)

0.5*(1-q)
0.33*(1-q)0.33*(1-q)

(1-q’)(1-q)

0.5*(1-q’)(1-q)

0.5*q’(1-q)

Figure 3.1: States and Transitions of the Markov Model
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The first digit in the Markov state represents the state or value of the source X
and the second represents the value of Y. We make an assumption that the state
of the sources can either remain the same or only change by a magnitude of exactly
one at any given slot, i.e., any n,

| Xn −Xn−1 |≤ 1 and | Yn − Yn−1 |≤ 1

We also design the model such that a positive change in one of the sources will re-
sult in either a positive change or no change in the other. The model is constructed
such that the system moves along the main diagonal of the Markov model. This
is to ensure cases that give a high correlation between the transmitting sources.

We consider the following parameters during the construction of the Markov model:
q: Same state probability, both the sources remain in the same state.
q′: Parameter that influences the system to move towards a correlated state. Both
the sources change their states simultaneously with equal magnitude.

The transition probabilities in terms of q and q′ are shown in Figure 3.1.

The Markov model is designed in a way to provide a wide range of values for
correlation coefficients to study the impact of the correlation on the considered
evaluation parameters. We consider the elements of the main diagonal (00, 11,
22, 33) as highly correlated states. The parameter q′ decides the probability of
transitioning to these highly correlated states. We see from Figure 3.1 that if a
state does not have a highly correlated state as an immediate neighbor (02, 13,
31, 20), the probability of moving is equally distributed among the neighboring
states.

In the case of a state that has a highly correlated state as its neighbor, the factor
q′ decides the probability of moving to such a state. Therefore moving to a highly
correlated state increases with an increase in the value of q′. The probability
of moving to a highly correlated state is equally distributed in case a state has
multiple highly correlated neighboring states.

The factor q indicates the probability of the system remaining in the same state
(both sources retain the same value as the previous slot). As the value of q de-
creases the system becomes more dynamic and we observe the system changes the
states more often. On the other hand, the parameter q′ dictates how much the two
interacting sources are interconnected. As the value of q′ increases, we see the cor-
relation between the sources also increases. Figure 3.2 illustrates the connection
between the value of q′ and the correlation coefficient ρ. The graph clearly repre-
sents the wide range of correlation coefficients considered in this study. By tuning
the parameters q and q′, we can achieve a wide range of correlations between the
two sources X and Y.
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To calculate the Correlation coefficient ρ for a given value of q′, we have:

ρ =
Cov(X, Y )

σXσY

(3.1)

Where σX and σY are the standard deviations of the distribution of the source X
and Y. Cov(X, Y ) is the covariance of the joint distribution of the two sources.
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Figure 3.2: Correlation coefficient for the corresponding value of q′

To calculate the Cov(X, Y ) in (3.1), we have by definition,

Cov(X, Y ) = E[(X −mx)(Y −my)]

= E[XY ]− E(X)my − E(Y )mx +mxmy

= E[XY ]−mxmy −mymx +mxmy

= E[XY ]−mxmy

(3.2)

Where mx and my are the mean of the distribution of the sources X and Y. E[X],
E[Y ] are the expectations of the distribution of the sources and
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E[XY ] =
∑
x,y

xyp(x, y) (3.3)

To calculate the standard deviations in (3.1), we have:

σx =

√∑
x

x2p(x)−m2
x (3.4)

σy =

√∑
y

y2p(y)−m2
y (3.5)

p(x), p(y) and the joint probability p(x, y) can be obtained from the steady state
vector calculated in (3.11). For example,

p(0, 0) = π00 and p(x = 0) = π00 + π01 + π02 + π03

The steady-state vector in (3.11) is calculated on the basis of the transition matrix
A which is formulated using q and q′ as will be discussed next. Therefore, we can
calculate the correlation coefficient ρ for a given value q′. Hereafter we study the
system on the basis of correlation coefficient as it is a known statistical parameter.

Transition Matrix

We have now designed a model with 16 states, each representing a value of the
transmitting sourcesX andY at any given slot. We next move towards calculating
the transition matrix and steady-state vector for the designed Markov model.

To represent the transition between the different states in the Markov model, we
formulate a transition matrix A as follows:

By considering all the possibilities of state transition, we denote:

u = Probability of moving to an uncorrelated state

v = Probability of moving to a highly correlated state

With this notation, the probability of moving to an uncorrelated state u is ex-
pressed as:

u = (1− q′)(1− q) (3.6)

And the probability of moving to a highly correlated state v is expressed as:

v = q′(1− q) (3.7)
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Accordingly, we have

1 = u+ v + q = (1− q′)(1− q) + q′(1− q) + q

= (1− q)[1− q′ + q′] + q
(3.8)

The sum of every row of the state transition matrix A is 1.

The probability of changing the state q̄ is expressed as:

q̄ = 1− q (3.9)
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The transition probability is shown in the matrix A in (3.10). The matrix repre-
sents the possibility of transitions of the sources from a state Xn−1 and Yn−1 at
the slot n− 1 to any other state in the system Xn and Yn at slot n.

As we have a 16-state Markov Model, with the help of the transition matrix A we
calculate the steady state vector Π for the Markov model in the figure 3.1.

The steady-state vector is of the dimension a 1 x 16. The elements of this vector
give us the probability of finding the system at that particular state for n → ∞.

Π = [π00, π01, π02, ............π33] (3.11)

E.g. π01 represents the probability of Xn = 0 and Yn = 1.

We obtain the steady state vector by solving the system of equations:

Π = ΠA (3.12)

and

∑
Π = 1 (3.13)

Examples of the system equations:

π00 = qπ00 + vπ11 +
u

2
π01 +

u

2
π10 (3.14)

π32 = qπ32 + uπ31 +
v

2
π22 +

v

2
π33 (3.15)

16 such equations along with (3.13) are solved to obtain all the elements of the
steady state vector Π

We further denote the transition matrix for the source X individually. The matrix
can be calculated based on the previously obtained combined transition matrix A
of the sources.

Q =


P [Xn = 0|Xn−1 = 0] P [Xn = 1|Xn−1 = 0] P [Xn = 2|Xn−1 = 0] P [Xn = 3|Xn−1 = 0]
P [Xn = 0|Xn−1 = 1] P [Xn = 1|Xn−1 = 1] P [Xn = 2|Xn−1 = 1] P [Xn = 3|Xn−1 = 1]
P [Xn = 0|Xn−1 = 2] P [Xn = 1|Xn−1 = 2] P [Xn = 2|Xn−1 = 2] P [Xn = 3|Xn−1 = 2]
P [Xn = 0|Xn−1 = 3] P [Xn = 1|Xn−1 = 3] P [Xn = 2|Xn−1 = 3] P [Xn = 3|Xn−1 = 3]


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An example of calculation of the elements of the matrix Q is as follows:

From the definition of conditional probability,

P [Xn = 0|Xn−1 = 1] =
P [Xn = 0, Xn−1 = 1]

P [Xn−1 = 1]
(3.17)

In turn, the probability of the source X assuming the value 1 at any n-1 is given
by marginalizing the joint stationary distribution:

P[Xn−1 = 1] = π10 + π11 + π12 + π13

Plugging this in (3.17) and considering all possible values of Yn−1, we have

P [Xn = 0|Xn−1 = 1] =
1

π10 + π11 + π12 + π13

[
P [Xn = 0, Xn−1 = 1, Yn−1 = 0]+

P [Xn = 0, Xn−1 = 1, Yn−1 = 1]+

P [Xn = 0, Xn−1 = 1, Yn−1 = 2]+

P [Xn = 0, Xn−1 = 1, Yn−1 = 3]
]
(3.18)

We have,

P [Xn = 0, Xn−1 = 1, Yn−1 = 0] = P [Xn = 0|Xn−1 = 1, Yn−1 = 0]P [Xn−1 = 1, Yn−1 = 0]
(3.19)

By substituting 3.19 in 3.18 we get:

P [Xn = 0|Xn−1 = 1] =
1

π10 + π11 + π12 + π13

[
P [Xn = 0|Xn−1 = 1, Yn−1 = 0]π10+

P [Xn = 0|Xn−1 = 1, Yn−1 = 1]π11+

P [Xn = 0|Xn−1 = 1, Yn−1 = 2]π12+

P [Xn = 0|Xn−1 = 1, Yn−1 = 3]π13

]
(3.20)

P [Xn = 0|Xn−1 = 1, Yn−1 = 0] is the probability of Xn = 0 when Xn−1Yn−1 = 10.
This is the probability of going from state ’10’ to any of the following states: (00,
01, 02, 03) where the value of the source X is zero. These values are obtained by
the transition matrix A and the π values are obtained by the steady-state vector.
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3.1.3 Transmission Techniques

A random access channel is a fundamental communication channel used extensively
in various wireless communication systems. Its primary function is to allow multi-
ple users or devices to access the shared channel with low complexity and without
centralized coordination. This uncoordinated access is crucial in scenarios where
multiple devices need to transmit data without any external scheduling[8]. This
capability is particularly advantageous in scenarios such as IoT networks where
there is a need for low-power and low-complexity solutions [25].

Here, multiple users contend for access to the channel, often resulting in potential
collisions when two or more users attempt to transmit simultaneously. In our case
where the sources are limited to two devices, a collision may occur in case both
the sources transmit. The collisions lead to data loss and we do not consider any
re-transmissions or feedback of the lost packets. In our system, we use a Slotted
ALOHA-like protocol in which we divide time into slots for transmission.

Understanding and optimizing random access channels involves addressing various
challenges such as managing the trade-off between system throughput and colli-
sion probability, designing efficient protocols to mitigate collisions, and optimizing
channel access for diverse traffic patterns. The relevance of the random access
channel within the scope of IoT networks is highlighted in literature [25]. Its ca-
pability to enable decentralized access to the transmitting sources aligns with the
operational necessities of IoT devices [3].

We investigate two methods for transmission strategies that can be used by the
transmitting sources to access the channel.

1. A random transmission method.
2. An event-driven transmission method.

Random Transmission Method

The random transmission method is predicated on uncoordinated access, allowing
devices to opportunistically access the channel without prior scheduling or syn-
chronization. The probability of transmission at any given slot is purely based on
a predetermined parameter.

In our system, the transmitting sources X and Y decide to randomly access the
channel at each time slot with a preassigned value of probability pt and stay silent
with a probability of 1 − pt. This decision is independent of the evolution of the
system till this particular point and of the behavior of the other source.

The probability for source X to successfully deliver the packet (PS) during a slot
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can be formulated based on binomial distribution and is given by,

Ps = pt(1− pt) (3.21)

where pt denotes the probability of transmission by the source.

The probability of success in a two-source system is if only one of the two trans-
mitters access the channel.

In our system, the only way a packet fails to reach the receiver is when there is
a collision with a packet from another source. This is the probability of both the
sources X and Y transmitting during the same slot. Hence, at any given slot, the
probability of collision is:

Pc = p2t (3.22)

The fundamental premise of a random access channel rests upon the absence of
prior coordination between transmitting devices. However, this lack of coordina-
tion presents a significant drawback: the potential for channel collisions.

This has a detrimental impact on the channel throughput. Channel throughput
refers to the fraction of slots that experience successful transmission(S). In our
case, this can be written as:

S = 2pt(1− pt) (3.23)

Collisions effectively disrupt this flow, hindering the amount of data that can be
transmitted. The Random access method also proves to be a disadvantage in case
of high correlation between the contending sources as the correlation information
is not leveraged to improve the efficiency of the system.

Despite these inherent limitations, random access channels possess some advan-
tages due to the ease of implementation. The absence of a complex scheduling
mechanism translates to reduced overhead and lower latency for devices attempt-
ing to access the channel. One such example is LoRa, [23] which uses this simple
method of transmission. We can also consider Zigbee [6] which uses the IEEE
802.15.4 [1] standard under the random transmission method. However, this ben-
efit comes at the cost of sacrificing predictability and efficiency in channel access.

Hence, the adoption of a random access channel for communication presents a
trade-off between simplicity and performance. While it offers a readily deployable
solution, the stochastic nature of transmissions introduces significant challenges in
the form of collision-induced data loss and in turn reduced channel throughput.
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Reactive method: An Event-Driven Transmission Strategy

In contrast to the random transmission method, the event-driven transmission
method relies on specific triggers or events dictating channel access. Devices access
the channel selectively, prompted by predetermined events such as the availability
of data for transmission, or environmental changes within the network.

In this study, the change in the state of the Markov model is an Event for trans-
missions. This becomes important as it avoids transmitting any redundant infor-
mation to the receiver while there is no new information generated. This approach
introduces a level of control over channel access, enabling devices to transmit when
an event arises.

By harnessing this event-driven strategy, devices can potentially mitigate con-
tention by transmitting data only when necessary, thereby reducing collision oc-
currences and optimizing overall channel efficiency.

Although this is true in many cases, as we discuss the correlation between the
two sources, we see that the increase in the dependencies between them results in
simultaneous changes in their states resulting in the simultaneous need to access
the channel and therefore increased collision and packet drops.

Comparative Analysis

It is also noteworthy to mention that although the event-driven method shows an
advantage in cases of low correlation coefficients, as the correlation between the
interacting sources increases, the efficiency of the event-driven system significantly
decreases because of the increased collisions in the channel.

The examination of the Markov model within the context of collision occurrences is
shown in Figure 3.3. This provides valuable insights into the dynamics of channel
access and transmission behaviors. The parameter denoted as q drives the fre-
quency with which sources persist in their current state. For low values of q, the
Markov model exhibits a dynamic behavior. This results in a higher rate of state
changes among the sources in the case of the event-driven transmission method,
leading to increased transmission of these transitions. However, these heightened
state changes also correspond to a lower probability of sources remaining in their
current state, subsequently contributing to a surge in collision occurrences where
the reactive transmission method is employed. Conversely, as q escalates to higher
values, the model tends to experience fewer state changes, resulting in a diminished
number of transmission events and relatively lower collision instances.

The parameter q′ governs the degree of correlation between the sources within the
Markov model. A higher value of q′ signifies a heightened correlation level between
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Figure 3.3: Probability of collision for different levels of correlation

the sources, indicating a synchronized state change between the sources. As both
sources intend to access the channel concurrently in the reactive method, collision
instances increase, diminishing the chances of successful transmissions.
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3.2 Estimator Design

In this section, we introduce the receiver-side estimator.

We make a realistic assumption that the receiver can sense the channel. At any
given slot the receiver either observes the updates sent by one of the sources or
observes an idle slot or a collision in the channel.

Hence we can define the alphabet of the observations as

Oa = {0x, 1x, 2x, 3x, I, C, 0y, 1y, 2y, 3y}

Where I = Idle state and C = collision in the channel.

0x, 1x, 2x, 3x are the denotes reception of a packet with values {0, 1, 2, 3}from
the source X, and 0y, 1y, 2y are the values from the source Y.

The estimated value by the estimator at a given slot is represented as Zn. For
a given slot n, based on the observations, the estimator intends to accurately
estimate the value of the state at the source. The alphabet for the estimation can
be represented as:

Za = {0, 1, 2, 3}

In this study, the system on the receiving end although estimates values of both
X and Y, analysis can be done considering either of the sources. This leads us to
consider one source as ’the source of interest’ (e.g. X) and the other source as a
correlated source. In one case, source Y contributes as a factor of collision while
trying to access the random access channel during the same time as the source of
interest. In the other case, it contributes as the source of information when the
correlation with the source of interest is known.

The ultimate goal of the system is to estimate the values of the source to optimize
the parameters such as the error, age of incorrect information, or the duration of
the error depending on the requirement of the system.

We try to explore two methods of estimation in the following section.

3.2.1 Update and Hold Estimator

The receiver using the ”update and hold” estimation method follows a straight-
forward approach, retaining the last received sensor value when there are no new
updates available from the transmitting source. This approach is beneficial in sce-
narios where data transmission might be sporadic, or subject to delays, commonly
encountered in various real-world IoT setups [33] [28].
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The advantages of this approach lie in its simplicity and ability to ensure continuity
in estimation. It helps mitigate the impact of missing updates, allowing the system
to maintain a consistent output based on the latest available information.

However, the downside of the ”update and hold” method is its inherent limitation
in adapting to changes in the system. If the system undergoes significant transi-
tions while no updates are received, the estimator might continue to output the
last known value, potentially leading to inaccuracies in estimation. Moreover, pro-
longed gaps between updates could cause the estimator to lag behind the current
state of the system. This lag can impact the responsiveness of the estimation pro-
cess, particularly in scenarios where real-time adjustments to changing conditions
are critical [27].

In practical terms, when the estimator receives sensor data, it estimates the sensor
value based on the available information. In our experiment, the estimation is
simply updating the most recent value received from the corresponding source.
If subsequent updates from the transmitter fail to arrive the estimator maintains
the previously received value as the current state. This ”holding” or ”updating”
mechanism works well under the assumption that the system remains relatively
constant or changes gradually over time. This is not true for all the cases in our
experiment.

For example, the sources X and Y are less likely to change when the value of
the system parameter q is high. In this case, we will observe that the simple
”holding” or ”updating” mechanism indeed proves to be of advantage because of
its simplicity and ease of design. In cases where the value of system parameter q
is low, the probability of the sources retaining the previous state is low. Thus the
results are worse when compared to randomly guessing the value, as the estimator
tends to estimate wrongly and keep the older value while the probability of change
is high thus making the simple hold and update estimator an infeasible option.

In summary, while the ”hold-last” method ensures stability and continuity in esti-
mation in the absence of new data, its limitations in adapting to real-time changes
and potential delays in reflecting current system states might prompt the consider-
ation of alternative estimation strategies for enhanced accuracy and responsiveness
in IoT setups.

3.2.2 Estimator using Hidden Markov’s Model

Constructing an estimator based on HMM [24] for our system model that is built
on the basis of Markov’s progression clearly proves to be an advantage in capturing
the states and the observations they generate. In this study, the HMM process cor-
responds to the source of interest, and the observations are given by the succession
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of slots This involves determining the potential hidden states that characterize the
system’s behavior. The information about the ideal state or collided state of the
channel along with the correlation between the two transmitting sources X and Y
is leveraged to derive the state of the transmitting sources.

To design a HMM we have to specify how the system transitions between hidden
states over time, represented by transition probabilities (parameters q and q′).
These probabilities dictate the likelihood of moving from one state to another,
mirroring the system’s dynamics.

In this system, the observations can be:
1. An idle slot 2. A collision slot
3. Successful reception of the transmitted packets from either of the sources.
The hidden states are the state transitions or the information generated at the
sources that are either not transmitted or lost due to collision.

At any given slot n the goal of the HMM estimator is to provide an estimate of
Zn using the observations O up to the slot n.

We start with the goal of finding the value of Zn that has the maximum likelihood
to occur at the slot n. Hence, we have:

Zn = argmax
x

P [Xn = x|O] (3.24)

Where x ∈ 0, 1, 2, 3 and O capture the entire sequence of observation by the
estimator till the slot n.

By the definition of conditional probability, we have:

P [Xn = x|O] =
P [Xn = x,O]

P [O]
(3.25)

Following the forward recursion of HMM [24], we can write:

αn(x) = P [Xn = x,O] (3.26)

We understand that the vector αn reads the best state sequence up to slot n and
all the observations till slot n

where α is a vector whose elements contain value for each x ∈ {0, 1, 2, 3}

αn =
[
α(0) α(1) α(2) α(3)

]
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Hence the equation 3.24 can be written as:

Zn = argmax
x

αn (3.27)

Zn assumes the value x ∈ {0, 1, 2, 3} that is most likely to be the state of Xn:
the value of the source.

We now focus on calculating the vector α

αn = P [Xn = x,O]

= P [Xn = x,X1, X2...Xn−1, On, On−1...O1]

= P [Xn = x,On|Xn−1...On−1...O1]P [Zn−1...On−1...O1]

(3.28)

Note that Markov’s assumption is that the current output depends only on the
current observation. Therefore we have,

P [Xn = x,On|Xn−1...On−1...O1] = P [Xn = x,On] (3.29)

From the equation 3.26 we have the value of αn−1 as:

αn−1 = P [Xn−1 = x, ...On−1...O1] (3.30)

Hence αn after the substitution is:

αn = P [Xn = x,On|ON−1...O1]αn−1

= P [Xn = x,On]αn−1

= P [On|Xn = x]P [Xn = x]αn−1

(3.31)

Hence we can write the equation as follows:

αn = P [On|X = x]P [X = x]αn−1 (3.32)

Hence, we see that the vector α and in turn, the estimation depends on three
elements,
1. The previous alpha vector αn−1.
2. P [Xn = x] which can be calculated using the Matrix Q 3.1.2
3. P [On|Xn = x] which depends on the transmission strategy. We formulate an
observation matrix to calculate this term.

This method closely follows the forward propagation in the Hidden Markov Model
[24] where the previous α is weighted by their transition probabilities (used in the
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calculation of P [On|X = x]) and multiplied by the state observation likelihood
(P[X = x]).

To calculate the elements of α we have:

αn(x) =
i=3∑
i=0

QixP [On|Xn = x]αn−1(i) (3.33)

For example: let n = 1, x = 0 and On = I. We consider an idle channel observation
(I) by the receiver at the first slot. We calculate the likelihood of the source value
X1 being 0.

α1(0) =
i=3∑
i=0

Qi0P [Zn = I|Xn = 0]α0(i) (3.34)

α1(0) = P [Z = I|X = 0]{Q00α0(0) +Q10α0(1) +Q20α0(2) +Q30α0(3)} (3.35)

Qjk indicates the probability of transitioning from jth state to kth state. In the
above example, we calculate the probability of the source X coming to state 0
from any of the other states using the matrix Q.
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Figure 3.4: Propagation of instantaneous incorrect age

3.3 Evaluation Parameters

The following three parameters are used as metrics to analyze the system
1. Age of Incorrect information (AoII)
2. Average Estimation Error
3. Average duration of Error Estimation

3.3.1 Age of Incorrect information (AoII)

We analyze the performance of the presented schemes in terms of the Age of Incor-
rect Information (AoII) [14]. Age of Information (AoI) [35] is a well-documented
metric used in communication systems to measure the information freshness of a
given source. Although AoI successfully captures how recent the knowledge about
the state of a source is at the destination, it does not account for the accuracy of
that information.

To account for the above discrepancy, we move towards the more recently intro-
duced metric Age of Incorrect Information [14] which can capture the amount of
time spent by the estimator at the receiver estimating the wrong status value and
penalizing for wrong estimation. We assume each status update from the source
of interest to contain a time stamp, denoting the instant at which the message was
generated.

Figure 3.4 gives us an overview of AoII. The age is reset in case the receiver
correctly estimates the source state. If Xn = Zn, the instantaneous age of AoII
is zero. In other words, when the receiver has successfully estimated the perfect
knowledge about the status of the source of interest, we set or reset the value of
AoII to zero. However, as the state of the sources changes the estimator is ideally
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expected to keep up with the correct estimation which in reality is highly unlikely.
We record this error in estimation until the estimator again gives the true value of
the source of interest. The age of incorrect information grows linearly with time
as long as the estimator is in an erroneous state. Therefore the metric Age of
Incorrect Information (AoII), can be written as follows:

δn = f(n)× g(X(n), Z(n))

where f(n) is an increasing time function, that can be considered a penalty paid
for being unaware of the correct status of the source X (source of interest) for
a certain amount of time. It reflects the cost or detriment associated with the
receiver’s lack of awareness regarding the accurate state of the source over time.
f(n) profoundly influences how the AoII grows with time.

On the other hand, g(X(n), Z(n)) is a function that reflects the difference between
the current estimate at the receiver Zn and the actual state of the source of interest
Xn. It quantifies the error in estimation and plays a crucial role in determining
the magnitude of AoII.

There exists a wide variety of choices for f and g that we can pick from.

In this study, we use the linear time-dissatisfaction function:

f(n) = n− V (n)

where V(n) is the last time instant where the estimator had accurate information
of the source of interest and n is the current time slot.

We consider the indicator error function:

g(n) =

{
0 if Xn = Zn

1 otherwise
(3.36)

When there is any mismatch between the status of the sources X at a slot Xn and
the estimated status value at the receiver Zn a penalty is imposed by the system in
terms of g(n). We consider this approach with the error function g(n) for studying
the results further.

Another known way of penalizing the incorrect estimation is to consider the abso-
lute value of inaccuracy. The penalty is higher for a larger gap in the estimation.
In other words, the farther the estimated value from the real value of the system,
the higher the impact on the Age of Incorrect information.

We further consider the indicator error function g′(n) to give a better picture of
the accuracy of the estimator.
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Figure 3.5: Error functions for AoII

g′(n) =

{
0 if Xn = Zn

|X(n)− Z(n)|; otherwise
(3.37)

In summary, both f(n) and g(X(n), Z(n)) are important components of the AoII
metric, each contributing to the dynamics of information freshness. By carefully
selecting and calibrating these functions, the impact of incorrect information can
be studied for diverse applications.

3.3.2 Average Estimation Error

We consider the simplest form of error evaluation to measure the estimation error.
The error in estimating the value of the source X at the time slot n is as follows:

En = |X(n)− Z(n)| (3.38)

We span through N slots in the system to gain a stable understanding of the error
in the estimation of transmitter status.

The mean absolute estimation error is defined as:

Ee =
1

N

N∑
n=1

|Xn − Zn| (3.39)

3.3.3 Average Error length

In some systems, not only the absolute error but also the duration the receiver
spends estimating the wrong status plays an important role.
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Let us consider an example,

X: 0, 0, 1, 2, 2, 3, 2, 2, 2, 1, 1, 2, 1, 0, 0

Z: 0, 0, 0, 1, 2, 3, 3, 2, 2, 3, 1, 2, 1, 1, 0

E: 0, 0, 1, 1, 0, 0, 1, 0, 0, 2, 0, 0, 0, 1, 0

In the above example, we see there are 4 error streaks. One of the error length
of two slots and three of the error length of one slot. Hence we consider 4 error
instances and the total number of errors is 5.

To capture this, we define Ed:

Ed =
Ne

Ni

(3.40)

Where Ed is the average error duration, Ni is the number of estimation error
instances, and Ne is the total estimation error.

This parameter gives us valuable insight into the duration for which the system as-
sumes a wrong value of a transmitter without much focus on how far the estimation
is from the true value.

3.3.4 Contextual Understanding Ee and Ed Metrics

Although both Ee and Ed evaluate the error in the system, the context under
which each one of these errors becomes significant varies. In case it is impor-
tant that the average error of the system is low and the accuracy is of higher
importance, it is better to evaluate the system based on Ee, which considers error
magnitude. This could play a role in safety-critical applications. In case the goal
is to learn the estimator based on the duration (or the number of error instances)
the receiver spends in error, regardless of magnitude, Ed proves to give us a better
understanding. This could be important in time-critical applications where timely
status updates are important.

Error Magnitude Evaluation Ee

Ee focuses on evaluating the error in the system based on the magnitude of the
discrepancies between the actual and estimated states.

Duration-Based Error Evaluation Ed

Ed focuses on quantifying the duration or frequency of time spent in error states by
the receiver. It disregards the magnitude of individual errors and instead empha-
sizes the persistence of inaccuracies over time. By tracking the duration of error
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instances, Ed provides insights into the system’s robustness. Prolonged periods of
error states may indicate inefficiencies in the estimation process. It prioritizes the
exploration of error patterns over time. By quantifying the duration of erroneous
states,

To summarize, While Ee emphasizes accuracy and error magnitude for precision-
centric tasks, Ed prioritizes duration-based analysis for systems where error dy-
namics and system stability take precedence.

3.4 Ee and Ed in the context of AoII

In the context of AoII, large error magnitudes indicate significant deviations from
the true state of the source, which will contribute to increased AoII. An appropriate
error function is to be selected to account for the error magnitude. The larger
the error magnitude, the greater the penalty imposed on the system’s freshness
of information, reflecting the impact of inaccurate estimates on the currency of
information.

Ed evaluates the duration or frequency of error instances, irrespective of their
magnitude. In the context of AoII, longer duration of error instances contributes
to increased AoII, as they indicate prolonged periods during which the receiver is
unaware of the correct state of the source. Even if individual errors have small
magnitudes, persistent errors over time will lead to a higher AoII, reflecting the
accumulation of incorrect information over prolonged durations. In this case the
error function (g(n) 3.36 is selected as it accounts for the accuracy of the system.
The impact of using different transmission methods and estimation strategies can
be studied individually without the influence of an additional parameter of the
error magnitude.

Higher values of Ed correspond to higher AoII, as they indicate longer periods of
erroneous states during which the receiver lacks accurate information about the
source. The results in the upcoming section are based on this error function.
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3.5 Random Transmission Strategy

3.5.1 Update and Hold Estimator

The Random transmission strategy with an Update and hold estimation model
is a simple approach by the receiver to realize the status of the transmitter with
minimum effort on the receive receiver end.

The possible channel observations by the receiver will be

O = {0x, 1x, 2x, 3x, I, C, 0y, 1y, 2y, 3y}

Thus, using the channel observation, the update and hold estimator takes the
following steps,

Zn =

{
Zn−1, if On = {Yn, I, C }
Xn, if On = Xn

(3.41)

Figure 3.5.1 gives an example of a possible evolution of sources X and Y over time
slots, and their decision to access the channel. We see the collision and the idle
states in the channel and how the Update and Hold leverages this information.
The knowledge of the state of the other sources do not provide information about
the state of the source of interest in this simple estimator.

We can intuitively notice that the error significantly decreases as the probability of
remaining in the same state q increases. With a system that tends to remain in the
same state for a longer duration, an Update and Hold estimator shows an increased
advantage. This estimator with limited computational complexity can be used as
a benchmark against the more complex estimators to measure improvements in
terms of estimation error and various other parameters.

For a two-source system such as ours, the best usage of the channel is observed
when the probability of transmission is 0.5. Anything above this value results in
increased collision, and anything below 0.5 results in more idle slots (3.23).
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Figure 3.6: Representation of a system using random transmission method and
update and hold estimator at the receiver
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3.5.2 MAP Estimator based on Hidden Markov’s Model

By combining a Random Transmission method at the source with a Hidden Markov
Model (HMM) at the estimator, we explore the possibility of optimization, lever-
aging probabilistic inferences (correlation between the two sources).

The Random Transmission method introduces a stochastic element into the data
transmission process, whereby data is sent sporadically at the source, with a certain
predetermined probability, regardless of the system state.

Meanwhile, at the estimator, the integration of a Hidden Markov Model approach
to parameter estimation enables the inference of underlying system dynamics (cor-
relation between the sources) that exert influence on the received data.

As we have discussed earlier, HMM estimation is a recursive method and uses the
observation till that point (in terms of α) to make an estimate at the current slot.

We now formulate an observation matrix Oran for the random transmission method
to calculate P [O|X]: The probability of making an observation conditioned on the
current observation of the source. This value is further used in status estimation
in section 3.2.2.

Observation matrix: Oran

0x 1x 2x 3x I C 0y 1y 2y 3y


0 k 0 0 0 (1− p)2 p2 kP [O = 0y |0] kP [O = 1y |0] kP [O = 2y |0] kP [O = 3y |0]

1 0 k 0 0 (1− p)2 p2 kP [O = 0y |1] kP [O = 1y |1] kP [O = 2y |1] kP [O = 3y |1]

2 0 0 k 0 (1− p)2 p2 kP [O = 0y |2] kP [O = 1y |2] kP [O = 2y |2] kP [O = 3y |2]

3 0 0 0 k (1− p)2 p2 kP [O = 0y |3] kP [O = 1y |3] kP [O = 2y |3] kP [O = 3y |3]

The last four columns are in the form of P [On = y|Xn = x]. The matrix calculates
the probability of observing a condition in the channel ∈ O given the value of the
source X.

Also p is the value of the probability of transmission assigned to both sources, in
the first column of Oran, the probability of observing 0x when 0 is transmitted
by the source X is when X transmits (with the probability of p) and Y does not
(with the probability of 1− p).

k = p(1− p) (3.42)

Thus P [O = 0x|X = 0] = k. There is no way the receiver observes 0 when any
other value is transmitted. Hence all the other values in the first column are zero.
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Further, the probability of observing the idle state is (1− p)2, and the probability
of observing collision p2.

An example for calculating the last four columns of the matrix Oran:

P [O = 0y|X = 0] =
P [O = 0y, X = 0]

P [X = 0]

=
π00

π00 + π01 + π02 + π03

(3.43)

P [X = 0] = Probability of finding the value of the source X as 0. From the steady
state 3.11 we can calculate the value of P [X = 0] = π00 + π01 + π02 + π03.
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3.6 Reactive Transmission Strategy

3.6.1 Update and Hold Estimator

As we have studied earlier, the Update and Hold estimator is a simple estimation
method and in this experiment used to measure the performance of the advanced
estimation strategy (HMM) adapted to improve the performance parameter.

The reactive transmission strategy dictates that the transmitter only initiates sta-
tus update transmission when there is a change in the system state. By transmit-
ting data reactively, the system aims to avoid collisions by limiting unnecessary
data updates. This additionally conserves energy and bandwidth, as it avoids
transmissions during periods of stability or when there is no new data to transmit.

When a change in the system state triggers a reactive transmission event, the
transmitter sends data to the receiver. Upon receiving this data, the receiver
utilizes its update and hold estimator to update its estimates of the state of the
transmitting source based on the newly received information.

We can define the estimation decision by the transmitters as

Xn
t =

{
0, if Xn = Xn−1

1, otherwise
(3.44)

Y n
t =

{
0, if Yn = Y n− 1

1, otherwise
(3.45)

Where Xn
t and Y n

t indicate the transmission decisions taken by the sources at the
time slot n to transmit a status update depending on the information available.
The sources X and Y transmit if Xn

t or Y n
t are 1. The possibility of collision in

this system is only when both sources have changed and have new information to
transmit.

The alphabet of channel observations by the receiver is O

The estimator makes the decision based on the channel observations:

Zn =

{
Zn−1 if On = {Yn, I, C }
Xn if On = Xn

(3.46)
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Figure 3.7 gives an example of the progression of state changes in sources X and Y.
We see the sources trying to transmit an update using the random access channel
while there has been a state change.

Although the only possible collision scenario is the state change of both sources,
this knowledge of the state change is not utilized by the simple hold and update
estimator. This deterministically results in an error in the estimation.

Similar to the Random transmission method, we can intuitively derive that the
error significantly decreases as the probability of remaining in the same state q
increases. With a system that tends to remain in the same state for a longer
duration, we observe a large reduction in the channel access by the transmitting
sources resulting in reduced collision. The update and hold estimator retains the
latest update from the source of interest, unless a new packet from that particular
source arrives, hence showcasing increased advantage.

The parameter q′ plays a major role in the performance of the reactive transmis-
sion. The probability that both X and Y change states is indicated by q′. In other
words, q′ is the parameter that decides the correlation between the two sources.
As the correlation between the sources increases, both sources likely change their
states simultaneously resulting in accessing the channel together and in turn col-
liding. This failed transmission due to collision results in an error in estimation
as the Update and Hold estimator still holds on to the previous value whereas
there has been a change of state at the sources. The simple estimator although
observing the collision is not able to capture this information for estimation.
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Figure 3.7: Representation of a system using reactive (event-driven) transmission
method and Update and Hold estimator at the receiver
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3.6.2 MAP estimator based on Hidden Markov’s Model

When an event triggers the source node to transmit data, the receiver begins to
observe a status update in case there is no collision. The MAP estimator on the
receiver end is designed on the basis of HMM and hence will effectively use the
correlation information to optimize the estimator output.

We design the HMM estimator considering the transmission methodology. We
construct the Oreact on the basis of the transition matrix A in (3.10) which is
based on the parameters q and q′.

We see that when the value of q′ is lower, the correlation between the transmitting
sources is low which results in a high number of successful transmissions as the
sources do not often try to access the shared channel simultaneously.

Conversely, when the value of q′ is higher, although the system results in many
more collisions compared to the earlier example, the knowledge at the estimator
that a collision is a result of a change in both the transmitting sources helps in
improved estimator performance. When the receiver witnesses a channel collision,
although it does not know the current status of the source, it knows there has
been a change. Using this knowledge the receiver intends to estimate the new
state. This method shows a significant improvement over the Update and Hold
estimation strategy.

We formulate the observation matrix Oreact for the reactive transmission method
as follows:

0x 1x 2x 3x I C 0y 1y 2y 3y





0x P [0x|0] 0 0 0 P [I|0] P [C|0] P [0y|0] P [1y|0] P [2y|0] P [3y|0]

1x 0 P [1x|1] 0 0 P [I|1] P [C|1] P [0y|1] P [1y|1] P [2y|1] P [3y|1]

2x 0 0 P [2x|2] 0 P [I|2] P [C|2] P [0y|2] P [1y|2] P [2y|2] P [3y|2]

3x 0 0 0 P [3x|3] P [I|3] P [C|3] P [0y|3] P [1y|3] P [2y|3] P [3y|3]

The elements of Oreact represent P [O = o|X = x]: If the probability of observing
a said observation given the value of the transmitting source X.

In the following let us consider a few examples to compute the elements of Oreact :

Example 1:

P [O = 0X |X = 0] =
P [Change in X, No change in Y, X = 0]

P [X = 0]
(3.47)

Reason for the above expression:
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a. A Successful transmission from the source X indicates no collision and hence
source Y has retained its earlier value and source X has transitioned to the state
0 from an unknown state.

b. As we know the states can only move up and down to their immediate neighbor,
from the Markov model, we know that if Xn = 0 after a change, then Xn−1 = 1.

The possible cases are as follows:

Xn−1 Yn−1 Xn Yn

1 0 0 0
1 1 0 1
1 2 0 2
1 3 0 3

Hence from the transition matrix A in (3.10) we can formulate

P [O = 0X/X = 0] =
A(10, 00)π10 + A(11, 01)π11 + A(12, 02)π12 + A(13, 03)π13

P [X = 0]
(3.48)

Example 2:

P [On = 0y|Xn = 0] =
P [

P [Xn = 0]

=
A(01, 00)π01

P [Xn = 0]

(3.49)

Example 3:

Estimation on witnessing an idle state:

P [On = I|Xn = 0] =
P [

P [Xn = 0]
(3.50)

Reasoning:

An idle slot is observed with Xn = 0 only if

a. Xn = 0 and the channel is in an idle state shows that Xn−1 = 0

b. Yn and Yn−1 can assume any value but Yn = Yn−1 as the channel is in an idle
state.

The possible cases are as follows:
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Xn−1 Yn−1 Xn Yn

0 0 0 0
0 1 0 1
0 2 0 2
0 3 0 3

P [O = I|X = 0] =
A(00, 00)π00 + A(01, 01)π01 + A(02, 02)π02 + A(03, 03)π03

P [X = 0]
(3.51)
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3.7 A Hybrid Transmission Strategy

In this method, we focus on combining the random and reactive strategies. The
reactive strategy works very effectively for the cases of low correlation (low q′).
However, due to higher chances of collision in the highly correlated systems, the
estimator that uses the reactive transmission at the sources will not see an update
for a long time. Due to this, the receiver continuously estimates incorrect values
for a long duration.

To avoid this we try to induce some randomness into the reactive method. The
sources transmit when there is a change in the state with a probability of 1. Ad-
ditionally, when there is no state change, the sources randomly decide to transmit
with a non-zero probability of ph. This helps the system with high q′ escape the
collision and update the receiver, thus helping in the status estimation.

It is important to note that although this strategy improves the performance in
some cases, the knowledge of collision in the fully reactive method can not be
completely used. There are chances of collision when one of the sources has changed
the state and the other has decided to randomly send an update to the receiver.
Now, when the receiver notices a collision, it can not know with certainty if there
was a state change.

The grey slots in the demonstration in Figure 3.8 showcase the possibility of an
error. Since there is a collision, although the HMM estimator knows there is a
chance of change in the state of the sources, it can not be certain. The collision
could also be because of the induced random transmission.

3.8 An Adaptive Estimator

The next phase involves training the Hidden Markov Model to learn the system
parameters q and q′. The Baum-Welch algorithm [24] iteratively updates the
transition probabilities of the HMM to best fit the data available at the receiver.

In this case, we make assumptions that

1. The receiver knows the transmission method the sources are using to access the
channel and send the status updates.

2. The Markov model at the transmitter end is known to the estimator. The
number of sources, the alphabet of the two sources, and the condition that the
state of the sources either remains the same or increments or decrements by exactly
one.

We initially start with an arbitrary value of q and q′. As the receiver gets the
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Figure 3.8: Representation of a system using a hybrid transmission method with
HMM estimator at the receiver

updates, the HMM reads the values and tunes the system parameters accordingly
forming the transition matrix.

We use the below formula to form the transition matrix:

aij =
expected number of transitions from state the state i to state j

expected number of transitions from state i
(3.52)

This step is iteratively followed to update the transition matrix, the steady state
vector, and the observation matrix (dependent on the transmission method).



Chapter 4

Results and Discussions

In this chapter, the proposed research questions at the beginning of the document
are answered by evaluating the strategies that were developed in the methodology
section.

We analyze the impact the estimator using the Hidden Markov Model has on
the status estimation in comparison with the simple update and hold estimation
method. We take into account the effectiveness of the status estimation of the
correlated sources when they adapt both random and reactive transmission strate-
gies.

All the simulations are carried out in MATLAB. The insights on the behavior
of the different transmission strategies are discussed in detail. Note that as our
system is designed symmetrically monitoring either of the sources (source X or
source Y) gives the same results.

The experimental setup has two sources transitioning according to the correlation
between the two sources. We evaluate the system under various conditions by
picking up different q (probability of remaining in the same state), q′ (probability
factor of moving to a highly correlated state), and pt (probability of transmission in
applicable cases). This allows us to evaluate the system under various correlation
conditions which is the base of our study.

During the analysis different evaluation parameters such as Age of Incorrect In-
formation (AOII), average error, and duration of the error are studied. Unless
otherwise specified the simulations are conducted for N = 100000 slots.

52
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4.1 Impact of q

4.1.1 Estimation error

We first analyze the impact of q (same state probability) on the evaluation pa-
rameters. As we observe in Figures 4.3 and 4.4, we study the estimation error
for different values of q through the range of correlation coefficient ρ for a system
using a reactive transmission strategy (event-driven). Figures 4.1 and 4.2 show the
estimation error when a random transmission strategy is used. We see a significant
dip in the estimation error as the value of q increases when the random transmis-
sion is used, as opposed to the reactive method where the system parameter q does
not show any impact in the estimation error.

As the system is more dynamic in the lower value of q, there is a high chance of
state transitions. In the case of the random transmission method, the sources will
transition more often but might fail to update the status to the receiver or the
update is lost during a collision. While the state at the sources has changed, the
estimator is still holding to the previous value thus resulting in an error more often.
In case of a higher value of q, the system does not transition frequently. Although
the sources might delay or fail to transmit or a possibility of collision is similar to
the cases of low q, we see an advantage in higher q in terms of estimation. The
sources are less likely to have transitioned and hence the lost update could be the
same as the previous value.

When the sources use the reactive method (an event-driven strategy) to transmit
in Figures 4.3, 4.4, irrespective of how often the system transitions to a different
state, every transition is updated and is a success unless a collision occurs. In case
of the lower value of q, if the receiver incorrectly estimates the state of the source,
there is a chance the sources are changing frequently and a new update is received
shortly. On the contrary, while q is high, due to fewer transitions, the receiver
will not frequently receive an update. Hence, in the case of high q, if the receiver
estimates an incorrect value (although less frequent), the error persists for longer
until an update is received. Therefore, the frequency of transitioning in the low
value of q balances the persistence of an error in the estimation in the high value
of q nullifying the impact of q during the use of reactive transmission strategy.
This trend is clearly shown in Figures 4.3 using the update and hold method and
in Figure 4.4 using the HMM estimation method.

Hence it is important to note that q shows a significant impact on the estimation
error in the random transmission strategy while this is not observed in the reactive
method of transmission.
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Figure 4.1: Estimation Error of a system using random transmission method for
the status updates and a simple estimator at the receiver. q = probability of the
system to remain in the same state
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Figure 4.2: Estimation Error of a system using random transmission method for
the status updates and a Hidden Markov Model (HMM) estimator at the receiver.
q = probability of the system to remain in the same state
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Figure 4.3: Estimation Error of a system using reactive transmission for the status
updates and a simple estimator at the receiver. q = probability of the system to
remain in the same state
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Figure 4.4: Estimation Error of a system using random transmission method for
the status updates and a Hidden Markov Model (HMM) estimator at the receiver.
q = probability of the system to remain in the same state
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4.1.2 AoII

We now analyze the Age of Incorrect Information in the context of q. Figures 4.5
and 4.6 show the AoII for the random method for transmission. Similar to the
estimator error, we see the value of AoII is less when the sources do not transition
to other states frequently. This trend can be noticed clearly in Figure 4.5.

The trend although noticeable is not as prominent when the HMM estimator is
used in Figure 4.6 in comparison with Figure 4.5 showing the ability of the HMM
bases MAP estimator to leverage the channel observations. By resetting the AoII
frequently (as a result of correct status estimation) the HMM base MAP estimator
reduces the long error sequences. By avoiding the long error sequences, the HMM
estimator stops the AoII from growing substantially over time and in turn results
in lower AoII. Hence, the impact of q is lesser in the case of AoII for random
transmission.

−0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.6

0.8

1

1.2

1.4

Correlation coefficient (ρ)

A
ge

of
In
co
rr
ec
t
In
fo
rm

at
io
n
(A

oI
I)

q = 0.3
q = 0.5
q = 0.7

Figure 4.5: Analysis of Age of Incorrect Information (AoII) of a system using
random transmission method for the status updates and a simple hold and update
estimator at the receiver. q = probability of the system to remain in the same
state

Now we study the influence of q on the AoII while the sources use the reactive
transmission method. An important observation can be made from Figures 4.7 and
4.8: AoII is higher for a higher value of q. This observation proposes the opposite
trend compared to the random transmission method. While the estimation error
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Figure 4.6: Analysis of Age of Incorrect Information (AoII) of a system using
random transmission method for the status updates and an HMM estimator at
the receiver. q = probability of the system to remain in the same state

is unaffected by the parameter q, the AoII in the reactive method increases as the
probability of remaining in the same state increases.

We can explain this behavior by observing that the longer the estimation error
stretches without a reset (without a correct estimation), the higher the AoII. The
linear increase in age causes the average AoII to grow. As explained earlier, when
the value of q is high, the probability of transitioning from a state is less. If there
is an estimation error in the system while using an update and hold estimator, the
error propagates until a new update is received. This is not frequent in the case of
a high value of q. Hence we notice a substantial growth of AoII in higher q (close
to 8 slots when q = 0.7).

This effect although significantly reduces when the HMM-based MAP estimator
is used in Figure 4.8 (close to 1 slot for q = 0.7) showcasing the improvement
achieved, the trend persists. Infrequent changes of states in the source result in
fewer status updates to the receiver, resulting in errors at the estimator continuing
for a longer duration and thus higher AoII. With lower values of q, the state changes
result in updates which is used to reset the growing AoII, thus giving an advantage
in terms of information freshness.
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Figure 4.7: Analysis of Age of Incorrect Information (AoII) of a system using
reactive transmission method for the status updates and a simple hold and update
estimator at the receiver. q = probability of the system to remain in the same
state

4.2 Impact of q′: Correlation factor

While studying the transmission strategies and estimation methods, blue lines
correspond to the reactive transmission approach, and the red lines represent the
random transmission method. Solid lines refer to the HMM based MAP estimator
and the dashed line shows the results for the hold and update method of estimation.
The evaluation parameters (estimation error, AoII, error duration) are plotted
on the y-axis against the correlation coefficient against the x-axis. The unit of
evaluation parameters are considered in terms of slots.

For the below analysis, we consider a fixed value of q = 0.5 and study the behavior
of the system for the range of correlation coefficient. The sources are negatively
correlated at q′ = 0.05 with correlation coefficient ρ = -0.2103 to positively cor-
related at q′ = 0.95 with correlation coefficient ρ = 0.998. Figure 3.2 shows the
value of q′ corresponding to the correlation coefficient.

The parameter q′ is the factor that decides the transition to a highly correlated
state in the system. Figure 3.1 shows the transition probabilities.

From Figure 4.9 for a low value of ρ the reactive transmission works the best (blue
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Figure 4.8: Analysis of Age of Incorrect Information (AoII) of a system using
reactive transmission method for the status updates and an HMM estimator at
the receiver. q = probability of the system to remain in the same state

curves). The probability of transitioning to a highly correlated state is less for
a lower ρ value (low q′). Hence the two sources X and Y do not change their
states simultaneously, avoiding collisions. Therefore most of the status updates
are successfully transmitted resulting in low estimation error.

As the correlation coefficient increases, the system is more likely to transition to
a highly correlated state, resulting in simultaneous state change by the involved
sources. This results in a higher number of collisions and a reduced number of
meaningful status updates at the receiver resulting in high estimation error. In
such cases, the receiver does not get any update for an extended period of time
due to collisions. This is applicable for a system using the reactive method (event-
driven) irrespective of the estimation method.

When an HMM-based MAP estimator is used, as it has the ability to observe the
channel behavior, it uses the collision information correctly and estimates a state
change. This results in the improvement of reduced estimation error at the higher
value of ρ, since a large number of collisions occur at higher ρ. The blue curves
in Figure 4.9 towards a high ρ show a drastic reduction of around 0.4 slots in the
estimation error.

Although the random transmission does not perform as well as the reactive for a
low values of ρ, the transmission method performs significantly better for a highly
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correlated system.

In Figure, 4.9 for a system using the update and hold method for estimation along
with the random transmission method (dashed red), there is an increase in the
estimation error over the range of ρ. This is due to the transition of the states to
a highly correlated state with an increase in ρ, but the inability of the estimator
to utilize the correlation information. This is rectified when an HMM-based MAP
estimator is used for the status estimation (solid red). Effective use of knowledge
of the correlation between the sources can be noted with a reduction in error by
0.23 slots at high ρ

The estimator has the least information about the transmitting sources X and
Y in the region between the values ρ = 0 and ρ = 0.4. Hence we do not see a
prominent advantage in estimation error while using the HMM estimator over the
simple estimator in this region.

In the Figure 4.9 we study a hybrid technique for transmission (black curve). This
shows a slight advantage over the random and reactive transmission for a short
region of correlation coefficient between ρ = 0.2 to ρ = 0.6. This gain as we see
is not too significant and as we introduce a level of randomness into the reactive
transmission, we also bring in some uncertainty which leads to the estimator losing
some knowledge about the sources.

Study of AoII

In Figure 4.10 we report the Age of Incorrect Information for the combinations
of transmission and estimation strategies. The random transmission follows the
same trend as the estimation error. From the tables 4.1 and 4.3 even at q′ = 0.5
(least correlated region), we can see that there is more success in the case of using
the HMM estimator (higher proportion of zero errors). This results in a higher
number of resets in the AoII thus reducing the AoII. The advantage of using an
HMM is more prominent in AoII for the values between ρ = 0 and ρ = 0.4 as
compared to the estimation error.

The AoII of reactive transmission also follows a trend similar to the random trans-
mission method. In the case of reactive transmission, from the table 4.2 and 4.4
we observe that there is a noticeable portion of errors of magnitude two in highly
correlated case (q′ = 0.9). In the AoII, as the magnitude of error is not considered
(which plays a significant role in estimation error), we see a greater advantage of
using an HMM estimator over an update and hold estimator. Due to this, we
can also observe the cross-over of reactive transmission performing worse than the
random transmission occurring at ρ = 0.82. Whereas, this was seen at ρ = 0.68 in
estimation error.
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Random transmission with update and hold

Error magnitude 0 1 2 3
q′ = 0.1 0.6966 0.2756 0.026 0.0018
q′ = 0.35 0.6496 0.298 0.0478 0.0045
q′ = 0.5 0.6167 0.3178 0.058 0.0075
q′ = 0.9 0.5662 0.3479 0.0755 0.0104

Table 4.1: Proportion of error magnitudes for a system using random transmission
method with update and hold estimator

Reactive transmission with update and hold

Error magnitude 0 1 2 3
q′ = 0.1 0.9869 0.0127 0.0003 0
q′ = 0.35 0.8824 0.1036 0.0125 0.0015
q′ = 0.5 0.6825 0.2464 0.0612 0.0098
q′ = 0.9 0.3733 0.4062 0.1792 0.0414

Table 4.2: Proportion of error magnitudes for a system using reactive transmission
method with an update and hold estimator

Random transmission with HMM

Error magnitude 0 1 2 3
q′ = 0.1 0.7174 0.2567 0.0221 0.0038
q′ = 0.35 0.6633 0.2961 0.0375 0.003
q′ = 0.5 0.6346 0.3171 0.0481 0.0002
q′ = 0.9 0.7128 0.2693 0.0179 0

Table 4.3: Proportion of error magnitudes for a system using random transmission
method with an HMM estimator

Reactive transmission with HMM

Error magnitude 0 1 2 3
q′ = 0.1 0.9967 0 0.0033 0
q′ = 0.35 0.9474 0 0.0526 0
q′ = 0.5 0.8426 0 0.1574 0
q′ = 0.9 0.7147 0 0.2853 0

Table 4.4: Proportion of error magnitudes for a system using reactive transmission
method with an HMM estimator
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Figure 4.9: Estimation error analysis against correlation coefficient for combi-
nations of reactive and random transmission with HMM and update and hold
estimation

Study of Error Duration

The average duration of error plays a role in the evaluation of the estimator. Figure
4.11 outlines the trend for the four cases considered.

We first look into the random transmission method (red curves). Intuitively the
highest error duration is noticed at the least correlation coefficient and the error
duration is significantly less at the higher correlation between the sources.

In the reactive system, the receiver using the HMM-based MAP estimator shows a
significant drop in the error duration at the high correlation region. Although this
system consists of a considerably higher proportion of errors with higher magnitude
in Figure 4.4, the error duration does not consider magnitude. The system also
has a good proportion of zero errors, thus helping to shorten the error duration.

The counter-intuitive result is noted for the system using reactive transmission
and Update and Hold estimator. For higher values of the correlation coefficient,
the updates are lost in collision hence the error persists for longer. In the case
of a low correlation coefficient, although there are fewer error instances, a small
number of longer errors cause a significant rise in error duration. Having fewer
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Figure 4.10: Age of incorrect information against correlation coefficient for com-
binations of reactive and random transmission with HMM and update and hold
estimation

error instances does not balance the effect caused by some longer errors. Therefore
we see a trend for the reactive updtae and hold method where the error duration
is least at the least correlation coefficient.
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Figure 4.11: Average error duration against correlation coefficient for combinations
of reactive and random transmission with HMM and update and hold estimation

Figure 4.12 shows the learning of the parameter q′ by the estimator using the data
available at the receiver. An iterative method is followed using the Baum-Welch
algorithm (3.52) that considers all the observations till the current slot to learn
the parameter q′. This method is particularly useful when the estimator does not
know the behavior of the sources. We assume an arbitrary initial value for q′ at
the estimator (0.5) and this value is later learned as the estimator receives updates
from the sources. The reference points in Figure 4.12 are the real parameter values
at the source. We see the HMM-based MAP estimator observes the evolution of
the sources through the channel and learns the true value of q′.

We notice that the reactive transmission is quicker in reaching the desired value
as it generally has lesser uncertainty. The learning is slower as the number of slots
progresses and it takes longer to reach the exact value as that on the transmission
end since the HMM is only reading the channel to gain the information.
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Figure 4.12: System learning the correlation factor q′ over a period of time



Chapter 5

Conclusions and Outlook

In this thesis, we have studied the Markov Model of two sources under different
correlation coefficients whose goal is to access the random access channel to trans-
mit the status update to the receiver. We consider a two-source Markov model
and through transitions to different states, achieve a wide range of correlation co-
efficients upon which the study is carried out. We report the impact of Random
and Reactive transmission (event-driven) methods on the evaluation parameters.

We have extensively investigated an HMM-based MAP estimator against a sim-
ple Update and Hold estimator to understand the influence of the correlation
coefficient on the status estimation. Through the results, we conclude the MAP
estimator performs better in almost all cases of correlation across various eval-
uation parameters. This however comes with design complexity and increased
computational time due to the iterative nature of the estimator.

We have then considered different evaluation parameters: Estimation error, Age
of Incorrect Information (AoII), and average error duration. We study the system
on the basis of different system parameters (q and q′) and conclusively show the
improvement achieved by the HMM-based MAP estimator. We also attempt to
understand the difference in the status estimation and the system behavior when
different transmission techniques are used. We study a hybrid transmission tech-
nique to achieve the best of both Random and Reactive methods. We further make
an attempt to learn the system parameters (q and q′) so as to make the estimator
more dynamic.

In conclusion, we can derive that the correlation coefficient has a positive effect on
the status estimation while using the Random transmission method. The Hidden
Markov Model positively impacts the AoII, estimation error, and error duration
in all the considered cases.
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